ANALISIS ALIRAN DAN PERPINDAHAN PANAS FLUIDA SISKO DALAM KEADAAN STEDI NURI ANGGI NIRMALASARI

dokumen-dokumen yang mirip
ANALISIS ALIRAN DAN PERPINDAHAN PANAS FLUIDA SISKO DALAM KEADAAN STEDI

II LANDASAN TEORI. Misalkan adalah suatu fungsi skalar, maka turunan vektor kecepatan dapat dituliskan sebagai berikut :

FENOMENA PERPINDAHAN LANJUT

Pengantar Oseanografi V

FENOMENA PERPINDAHAN. LUQMAN BUCHORI, ST, MT JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNDIP

III PEMBAHASAN. (3.3) disubstitusikan ke dalam sistem koordinat silinder yang ditinjau pada persamaan (2.4), maka diperoleh

Simulasi Numerik Aliran Fluida pada Permukaan Peregangan dengan Kondisi Batas Konveksi di Titik-Stagnasi

FENOMENA PERPINDAHAN. LUQMAN BUCHORI, ST, MT JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNDIP

SOLUSI ANALITIK DAN SOLUSI NUMERIK KONDUKSI PANAS PADA ARAH RADIAL DARI PEMBANGKIT ENERGI BERBENTUK SILINDER

Fluida atau zat alir adalah zat yang dapat mengalir. Zat cair dan gas adalah fluida. Karena jarak antara dua partikel di dalam fluida tidaklah tetap.

MODEL MATEMATIKA DENGAN SYARAT BATAS DAN ANALISA ALIRAN FLUIDA KONVEKSI BEBAS PADA PELAT HORIZONTAL. Leli Deswita 1)

BAB 1 PENDAHULUAN. Gambar 1.1: Aliran Darah Yang Terjadi Pada Pembuluh Darah Tanpa Penyempitan Arteri Dan Dengan Penyempitan Arteri

8. FLUIDA. Materi Kuliah. Staf Pengajar Fisika Fakultas Teknologi Pertanian Universitas Brawijaya

BAB 2 TINJAUAN PUSTAKA

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

Model Matematika dan Analisanya Dari Pemenuhan Kebutuhan Air Bersih di Suatu Kompleks Perumahan

Studi Analitik dan Numerik Perpindahan Panas pada Fin Trapesium (Studi Kasus pada Finned Tube Heat Exchanger)

KECEPATAN ALIRAN FLUIDA SISKO PADA KEADAAN STEADY DALAM PIPA DENGAN POSISI MIRING SKRIPSI. Oleh Prisko Nur Hidayat NIM

BAB IV HASIL DAN PEMBAHASAN. dan medan hidrodinamik. Pertama, dengan menentukan potensial listrik V dan

Analisis Model Fluida Casson untuk Aliran Darah dalam Stenosis Arteri

BAB II LANDASAN TEORI

BAB 2 TINJAUAN PUSTAKA

TRANSPORT MOLEKULAR TRANSFER MOMENTUM, ENERGI DAN MASSA RYN. Hukum Newton - Viskositas RYN

MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA

Mempelajari grafik gerak partikel zat cair tanpa meninjau gaya penyebab gerak tersebut.

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga

1. BAB I PENDAHULUAN Latar Belakang

Rumus bilangan Reynolds umumnya diberikan sebagai berikut:

Bab 2 TEORI DASAR. 2.1 Model Aliran Panas

Catatan Kuliah MEKANIKA FLUIDA

MODEL POLA LAJU ALIRAN FLUIDA DENGAN LUAS PENAMPANG YANG BERBEDA MENGGUNAKAN METODE BEDA HINGGA

DINAMIKA FLUIDA II. Makalah Mekanika Fluida KELOMPOK 8: YONATHAN SUROSO RISKY MAHADJURA SWIT SIMBOLON

II. TINJAUAN PUSTAKA

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3

Aliran Fluida. Konsep Dasar

PENGUKURAN VISKOSITAS. Review Viskositas 3/20/2013 RINI YULIANINGSIH. Newtonian. Non Newtonian Power Law

BAB 2. Landasan Teori. 2.1 Persamaan Dasar

Kata Kunci :konveksi alir bebas; viskos-elastis; bola berpori 1. PENDAHULUAN

MEKANIKA FLUIDA A. Statika Fluida

BAB 3 METODOLOGI PENELITIAN

BAB II LANDASAN TEORI

Edy Sriyono. Jurusan Teknik Sipil Universitas Janabadra 2013

Bab II Model Lapisan Fluida Viskos Tipis Akibat Gaya Gravitasi

KAJIAN PEMODELAN FISIS, AUTOMATA GAS KISI, DAN ANALITIS ALIRAN GLISERIN TESIS. ADITYA SEBASTIAN ANDREAS NIM: Program Studi Fisika

ANALISIS PENGARUH PERPINDAHAN PANAS TERHADAP KARAKTERISTIK LAPISAN BATAS PADA PELAT DATAR

BAB II DASAR TEORI. 2.1 Definisi fluida

KONTROL OPTIMAL UNTUK DISTRIBUSI TEMPERATUR DENGAN PENDEKATAN BEDA HINGGA

KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa

BAB 1 PENDAHULUAN Latar Belakang

STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA

BAB II DASAR TEORI. 2.1 Definisi Fluida

BAB II SIFAT-SIFAT ZAT CAIR

PENGGUNAAN METODE PERTURBASI HOMOTOPI UNTUK MENYELESAIKAN MASALAH ALIRAN FLUIDA SISKO PADA PIPA LURUS ISNA ALDILLA

Hukum Newton pada Aliran Fluida Applica'on of Newton s Second Law to a Flowing Fluid. Fisika untuk Teknik Sipil 1

Pengaruh Temperatur terhadap Pembentukan Vorteks pada Aliran Minyak Mentah dengan Metode Beda Hingga

KEHILANGAN HEAD ALIRAN AKIBAT PERUBAHAN PENAMPANG PIPA PVC DIAMETER 12,7 MM (0,5 INCHI) DAN 19,05 MM (0,75 INCHI).

Sidang Tugas Akhir - Juli 2013

Pemodelan Distribusi Suhu pada Tanur Carbolite STF 15/180/301 dengan Metode Elemen Hingga

UNIVERSITAS GUNADARMA FAKULTAS TEKNOLOGI INDUSTRI

BAB II TINJAUAN PUSTAKA

Kestabilan Aliran Fluida Viskos Tipis pada Bidang Inklinasi

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Torsi. Pertemuan - 7

MAKALAH KOMPUTASI NUMERIK

Diferensial Vektor. (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Klasisifikasi Aliran:

TRANSFER MOMENTUM. Massa = m B

Prosiding Matematika ISSN:

FISIKA FLUIDA YUSRON SUGIARTO, STP, MP, MSc yusronsugiarto.lecture.ub.ac.id. Didit kelas D: Arga kelas G:

Bab III Model Proses Deformasi Benang Viscoelastis Linear di Lingkungan Fluida Newton

Sistem Sumur Dual Gas Lift

Konduksi Mantap Satu Dimensi (lanjutan) Shinta Rosalia Dewi

Bab II Pemodelan. Gambar 2.1: Pembuluh Darah. (Sumber:

Studi Analitik dan Numerik Perpindahan Panas pada Fin Trapesium (Studi Kasus pada Finned Tube Heat Exchanger)

1/24 FISIKA DASAR (TEKNIK SIPIL) FLUIDA. menu. Mirza Satriawan. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta

TUGAS AKHIR. OLEH : Mochamad Sholikin ( ) DOSEN PEMBIMBING Prof.DR.Basuki Widodo, M.Sc.

Distribusi Tekanan pada Fluida

POSITRON, Vol. IV, No. 2 (2014), Hal ISSN :

TEOREMA FUNDAMENTAL PADA KALKULUS VEKTOR

I PUTU GUSTAVE S. P., ST., M.Eng. MEKANIKA FLUIDA

Pemodelan Matematika dan Metode Numerik

PERTEMUAN VII KINEMATIKA ZAT CAIR

FLUIDA DINAMIS. 1. PERSAMAAN KONTINUITAS Q = A 1.V 1 = A 2.V 2 = konstanta

KONTROL OPTIMAL UNTUK DISTRIBUSI TEMPERATUR DENGAN PENDEKATAN BEDA HINGGA

MODUL- 2. HIDRODINAMIKA Kode : IKK.365 Materi Belajar -2

Definisi dan Sifat Fluida

BAB II TINJAUAN PUSTAKA

MODUL KULIAH : MEKANIKA FLUIDA DAN HIROLIKA

2 yang mempunyai posisi vertikal sama akan mempunyai tekanan yang sama. Laju Aliran Volume Laju aliran volume disebut juga debit aliran (Q) yaitu juml

MODEL ALIRAN KONVEKSI CAMPURAN YANG MELEWATI PERMUKAAN SEBUAH BOLA

MODEL MATEMATIKA ALIRAN FLUIDA VISKOELASTIS YANG MELEWATI SILINDER SIRKULAR

MODUL- 9 Fluida Science Center U i n versit itas Brawijijaya

Analisis Kestabilan Aliran Fluida Viskos Tipis pada Model Slip di Bawah Pengaruh Gaya Gravitasi

REYNOLDS NUMBER K E L O M P O K 4

JUDUL TUGAS AKHIR ANALISA KOEFISIEN GESEK PIPA ACRYLIC DIAMETER 0,5 INCHI, 1 INCHI, 1,5 INCHI

JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010

Perpindahan Panas. Perpindahan Panas Secara Konduksi MODUL PERKULIAHAN. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh 02

PENDEKATAN TEORITIK. Elastisitas Medium

METODE BEDA HINGGA DALAM PENENTUAN DISTRIBUSI TEKANAN, ENTALPI DAN TEMPERATUR RESERVOIR PANAS BUMI FASA TUNGGAL

BAB IV PENGOLAHAN DATA DAN ANALISA DATA

ANALISIS MODEL MATEMATIKA PROSES PENYEBARAN LIMBAH CAIR PADA AIR TANAH

Transkripsi:

ANALISIS ALIRAN DAN PERPINDAHAN PANAS FLUIDA SISKO DALAM KEADAAN STEDI NURI ANGGI NIRMALASARI 127 1 17

BAB I PENDAHULUAN LATAR BELAKANG RUMUSAN MASALAH BATASAN MASALAH TUJUAN MANFAAT

LATAR BELAKANG Fluida Sisko digunakan dalam bidang industri dan teknik Fluida Sisko merupakan fluida non-newtonian Sulit memprediksi perilaku fluida tersebut Menentukan model matematika dari kecepatan aliran dan perpindahan panasnya Menyelesaikan kedua model matematika tersebut secara numerik Menampilkan penyelesaian yang didapat dalam bentuk grafik Menganalisis bagaimana profil kecepatan aliran dan perpindahan panas berdasarkan grafik

RUMUSAN MASALAH Bagaimana model matematika dari kecepatan aliran dan perpindahan panas fluida sisko dalam pipa visualisasi profil kecepatan dan perpindahan panas fluida sisko didalam pipa dalam bentuk grafik. Bagaimana penyelesaian numerik dari model matematika kecepatan aliran dan perpindahan panas fluida sisko dalam pipa

BATASAN MASALAH Tipe aliran fluida sisko yang mengalir dalam pipa adalah seragam stedi. Model matematika dari permasalahan tersebut diselesaikan secara numerik dengan metode beda hingga pusat. Diasumsikan pipa yang digunakan adalah pipa lurus dengan panjang (L). Penampang pipa berupa silinder dengan diameter (D) Luas penampang pipa adalah konstan

TUJUAN Menurunkan model matematika dari kecepatan aliran dan perpindahan panas fluida sisko dalam pipa Menyelesaikan model matematika kecepatan aliran dan perpindahan panas fluida sisko dalam pipa secara numerik visualisasi profil kecepatan dan perpindahan panas fluida sisko didalam pipa dalam bentuk grafik.

MANFAAT BAGI BIDANG TEKNIK DAN INDUSTRI diharapkan dapat memberikan informasi tentang profil kecepatan aliran dan perpindahan panas fluida sisko dalam pipa sehingga dapat digunakan sebagai bahan pengetahuan untuk mengembangkan aplikasinya BAGI BIDANG MATEMATIKA untuk mengetahui bagaimana peran metode beda hingga dalam menyelesaikan masalah yang terjadi di bidang teknik

BAB II TINJAUAN PUSTAKA FLUIDA Fluida merupakan zat yang berubah bentuk secara kontinu, bila terkena tegangan geser. Fluida terdiri dari 2 macam yaitu fluida cair ( tak mampu-mampat) dan fluida gas (mampu-mampat). Pada fluida cair terdapat viskositas, yaitu sifat dari fluida untuk melawan tegangan geser pada waktu mengalir. Untuk fluida pada umumnya, tegangan geser dan lau regangan geser (gradien kecepatan) dapat dikaitkan dalam suatu hubungan sebagai berikut, (Munson, 24): τ = μγ dimana : τ = tegangan geser μ = kekentalan (viskositas) γ = laju regangan geser

Karakteristik Fluida Fluida Cair Non-Newtonian Shear tickening τ >, μ > Newtonian Shear thinning Bingham plastic τ = μγ τ = μγ +a τ >, μ <

Fluida Sisko Fluida Sisko termasuk dalam karakteristik Bingham Plastic, yang pada beberapa kasus dialirkan dalam pipa annulus, yaitu pipa yang terdiri dari pipa luar dan pipa dalam dengan pusat jari-jari adalah sama. Tensor teganga fluida sisko sbb (M.Khan, 21): T = pi + S dengan S = a + b 1 2 tr A 1 2 n 1 A 1 A 1 = L + L T, L = grad V Dimana: T : Tensor tegangan p tekanan S tegangan geser pada fluida sisko a, b : Parameter material n : Power index, termasuk sebagai parameter material V : Kecepatan, V=v(r) T : Temperatur, T=T(r)

Koordinat Polar Tempat kedudukan sebuah titik ditunjukkan oleh koordinat-koordinat r, θ dan z. r = jarak radial dari sumbu- z θ = sudut yang diukur dari garis sejajar sumbu- x z = koordinat sepanjang sumbu-z Misal pada kecepatan, komponen-komponennya adalah: v r = kecepatan radial v θ = kecepatan tangensial v z = kecepatan aksial Sehingga kecepatan pada sebuah titik, dinyatakan: V = v r e r + v θ e θ + v z e z Dimana: e r = vektor arah r e θ = vektor arah θ e z = vektor arah z

Persamaan Kontinuitas Hukum kekekalan massa: Dimana: t ρ : kerapatan fluida ρ d + ρ. AV. n = V : komponen kecepatan fluida yang tegak lurus bidang A Pada aliran steady state Dalam keadaan steady ρ. AV. n = Dalam koordinat polar silinder:. ρ. AV. n =.. V =..Persamaan kontinuitas 1 (rv r ) r r + 1 r v θ θ + v z z =

Persamaan Momentum Linier t ρ V d + ρ. AV 2. n = gaya gaya yang bekerja Berdasarkan pergerakan fluida, dijelask+an oleh persamaan Navier-Stokes, yaitu: ρ dv =. T dt Pada fluida Newtonian yang mengalir dalam pipa pada arah-z (sejajar dinding), persamaan diatas menjadi: ρ v z t +v r v z r + v θ v θ r θ +v z v z z = p z + ρg + μ 1 r r r v z r + 1 2 v z r 2 θ 2 + 2 v z z 2

Aliran fluida dalam pipa annulus Kecepatan aliran dalam pipa diasumsikan sebagai berikut: Aliran sejajar dengan dinding sehingga v r = dan v θ = akibatnya v z z = (berdasarkan persamaan kontinuitas). Selain itu pada keadaan steady v z t =, dengan demikian persamaan Navier-Stokes menjadi: = p z + μ 1 r r r v z r Dengan kondisi batas v z = pada r = r v z = v 1 pada r = r 1 Dimana : r adalah jari-jari silinder dalam v 1 dan r 1 merupakan kecepatan dan jari-jari silinder luar

Persamaan Distribusi Panas pada aliran fluida Persamaan secara umum (Lienhard, 25): ρc p T t =. k T + q Sedangkan pada fluida sisko dinyatakan sebagai berikut: Dimana: ρ adalah densitas, C p adalah kapasitas panas pada tekanan konstan, q adalah fluks panas yang persamaannya ditentukan sebagai berikut: q = k gradt ρc p T t = T. L div q

Metode Beda Hingga Deret Taylor: u(x + h) = u x + h. u x + h2 2! u x + + hn n! u x + R n u x h = u x h. u x + h2 u x 2! + hn u x n! + R n Didapat pendekatan turunan pertama metode beda hingga pusat: du x dx u x + h u x h 2h Pendkatan turunan kedua: du 2 x dx 2 u x + h 2u x + u x h h 2

BAB III PROSEDUR KERJA Studi Literatur Model kecepatan aliran Model perpindahan panas Persamaan diferensial, n= Persamaan diferensial, n=1 Persamaan diferensial, n= Persamaan diferensial, n=1 Didapat kecepatan secara numerik Didapat kecepatan secara numerik Didapat temperatur secara numerik Didapat temperatur secara numerik

Setiap penyelesaian divisualisasikan dalam bentuk grafik Analisis profil kecepatan berdasarkan nilai b yang bervariasi Analisis distribusi temperatur berdasarkan nilai b dan Br yang bervariasi Membandingkan profil kecepatan dan distribusi temperatur antara Fluida Sisko dan Fluida Newtonian

BAB IV PEMODELAN DAN PENYELESAIAN NUMERIK Model didapat dengan menurunkan persamaan kontinuitas, momentum linier, dan perpindahan panas yang dipengaruhi oleh gradient kecepatan dan gaya-gaya pada fluida sisko 4.1 Model kecepatan aliran Persamaan aliran dalam pipa = p + μ 1 r v z z r r r p z = 1 r r r. μ v z r μ v z r = τ rz (tegangan geser fluida newtonian) p z = 1 d r dr rs rz S rz (tegangan geser fluida sisko)

dp = p r dr + 1 p p dθ + r θ z dz Persamaan Kecepatan Aliran : dp dz = 1 d r dr rs Dimana, p = p r θ dengan =, sehingga dp S = a + b dv dr dz = p z n 1 dv dr Persamaan diferensial Kecepatan Aliran fluida sisko dp dz = 1 d r dr r a + b dv dr n 1 dv dr Dimana : dp dz : gradient kecepatan r : jari-jari penampang pipa a, b : parameter material v : fungsi kecepatan terhadap jari-jari

4.2 Model Distribusi panas Persamaan Distribusi Panas: dt ρc p = T. L div q dt ρc p dt dt q = k grad T T = pi + S L = grad V = ( pi + S). dv dr + k 2 T Steady ( pi + S). dv dr + k 2 T= T=T(r) Persamaan diferensial Distribusi panas fluida sisko k d r dr dt r dr + a + b dv dr n 1 dv dr 2 =

Model Kecepatan aliran dan Perpindahan panas non-dimensional Variabel-variabel non-dimensional r = r, z = z, v = v, b = b r z v 1 a p p =, T = T T, E av 1 r T 1 T c = P r = ac p k, B r = P r E c v 1 r n 1 v 1 2 c p T T 1,, Model matematika Kecepatan aliran fluida sisko Model matematika Distribusi panas fluida sisko dp dz = d dr 1 + b dv dr n 1 dv dr + + 1 r 1 + b dv dr n 1 dv dr 1 d r dr dt r dr + B r 1 + b dv dr n 1 dv dr 2 =

Penyelesaian Numerik model matematika kecepatan aliran Akan dibandingkan bagaimana profil kecepatan dengan power index n= dan n=1 n= d 2 v dr 2 + 1 dv r dr + b r = dp dz Skema numerik dengan metode beda hingga pusat Dengan : Atau bisa ditulis r i = 1 + i r, dimana r = d 1 N Didapat skema numerik untuk i= 1,2,3,,N-1 Dengan: v i+1 2v i + v i 1 ( r) 2 + 1 r i v i+1 + v i 1 2 r + b r i = dp dz 1 r 2 + 1 2(1 + i r) r v i+1 2 r 2 v i + 1 r 2 1 2 1 + i r r v i 1 = dp dz b. q i 4p 2 + pq i v i+1 8p 2 v i + 4p 2 pq i v i 1 = dp dz b. q i p = 1 2 r dan q i = 1 1+i r

Didapat matriks penyelesaian sebagai berikut: 8p 2 4p 2 + pq 1 4p 2 pq 2 8p 2 4p 2 pq 3 = 4p 2 + pq 2 8p 2 4p 2 + pq 3 4p 2 pq 4 8p 2 dp/dz dp/dz dp/dz dp/dz dp/dz 4p 2 + pq n 1 q 1 q 2 q 3 b q 4 q n 1 4p 2 + pq 4 4p 2 pq n 1 8p 2 v 1 v 2 v 3 v 4 v n 1

n=1 d 2 v dr 2 + 1 dv r dr = 1 dp 1 + b dz Dengan cara dan definisi yang sama dengan yang dikenakan pada n=, didapat skema numerik : 4p 2 + pq i v i+1 8p 2 v i + 4p 2 pq i v i 1 = 1 1 + b. dp dz Dan dinyatakan dalam bentuk matriks sebagai berikut: 8p 2 4p 2 + pq 1 4p 2 pq 2 8p 2 4p 2 pq 3 4p 2 + pq 2 8p 2 4p 2 + pq 3 4p 2 pq 4 8p 2 4p 2 + pq 4 4p 2 pq n 1 8p 2 v 1 v 2 v 3 v 4 v n 1 = 1 1+b dp/dz dp/dz dp/dz dp/dz dp/dz 4p 2 + pq n 1

Penyelesaian Numerik model matematika distribusi panas n= 1 d r dr dt r dr + B r dv dr + b dv dr = Skema numerik dengan metode beda hingga pusat, untuk i=1,2,3,,n-1 4p 2 + pq i T i+1 8p 2 T i + 4p 2 pq i T i 1 = v B i+1 v 2 i 1 v r + b i+1 v i 1 2 r 2 r Dengan v bergantung pada penyelesaian sebelumnya, selanjutnya penyelesaian dalam bentuk matriks 8p 2 4p 2 + pq 1 4p 2 pq 2 8p 2 4p 2 pq 3 4p 2 + pq 2 8p 2 4p 2 + pq 3 4p 2 pq 4 8p 2 4p 2 + pq 4 4p 2 pq n 1 8p 2 T 1 T 2 T 3 T 4 T n 1 = B r p(v 2 ) 2 p(v 3 v 1 ) 2 p(v 4 v 2 ) 2 p(v 5 v 3 ) 2 p(1 v n 2 ) 2 B r. b p(v 2 ) p(v 3 v 1 ) p(v 4 v 2 ) p(v 5 v 3 ) p(1 v n 2 ) 4p 2 + pq n 1

n=1 1 d r dr dt r dr + B r 1 + b Skema numerik dengan metode beda hingga pusat, untuk i=1,2,3,,n-1 v bergantung pada penyelesaian model kecepatan aliran untuk n=1, sehingga didapat matriks sebagai berikut: dv dr 2 = 4p 2 + pq i T i+1 8p 2 T i + 4p 2 pq i T i 1 v i+1 v 2 i 1 = B r 1 + b 2 r 8p 2 4p 2 + pq 1 4p 2 pq 2 8p 2 4p 2 pq 3 4p 2 + pq 2 8p 2 4p 2 + pq 3 4p 2 pq 4 8p 2 4p 2 + pq 4 4p 2 pq n 1 8p 2 T 1 T 2 T 3 T 4 T n 1 = B r (1 + b) p(v 2 ) 2 p(v 3 v 1 ) 2 p(v 4 v 2 ) 2 p(v 5 v 3 ) 2 p(1 v n 2 ) 2 4p 2 + pq n 1

BAB V VISUALISASI DAN PEMBAHASAN Algoritma program: Mendefinisikan parameter-parameter yang dibutuhkan. Mendefinisiskan kondisi batas yang telah ditentukan pada bab 4. Memasukkan kondisi batas ke dalam skema numerik penyelesaian model matematika kecepatan aliran, yaitu persamaan. Skema numerik yang berupa matrik tridiagonal diselesaikan, sehingga didapat nilai kecepatan pada titik-titik sepanjang jari-jari pipa. Selanjutnya nilai kecepatan dimasukkan ke dalam skema numerik penyelesaian model matematika perpindahan panas yaitu persamaan Selanjutnya dihitung nilai error berdasarkan penyelesaian numerik dan penyelesaian eksak.

Grafik kecepatan aliran n= Gradien tekanan dp dz =.4. dengan variasi parameter material b = untuk fluida Newtonian, dan b =.2,.5 dan.8 untuk fluida Sisko. Berdasarkan grafik akan dianalisis distribusi kecepatan untuk banyak pendiskritan dan jarijari silinder luar yang berbeda-beda, sebagai berikut: N = 5 dan d = 1 N = 15 dan d = 1

N = 15 dan d = 2 Pada gambar (5.2) terlihat kecepatan disekitar jari-jari masih belum mendekati satu, sedangkan pada gambar (5.3) kecepatan mendekati 1 pada jari-jari dsekitar 2 semakin besar nilai b maka kecepatan aliran fluida semakin besar

Grafik Kecepatan Aliran n=1 Gradien tekanan dp dz =.4. dengan variasi parameter material b = untuk fluida Newtonian, dan b =.2,.5 dan.8 untuk fluida Sisko. Berdasarkan grafik akan dianalisis distribusi kecepatan untuk banyak pendiskritan dan jarijari silinder luar yang berbeda-beda, sebagai berikut: N = 5 dan d = 1 N = 15 dan d = 1

N = 15 dan d = 2 Berbeda dengan distribusi kecepatan dengan power index n =, dari grafik dapat disimpulkan bahwa untuk power index n = 1, kecepatan aliran pada fluida sisko lebih kecil dibandingkan fluida Newtonian, atau dengan kata lain semakin besar nilai b, maka kecepatan aliran semakin kecil

Grafik Distribusi Panas n= dp Gradien tekanan =.4 dan bilangan Brinkman 1, dengan variasi dz parameter material b = untuk fluida Newtonian, dan b =.2,.5 dan.8 untuk fluida Sisko. Berdasarkan grafik akan dianalisis distribusi panas untuk banyak pendiskritan dan jari-jari silinder luar yang berbeda-beda, sebagai berikut: N = 5 dan d = 1 N = 15 dan d = 1

N = 15 dan d = 2 Dengan memberikan nilai parameter material yang berbeda-beda terlihat bahwa semakin besar nilai b yang diberikan maka distribusi temparatur semakin besar, yang berarti pada distribusi panas, temperatur fluida sisko lebih besar dari temperatur fluida Newtonian.

Grafik Distribusi Panas n=1 Gradien tekanan dp dz =.4 dan bilangan Brinkman 1, dengan variasi parameter material b = untuk fluida Newtonian, dan b =.2,.5 dan.8 untuk fluida Sisko. Berdasarkan grafik akan dianalisis distribusi panas untuk banyak pendiskritan dan jari-jari silinder luar yang berbeda-beda, sebagai berikut: N = 5 dan d = 1 N = 15 dan d = 1

N = 15 dan d = 2 Dari grafik distribusi temperatur diatas terlihat bahwa gafik yang dihasilkan tidak berbeda dengan grafik distribusi temperatur untuk power index n =, berbeda dengan distribusi kecepatan aliran, untuk distribusi panas dengan power index n = dan power index n = 1, temperataur semakin tinggi untuk nilai parameter material b yang lebih besar.

Analisis distribusi panas berdasarkan bilangan Brinkman Grafik distribusi panas, dengan variasi bilangan Brinkman: Bilangan Brinkman merupakan bilangan yang mempengaruhi besarnya temperatur pada fluida. Dari grafik distribusi panas pada gambar diatas terlihat bahwa semakin besar bilangan Brinkman yang diberikan, maka temperatur fluida sisko semakin besar.

BAB VI SIMPULAN Kesimpulan Model Kecepatan Aliran d dr 1 + b dw dr n 1 dw dr + 1 r 1 + b dw dr n 1 dw dr = dp dz Model Perpindahan Panas 1 d r dr dt r dr + B r 1 + b dw dr n 1 dw dr 2 = Dari grafik disimpulkan bahwa a. Untuk Power index n=, kecepatan aliran fluida sisko lebih besar daripada fluida Newtonian, atau semakin besar nilai b, kecepatan semakin besar, begitu juga dengan temperatur. b. Untuk power index n=1, semakin besar nilai parameter b, kecepatan aliran semakin kecil, namun temperatur semakin tinggi. c. Semakin besar bilangan Brinkman yang diberikan, temparatur semakin tinggi

Saran 1. Pada Tugas Akhir ini analisis yang dilakukan menggunakan asumsi bahwa aliran fluida sisko dalam pipa annulus dalam keadaan steady, selanjutnya dapat dikembangkan penelitian untuk menganalisis profil kecepatan aliran dan perpindahan panas fluida sisko dalam pipa dalam keadaan unsteady. 2. Tugas Akhir ini masih bersifat analitis pada tahap pemodelan dan numerik untuk penyelesaiannya, belum ada data laboraturium yang dipakai sebagai pembanding. Diharapkan kedepannya bisa dilakukan uji laboraturium sehingga model tersebut dapat diterapkan di lapangan..

DAFTAR PUSTAKA Abdia, Gunaidi. 26. Matlab Programming. Bandung: Informatika Alfijar, Julian. Mekanika Fluida II. http://alfijar.files.wordpress.com/28/1/pertemuaniii-dan-iii.ppt-mirip. Diakses pada tanggal 1 Maret 211 pukul 11. WIB. Arhami, Muhammad dan Desiani, Anita. 25. Pemrograman Matlab. Yogyakarta: ANDI. Khan, M. et. al. 21. Steady Flow and Heat Transfer of a Sisko Fluid In Annular Pipe. Journal of Heat and Mass Transfer. 53: 129-1297. Departmen of Mathematics, Pakistan. Lienhard IV, John H dan Lienhard V, John H. 25. A Heat Transfer Textbook. University of Houston. USA. Munson, Bruce R. et. al. 24. Mekanika Fluida. Edisi Keempat Harinaldi dan Budiarso, penerjemah. Jakarta: Erlangga. Terjemahan dari: Fundamental of Fluid Mechanics. Sajid, M and Hayat, T. 28. Wire Coating Analysis by Withdrawal From A Bath of Sisko Fluid. Journal of Applied Mathematics and Computation. 199: 13-22. Departmen of Mathematics, Pakistan Saragi, Elfrida. Solusi Analitik dan Numerik Konduksi Panas Pada Pembangkit Energi. http://www.batan.go.id/ppin/lokakarya/lkstn_1/elfrida-.pdf. Diakses pada tanggal 2 Maret 211 pukul 12. WIB. Siddiq, A.m. et. al. 29. On Taylor s Scraping Problem and Flow of A Sisko Fluid. Journal of Mathe matical Modelling and Analysis. 14: 515-529. Department of Mthematics, York Campus, York, PA 1743, USA.

Streeter, Victor L and Wylie, E Benjamin. 1999. Mekanika Fluida. Edisi Delapan Arko Prijono, penerjemah. Jakarta: Erlangga. Terjemahan dari: Fluid Mechanics Sweet, Erik. 23. Analytical and Numerical Solutions of Differential Equations Arising In Fluid Flow and Heat Transfer Problems. University of Central Florida Orlando, Florida. Ruwanto, Bambang. 23. Matematika Untuk Fisika dan Teknik. Yogyakarta: Adicita Karya Nusa.