Perambatan Pulsa Superluminal dalam Interaksi Four Wave Mixing

dokumen-dokumen yang mirip
Metode Split Step Fourier Untuk Menyelesaikan Nonlinear Schrödinger Equation Pada Nonlinear Fiber Optik

Simulasi Perambatan Ultra-Short Pulse Pada Nonlinear Fiber-Optik

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR

BAB I PENDAHULUAN 1.1 Latar Belakang

ANALISIS RAMBATAN GELOMBANG ELEKTROMAGNETIK DALAM FIBER OPTIK MENGGUNAKAN PENDEKATAN FINITE DIFFERENCE METODA LAASONEN

BAB 4 BAB 3 HASIL DAN PEMBAHASAN METODE PENELITIAN. 3.2 Peralatan

SOLUSI EKSAK GELOMBANG SOLITON: PERSAMAAN SCHRODINGER NONLINEAR NONLOKAL (NNLS)

ANALISIS PERBANDINGAN PULSA GAUSSIAN DENGAN PULSA SECANT HIPERBOLIK PADA TRANSMISI SOLITON UNIVERSITAS TELKOM

Analisis Directional Coupler Sebagai Pembagi Daya untuk Mode TE

SOLUSI GELOMBANG BERJALAN UNTUK PERSAMAAN SCHRÖDINGER DENGAN PENUNDAAN TERDISTRIBUSI

BAB III DASAR DASAR GELOMBANG CAHAYA

Disusun oleh : MIRA RESTUTI PENDIDIKAN FISIKA (RM)

DASAR-DASAR OPTIKA. Dr. Ida Hamidah, M.Si. Oleh: JPTM FPTK UPI Prodi Pend. IPA SPs UPI

SATUAN ACARA PEMBELAJARAN (SAP) UNIVERSITAS DIPONEGORO. Satuan Acara Pembelajaran

Perancangan Reflektor Cahaya untuk Sistem Pencahayaan Alami Berbasis Optik Geometri

BAB I PENDAHULUAN BAB I PENDAHULUAN

Key words : external electrics field, non-linear optics, polarization, polarization angle

Xpedia Fisika. Optika Fisis - Soal

PENGEMBANGAN METODE PENYETABIL SUMBER CAHAYA LASER HE-NE dengan MENGGUNAKAN PLAT λ/4

BAB 2 TINJAUAN PUSTAKA

SIMULASI PERAMBATAN PULSA-GAUSSIAN DI DALAM NONLINEAR FIBER OPTIK. Endra ABSTRAK

ANALISIS SPLITTING PULSA PADA SERAT OPTIK DUA-CORE DENGAN KENONLINEARAN KERR BERDASARKAN VARIASI KOEFISIEN KOPLING DAN DISPERSI INTERMODAL

Interferensi Cahaya. Agus Suroso Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung

KISI DIFRAKSI (2016) Kisi Difraksi

PENENTUAN GELOMBANG SOLITON PADA FIBER BRAGG GRATING DENGAN MENGGUNAKAN METODE STEP-SPLIT. Theresa Febrina Siahaan*, Saktioto, Muhammad Edisar

Kumpulan Soal Fisika Dasar II.

Studi Awal Aplikasi Fiber coupler Sebagai Sensor Tekanan Gas

Deteksi Kadar Glukosa dalam Air Destilasi Berbasis Sensor Pergeseran Menggunakan Fiber Coupler

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga

LAPORAN FISIKA LABORATORIUM OPTOELEKTRONIKA

BAB II PEMBAHASAN. Gambar 2.1 Lenturan Gelombang yang Melalui Celah Sempit

BAB II TINJAUAN UMUM HUKUM-HUKUM OPTIK

PENERAPAN FORMULASI HIROTA UNTUK PERSAMAAN UMUM MODUS TERGANDENG PADA KISI BRAGG DALAM NONLINIER DENGAN DIFRAKSI

PROPOSAL TUGAS AKHIR PENGARUH JUMLAH SUKU FOURIER PADA PENDEKATAN POLAR UNTUK SISTEM GEOMETRI KARTESIAN OLEH : IRMA ISLAMIYAH

Watermarking dengan Metode Dekomposisi Nilai Singular pada Citra Digital

Antiremed Kelas 12 Fisika

PERCOBAAN ELEKTRODINAMIKA CEPAT RAMBAT GELOMBANG ELEKTROMAGNETIK. A. Tujuan Menentukan besarnya cepat rambat gelombang elektromagnetik.

Materi Pendalaman 03 GELOMBANG ELEKTROMAGNETIK =================================================

PENGENDALIAN OPTIMAL PADA SISTEM STEAM DRUM BOILER MENGGUNAKAN METODE LINEAR QUADRATIC REGULATOR (LQR) Oleh : Ika Evi Anggraeni

Komunikasi Data POLITEKNIK NEGERI SRIWIJAYA. Lecturer: Sesi 5 Data dan Sinyal. Jurusan Teknik Komputer Program Studi D3 Teknik Komputer

Sidang Tugas Akhir - Juli 2013

BAB GEJALA GELOMBANG I. SOAL PILIHAN GANDA. C. 7,5 m D. 15 m E. 30 m. 01. Persamaan antara getaran dan gelombang

1 BAB 4 ANALISIS DAN BAHASAN

JURNAL SAINS DAN SENI POMITS Vol. 3, No. 2, (2014) ( X Print) B-101

Analisis Reduksi Model pada Sistem Linier Waktu Diskrit

BAB 4 HASIL DAN PEMBAHASAN

Prosiding SNFA (Seminar Nasional Fisika dan Aplikasinya) 2017 E-ISSN: / P-ISSN

Analisis Pengaruh Panjang Kupasan dan Perubahan Suhu Terhadap Pancaran Intensitas pada Serat Optik Plastik Multimode Tipe FD

LEMBARAN SOAL. Mata Pelajaran : FISIKA Sat. Pendidikan : SMA/MA Kelas / Program : XII ( DUA BELAS )

(2) dengan adalah komponen normal dari suatu kecepatan partikel yang berhubungan langsung dengan tekanan yang diakibatkan oleh suara dengan persamaan

± voice bandwidth)

MATERI PERKULIAHAN. Gambar 1. Potensial tangga

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2012) 1-6 1

DASAR TELEKOMUNIKASI. Kholistianingsih, S.T., M.Eng

KARAKTERISASI FIBER BRAGG GRATING (FBG) TIPE UNIFORM DENGAN MODULASI AKUSTIK MENGGUNAKAN METODE TRANSFER MATRIK

BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut.

JURNAL SAINS DAN SENI ITS Vol.6, No.1, (2017) ( X Print) B-9

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO

DAB I PENDAHULUAN. komponen utama dan komponen pendukung yang memadai. Komponen. utama meliputi pesawat pengirim sinyal-sinyal informasi dan pesawat

#2 Dualisme Partikel & Gelombang Fisika Modern Eka Maulana, ST., MT., MEng. Teknik Elektro Universitas Brawijaya

SATUAN ACARA PEMBELAJARAN (SAP) UNIVERSITAS DIPONEGORO

JURNAL SAINS DAN SENI ITS Vol. 4, No.2, (2015) ( X Print) B-50

SIFAT OPTIS TAK-LINIER PADA MATERIAL KDP

FUNGSI GELOMBANG DAN RAPAT PROBABILITAS PARTIKEL BEBAS 1D DENGAN MENGGUNAKAN METODE CRANK-NICOLSON

Interferometer Michelson

PEMODELAN ARIMA INTENSITAS HUJAN TROPIS DARI DATA PENGUKURAN RAINGAUGE DAN DISDROMETER

ANALISIS DAN PERHITUNGAN CEPAT RAMBAT GELOMBANG ELEKTROMAGNET TERHADAP DAYA PADA SEBUAH TRANSMITER FM

Karakteristik Serat Optik

MICROWAVES (POLARISASI)

BAB I PENDAHULUAN. 1.1 Latar Belakang

Fisika Dasar I (FI-321)

KONSEP OPTIK DAN PERAMBATAN CAHAYA. Irnin Agustina D.A,M.Pd.

Modifikasi Algoritma Pengelompokan K-Means untuk Segmentasi Citra Ikan Berdasarkan Puncak Histogram

SOUND PROPAGATION (Perambatan Suara)

BAB III METODE PENELITIAN. mulai bulan Maret 2011 sampai bulan November Alat alat yang digunakan dalam peneletian ini adalah

Proceeding Tugas Akhir-Januari

Deteksi Konsentrasi Kadar Glukosa Dalam Air Destilasi Berbasis Sensor Pergeseran Serat Optik Menggunakan Cermin Cekung Sebagai Target

JURNAL TEKNIK POMITS Vol. 3, No. 1, (2014) ISSN: ( Print) B-58

Optical Waveguide berstruktur gabungan antara Loop dan Directional berbasis Mach Zehnder Interferometer

JURNAL SAINS DAN SENI POMITS Vol. 2, No. 1, (2013) 1-6 1

BAB 3 PERAMBATAN GELOMBANG MONOKROMATIK

Analisa Manfaat Dan Biaya Rusunawa Jemundo, Sidoarjo

SIMULASI FIBER COUPLER KOMBINASI SERAT MODA TUNGGAL DAN SERAT KISI BRAGG UNTUK KOMPONEN SENSOR OPTIK

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

PENENTUAN KOEFISIEN ELEKTRO OPTIS PADA AQUADES DAN AIR SULING MENGGUNAKAN GELOMBANG RF

Curriculum Vitae. Educational Background

BAB 1 PENDAHULUAN 1.1 Latar belakang

#2 Dualisme Partikel & Gelombang (Sifat Partikel dari Gelombang) Fisika Modern Eka Maulana, ST., MT., MEng. Teknik Elektro Universitas Brawijaya

Penentuan Nilai Koefisien Linear Magneto Optik Bahan Transparan Menggunakan Interferometer Michelson

KOMUNIKASI DATA SUSMINI INDRIANI LESTARININGATI, M.T

Fisika Optis & Gelombang

BAB I PENDAHULUAN. besar dalam kejadian petir setiap tahunnya. Hal ini karena kota Padang secara

GENERALISASI FUNGSI AIRY SEBAGAI SOLUSI ANALITIK PERSAMAAN SCHRODINGER NONLINIER

DAFTAR ISI. LEMBAR PENGESAHAN. iii. LEMBAR PERSEMBAHAN... iv ABSTRAK... KATA PENGANTAR. vi. DAFTAR ISI ix. DAFTAR GAMBAR... xi BAB I PENDAHULUAN.

Distribusi Air Bersih Pada Sistem Perpipaan Di Suatu Kawasan Perumahan

Penentuan Nilai Panjang Koherensi Laser Menggunakan Interferometer Michelson

2. TINJAUAN PUSTAKA Gelombang Bunyi Perambatan Gelombang dalam Pipa

Sifat-sifat gelombang elektromagnetik

KOMUNIKASI DATA Data, Sinyal & Media Transmisi. Oleh: Fahrudin Mukti Wibowo, S.Kom., M.Eng

PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SEKOLAH MENENGAH ATAS NEGERI 39 JAKARTA

Transkripsi:

JURNAL SAINS POMITS Vol. 2, No.1, (2013) 2337-3520 (2301-928X Print) B-31 Perambatan Pulsa Superluminal dalam Interaksi Four Wave Mixing Faisal Arisandi Pratama, Ali Yunus Rohedi Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Teknologi Sepuluh Nopember (ITS) Jl. Arief Rahman Hakim, Surabaya 60111 E-mail: rohedi@physics.its.ac.id Abstrak Analisa perambatan pulsa superluminal dalam Four- Wave Mixing telah dilakukan dengan tujuan mengetahui bagaimana bentuk pulsa Seed dan pulsa Conjugate berubah selama merambat dalam medium uap Rubidium, sehingga menjadikan pulsa tersebut superluminal atau kecepatannya melebihi cahaya. Membuktikan bahwa kondisi superluminal dari pulsa tersebut memiliki kebergantungan terhadap frekuensi. Mengetahui hubungan antara kondisi superluminal pulsa Seed dan Conjugate terhadap intensitas pulsa Seed yang digunakan. Analisa dan langkah perumusan untuk mendapatkan persamaan bentuk pulsa Seed dan Conjugate untuk proses tanpa FWM yaitu dengan menuliskan vektor gelombang bergantung frekuensi yang berbentuk Lorentzian dalam deret Taylor, mensubtitusikannya kedalam persamaan gelombang medan listrik dari pulsa Seed dan Conjugate yang telah diubah dalam domain frekuensi melalui transformasi Fourier, dan mencari pemecahan untuk proses tanpa FWM dan proses dengan FWM. Hasil perumusan dan perhitungan membuktikan bahwa pada proses tanpa FWM pulse peak advancement untuk pulsa Seed dan Conjugate terbukti bergantung pada frekuensi detuning yang menunjukkan seberapa superluminal pulsa tersebut, sedangkan pada proses dengan FWM, selain bersifat superluminal pulsa Seed dan Conjugate saling terkopel selama merambat dalam medium uap Rubidium. Kata Kunci Superluminal, Transformasi Fourier, Pulsa Seed, PulsaConjugate, Four-Wave Mixing. B I. PENDAHULUAN eberapa waktu lalu dunia ilmu pengetahuan dikejutkan oleh penemuan partikel neutrino yang pergerakannya lebih cepat dari cahaya. Walau pada akhirnya terbukti itu hanyalah kesalahan pengukuran semata [1]. Tetapi sejak Einstein mempublikasikan teori relativitasnya, banyak ilmuwan yang tertarik untuk membuktikan adakah sesuatu yang lebih cepat dari kecepatan cahaya diruang hampa. Disisi lain, tanpa mempermasalahkan teori relativitas Einstein, terdapat banyak riset optik terbaru yang menunjukkan bahwa pulsa cahaya dengan kondisi tertentu dapat memiliki kecepatan melebihi kecepatan cahaya diruang hampa atau superluminal. Dan memang saat ini, perkembangan optika nonlinear yang manjadi salah satu topik utama adalah mengenai manipulasi kecepatan grup pulsa cahaya. Pada perkembangan-nya riset terkait manipulasi kecepatan grup ini terbagi dalam 3 jenis, yaitu Slow Light kecepatan pulsa cahaya diperlambat secara radikal, salah satu rekor adalah kecepatan grup cahaya yang hanya 17m/s [2], Stopped Light - dimana cahaya dapat dibuat berhenti pada suatu material selama rentang waktu tunda tertentu [3], dan terakhir tentang Fast Light, dimana pulsa cahaya memiliki kecepatan superluminal [4-7]. Terdapat berbagai metode yang digunakan untuk menghasilkan pulsa cahaya superluminal. Salah satu yang umumnya digunakan yaitu dengan melewatkan sinar laser pada uap Rubidium [6]. Tetapi metode-metode yang ada memerlukan pengaturan khusus dan waktu yang relatif lama, seperti harus memanaskan Rubidium agar menjadi uap. Untuk dapat dimanfaatkan dalam bidang komunikasi, dimana diperlukan kondisi suatu pulsa harus ditunda (delay) atau dipercepat, maka metode untuk menghasilkan pulsa superluminal memerlukan metode yang lebih cepat. Dalam perkembangannya terdapat penelitian baru dimana dengan menggunakan teknik four-wave mixing, pulsa superluminal dapat dihasilkan hanya melalui pengaturan pump beam dinyalakan atau tidak. Metode ini bahkan tidak hanya mampu membuat pulsa cahaya masukan (seed pulse) menjadi superluminal, tetapi juga menghasilkan pulsa barudengan frekuensi berbeda (conjugate pulse) yang juga memiliki kecepatan superluminal. Pada penelitian ini bagaimana pulsa superluminal tersebut merambat dalam medium uap Rubidium akan ditinjau melalui pendekatan analitik. II. METODE PENELITIAN A. Sistematika Perhitungan dan Analisa Analisa dan langkah perumusan untuk mendapatkan persamaan yang dapat menggambarkan bentuk pulsa seed dan conjugate selama merambat dalam medium uap Rubidium dilakukan dengan menuliskan vektor gelombang bergantung frekuensi deret Taylor berikut, dari pulsa seed dan pulsa conjugate dalam (1) Menuliskan persamaan gelombang medan listrik dari pulsa seed dan conjugate dalam domain frekuensi melalui

JURNAL SAINS POMITS Vol. 2, No.1, (2013) 2337-3520 (2301-928X Print) B-32 transformasi Fourier, dan memecahkannya dengan asumsi dititik z=0 kedua pulsa masing-masing berbentuk Gaussian. Untuk kasus tanpa FWM, faktor polarisasi nonlinier yang menunjukkan adanya interaksi FWM diabaikan terlebih dulu. mengetahui apakah bentuk pada pulsa seed yang Solusi persamaan yang diperoleh yaitu menjadi pada persamaan diubah melalui transformasi Fourier balik. Bentuk menggunakan Pers. (1) dan koefisien masing-masing suku dicari terlebih dahulu dengan menggunakan profil Lorentzian. Untuk kasus dengan FWM, metodenya sama tetapi faktor polarisasi nonlinier P NL diperhitungkan. Persamaan gelombang yang diperoleh diubah dalam bentuk persamaan NLS termodifikasi. B. Skema Penelitian diasumsikan berbentuk Gaussian benar-benar dapat menyebabkan pulsa seed menjadi superluminal, walau tanpa interaksi FWM. Untuk mengetahui perambatan suatu pulsa superluminal dalam medium yang terdapat dispersi anomali, dimulai dengan menuliskan persamaan gelombang dalam medium sebagai berikut [8,9]: Indeks bias didalam dan diluar medium dinyatakan dalam pernyataan berikut: (2) (3a) Persamaan Maxwell Tanpa FWM FWM Transformasi Fourier (3b) Dengan menggunakan transformasi Fourier maka pers. (2) menjadi, Solusi dari persamaan diatas adalah, (4) Persamaan Gelombang untuk Pulsa Seed dan Conjugate (domain frekuensi) Transformasi Balik Persamaan Gelombang (domain waktu) Profil Lorentzian (5) Pulsa seed diasumsikan berupa Gaussian. Maka pada z=0 atau saat pulsa seed memasuki medium, pulsa seed masih berbentuk Gaussian, yaitu Dalam domain frekuensi, (6) Persamaan gelombang untuk pulsa seed dan conjugate dalam bentuk persamaan NLS untuk kasus terdapat interaksi FWM Solusi E(z,t) untuk pulsa seed dan conjugate pada kasus tanpa FWM Dengan mensubstitusikan pers.(7) kedalam pers.(5), dan mengubahnya ke domain waktu melalui transformasi Fourier balik, diperoleh (7) Gambar 1. Diagram Alur III. HASIL DAN PEMBAHASAN A. Perambatan Pulsa Seed dan Conjugate tanpa FWM Untuk mengetahui perambatan pulsa seed saat terjadi interaksi FWM, terlebih dahulu dicoba suatu kondisi dimana tidak ada interaksi FWM. Perhitungan ini ditujukan untuk (8) Dengan menggunakan Pers. (1), maka solusi pers. (5) adalah sebagai berikut, Untuk z < 0

JURNAL SAINS POMITS Vol. 2, No.1, (2013) 2337-3520 (2301-928X Print) B-33 (9) (16l) Untuk 0 < z < L (16m) Pada daerah 0 < z < L, posisi puncak pulsa dapat diperoleh dengan mencari nilai maksimum terhadap waktu t. Untuk z > L (10) (17) Dengan menggunakan nilai variabel,,,, (11) Bentuk Pers. (10) dan pers. (11) adalah sama dan Pers. (11) dapat diperoleh dari Pers. (10) dengan menggunakan transformasi berikut, (12) (13) dengan menghitung suku suku Pers. (10) dan Pers. (11), diperoleh Untuk 0 < z < L dan turunannya pada, serta menggunakan jarak z dalam orde milimeter dan lebar pulsa, maka diperoleh bahwa nilai dan mendekati 1, sedangkan nilai dalam orde. Dengan mengambil nilai diperoleh (18) Hal ini menunjukkan puncak pulsa seed bergerak dengan kecepatan. Untuk menempuh jarak L, maka dibutuhkan waktu. Jika dibandingkan dengan pulsa yang merambat dengan kecepatan c, maka diperoleh selisih waktu sebesar Untuk z > L (14) (15) dengan digunakan variabel baru sebagai berikut: (16a) (16b) (16c) (16d) (16e) (16f) (16g) (16h) (16i ) (16j ) (16k) (19) Jika Pers. (19) menghasilkan nilai negatif, maka disebut pulse peak advancement, yaitu puncak pulsa menempuh jarak L lebih cepat dibandingkan jika harus menempuh jarak L dengan kecepatan cahaya c. Pers. (19) memiliki ketergantungan terhadap frekuensi detuning, ini menunjukkan kondisi superluminal pulsa seed tergantung pada frekuensi detuning. B. Perambatan Pulsa Conjugate tanpa FWM Dengan alasan yang sama seperti pada perambatan pulsa seed tanpa interaksi FWM, terlebih dulu diasumsikan tidak ada interaksi FWM. Khusus untuk pulsa conjugate, dalam kondisi sebenarnya pulsa ini hanya dapat terbentuk jika terdapat interaksi FWM, yaitu saat laser pump dinyalakan. Tetapi untuk mengetahui apakah pulsa conjugate menjadi superluminal oleh bentuk, asumsi tersebut dapat digunakan. Persamaan

JURNAL SAINS POMITS Vol. 2, No.1, (2013) 2337-3520 (2301-928X Print) B-34 yang dapat menggambarkan bentuk pulsa conjugate selama merambat dalam medium uap Rubidium diperoleh dengan (24n) langkah yang sama untuk menurunkan persamaan perambatan pulsa seed. Perbedaannya terletak pada fungsi berikut: (24o) dan hasil perhitungannya adalah sebagai berikut: Untuk daerah z < 0 Untuk daerah 0 < z < L Untuk daerah z > L dengan digunakan variabel sebagai berikut: (20) (21) (22) (23) (24a) (24b) (24c) (24d) (24e) (24f) (24g) (24h) (24p) Dengan menggunakan nilai variabel,,,,,,,, serta menggunakan jarak z dalam orde millimeter dan lebar pulsa, maka diperoleh bahwa nilai dan tidak jauh dari 1, sedangkan nilai juga dalam orde. Pers. (17) - (19) juga berlaku untuk terletak pada pada bentuk pulsa conjugate, perbedaannya hanya. Hal ini menunjukkan bahwa Pers. (22) menggambarkan pulsa conjugate yang bergerak secara superluminal. C. Perambatan Pulsa Seed dan Conjugate dengan FWM Pada hasil perhitungan sebelumnya, baik pulsa seed maupun pulsa conjugate terlihat benar-benar dapat menjadi superluminal tergantung pada pengaturan detuning. Tetapi dengan tidak adanya interaksi FWM, maka pulsa seed dan pulsa conjugate menjadi tidak saling terkait. Bentuk pulsa seed selama merambat pada medium tidak terpengaruh oleh amplitudo pulsa conjugate dan sebaliknya, begitu pula dengan fase nya masing-masing yang juga tidak terpengaruh. Pada perhitungan ini interaksi FWM diperhitungkan, dan ketergantungan pulsa seed terhadap pulsa conjugate dan sebaliknya sekarang dapat diketahui. Persamaan gelombang yang digunakan menjadi lebih kompleks dengan adanya suku polarisasi nonlinier P NL. Untuk mendapatkan persamaan yang dapat menggambarkan bentuk pulsa seed dan pulsa conjugate didalam medium dengan adanya faktor interaksi FWM, maka perlu dihitung terlebih dahulu polarisasi P NL. Frekuensi pulsa seed, pulsa conjugate, dan pulsa pump dihubungkan oleh (24i) (24j) (24k) (24l) (24m) atau dengan, adalah frekuensi laser pump, adalah frekuensi sinar seed, dan adalah frekuensi sinar conjugate. Frekuensi yang dinyatakan persamaan diatas, itu terkait dengan polarisasi orde 3 berbentuk, (26) (25)

JURNAL SAINS POMITS Vol. 2, No.1, (2013) 2337-3520 (2301-928X Print) B-35 Dengan mengasumsikan bentuk, dan sebagai berikut: dengan kuadrat mutlak dari amplitudo gelombang itu sendiri, yaitu, sedangkan pada Pers. (33) suku tersebut maka polarisasi nonliniernya menjadi (27) (28) Persamaan gelombang untuk medan dengan memperhitungkan faktor interaksi FWM adalah (29) Bentuk persamaan gelombang diatas dapat ditulis dalam domain frekuensi menjadi Sedangkan bentuk k dapat ditulis, (30) sebanding dengan amplitudo sinar seed dan kuadrat mutlak amplitudo dari sinar pump, dengan kata lain tergantung amplitudo gelombang lainnya yang terlibat dalam interaksi FWM. Kerena itu Pers. (33) disebut persamaan nonlinier Schrodinger termodifikasi untuk coupling pulsa seed dan pulsa conjugate. Untuk pulsa seed, dengan langkah yang sama diperoleh bentuk persamaan NLS termodifikasi juga. Dari hasil perumusan ini diperoleh set persamaan yang dapat menggambarkan pulsa seed dan conjugate didalam medium uap Rubidium. dimana telah digunakan variabel berikut, (36) (37) (38) (39) (40) (31) dengan menggunakan Pers. (31) diperoleh bentuk Pers. (30) dapat ditulis sebagai berikut, (32) Bentuk dalam domain waktu Pers. (32) dapat dicari dengan melakukan transformasi balik Fourier, sehingga diperoleh hasil berikut, dimana telah digunakan pergantian variabel berikut, dan (33) (34) (35) Pers. (33) menggambarkan bentuk pulsa conjugate selama merambat di medium nonlinier dengan adanya interaksi FWM. Persamaan ini memiliki bentuk yang mirip dengan persamaan nonlinier Schrodinger (NLS), kecuali pada suku kedua pada ruas kanan. Pada persamaan NLS, suku tersebut sebanding (41) IV. KESIMPULAN/RINGKASAN Hasil perumusan dan perhitungan yang telah dilakukan menunjukkan bahwa selama didalam medium uap Rubidium, untuk proses tanpa FWM terdapat kebergantungan seed pulse peak advancement dan conjugate pulse peak advancement terhadap frekuensi sebagaimana ditunjukkan pada Pers. (14), Pers. (19) dan Pers. (22). Sedangkan untuk proses dengan FWM, amplitude pulsa seed dan conjugate saling terkopel sebagaimana ditunjukkan dalam persamaan NLS termodifikasi yaitu Pers. (36) (37). Baik pulsa seed tanpa FWM, pulsa conjugate tanpa FWM, serta pulsa seed dan conjugate dalam interaksi FWM, ketiga kasus tersebut menunjukkan kondisi superluminal. DAFTAR PUSTAKA [1] Bolda, Eric L., Garrison, J.C., Chiao, R.Y., 1994, Optical pulse propagation at negatif group velocities due to a nearby gain line, Physical Review Letters, April, 49(4), 2938-2947, California [2] Brumfiel, Geoff, 2012. Nature, URL:http://www.nature.com/ news/neutrinos-not-fasterthan-light-1.10249 [3] Brunner, N., Scarani V., Wegmuller, M., Legre, M., Gisin, N., 2004. Direct Measurement of Superluminal Group Velocity and Signal Velocity in an Optical Fiber,

JURNAL SAINS POMITS Vol. 2, No.1, (2013) 2337-3520 (2301-928X Print) B-36 Physical Review Letters, 12 November, 93(20), 1-4, Geneva [4] Garrett, C.G.B., McCumber, D.E., Propagation of a Gaussian Light Pulse through an Anomalous Dispersion Medium, Physical Review A, Februari, 1(2), 305-313, New Jersey [5] Lene V. Hau, Harris, S.E., Zachary D. & Behroozi, C.H., 1999. Light speed reduction to 17 metres per second in an ultracold atomic gas, Letters to Nature, 18 February, vol 397 [6] Longdell, J.J., Fraval, E., Sellars, M.J., Manson, N.B., 2005. Stopped Light with Storage Times Greater than One Second Using Electromagnetically Induced Transparency in a Solid, Physical Review Letters, 2 August, 95(6), 1-4. Canberra [7] Pati, G.S., Salit, M., Shahriar, M.S., 2009. Simultaneous slow and fast light effects using probe gain and pump depletion via Raman gain in atomic vapor, Optics Express, 25 May, 17(11), 1-6, Dover [8] Ryan T. Glasser, Ulrich Vogl & Paul D. Lett, 2012, Stimulated Generation of Superluminal Light Pulses via Four-Wave Mixing, Physical Review Letters, 27 April, 108(17), 1-5, Maryland [9] Steinberg, A.M., Chiao, R.Y., 1994. Dispersionless, highly superluminal propagation in a medium with a gain doublet, Physical Review A, 49(3), 2071-2075, California