BAB IV. Kinerja Varian TCP Dalam Jaringan UMTS

dokumen-dokumen yang mirip
sebagian syarat Nama NIM : Industri Industri Disusun Oleh:

BAB I PENDAHULUAN. Setelah beberapa tahun sejak sistem mobile celular ada, telah dilakukan

BAB III. SKEMA Simulasi

ANALISA KINERJA MPEG-4 VIDEO STREAMING PADA JARINGAN HSDPA

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB II LANDASAN TEORI

BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi telekomunikasi yang semakin pesat dan kebutuhan akses data melahirkan salah satu jenis

Bab 3 Parameter Simulasi

BAB IV HASIL DAN PEMBAHASAN. mendapat perbandingan unjuk kerja protokol TCP Vegas dan UDP dengan

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB 4 IMPLEMENTASI DAN ANALISIS SIMULASI. Pada saat menjalankan simulasi ini ada beberapa parameter yang ada dalam

Simulasi dan Analisis Algoritma Scheduling pada WIMAX

BAB III ANALISIS METODE DAN PERANCANGAN KASUS UJI

BAB I PENDAHULUAN I-1

ANALISIS KINERJA PACKET SCHEDULING MAX THROUGHPUT DAN PROPORTIONAL FAIR PADA JARINGAN LTE ARAH DOWNLINK DENGAN SKENARIO MULTICELL

BAB IV PENGUJIAN. 4.1 Lingkungan Pengujian

BAB I PENDAHULUAN. 1.1 Latar Belakang

1 BAB I PENDAHULUAN. Long Term Evolution (LTE) menjadi fokus utama pengembangan dalam bidang

BAB IV PEMBAHASAN. 4.1 File Trace Input

Analisis Perbandingan Kinerja TCP Vegas Dan TCP New Reno Menggunakan Antrian Random Early Detection Dan Droptail

PRAKTIKUM 14 ANALISA QoS JARINGAN

I. PENDAHULUAN. secara langsung melalui jaringan kabel[1,2]. Implementasi jaringan dengan

BAB III ANALISIS DAN PERANCANGAN

BAB I PENDAHULUAN I-1

MILIK UKDW BAB I PENDAHULUAN

ANALISA PERFORMANSI LIVE STREAMING DENGAN MENGGUNAKAN JARINGAN HSDPA

BAB 1 PENDAHULUAN. dinamakan hotspot. Batas hotspot ditentukan oleh frekuensi, kekuatan pancar

BAB I PENDAHULUAN 1.1. Latar Belakang

Pendahuluan. Gambar I.1 Standar-standar yang dipakai didunia untuk komunikasi wireless

MAXIMIZING TCP THROUGHPUT AND FAIRNESS INDEX IN WIRELESS CDMA NETWORKS

BAB I PENDAHULUAN. dengan permintaan pasar untuk dapat berkomunikasi dan bertukar data dengan

Jurusan Teknik Elektro, Fakultas Teknik, Universitas Udayana Abstrak

AS IR O R U O TI U N TI G P AD

BAB I PENDAHULUAN Latar Belakang

BAB IV PENGUJIAN DAN ANALISA DATA

ANALISIS DAN IMPLEMENTASI ALGORITMA ROUND ROBIN DAN BEST CQI PADA PENJADWALAN DOWNLINK LTE

Perancangan Mekanisme Buffering untuk Multi-QoS pada MAC Layer WiMAX

BAB 1 I PENDAHULUAN. 1.1 Latar Belakang

diperoleh gambaran yang lebih baik tentang apa yang terjadi di jaringan dan dapat segera diketahui penyebab suatu permasalahan.

BAB 2 TINJAUAN PUSTAKA. Content Delivery Network adalah sebuah sistem yang berfungsi sebagai

Rekayasa Elektrika. Analisis TCP Cubic dan Simulasi untuk Menentukan Parameter Congestion Window dan Throughput Optimal pada Jaringan Nirkabel Ad Hoc

ANALISIS PERFORMANSI TFMCC PADA JARINGAN BROADBAND WIRELINE

BAB I PENDAHULUAN. Analisis Kinerja Protocol SCTP untuk Layanan Streaming Media pada Mobile WiMAX 3

ANALISIS KINERJA TEKNIK PENJADWALAN PADA WIMAX UNTUK LAYANAN VIDEO ON DEMAND

METODE PENGATURAN THROUGHPUT UNTUK TCP WESTWOOD+ PADA SALURAN BOTTLENECK

BAB IV ANALISIS DAN HASIL DATA

BAB IV HASIL DAN PEMBAHASAN. Sebelum melakukan simulasi dan analisis perbandingan unjuk kerja

ANALISIS KINERJA TCP BIC UNTUK PENCEGAHAN KONGESTI PADA JARINGAN LTE DENGAN MENGGUNAKAN NETWORK SIMULATOR 2.33

BAB II DASAR TEORI. Awal penggunaan dari sistem komunikasi bergerak dimulai pada awal tahun 1970-an.

BAB I PENDAHULUAN. multimedia memasuki dunia internet. Telepon IP, video conference dan game

ANALISA PERFORMANSI LIVE STREAMING DENGAN MENGGUNAKAN JARINGAN HSDPA. Oleh : NRP

METODE PENELITIAN. Studi Pustaka. Proses Simulasi. Analisis Hasil. Gambar 11 Metode penelitian.

ELECTRICIAN Jurnal Rekayasa dan Teknologi Elektro 159

STUDI PENGENDALIAN KUALITAS LAYANAN VOIP MENGGUNAKAN METODE ANTRIAN

EVALUASI KINERJA ALGORITMA PENJADWALAN LINTAS LAPISAN PADA JARINGAN CELULAR OFDM GELOMBANG MILIMETER DENGAN KANAL HUJAN

BAB II LANDASAN TEORI. Pada standart IEEE terminologi dari distribution system adalah sistem

Metode Deteksi Terputusnya Koneksi Tcp Pada Receiving Host Berdasarkan Packet Inter-Arrival Timeout

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

Gambar 3.1 Alur Penelitian

BAB III METODE PENELITIAN

BAB IV HASIL SIMULASI DAN KINERJA SISTEM

B A B IV A N A L I S A

ANALISA PERBANDINGAN KINERJA LAYANAN VIDEO STREAMING PADA JARINGAN IP DAN JARINGAN MPLS. Disajikan Oleh :David Sebastian Kelas :P4 NPM :

BAB II DASAR TEORI. Bab ini menjelaskan sekilas mengenai teknologi Worldwide

Analisis Throughput Varian TCP Pada Model Jaringan WiMAX

Transport Channel Processing berfungsi mengubah transport blok yang dikirim dari. Processing dari MAC Layer hingga physicalchannel.

Membedakan Bandwidth, Speed dan Throughput 12 OKTOBER 2011

BAB IV ANALISA PENGUNAAN FRAME RELAY. 4.1 Proses percobaan Penggunaan Frame Relay. Pada proses penganalisaan ini penulis melakukan tes untuk

BAB 5 KESIMPULAN DAN SARAN

BAB IV PENGUJIAN DAN ANALISA

Pembandingan Kinerja Antara Protokol Dynamic Source Routing Dan Zone Routing Pada Jaringan Ad-Hoc Wireless Bluetooth

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB III METODOLOGI PENELITIAN

KUALITAS LAYANAN. Budhi Irawan, S.Si, M.T

BAB II TEORI DASAR WCDMA DAN HSDPA. 2.1 Umum Perkembangan teknologi komunikasi bergerak ternyata berkembang

ANALISA PERFORMANSI APLIKASI VIDEO CONFERENCE PADA JARINGAN MULTI PROTOCOL LABEL SWITCHING [MPLS] ANITA SUSANTI

BAB 4 ANALISA DATA. Gambar 4.1 Tampilan pada Wireshark ketika user melakukan register. 34 Universitas Indonesia

BAB I PENDAHULUAN. 1.1 Latar Belakang

Pengukuran dan Analisa Kinerja Jaringan HSDPA di Kota Banda Aceh

Materi Mata Kuliah Jaringan Komputer Universitas Indo Global Mandiri

BAB II LANDASAN TEORI

BAB 2 TINJAUAN PUSTAKA

ANALISA APLIKASI VOIP PADA JARINGAN BERBASIS MPLS

BAB IV ANALISA DAN HASIL

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

Evaluasi Kinerja Jaringan Nirkabel Berbasis Radius Server

BAB I PENDAHULUAN. 1. Latar Belakang

PERANCANGAN SOFTWARE SCHEDULER UNTUK MAC LAYER WIMAX MENURUT STANDAR IEEE

BAB 4 PERANCANGAN. 4.1 Perancangan dan Analisa Skenario

Algoritma Scheduling

BAB 2 TINJAUAN PUSTAKA. WLAN dengan teknologi Infra red (IR) dan Hewlett-packard (HP) menguji WLAN

Simulasi Pengaruh Shadowing dan Rayleigh Fading terhadap Performansi TCP Reno pada Jaringan UMTS

ANALISIS KINERJA JARINGAN KOMPUTER DI SMK DARUSSALAM MEDAN DENGAN MENGGUNAKAN SOFTWARE CISCO PACKET TRACER

BAB III PERANCANGAN SISTEM

Studi Perbandingan HSDPA pada Telkomsel Flash Dan IndosatM2 Di Kota Banda Aceh

BAB III METODOLOGI. beragam menyebabkan network administrator perlu melakukan perancangan. suatu jaringan dapat membantu meningkatkan hal tersebut.

HASIL SIMULASI DAN ANALISIS

Transkripsi:

BAB IV Kinerja Varian TCP Dalam Jaringan UMTS 4.1 Hasil Simulasi Dampak scheduler layer MAChs pada TCP Sesuai dengan penjelasan scenario yang telah kami berikan pada 3.5.1, maka dari simulasi ini kami memberikan gambaran mengenai scheduling yang lebih baik antara Round Robin dan MAX C/I. Simulasi 1: Tabel 4.1 Lima aliran TCP dengan input trace bervariasi Fid Input Trace Characteristic MAC hs Scheduler Average Throughput (kbps) 1 Pedestrian 700 m RR 112 2 Pedestrian 500 m RR 167 3 Pedestrian 300 m RR 211 4 Pedestrian 500 m RR 159 5 Pedestrian 300 m RR 198 1 Pedestrian 700 m MAX C/I 70 2 Pedestrian 500 m MAX C/I 173 3 Pedestrian 300 m MAX C/I 451 4 Pedestrian 500 m MAX C/I 87 5 Pedestrian 300 m MAX C/I 298 Aggregate Throughput (kbps) 847 1079 45

Simulasi 2: Tabel 4.2 Lima aliran TCP dengan input trace ideal Fid Input Trace Characteristic MAC hs Scheduler Average Throughput (kbps) 1 Ideal Condition RR 248 2 Ideal Condition RR 233 3 Ideal Condition RR 229 4 Ideal Condition RR 216 5 Ideal Condition RR 215 1 Ideal Condition MAX C/I 936 2 Ideal Condition MAX C/I 173 3 Ideal Condition MAX C/I 58 4 Ideal Condition MAX C/I 16 5 Ideal Condition MAX C/I 7 Aggregate Throughput (kbps) 1141 1190 Pebandingan Hasil Dari tabel 4.1 dapat diamati bahwa scheduling Max C / I menghasilkan throughput yang secara keseluruhan lebih baik dari penjadwalan Round Robin. Hal ini disebabkan oleh fakta bahwa Max C / I adalah algoritma penjadwalan yang bergantung pada kanal sehingga dapat menggunakan kondisi radio yang tersedia secara maksimum. 46

Apabila semua UES dikondisikan demikian maka base station dapat dikonfigurasi untuk mengirim data pada frame 2 ms berikutnya dan berapa banyak data yang harus dikirim untuk setiap UE. Hal ini sangat jelas dilihat dari tabel 4.1 dimana lebih banyak data dikirim ke UES untuk melaporkan kualitas sinyal downlink. Alokasi throughput pada strategi atau scenario ini menjadi tidak adil untuk beberapa pengguna. Untuk pengguna yang terletak pada perbatasan sel, mengalami kondisi kanal yang buruk sehingga mungkin tidak dilayani sama sekali. Hal ini dapat menyebabkan tertahannya arus data pada kanal dengan kualitas buruk, meskipun pada statistik mungkin digunakan pada kanal dengan kualitas yang terbaik (seperti dalam tabel 4.1). Penjadwalan Round Robin (RR) di sisi lain memberikan perhatian lebih terhadap keadilan distribusi sumber daya radio antara semua pengguna terlepas dari kualitas saluran sesaat mereka. Hal ini dapat dilihat dari tabel 4.1 bahwa UE dengan input trace 700 pedestrian diharapkan memiliki kualitas saluran yang relatif rendah dibandingkan UES lain ternyata memberikan kinerja yang lebih baik pada penjadwalan RR daripada di Max C / I. Hal ini disebabkan oleh fakta bahwa pada penjadwalan RR setiap aliran memberikan prioritas yang sama secara berurutan. Masalah utama dengan penjadwalan RR adalah bahwa dia tidak mempertimbangkan kualitas saluran sesaat. Hal ini mengakibatkan pemanfaatan saluran menjadi buruk dan rendahnya arus throughput dengan kualitas saluran yang lebih baik. Tabel 4.2 merupakan statistik di mana kita mencoba untuk mengevaluasi penjadwalan RR dan penjadwalan Max C / I dengan menggunakan trace yang ideal (error free) dengan nilai CQI terbaik. Statistik menunjukkan bahwa penjadwalan RR memberikan hasil yang sama dengan sebelumnya yaitu pada alokasi sumber daya radio yang sama kepada semua aliran 47

dan berakhir dengan pemanfaatan saluran yang tinggi. Sebaliknya, Max C / I yang masih menghasilkan throughput maksimum keluar dari saluran 1.2Mbit, hal ini menunjukkan alokasi sumber daya radio sangat bias. Dalam hal ini Max C / I mengalokasikan semua sumber daya radio mengalir dengan aliran id yang lebih tinggi. Hal ini menyimpulkan bahwa ketika arus berbagi sama kondisi kanal Max C / I akan mengalokasikan sumber daya untuk aliran dengan id aliran yang lebih tinggi. 4.2 Hasil Simulasi Dampak Ukuran RLC / buffer MAChs dan Ukuran TCP MSS Dalam simulasi yang dijelaskan pada 3.5.2, kami memberikan gambaran untuk ukuran RLC / buffer MAChs dan ukuran TCP MSS pada varian TCP yang dapat meningkatkan troughput dalam jaringan UMTS Gambar 4.1: Pengamatan rata-rata Throughput Vs ukuran buffer RLC/MAC-hs 48

Gambar 4.2: Pengamatan rata-rata Delay Vs ukuran buffer RLC/MAC-hs Secara umum dapat diamati bahwa RLC / ukuran buffer MAC-hs memiliki dampak yang signifikan terhadap kinerja semua varian TCP. Dan kinerja dari semua varian TCP maksimum bila RLC / MAC-hs buffer range ukuran (300, 500). Tabel 4.3 TCP MSS Varian Vs Throughput Average Average Varian MSS (bytes) Throughput Delay (kbps) (kbps) TCP Reno 500 732 92 750 901 110 1000 1088 135 1250 1012 170 1500 951 164 TCP Newreno 500 763 92 750 987 112 49

1000 1124 136 1250 1100 178 1500 998 179 TCP FAST 500 773 92 750 1036 110 1000 1177 134 1250 1112 170 1500 1035 188 TCP Vegas 500 545 85 750 769 93 1000 1012 97 1250 1162 104 1500 971 98 Seperti telah dinyatakan sebelumnya bahwa kita akan mencoba untuk mengevaluasi dampak ukuran segmen TCP (MSS) terhadap kinerja varian TCP dalam jaringan UMTS. Dari tabel 4.3 kita mengamati bahwa ketika ukuran paket TCP (MSS) menjadi kecil maka semua kinerja varian TCP menjadi buruk. Dengan meningkatnya ukuran paket, maka kinerja TCP menjadi semakin baik dan hasil terbaik dicapai dicapai pada saat ukuran paket mencapai 1000 byte untuk semua varian TCP. Salah satu alasan mengapa throughputs menjadi turun pada saat ukuran paket TCP kecil adalah karena ukuran buffer layer RLC (yaitu 500 PDU) terlalu besar untuk paket-paket TCP kecil. Sedangkan untuk ukuran paket TCP 1000 byte ukuran buffer layer RLC mencapai batas yang optimal sehingga kinerjanya juga menjadi tinggi. Ketika ukuran paket TCP meningkat melebihi 1000 byte, buffer RLC pada node RNC mulai menjatuhkan paket akibat buffer overflow. Sebagai hasil yang kita amati penurunan bertahap throughput (lihat tabel 4.3). 50

4.3 Hasil Simulasi Penggabungan beberapa alirantcp dalam jaringan UMTS. Dari hasil simulasi yang dijelaskan pada 3.5.3 ini, kami memberikan gambaran mengenai hasil penggabungan beberapa aliran dari masing-masing TCP terhadap kanal yang mengalami bottleneck (seperti terlihat di gambar 3.3). Gambar 4.3: tanpa bottleneck link pada saat terkoneksi 51

Gambar 4.4: bottleneck link pada saat terkoneksi Perbandingan hasil Gambar 4.3 menunjukkan throughput rata-rata dari varian TCP ketika link bottleneck tidak dipertimbangkan. Dalam kasus seperti itu, saluran nirkabel sendiri akan menjadi bottleneck dikarenakan terbatasnya kanal bandwidth (1.2Mb). Seperti yang terlihat dari gambar 4.3 kinerja dari semua varian secara bertahap berkurang dengan peningkatan jumlah aliran kompetitif. Hal yang perlu diperhatikan adalah cara di mana bandwidth dibagi di antara user, sehingga memberikan throughput yang sama. Hal ini disebabkan oleh fakta bahwa dalam jaringan UTRAN; penjadwalan kanal memainkan peran penting dalam menyalurkan kanal bandwidth diantara user. Seperti pada penjadwalan Round Robin, yang memberikan bagian sama dari bandwidth untuk aliran masing-masing. Ketika kita mempertimbangkan bottleneck di bagian kabel, 52

perubahan situasi seperti pertarungan yang terjadi antara beberapa aliran TCP yang dikarenakan bandwidth yang terbatas. Dari gambar 4.4 kita amati bahwa semua aliran memiliki nilai kinerja yang berbeda. Pada kondisi ini protokol yang lebih agresif akan mendapatkan bagian link bandwidth yang lebih besar. Dalam hal ini protokol yang agresif adalah TCP FAST. Agresivitas TCP FAST tergantung pada konfigurasi parameter konvergensi (α), dia menjaga kecepatan pengiriman paket (W + α) untuk setiap RTT. TCP FAST awalnya dirancang untuk Long FAST Network (LFN) yang dapat memanfaatkan secara penuh penggunaan bandwidth dari jaringan yang relatif sering mengalami persaingan aliran. Penyetelan parameter fast convergence mutlak diperlukan untuk TCP FAST. Gambar 4.5 dan Gambar 4.6 menunjukkan aggresifitas TCP FAST berdasarkan parameter fast convergence yang ditetapkan sebesar α = 100 (tuning standar untuk LFN) dan α = 20 (disetel untuk LTN). Hal ini sangat jelas terlihat dari kedua gambar dimana tingginya nilai α dalam jaringan LTN tidak hanya membuat TCP FAST agresif tapi juga tidak stabil. Dengan nilai α yang tinggi, TCP FAST mempertemukan beberapa packet loss per RTT. Di sisi lain nilai moderat α (yaitu 20 paket seperti pada Gambar 4.8) dalam TCP FAST menjadi relatif adil dalam berbagi bandwidth pada saat bottleneck. 53

Gambar 4.5 Aggressivitas TCP FAST (α=100) Gambar 4.6 Aggressivitas TCP FAST (α=20) 54

Kami mencoba untuk mengukur keadilan Inter-protokol dengan menggunakan pemanfaatan bandwidth pada link kabel bottleneck sebagai ukuran keadilan antara persaingan arus yang berbeda. Table: 4.4: Keadilan Inter-protocol dipresentasikan pada pemanfaatan bandwidth 5, 10 and 20 persaingan aliran. TCP Variant Number of flows Percentage of Bandwidth allocation TCP Reno 5, 10, 20 17%, 8%, 5% TCP Newreno 5, 10, 20 19%, 8%, 5% TCP FAST 5, 10, 20 31%, 20%, 12% TCP Vegas 5, 10, 20 6%, 5%, 5% Dari tabel 4.4 dapat dilihat bahwa semua varian TCP tidak berbagi bandwidth secara merata. TCP Vegas mendapatkan sedikit bagian dalam bandwidth bottleneck, sedangkan TCP FAST berhasil mendapatkan bagian yang lebih besar. Seperti telah disebutkan di awal bagian ini, pembagian bandwidth TCP FAST tergantung pada konfigurasi parameter α (di sini α = 20). Di sisi lain, protokol berbasis loss relatif lebih diterima satu sama lain, namun secara moderat lebih agresif dari pada TCP Vegas berbasis delay. 55