PENGUKURAN GAYA BERAT DI G. BATUR PEBRUARI - MARET 2009

dokumen-dokumen yang mirip
MAKALAH GRAVITASI DAN GEOMAGNET INTERPRETASI ANOMALI MEDAN GRAVITASI OLEH PROGRAM STUDI FISIKA JURUSAN MIPA FAKULTAS SAINS DAN TEKNIK

BAB III TEORI DASAR (3.1-1) dimana F : Gaya antara dua partikel bermassa m 1 dan m 2. r : jarak antara dua partikel

BAB III PENGUKURAN DAN PENGOLAHAN DATA. Penelitian dilakukan menggunakan gravimeter seri LaCoste & Romberg No.

BAB II TEORI DASAR METODE GRAVITASI

BAB III METODE PENELITIAN

Pemodelan Gravity Kecamatan Dlingo Kabupaten Bantul Provinsi D.I. Yogyakarta. Dian Novita Sari, M.Sc. Abstrak

4.10. G. IYA, Nusa Tenggara Timur

Gambar 4.1. Peta penyebaran pengukuran gaya berat daerah panas bumi tambu

V. INTERPRETASI DAN ANALISIS

BAB 2 LANDASAN TEORITIS PERMASALAHAN

BAB 4 PENGOLAHAN DAN INTERPRETASI DATA GEOFISIKA

V. HASIL DAN PEMBAHASAN. Dengan batas koordinat UTM X dari m sampai m, sedangkan

BAB I PENDAHULUAN I.1

BAB III. TEORI DASAR. benda adalah sebanding dengan massa kedua benda tersebut dan berbanding

BAB III METODE PENELITIAN. Dalam penelitian survei metode gayaberat secara garis besar penyelidikan

BAB III METODE PENELITIAN. Metode penelitian yang digunakan penulis adalah metode penelitian

BAB I PENDAHULUAN 1.1. Latar Belakang 1.2. Maksud dan Tujuan

BAB I PENDAHULUAN Latar Belakang

Pengantar Praktikum Metode Gravitasi dan Magnetik

2014 INTERPRETASI STRUKTUR GEOLOGI BAWAH PERMUKAAN DAERAH LEUWIDAMAR BERDASARKAN ANALISIS SPEKTRAL DATA GAYABERAT

PEMETAAN ANOMALI BOUGUER LENGKAP DAN TOPOGRAFI SERTA PENENTUAN DENSITAS BOUGUER BATUAN DAERAH PANAS BUMI PAMANCALAN

2 1 2 D. Berdasarkan penelitian di daerah

4.15. G. LEWOTOBI PEREMPUAN, Nusa Tenggara Timur

BAB II METODE PENELITIAN

BAB I PENDAHULUAN. Gayaberat merupakan salah satu metode dalam geofisika. Nilai Gayaberat di

Identifikasi Struktur Lapisan Bawah Permukaan Daerah Potensial Mineral dengan Menggunakan Metode Gravitasi di Lapangan A, Pongkor, Jawa Barat

5.6. G. LEGATALA, Kepulauan Banda, Maluku

BAB IV PENGOLAHAN DAN INTERPRETASI DATA GEOFISIKA

BAB 2 TEORI DASAR. Gambar 2.1. Sketsa gaya tarik dua benda berjarak R.

BAB 2 TEORI DASAR 2.1 Metode Geologi

BAB IV PENGOLAHAN DAN ANALISA ANOMALI BOUGUER

PENDUGAAN POSISI DAPUR MAGMA GUNUNGAPI INELIKA, FLORES, NUSA TENGGARA TIMUR BERDASARKAN SURVEI MAGNETIK

KOREKSI-KOREKSI KONVERSI HARGA BACAAN KOREKSI PASANG SURUT KOREKSI DRIFT

TEORI DASAR. variasi medan gravitasi akibat variasi rapat massa batuan di bawah. eksplorasi mineral dan lainnya (Kearey dkk., 2002).

III. TEORI DASAR. kedua benda tersebut. Hukum gravitasi Newton (Gambar 6): Gambar 6. Gaya tarik menarik merarik antara dua benda m 1 dan m 2.

BAB II TEORI DASAR 2.1. Metode Geologi

commit to user 5 BAB II TINJAUAN PUSTAKA

IV. METODOLOGI PENELITIAN

SURVEI GEOFISIKA TERPADU (AUDIO MAGNETOTELURIK DAN GAYA BERAT) DAERAH PANAS BUMI MALINGPING KABUPATEN LEBAK, PROVINSI BANTEN

BAB I PENDAHULUAN. Posisi Kepulauan Indonesia yang terletak pada pertemuan antara tiga

6.5. GUNUNGAPI MAHAWU, Sulawesi Utara

Pendugaan Struktur Bawah Permukaan 2½ Dimensi di Kawasan Gunungapi Kelud Berdasarkan Survei Gravitasi

Unnes Physics Journal

III. TEORI DASAR. Dasar dari metode gayaberat adalah hukum Newton tentang gayaberat dan teori

Yesika Wahyu Indrianti 1, Adi Susilo 1, Hikhmadhan Gultaf 2.

4.9. G. EBULOBO, Nusa Tenggara Timur

BAB IV PENGOLAHAN DAN INTERPRETASI DATA GEOFISIKA

4.8. G. INIE RIE, Nusa Tenggara Timur

7.4. G. KIE BESI, Maluku Utara

ANALISIS REDUKSI TOPOGRAFI DATA GAYABERAT DENGAN PENDEKATAN METODE LA FEHR DAN WHITMAN PADA PENENTUAN ANOMALI BOUGUER

PEMETAAN STRUKTUR BAWAH PERMUKAAN DAERAH PANAS BUMI MG DENGAN METODE GRAVITASI. Magfirah Ismayanti, Muhammad Hamzah, Lantu

6.2. G. AMBANG, SULAWESI UTARA

STUDI POTENSI ENERGI GEOTHERMAL BLAWAN- IJEN, JAWA TIMUR BERDASARKAN METODE GRAVITY

SURVEI TERPADU GAYA BERAT DAN AUDIO MAGNETOTELURIC (AMT) DAERAH PANAS BUMI DOLOK MARAWA, KABUPATEN SIMALUNGUN PROVINSI SUMATERA UTARA

BAB III METODOLOGI PENELITIAN. berupa data gayaberat. Adapun metode penelitian tersebut meliputi prosesing/

Identifikasi Struktur Bawah Permukaan Dengan Menggunakan Metode Gravity Di Desa Sumbermanjingwetan dan Desa Druju Malang Selatan

Identifikasi Zona Patahan di Sebelah Barat Gunung Api Seulawah Agam Berdasarkan Nilai Anomali Gravitasi

II. TINJAUAN PUSTAKA

BAB III METODOLOGI PENELITIAN. Dalam penelitian ini, ada beberapa tahapan yang ditempuh dalam

SURVEI MAGNETOTELLURIK DAERAH PANAS BUMI GUNUNG ARJUNO- WELIRANG JAWA TIMUR

IDENTIFIKASI STRUKTUR BAWAH PERMUKAAN BERDASARKAN DATA GAYABERAT DI DAERAH KOTO TANGAH, KOTA PADANG, SUMATERA BARAT

Pendugaan Struktur Patahan Dengan Metode Gayaberat

SURVEI MEGNETOTELLURIK DAERAH PANAS BUMI BUKIT KILI GUNUNG TALANG, KABUPATEN SOLOK, SUMATERA BARAT. Muhammad Kholid, Harapan Marpaung

TESIS PEMODELAN STRUKTUR BAWAH PERMUKAAN DAERAH YAPEN DAN MAMBERAMO, PAPUA BERDASARKAN ANOMALI GRAVITASI

MODUL FISIKA BUMI METODE GAYA BERAT

PENGARUH INTRUSI VULKANIK TERHADAP DERAJAT KEMATANGAN BATUBARA KABUPATEN LAHAT, SUMATERA SELATAN

7.5. G. IBU, Halmahera Maluku Utara

PENYELIDIKAN MAGNET DAERAH PANAS BUMI AKESAHU PULAU TIDORE, PROVINSI MALUKU UTARA. Oleh Liliek Rihardiana Rosli

PENYELIDIKAN GEOLISTRIK DAN HEAD-ON DAERAH PANAS BUMI SEMBALUN, KABUPATEN LOMBOK TIMUR - NTB

SURVEI TERPADU GAYA BERAT DAN AUDIO MAGNETOTELLURIK (AMT) DAERAH PANAS BUMI PANTAR, KABUPATEN ALOR, PROVINSI NUSA TENGGARA TIMUR

SURVEI MAGNETOTELURIK DAN GAYA BERAT DAERAH PANAS BUMI LILLI-MATANGNGA KABUPATEN POLEWALI MANDAR, PROVINSI SULAWESI BARAT

BAB III METODE PENELITIAN. Data yang digunakan dalam tugas akhir ini adalah data gayaberat daerah

PRESENTASI SIDANG SKRIPSI. 23 Juli 2012 Lutfia P.I.A

LAPORAN AKHIR PENELITIAN HIBAH KOMPTENSI APLIKASI METODE GAYABERAT MIKRO ANTAR WAKTU UNTUK PEMANTAUAN INTRUSI AIR LAUT DI KAWASAN SEMARANG UTARA

BAB III TEORI DASAR. 3.1 Metode Gayaberat

BAB I PENDAHULUAN I.1. Latar Belakang Penelitian

BAB I PENDAHULUAN. lempeng besar (Eurasia, Hindia-Australia, dan Pasifik) menjadikannya memiliki

SURVEI GAYA BERAT DAN AUDIO MAGNETOTELURIK (AMT) DAERAH PANAS BUMI PERMIS, KABUPATEN BANGKA SELATAN PROVINSI BANGKA BELITUNG

6.6. G. TANGKOKO, Sulawesi Utara

ANALISIS DATA GRAVITY UNTUK MENENTUKAN STRUKTUR BAWAH PERMUKAAN DAERAH MANIFESTASI PANASBUMI DI LERENG SELATAN GUNUNG UNGARAN. Meilisa dan Muh.

5.5. G. LAWARKAWRA, Kepulauan Banda, Maluku

PEMETAAN GEOLOGI. A. Peta Geologi. B. Pemetaan Geologi

BAB 5 : KESIMPULAN DAN SARAN Kesimpulan Saran.. 66 DAFTAR PUSTAKA Lampiran-lampiran... 69

KEMENTERIAN ENERGI DAN SUMBER DAYA MINERAL REPUBLIK INDONESIA BADAN GEOLOGI

PENENTUAN STRUKTUR BAWAH PERMUKAAN KOTA MAKASSAR DENGAN MENGGUNAKAN METODE GAYABERAT (GRAVITY)

Bab I. Pendahuluan. I Putu Krishna Wijaya 11/324702/PTK/07739 BAB I PENDAHULUAN

V. HASIL DAN INTERPRETASI. panas bumi daerah penelitian, kemudian data yang diperoleh diolah dengan

Analisis dan Pemodelan Inversi 3D Struktur Bawah Permukaan Daerah Panas Bumi Sipoholon Berdasarkan Data Gaya Berat

4.12. G. ROKATENDA, Nusa Tenggara Timur

SURVEI GAYA BERAT DAN AUDIO MAGNETOTELURIK (AMT) DAERAH PANAS BUMI PARIANGAN, KABUPATEN TANAH DATAR PROVINSI SUMATERA BARAT

BAB V HASIL DAN PEMBAHASAN

PENYELIDIKAN GEOLISTRIK DAN HEAD ON DI DAERAH PANAS BUMI SAMPURAGA, MANDAILING NATAL SUMATERA UTARA

BAB I PENDAHULUAN 1.1 Latar Belakang

Pendugaan Struktur Kantong Magma Gunungapi Kelud Berdasarkan Data Gravity Menggunakan Metode Ekivalen Titik Massa

Survei Terpadu AMT dan Gaya Berat daerah panas bumi Kalawat Kabupaten Minahasa Utara, Provinsi Sulawesi Utara

SURVEI TERPADU GAYA BERAT DAN AUDIO MAGNETOTELLURIC (AMT) DAERAH PANAS BUMI MARITAING, KABUPATEN ALOR, PROVINSI NUSA TENGGARA TIMUR

PEMODELAN BAWAH PERMUKAAN GUNUNG MERAPI DAN MERBABU BERDASARKAN ANALISIS DATA GRAVITASI

PEMODELAN STRUKTUR BAWAH PERMUKAAN DAERAH SUMBER AIR PANAS SONGGORITI KOTA BATU BERDASARKAN DATA GEOMAGNETIK

MONITORING GUNUNG API DENGAN METODE MAGNETIK

4.7 G. INIELIKA, Nusa Tenggara Timur

Transkripsi:

PENGUKURAN GAYA BERAT DI G. BATUR PEBRUARI - MARET 2009 Iing KUSNADI, Hendra GUNAWAN, Saleh, Dedi ROCHENDI, Muarif dan Wahidin AKHBAR Bidang Pengamatan dan Penyelidikan Gunungapi Sari G. Batur merupakan salah satu gunungapi aktif di P. Bali, dimana disekitar kaki G. Batur telah banyak penduduk yang menetap, sehingga resiko bencana menjadi sangat besar. Interval letusan yang satu dengan lainnya berkisar antara 1 39 tahun, dengan pusat erupsi yang berpindah-pindah, terdapat tiga kawah utama yang dikenal adalah Kawah Batur I, Kawah Batur II dan Kawah Batur III. Kondisi bawah permukaan dengan membuat model anomali sisa terdapat tiga density batuan yang berbeda, berdasarkan model tersebut membuktikan bahwa di daerah tersebut terdapat dua struktur normal yang mencirikan suatu graben yang dikenal dengan Kaldera I dan Kaldera II batur. PENDAHULUAN G. Batur merupakan salah satu primadona obyek wisata di P. Bali, sehingga daerah tersebut banyak dikunjungi wisatawan, apalagi di daerah tersebut telah dibangun musum gunungapi, Letusan G. Batur yang tercatat dalam sejarah dimulai tahun 1804 dan letusan terakhir tahun 2000. Pusat-pusat erupsi (kawah-kawah) memiliki kelurusan yang berarah relatif timur barat. Letusan terakhir terjadi pada kawah bagian barat yang disebut kawah Batur III. Letusan G. Batur umumya berlangsung beberapa bulan dengan intesitas relatif kecil/lemah, sedangkan tenggang waktu antara letusan dalam satu periode berlangsung beberapa menit/detik hingga beberapa jam, dengan waktu istirahat antar periode letusan 1 s/d 39 tahun. Pusat-pusat erupsi G. Batur dikontrol oleh zona lemah/ tidak stabil maka penyelidikan dengan menggunakan metoda geofisika perlu dilakukan untuk mengetahui kondisi bawah permukaan seperti keberadaan zona-zona lemah/ tidak stabil tersebut METODE SURVEI GAYA BERAT GUNUNGAPI Metoda gravitasi dalam penyelidikan geofisika, didasarkan pada Hukum Newton tentang gravitasi umum yang menyatakan bahwa gaya tarik gravitasi antara dua titik massa m 1 dan m 2 yang terpisah pada jarak r dirumuskan sebagai (r 1 ) = -G Dimana G adalah konstanta umum gravitasi yang besarnya 6,672 x 10-11 m 3 /kg s 2. Persamaan di atas menyatakan bahwa gaya tarik yang dialami massa m 2 akibat massa m 1 maka tanda negatif menunjukan gaya tarik tersebut memiliki arah berlawanan dengan vector F yang mempunyai arah dari massa m 1 ke m 2. Gaya per satuan massa pada sebuah partikel yang terletak di sebarang titik P berada pada jarak r dari m 1 didefinisikan sebagai medan gravitasi dari partikel m 1 yang ditulis : Dalam kenyataannya bahwa bumi tidak berbentuk bulat sempurna tetapi berbentuk ellipsoid, oleh karena itu percepatan gravitasi tidak selalu sama pada setiap tempat di permukaan bumi. Besarnya percepatan gravitasi tersebut dipengaruhi oleh beberapa faktor diantaranya posisi lintang, elevasi dari referensi, gaya tarik benda-benda langit dan variasi dari rapat massa bawah permukaan. Bentuk bumi yang ellipsoid disebabkan oleh gravitasi bumi yang cenderung membentuk bulat, serta gaya sentrifugal dari rotasi bumi pada sumbunya yang cenderung tepat pada kedua kutubnya, sehingga jari-jari katulistiwa Bulletin Vulkanologi dan Bencana Geologi, Volume 4 Nomor 2, Agustus 2009 : 27-35 Hal :27

lebih besar 21 km dibandingkan dengan jari-jari kutub. Akibat bentuk dan rotasi bumi, terdapat perbedaan kecepatan gravitasi di kutub dan katulistiwa sebesar 5,17 gal. Perbedaan tersebut disebabkan oleh tiga faktor, yaitu: 1. Adanya percepatan sentrifugal di katulistiwa, sedangkan di kutub tidak ada sehingga menyebabkan gravitasi di kutub lebih besar 3,39 gal. 2. Perbedaan jari-jari antara kutub dan katulistiwa, menyebabkan gravitasi kutub lebih besar 6,63 gal dari gravitasi di katulistiwa. 3. Karena bentuk bumi ellipsoid, maka distribusi massa di katulistiwa lebih besar dibandingkan di kutub, sehingga gravitasi di katulistiwa lebih besar 4,85 gal terhadap kutub. Survei geofisika menggunakan metoda gravitasi untuk memperoleh anomali medan magnet yang biasa disebut Anomali Bouguer (AB). Anomali Bouguer didefinisikan sebagai penyimpangan harga medan magnet gravitasi pengamatan (g obs ) terhadap perkiraan harga medan gravitasi normal di titik tersebut (g n ) yang secara matematik dirumuskan : AB = g obs g n g obs adalah medan gravitasi teramati yang sudah dikoreksi drift dan koreksi pasang surut (tidal). g n diperoleh dari harga gravitasi teoritik g( ) pada bidang datum dengan memasukkan koreksi udara bebas (free air FAC), koreksi Bouguer (BC) dan koreksi medan (terrain-tc). Medan gravitasi teoritik g( ) merupakan medan gravitasi normal pada bidang datum, rumusnya ditetapkan oleh The International of Geodesy (IAG) tahun 1980 sebagai fungsi posisi lintang (Blakely, 1995) yaitu: Medan gravitasi juga perlu dilakukan koreksi terhadap udara bebas yang dirumuskan sebagai berikut: FAC = h = - 0,3086 h mgal/m h adalah ketinggian (elevasi) titik ukur (m) di atas muka laut. Tanda (-) pada koreksi udara bebas artinya ditambahkan terhadap harga pembacaan jika stasiun berada di atas bidang datum dan dikurangi jika berada di bawahnya Selain koreksi udara bebas juga harus dilakukan koreksi Bouguer, ada beberapa model asumsi yang dipergunakan untuk menghitung koreksi Bouguer diantaranya model slab horizontal tak hingga, model cangkang bola (Karl, 1971) dan model topi sferis (La Fehr, 1990, Whitman, 1991). Untuk daerah penyelidikan yang tidak terlalu luas, dimana efek kelengkungan bumi tidak berpengaruh, maka model slab horizontal tak hingga masih bisa diterima dengan ketebalan h relatif dari bidang datum ke stasiun, besarnya koreksi Bouguer adalah : BC = 2 Gh 0,04193 mgal/m Dimana adalah rapat massa Bouguer, h adalah ketinggian stasiun dari bidang datum. Jika stasiun berada di atas bidang datum maka koreksi Bouguer dikurangkan terhadap harga pembacaan dan sebaliknya. Dengan menerapkan koreksi udara bebas dan koreksi Bouguer, maka diperoleh anomali Bouguer sederhana. Jadi secara keseluruhan anomali Bouguer dapat dirumuskan sebagai berikut: AB = g obs (g (Φ ) FAC+BC-TC) g( ) = 978032.700 (1+0,0053024 sin 2-0,0000058 sin 2 2 ) mgal adalah posisi lintang titik pengukuran. Hal :28 Bulletin Vulkanologi dan Bencana Geologi, Volume 4 Nomor 2, Agustus 2009 : 28-35

HASIL PENYELIDIKAN Pengukuran gaya berat dilakukan dengan cara looping, dimulai dari pengukuran di titik pangkal (referensi) dilanjutkan pengukuran ke titik-titik yang ada di lapangan kemudian kembali lagi ke titik-titik tersebut hingga berakhir di titik referensi (Pos PGA). Cara ini dimaksudkan untuk mereduksi efek apungan (drift) dari gravitymeter. Koreksi apungan itu disebabkan oleh sifat alat itu sendiri yang perubahannya dianggap linier terhadap waktu untuk jangka pendek (beberapa jam), sehingga dengan pengukuran looping ini kesalahan apungan bisa dikoreksi. Data yang perlu dicatat dalam survei gravity ini adalah skala hasil pembacaan gravitymeter yang dibaca tiga kali pada setiap titik ukur dengan jeda waktu 5 menit, waktu pada saat pembacaan skala, dan diskripsi titik lokasi yang meliputi nama desa, jalan, koordinat dan elevasi titik secara kasar. Jarak antara titik amat berkisar antara 1 3 km. Pengukuran yang terbaca pada gravitymeter masih berupa harga skala bacaan dengan harga bacaan dalam satuan miligal (1 gal = 1cm/dt 2 ). Sebelumnya untuk penentuan titik-titik ukur di lapangan kami lakukan dengan melihat patok-patok yang tersebar di sekitar G. Batur yang memungkinkan bisa memotong gunung tersebut, maka kami lakukan dengan survei terhadap patok-patok tersebut agar dalam pengukuran gravitymeter tidak memerlukan waktu yang lama dalam mencari patok ukur tersebut (Gambar 4). Pencarian patok-patok tersebut kita gunakan GPS garmin serta kompas geologi untuk melihat posisi patok-patok tersebut, karena kita telah tahu koordinat dari patok-patok yang kita inginkan. Titik-titik ukur yang digunakan adalah titik yang berarah tenggara baratlaut memotong G. Batur. Titik-titik tersebut adalah sebagai berikut: Sebagai bahan perbandingkan hasil pengukuran gravity Februari 2009, kami bandingkan dengan hasil pengukur yang dilakukan oleh Sdr. Subandriyo tahun 2001, begitu pula untuk pengukuran gravity harus ada titik ikat. Titik ikat yang ada di sekitar G. Batur berada di dekat musium yang dibuat oleh BAKOSORTANAL yang sekarang lokasinya dipinggir jalan raya, sehingga pengukuran dapat direferensikan ke titik tersebut, hasilnya adalah sebagai berikut : Tabel 1, Perbandingan hasil pengukuran gravity tahun 2001 dan 2009 Patok Ukur g-mutlak Thn-2001 g-mutlakthn-2009 Base (Pos PGA) Ttk-baru 977964,126 Bakosurtanal (Referensi) 977959,464 977959,464 Musium Ttk-baru 977959,209 Titik_11 978038,281 978038,250 Titik_12 978044,365 978044,152 PJ5 Ttk-baru 978020,663 KW2 Ttk-baru 977935,473 Bulletin Vulkanologi dan Bencana Geologi, Volume 4 Nomor 2, Agustus 2009 : 29-35 Hal :29

115⁰19 00 BT 8⁰11 00 LS DBT 12 DBT 19 KW 2 DBT 10 DBT 11 H. Gunawan Musium KW 1 PJ 5 PJ 1 DBT 17 Pos PGA DBT 6 Danau Batur 8⁰17 40 LS 115⁰26 40 BT Gambar 1. Lokasi titik ukur dan lintasan pengukuran gravity Dari hasil pengukuran gravitymeter yang belum dilakukan pengolahan (analisa) kami buatkan kontur penyebaran nilai gaya beratnya setelah dilakukan koreksi kesalahan dari pengukuran pergi dan kembali. A B Gambar 2. (A) Kontur gravity data mentah, (B). Bentuk tiga dimensi Hal :30 Bulletin Vulkanologi dan Bencana Geologi, Volume 4 Nomor 2, Agustus 2009 : 30-35

ANALISA Hasil pengukuran gravity yang dilakukan di G. Batur sebenarnya memiliki ketelitian yang berbeda-beda, hal ini tergantung dari cara kita membawa gravitymeter, karena hal ini dapat mempengaruhi ketelitian kerja alat. Pengukuran gaya berat di G. Batur dilakukan dengan menggunakan kendaraan serta jalan kaki. Ketelitian hasil pengukuran dengan koreksi yang kecil dilakukan dengan menggunakan kendaraan, sedangkan yang lain koreksinya besar.(gambar 3) A B C Gambar 3. Koreksi hasil pengukuran gravity ( A dengan kendaraan, B. jalan kaki pada daerah yang datar dan C. jalan kaki menuju puncak) Hasil pengukuran gravity di G. Batur pada beberapa titik pengukuran dengan titik referensi di Pos PGA G. Batur, terdapat anomali positif sekitar 87 166 mgal, dimana anomali rendah menempati bagian barat dan makin besar ke arah timur. Pola kontur bagian timur relatif sejajar ke arah utara, kemudian berbelok ke tengah kaldera ke arah timurlaut. Gambar 4. Peta anomali Bouger lengkap G. Batur dengan interval 4 mgal dengan garis penampang A B untuk pemodelan. Bulletin Vulkanologi dan Bencana Geologi, Volume 4 Nomor 2, Agustus 2009 : 31-35 Hal :31

Dari hasil analisis tersebut didapatkan anomali sisa dengan membuat pengurangan anomali bouger lengkap terhadap anomali regional seperti yang terlihat pada gambar di bawah ini. Gambar 5. Pemisahan anomali Bouger terhadap regional menjadi anomali sisa Dari hasil anomali sisa tersebut, maka dibuat model seperti Gambar 6. Pemodelan ini berdasarkan penampang A - B pada gambar 4 yaitu bagian barat di Penelokan dan bagian timur kaki G. Batur. Gambar 6. Penampang( A-B) model anomali sisa G. Batur Hal :32 Bulletin Vulkanologi dan Bencana Geologi, Volume 4 Nomor 2, Agustus 2009 : 32-35

Pemodelan pada gambar 6 merupakan data hasil pengukuran yang di sesuaikan dengan bentuk teori, dari model tersebut maka akan muncul pebedaan densitas yang ditafsikan sebagai pencerminan dari densitas batuan. Dari pemodelan tersebut kita mengilustrasikan bentuk kenampakan bawah permukaan dengan berpatokan kepada penyebaran anomali sisa, pemodelan tersebut kami tampilkan pada Gambar 7. Gambar 7. Proyeksi kondisi bawah permukaan (penampang A-B) dari bentuk model anomali sisa Warna kuning adalah lapisan batuan klastik dengan densitas 2,1 gr/cm 3 Warna hijau adalah lapisan yang padu (Vulkanik) dengan densitas 2,5 gr/cm 3 Warna merah lapisan batuan vulkanik dengan densitas 3 gr/cm 3 Pada bagian barat terlihat warna kuning berada pada kedalaman antara 0 m 800 m di bawah bidang datum muka laut rata-rata. Harga kontras densitas g = -0.4 gr/cm 3, sehingga harga densitas modelnya adalah 2,1 gr/cm 3 Harga densitas ini mendekati harga rata-rata batuan klastik (sedimen dan vulkanik). Warna hijau berada pada kedalaman antara 800 2500 m di bawah bidang datum muka laut rata-rata. Harga kontras densitas g = 0.0 gr/cm 3, sehingga harga densitas modelnya adalah 2,5 gr/cm 3, harga densitas ini mendekati batuan vulkanik berjenis andesitik. Bagian bawah (warna merah) berada pada kedalaman di bawah 2,500 m di bawah bidang datum muka laut rata-rata. Harga kontras densitas g = 5 gr/cm 3, sehingga harga densitas modelnya adalah 3 gr/cm 3. Harga densita ini mendekati harga rata-rata batuan basaltik andesit.. Dari hasil perbedaan densitas tersebut menunjukan bahwa pada daerah tersebut terdapat zona lemah yang merupakan dinding kaldera Batur yang mencerminkan bahwa bagian timur relatif turun. Bentuk dari segitiga densitas menunjukan bahwa hal ini merupakan bentuk dari sebuah kerucut batuan beku dengan bentuk intrusi (bentuk dari diatrema yang membeku) keluar melalui zona lemah yang diperkirakan sebagai struktur (dinding kaldera II). Bulletin Vulkanologi dan Bencana Geologi, Volume 4 Nomor 2, Agustus 2009 : 33-35 Hal :33

KESIMPULAN Densitas Bouguer rata-rata batuan permukaan di sekitar G. Batur sebesar 2,1 gram/cm 3 yang diperoleh dengan metoda Nettleton. Berdasarkan data/analisis geologi gunungapi pada umumnya batuan meliputi area Batur didominasi oleh material lepas berupa rempah vulkanik yang berukuran halus hingga bongkah yang berkomposisi andesit dan basaltik andesit. Berdasarkan kajian kualitatif pada anomali Bouguer lengkap, di sekitar kaldera G. Batur dijumpai anomali positif sekitar 94 130 mgal, anomali rendah terdapat di bagian barat dan semakin ketimur anomali semakin besar. Ada dua macam pola anomali yaitu pola anomali berjajar yang mengarah ke utara yang berubah di tengah kaldera, kemungkinan berhubungan dengan struktur sesar yang berkembang di G. Batur, dan pola kontur tertutup di tengah kaldera yang kemungkinan berhubungan dengan batuan berdensitas tinggi. Kajian kuantitatif dengan model poligon ditemukan tiga satuan batuan yaitu pertama batuan berdensitas 2,1 gram/cm 3 merupakan batuan klastik (sedimen dan vulkanik), kedua berdensitas 2,5 gram/cm 3 merupakan batuan vulkanik (andesit), kalau di lihat pada peta geologi daerah ini tersebar adanya kerucutkerucut vulkanik pada bagian barat G. Batur dan ketiga batuan berdensitas 3 gram/cm 3 merupakan batuan andesit-basaltik yang merupakan kaki dari G. Batur. Hasil pemodelan yang dibuat ini, dapat memberikan gambaran struktur bawah permukaan G. Batur yaitu terlihat adanya perubahan densitas yang mencolok dari hasil pemodelan pada gambar 6 dimana pada hasil pemodelan terdapat 2 daerah yang berbeda sehingga diinterfretasikan sebagai struktur normal, yaitu yang dikenal sebagai kaldera I dan kaldera II, sehingga hal ini dapat menerangkan bahwa bentang alam Kaldera Batur yang memperlihatkan dua undakan merupakan dinding-dinding kaldera, juga hal ini membuktikan bahwa peta geolgi gunungapi Batur memiliki dua kaldera dengan penyebaran kerucut-rekucut vulkanik disekitar G. Batur dengan jenis batuan andesit-basaltik. Berdasarkan hasil pengukuran gravity dengan pemodelan dua dimensi, kaldera Batur kemungkinan terjadi akibat depresi sebagai amblasan gunungapi, yang disebabkan oleh penurunan permukaan magma karena injeksi dike di pusat saluran magma (diatrema) diperlihatkan pada Gambar 8. Gambar 8. Kompilasi antara peta geologi dengan model gravity serta penampang A-B, nampak adanya struktur graben (kaldera I dan II) pada penampang tersebut. Hal :34 Bulletin Vulkanologi dan Bencana Geologi, Volume 4 Nomor 2, Agustus 2009 : 34-35

DAFTAR PUSTAKA Bronto, S. & Martono, A., 1998; Peta Kawasan Rawan Bencana Gunungapi Batur, Propinsi Bali, 1998. Direktorat Vulkanologi. Chainago, R., dkk., 1990; Pemetaan Geologi Komplek Kaldera G.Batur dan sekitarnya, Bali 1990. Laporan Direktorat Vulkanologi, tidak diterbitkan. Hamidi,S. dkk.,m 1970; Pemeriksaan kawahkawah G. Batur, Bali tahun 1970 dan Daerah Bahaya. Laporan Direktorat Vulkanologi, tidak diterbitkan. --------------Rangkuman, Penyelidikan Geofisika dan Geokimia Gunung Batur 1998, direktorat Vulkanologi, hal. 67 Kusumadinata, K., 1979; Data Dasar Gunungapi Indonesia. Publ. Khusus Dirtektorat Vulkanologi, p.378-386. Padang, M.N.V., 1951; Catalogue of Active Volcanoes of The World Including Solfatara Fields, Part I, pp. 159-162. Sobana, dkk., 1995; Pemetaan situasi topografi puncak G. Batur, Bali 1995. Laporan Direktorat Vulkanologi, tidak diterbitkan. Sutawidjaja, I.S., 1990; G. Batur, Berita Berkala Vulkanologi, Edisi Khusus, Direktorat Vulkanologi, No. 158. Tulus, dkk., 1998; Evaluasi Kegiatan G. Batur 1994-1998, di P. Bali, Juli - Agustus 1998. Laporan Direktorat Vulkanologi, tidak diterbitkan. Bulletin Vulkanologi dan Bencana Geologi, Volume 4 Nomor 2, Agustus 2009 : 35-35 Hal :35