Daftar Isi Halaman Kata Pengantar.i Daftar Isi ii Peta Kompetensi, Peta Bahan Ajar dan Informasi..iv Skenario Pembelajaran..v Bab I. Pendahuluan.... Latar Belakang.... Tujuan.... 3. Ruang Lingkup....... Bab II. Statistika..3 A. Penyajian Data Dalam diagram...3. Membaca Diagram........3. Menyajikan Data Dalam Diagram....6 a. Diagram Batang.... 8 b. Diagram Lingkaran.......8 c. Diagram Garis......9 B. Data Tunggal.... Ukuran Kecenderungan Memusat..... a. Mean.... b. Median..... c. Modus... 3 d. Menafsirkan Rata-rata.....4. Ukuran Letak......5 a. Kuartil...5 ) Prosedur Menentukan Kuartil........6 ) Menentukan Kuartil Dengan Lebih Teliti...8 3) Menentukan Kuartil Dengan Diagram Batang Daun...9 b. Desil..0 3. Ukuran Penyebaran.. a. Jangkauan... b. Simpangan Baku dan Ragam.. c. Simpangan Kuartil.. 6 d. Statistik Lima Serangkai, Rataan Tiga dan Rataan Kuartil 7 e. Pencilan dan Diagram Kotak Garis....8 ) Pencilan.....30 ) Diagram Kotak Garis 3 C. Data Berkelompok.........3. Daftar Distribusi Frekuensi.. 3 a. Distribusi Frekuensi Tunggal....33 Iryanti ii
b. Distribusi Frekuensi Berkelompok... 33 c. Daftar Distribusi Frekuensi Kumulatif.....35 d. Histogram dan Poligon Frekuensi...36 e. Ogif.......38. Ukuran Kecenderungan Memusat...... 40 a. Mean.... 40 b. Modus dan Median.... 44 ) Modus.....44 ) Median.... 45 3. Ukuran Letak..... 47 a. Kuartil... 47 b. Desil.....48 4. Ukuran Penyebaran.....50 D. Lembar Kerja.. 55 E. Evaluasi....59 F. Rangkuman.. 6 Bab III. Penutup.... 65 Daftar Pustaka..66 Kunci Jawaban..67 Iryanti iii
Peta Kompetensi: Memiliki kemampuan untuk mengembangkan kemampuan siswa dalam menggunakan konsep-konsep statistika deskriptif dalam hal:. Mampu menyajikan data dalam berbagai bentuk diagram dan memilihnya secara representatif.. Mampu membedakan dan menentukan berbagai ukuran pemusatan, ukuran letak, dan ukuran penyebaran 3. Mampu melakukan penafsiran terhadap sekumpulan data melalui berbagai ukuran pemusatan, ukuran letak, dan ukuran penyebaran Peta Bahan Ajar:. Penyajian data dalam diagram. Ukuran pemusatan, ukuran letak dan ukuran penyebaran 3. Tafsiran ringkasan data Informasi Indikator keberhasilan: menguasai peta kompetensi. Kompetensi yang dipelajari berikutnya: mampu menjelaskan dan memberi contoh memaknai tendensi sentral dari sekumpulan data mampu menjelaskan dan memberi contoh memaknai variansi dan simpangan baku dari sekumpulan data. Iryanti iv
Skenario Pembelajaran. Pendahuluan Salam dan perkenalan Mengemukakan tujuan diklat dan kompetensi yang akan dicapai. Mengidentifikasi masalah-masalah statistika yang dihadapi peserta diklat.. Kegiatan Inti a. Penyajian data Penyampaian dan pembahasan materi dengan tanya jawab. Pemecahan masalah tentang penyajian data yang sudah diidentifikasi sebelumnya. b. Membahas ukuran pemusatan, penyebaran dan letak untuk data tunggal Penyampaian dan pembahasan materi dengan diskusi dan tanya jawab. Peserta melakukan tugas yang ada di Lembar Kerja Pembahasan dan pelaporan tentang tugas Pemecahan masalah yang sudah diidentifikasi sebelumnya. c. Membahas ukuran pemusatan, penyebaran dan letak untuk data berkelompok Iryanti v
Penyampaian dan pembahasan materi dengan diskusi dan tanya jawab. Peserta melakukan tugas yang ada di Lembar Kerja dan 3. Presentasi tugas yang sudah dikerjakan Pemecahan masalah yang sudah diidentifikasi sebelumnya. 3. Penutup Merangkum dan menyimpulkan hasil yang sudah didapat. Mengucapkan terimakasih atas perhatian peserta. Iryanti vi
Peta Kompetensi :. Menyebutkan pengertian notasi sigma, pola barisan dan deret bilangan.. Mengidentifikasi barisan aritmetika dan geometri. 3. Menurunkan rumus deret aritmetika dan geometri. 4. Menyatakan jumlah dalam bentuk notasi sigma sebagai suatu fungsi. Peta Bahan Ajar:. Notasi Sigma. Pola Barisan dan Deret Bilangan ( khususnya barisan aritmetika dan barisan geometri) 3. Barisan Sebagai Fungsi Informasi:. Kompetensi prasyarat: mampu menjelaskan konsep-konsep dasar materi/ pokok bahasan Matematika yang akan dipelajari siswa.. Indikator keberhasilan: menguasai peta kompetensi di atas. 3. Kompetensi yang dipelajari berikutnya: menjelaskan cara memprediksi bentuk umum pola, barisan, dan deret. menjelaskan cara mengidentifikasi berbagai jenis barisan ( aritmetika, geometri, harmonik, barisan bilangan polygonal) sesuai sifatnya. Notasi sigma, Barisan dan Deret Bilangan I/ Iryanti iii
menjelaskan dan memberi contoh cara menurunkan rumus jumlah deret. Skenario Pembelajaran. Pendahuluan: Salam dan perkenalan. Menginformasikan tujuan diklat dan kompetensi yang akan dicapai. Mengidentifikasi masalah tentang Notasi sigma, Barisan dan Deret yang dihadapi peserta dikla a. Kegiatan Inti I ( Penyajian Notasi Sigma) Penyampaian materi Peserta diklat mengerjakan tugas (sifat notasi sigma 3, 4 dan 5) Pembahasan dan pemecahan masalah yang diidentifikasi sebelumnya. b. Kegiatan Inti II ( Barisan dan Deret Aritmetika) Penyampaian materi Peserta diklat mengerjakan tugas kelompok di Lembar Kerja Pembahasan dan pemecahan masalah yang diidentifikasi sebelumnya. c. Kegiatan Inti III ( Barisan dan deret Geometri) Penyampaian materi Notasi sigma, Barisan dan Deret Bilangan I/ Iryanti iv
Peserta diklat mengerjakan kegiatan yang tertulis di Lembar Kerja Presentasi Pembahasan dan pemecahan masalah yang diidentifikasi sebelumnya. d. Kegiatan Inti IV Penyampaian materi Peserta diklat mengerjakan tugas kelompok di Lembar Kerja 3 Presentasi Pembahasan dan pemecahan masalah yang diidentifikasi sebelumnya. 3. Penutup Merangkum dan menyimpulkan hasil yang diperoleh Mengucapkan terimakasih atas perhatian peserta. Notasi sigma, Barisan dan Deret Bilangan I/ Iryanti v
Bab I Pendahuluan A. Latar Belakang Notasi Sigma menjadi dasar untuk penulisan barisan dan deret sehingga penting untuk menguasai materi ini serta sifat-sifatnya. Demikian pula, penting untuk menguasai materi barisan dan deret yang banyak diterapkan dalam kejadian di sekitar kita. Melihat perbedaan yang sangat besar antara pertumbuhan manusia dan pertambahan bahan makanan, Thomas Robert Malthus mengatakan bahwa pertumbuhan manusia berdasarkan kepada deret geometri (deret ukur) sebaliknya pertambahan bahan makanan berdasarkan kepada deret aritmetika ( deret hitung). Jika Anda mencari alamat seseorang, tentu yang paling penting adalah nama jalan dan nomor rumahnya. Umumnya penomoran rumah yang menghadap ke jalan berdasarkan aturan salah satu sisi diberi nomornomor ganjil dan sisi yang lain diberi nomor-nomor genap. Jika dituliskan berurutan nomor-nomor itu akan membentuk barisan bilangan ganjil dan barisan bilangan genap yang termasuk dalam barisan aritmetika. B. Tujuan Bahan ajar ini disusun dengan tujuan untuk meningkatkan wawasan dan kemampuan peserta diklat untuk mengembangkan ketrampilan siswa dalam menggunakan konsep Notasi sigma, Barisan dan Deret Bilangan. 6
C. Ruang Lingkup Ruang lingkup materi yang dibahas dalam bahan ajar ini adalah;. Notasi Sigma dan Sifat-sifatnya.. Barisan dan Deret: a. Barisan dan Deret Aritmetika b. Barisan dan Deret Geometri 3. Barisan sebagai fungsi. 7
Bab II Notasi Sigma, Barisan dan Deret Bilangan I A. Notasi Sigma Seorang siswa SMA yang beberapa kali tidak mengerjakan PR akhirnya diberi sanksi oleh gurunya. Siswa itu disuruh menulis tangan kalimat Saya tidak akan malas lagi mengerjakan PR Matematika sebanyak 00 kali. Sungguh membosankan pekerjaan ini, kelihatan ringan tetapi tidak menyenangkan. Seandainya bisa ditulis dengan komputer, tentu pekerjaan ini akan mudah dan cepat selesai. Tetapi siswa tersebut mempunyai akal dan menyelesaikan sanksi yang diberikan dengan cepat sehingga membuat gurunya kaget karena tidak menduga siswa itu menyelesaikan sanksi itu dengan cepat. Inilah yang ditulis oleh siswa tersebut: 00 c, dengan c = Saya tidak akan malas lagi mengerjakan PR Matematika k= Siswa itu menyingkat penulisan yang diminta oleh gurunya dengan menggunakan notasi sigma. Notasi sigma memang jarang Anda jumpai dalam kehidupan sehari-hari, tetapi notasi ini akan banyak dijumpai penggunaannya dalam bagian Matematika yang lain. Jika Anda mempelajari Statistika maka Anda akan menjumpai banyak rumus-rumus yang digunakan memakai lambang notasi sigma, misalnya rumus mean, simpangan baku, ragam, korelasi, dan lain-lain. Di Kalkulus, pada waktu membicarakan luas daerah yang dibatasi oleh kurva dan sumbu-sumbu koordinat, Anda akan menemui Jumlahan Riemann yang menggunakan notasi sigma untuk menyingkat penjumlahan yang relatif banyak. Ketika 8
mempelajari Kombinatorik, Anda akan menemui bentuk notasi sigma dalam koefisien binomial. Untuk mengawali bahasan mengenai notasi sigma, perhatikan jumlah 5 bilangan ganjil pertama berikut ini: + 3 + 5 + 7 + 9 Pada bentuk tersebut disebut suku ke-, 3 disebut suku ke-, 5 disebut suku ke-3, 7 disebut suku ke-4, dan 9 disebut suku ke-5. Ternyata sukusuku tersebut mengikuti suatu pola sebagai berikut: Suku ke- = = () Suku ke- = 3 = () Suku ke-3 = 5 = (3) Suku ke-4 = 7 = (4) Suku ke-5 = 9 = (5) Dengan demikian dapat disimpulkan bahwa pola dari suku-suku penjumlahan itu adalah k dengan k {,,3,4,5}. Untuk menyingkat penulisan penjumlahan seperti di atas digunakan huruf kapital Yunani Σ, dibaca notasi sigma yang diperkenalkan pertama kali tahun 755 oleh Leonhard Euler. Selanjutnya bentuk penjumlahan di atas dapat ditulis dalam notasi sigma sebagai: + 3 + 5 + 7 + 9 = 5 (k ) k= Ruas kanan dibaca sigma k = sampai dengan 5 dari k-. Batas bawah bentuk notasi sigma ini adalah k = dan batas atas k = 5. Secara umum bentuk notasi sigma didefinisikan sebagai berikut: 9
n a k k= = a + a + a3 +... + an Contoh : Nyatakan 6 ( 3k +) dalam bentuk lengkap k= Jawab: 6 ( 3k +) = 4 + 7 + 0 +3 +6 +9 k= Contoh : Hitunglah nilai 4 (k ) k= 4 Jawab: (k ) = +7+7+3 = 56 k= Contoh 3: Nyatakan 3+5+7+9++3 dalam bentuk notasi sigma Jawab: suku ke- = 3 = ()+ suku ke- = 5 = ()+ suku ke-3 = 7 = (3)+, dan seterusnya sehingga suku ke-6 = 3 = (6) + Dengan melihat pola suku-suku tersebut dapat disimpulkan bahwa suku-suku dalam penjumlahan itu mempunyai pola k+. Dengan demikian 3+5+7+9++3 = 6 ( k +) k= 0
Latihan. Tulislah bentuk-bentuk penjumlahan berikut dalam bentuk notasi sigma a. + 4 + 6 + 8 + 0 + b. + 4 + 8 + 6 + 3 c. - 4 + 8-6 + 3-64 d. + 4 + 9 + 6 + 5 + 36 + 49 e. + 3 + 9 + 7 + 8 f. + 3 + 4 5 + 6 7 + 8 9 +0 g. ( x ) + ( 3 x 4) + (5 x 6) + (7 x 8) + ( 9 x 0) h. a + a b + a 3 b + a 4 b 3 + a 5 b 4 + a 6 b 5 i. b + ab + a b 3 + a 3 b 4 + a 4 b 5 + a 5 b 6. Nyatakan notasi-notasi sigma berikut dalam bentuk lengkap 5 5 a. ( k ) c. (- ) k k k = k= 4 e. (n + n +) n= b. 4 k(k +) k= 3. Diketahui: 4 d. (n 3 n ) n= f. 6 (k )k k= a =, a = 3, a 3 = 5, a 4 = 7, a 5 =, a 6 = 3. b = -, b =, b 3 =, b 4 = 4, b 5 = 5, b 6 = 6. Hitunglah:
a. 6 a k f. 6 b k k= k= b. 6 b k g. 6 ( a k + bk ) k= k= c. 5 a kb k h. k= 6 ( ak bk ) k = d. 5 6 a k + b k i. a k k= k = + b k e. 6 a k j. k= 6 a b k k k = Sifat-sifat Notasi Sigma Untuk setiap bilangan bulat a, b dan n berlaku: n. = n k=. b cf (k) = b c f(k) k=a k=a b 3. [f(k)+ g(k)] k=a = f (k) + g (k) b k=a m n n 4. f(k) + f(k) = f(k) k = k = m k = n n+ p 5. f (k) = f(k p) k = m k = m+ p b k=a
Bukti: n. = + + + + = n () = n k= n suku b. cf (k) = c f(a) + c f(a+) +c f(a+) + + c f(b) k= a b = c [f(a) + f(a+) + f(a+) + + f(b)] = c f (k) k= a Tugas: Buktikan sifat-sifat notasi sigma no. 3,4 dan 5 Batas bawah notasi sigma dapat dirubah dengan menggunakan sifat-sifat notasi sigma. Perhatikan contoh 4 dan contoh 5 berikut ini: Contoh 4: Nyatakan bentuk-bentuk notasi sigma berikut dengan batas bawah 3 0 a. k k - b. k=7 k=4 k + 3 c. 8 k + 3 k= 3 Jawab: Dengan menggunakan sifat nomor 5, n f (k) = k = m n+ p f(k p) k = m+ p 3 3 6 a. k = (k + 6) k = 7 k = 7 6 7 = ( k + 6) k = 3
0 k b. k = 4 k + 3 0 = 3 (k + 3) k = 4 3 (k + 3) + 3 7 k + = k= k + 6 8 8 c. k + 3= + 4 (k 4) + 3 k = 3 k = 3+ 4 = k 5 k= Contoh 5: 0 6 6 Buktikan bahwa (k 7) 4 k = + 4 k + 6 k = 5 k = k = Bukti: 0 0 4 ( k 7) = [(k + 4) 7].sifat nomor 5 k = 5 k = 5 4 6 = ( k + 8 7) k = 6 = ( k + ) k = 6 = ( 4k k = + 4k + ) 6 6 6 = 4 k + 4k + sifat nomor 3 k = k = k = 4
6 6 = 4 k + 4 k + 6 k = k =.sifat nomor dan Latihan. Nyatakan jumlah di bawah ini dengan bilangan sebagai batas bawah 4 n 4 a. (k 3) d. k = 5 n= 6 n + 3 5 b. ( k + ) e. ( a ) k = 5 a= 8 4 c. (b + b) k = 5 0 f. 4 k k = 8. Buktikan 0 4 a. ( n ) = (n 9) n= n= 5 6 6 6 b. ( p + 4) = 96 + 8 p + p p= p= p= Bentuk ruas kanan nomor di atas disebut bentuk monomial. 3. Nyatakan jumlah-jumlah di bawah ini sebagai jumlah monomial. 6 a. k k c. k = 5 n 3n n= 8 b. k 4k 5 k = 0 d. ( 4k 6)(3 k) k = 5
B. Barisan dan Deret. Barisan dan Deret Aritmetika a. Barisan Aritmetika Iwan mencari rumah temannya di Jalan Gambir no.55. Setelah sampai di Jalan Gambir ia memperhatikan bahwa rumah-rumah yang terletak di sebelah kanan jalan adalah rumah-rumah dengan nomor urut genap, 4, 6, 8, dan seterusnya. Dengan demikian ia langsung tahu bahwa rumah temannya terletak di sebelah kiri jalan karena di sebelah itu terletak rumah-rumah bernomor urut ganjil,3, 5, 7, dan seterusnya termasuk no. 55. Nomor-nomor rumah di atas merupakan barisan bilangan aritmetika. Barisan bilangan ini mempunyai selisih yang tetap antara dua suku yang berurutan. Pada barisan, 3, 5, 7,, suku pertama adalah, suku kedua adalah 3, dan seterusnya. Selisih antara dua suku yang berurutan adalah. Barisan, 4, 6, 8,, juga mempunyai selisih dua suku yang berurutan selalu tetap yang besarnya. b. Rumus suku Ke-n Barisan Aritmetika Pada barisan aritmetika dengan bentuk umum u, u, u 3, dengan u adalah suku pertama, u adalah suku ke-, u 3 adalah suku ke-3 dan 6
seterusnya. Selisih antara dua suku berurutan disebut juga beda dan diberi notasi b, sehingga b = u u = u 3 u = u 4 u 3 = = u n u n- Misalkan suku pertama u dinamakan a dan beda antara suku berurutan adalah b, maka: u =a u u = b u = u + b = a + b = a + (-)b u 3 u = b u 3 = u + b = a + b = a + (3-)b u 4 u 3 = b u 4 = u 3 + b = a + 3b = a + (4-)b u 5 u 4 = b u 5 = u 4 + b = a + 4b = a + (5-)b Dengan memperhatikan pola suku-suku di atas kita dapat menyimpulkan rumus umum suku ke-n adalah: u n = a + (n-)b dengan u n = suku ke-n a = suku pertama dan b = beda contoh 6: Tentukan suku ke-35 dari barisan 3, 7,, 5, Jawab: U = a = 3, b = u u = 7 3 = 4, n = 35 Dengan mensubstitusikan unsur-unsur yang diketahui ke u n = a + (n-)b diperoleh u 35 = 3 + (35-)4 = 39 Jadi suku ke-35 adalah 39. contoh 7: a. Carilah rumus suku ke-n barisan 60, 56, 5, 48, b. Suku ke berapakah dari barisan di atas yang nilainya adalah 6? 7
Jawab: contoh 8: U = a = 60, b = u u = 56 60 = -4 a. u n = a + (n-)b = 60-4 (n -) = 64 4n b. u n = 64 4n 6 = 64 4n 4n = 48 n = Pada suatu barisan aritmetika suku ke-0 adalah 4 dan suku ke-5 adalah. Tentukan suku ke-5 Jawab: Latihan 3 U 0 = a + (0-)b = a + 9b = 4 U 5 = a + (5 -)b = a + 4b = 5b = 0 b = 4 a = 5 U 5 = a + (5-)4 = 5 + 4(4) = 50. Carilah rumus suku ke-n dari setiap barisan berikut: a., 5, 8,, d. 53, 48, 43, 38, b. 8,, -6, -3, e., -6, -, -6, c. 3, 5, 7, 9, f. 0, 3 9, 8, 7, 4 4. Tentukan suku yang diminta dalam setiap barisan aritmetika berikut 8
a., 7, 3, 9, suku ke-45 d. 80, 7, 64, 56, suku ke-30 b. 6, 3, 0, -3, suku ke- 8 e. 3, 5, 6, 8, suku ke-4 c. 5, 9, 3, 7, suku ke-50 f. 65, -6, -57, -53, suku ke-37 3. Suku ke-0 suatu barisan aritmetika adalah 4. Jika suku ke-7 adalah 9, tentukan suku ke- 50 4. Dari suatu barisan aritmetika, u + u 7 = 6 dan u 3 + u 5 =. Tentukan suku ke-00 5. Diketahui barisan aritmetika 64, 6, 58, 55, a. Suku keberapakah yang bernilai 6? b. Tentukan suku negatifnya yang pertama 6. Diketahui barisan bilangan asli kurang dari 5. Tentukan banyak bilangan yang : a. habis dibagi b. habis dibagi 5 c. habis dibagi tetapi tidak habis dibagi 5 7. Diantara bilangan-bilangan 8 dan 73 disisipkan 3 buah bilangan sehingga terjadi barisan aritmetika. Tentukan a. beda barisan itu b. rumus suku ke-n 9
c. Deret Aritmetika Tentu Anda sudah mengetahui cerita tentang matematikawan Gauss. Ketika masih di sekolah dasar ia diminta gurunya untuk menjumlahkan 00 bilangan asli yang pertama. Teknik menghitung Gauss kecil sederhana tetapi tidak diragukan lagi keefektifannya. Ia memisalkan S adalah jumlah 00 bilangan asli yang pertama seperti di bawah ini. S = + + 3 + 4 + + 00 Kemudian ia menulis penjumlahan itu dengan urutan suku-suku terbalik. S = 00 + 99 + 98 + 97 + + Selanjutnya ia menjumlahkan kedua deret. S = 0 + 0 + 0 + 0 + + 0 Karena banyak suku dalam deret itu ada 00, maka penjumlahan itu dapat juga ditulis sebagai: S =00 (0) = 000 S =5050 Teknik menghitung Gauss ini yang diikuti selanjutnya untuk mendapatkan rumus jumlah n suku pertama deret aritmetika. Deret aritmetika adalah jumlah suku-suku dari suatu barisan aritmetika. Dari barisan aritmetika u, u, u 3, u 4, diperoleh deret aritmetika u + u + u 3 + u 4, Bila jumlah n suku yang pertama dari suatu deret aritmetika dinyatakan dengan S n maka S n = u + u + u 3 + u 4 + +u n Misalkan U n = k, maka S n = u + u + u 3 + u 4 + +k 0
S n = a + (a+ b) + (a + b) + (a+3b) + + (k -b) + k () Jika urutan penulisan suku-suku dibalik maka diperoleh S n = k + (k -b) + (k-b) + ( k 3b) + + (a+b) + a.() Dengan menjumlahkan persamaan () dan () didapat: S n =(a +k) +(a +k) + (a +k)+ (a +k)+ + (a +k) + (a +k) n suku = n (a + k) = n [ a + (n ) b] Jadi S n = n (a + k) atau S n = n (a + un ) = n [(a + (n-)b ] dengan a = suku pertama, U n = suku ke-n, b = beda Jika ditulis dalam bentuk notasi sigma, jumlah n suku pertama deret n aritmetika dinyatakan sebagai S n = u k k = a + (n ) b = n n= Dengan demikian jumlah n suku pertama dan n suku pertama deret aritmetika dapat dinyatakan sebagai n S n = u k = u + u + u 3 + u 4 + + u n- + u n k = n S n- = u k = u + u + u 3 + u 4 + + u n- k = Dengan mengurangkan S n dengan S n- terlihat dengan jelas bahwa U n = S n - S n-
Tugas: Misal u = a, u = a + b, u 3 = a + b, dan seterusnya. a. Jumlahkan setiap suku ganjil kemudian dibagi atau dikalikan /, misal ½(u + u 3 ), ½(u + u 5 ), dan seterusnya selanjutnya bandingkan dengan suku-suku yang lain. Apa yang Anda dapatkan? b. Jumlahkan setiap suku genap kemudian dibagi atau dikalikan /, misal ½ (u + u 4 ), ½ (u + u 6 ), dan seterusnya selanjutnya bandingkan dengan suku-suku yang lain. Apa yang Anda dapatkan? Contoh 9: Diketahui deret + 6 + + 6 +. Tentukan a. bentuk notasi sigma jumlah n suku pertama deret tersebut b. rumus jumlah n suku yang pertama c. jumlah 5 suku yang pertama jawab: n a. + 6 + + 6 +.+ n = ( 5k 4) k= b. S n = n [(a + (n-)b ] = n [ + (n-) 5] = 5 n - 3 n
c. S 5 = 5 (5) - 3 (5) = 55 Contoh 0: Hitunglah jumlah bilangan asli antara 0 sampai 00 yang habis dibagi 6 Jawab: Jumlah bilangan asli antara 0 sampai 00 yang habis dibagi 6 adalah deret + 8 + 4 + 30 + + 96 u n = 96 disubstitusikan ke u n = a + (n )b Jadi 96 = + (n )6. Dengan menyelesaikan persamaan ini didapat n = 5 Selanjutnya n =5 dan u n = 96 disubstitusi ke S n = n(a + un ) sehingga: S 5 = (5)( + 96) = 80 Jadi jumlah bilangan asli antara 0 sampai 00 yang habis dibagi 6 adalah 80. Contoh : Jumlah n suku pertama suatu deret aritmetika ditentukan oleh rumus S n = n + 5n. Tentukan suku ke-n. 3
Jawab: U n = S n - S n- = n + 5n {(n -) + 5(n } = 4n + 3 Jadi rumus suku ke-n adalah U n = 4n + 3 Latihan 4. Hitunglah jumlah 30 suku yang pertama untuk tiap deret berikut ini a. + 5 + 7 + 9 + c., 4, 3, 3 4 3, b. 30 7 4 d. 7, 6, 4, 3,. Hitunglah jumlah tiap deret berikut 0 5 a. (k ) c. (3n + ) k = n= 4 0 b. ( k + 3) d. (5 p) k= p= 3. Hitunglah n jika ditentukan a. + + 3 + 4 + + n = 0 b. 84 + 80 + 77 + 73 + + n= 0 4. Hitunglah jumlah semua bilangan asli a. antara dan 00 yang habis dibagi 4 4
b. antara dan 00 yang habis dibagi 4 tetapi tidak habis dibagi 5 5. Diketahui jumlah n suku pertama suatu deret aritmetika adalah S n = n (3n + 5). Tentukan : a. rumus suku ke-n b. suku pertama dan beda 6. Tiga bilangan merupakan barisan aritmetika. Jika bilangan yang ketiga adalah dan hasil kali ketiga bilangan itu 0. Tentukan bilangan itu.. Barisan dan Deret Geometri a. Barisan Geometri Alkisah di negeri Antah Berantah seorang raja akan memberikan hadiah kepada juara catur di negeri itu. Ketika raja bertanya hadiah apa yang diinginkan oleh Abu, sang juara, menjawab bahwa dia menginginkan hadiah beras yang jumlahnya adalah banyak beras di persegi terakhir papan catur yang diperoleh dari kelipatan beras kg di persegi pertama, kg di persegi kedua, 4 kg dipersegi ketiga, dan seterusnya. Raja yang mendengar permintaan itu langsung menyetujui karena Raja berfikir bahwa hadiah yang diminta itu begitu sederhana. 5
Apakah memang hadiah itu begitu sederhana dan berapa kg beras sesungguhnya jumlah hadiah Abu? Jika dianalisa hadiah yang diperoleh Abu tergantung kepada banyak persegi dipapan catur yang jumlahnya 64. persegi 3 4 5 n 64 Beras (kg) 4 8 6 n- 63 Ternyata hadiah yang diperoleh Abu bukan main besarnya yaitu 63 kg beras. Perhatikan bahwa barisan,, 4, 8, 6, mempunyai perbandingan yang tetap antara dua suku berurutan. Perbandingan yang tetap itu disebut rasio dan dilambangkan dengan r. Pada barisan ini perbandingan dua suku yang berurutan adalah r =. Barisan yang mempunyai perbandingan yang tetap antara dua suku berurutan disebut barisan geometri. Secara umum dapat dikatakan: Suatu barisan u,u,u3,u4,...,un, un, disebut barisan geometri jika un = konstan = r. un b. Rumus Suku Ke-n Barisan Geometri Jika suku pertama u = a dan perbandingan dua suku yang berurutan disebut rasio r, maka u = r u u = ur = ar 6
u3 u u4 u3 u5 u4 = r u3 = r u4 = r u5 = u r = ar = u 3 3r = ar = u 4 4r = ar Dengan memperhatikan pola suku-suku di atas diperoleh rumus umum suku ke-n barisan geometri u n n = ar u n = suku ke-n, a = suku pertama, r = rasio Contoh : Suku ketiga dan suku kelima suatu barisan geometri berturut-turut 7 dan 3. Jika rasio barisan ini bilangan positif, tentukan: a. rasio dan suku pertama b. rumus suku ke-n dan suku ke-8 Jawab : a. u5 u3 ar 4 = ar = 3 7 r = 9 r = 3 7
ar = 7 a = 7 a = 43 9 Jadi rasio deret itu r = dan suku pertama a = 43 3 b. u n = ar n- = 43 ( 3 ) n- = 3 5 (3 - ) n- = 3 6-n u 8 = 3 6-8 = 3 - = 9 Rumus suku ke-n adalah u n = 3 6-n dan suku ke-8 adalah 9 Contoh 3: Tiga bilangan membentuk barisan geometri yang hasil kalinya 000. Jika jumlah tiga bilangan itu 35, tentukan bilangan-bilangan tersebut. Jawab: Tiga bilangan itu dimisalkan sebagai r p, p, pr. Hasil kali tiga bilangan itu p 3 = 000 p = 0. Jumlah tiga bilangan r p + p + pr = 35 8
0 + 0 + 0 r = 35 r 0 r 5r + 0 = 0 r 5r + = 0 ( r ) (r ) = 0 r = atau r = Untuk r = dan p = 0 barisan adalah 0, 0, 5 Untuk r = dan p = 0 barisan adalah 5, 0, 0 Latihan 5. Tentukan rasio, rumus suku ke-n dan suku ke sepuluh tiap barisan geometri berikut: a., 4, 6, 64, d. 4, -8, 6, -3, b., 6, 8, 54, e. 0, -5,, - 4, c. 3, 6, 8, 4, f. 3, 6, 3, 7,. Suku pertama suatu barisan geometri adalah 6, sedangkan suku ke empatnya sama dengan 8. Tentukan rasio, dan suku ke-8 9
3. Dari suatu barisan geometri diketahui u + u 6 = 44 dan u 3. u 4 = 43. Tentukan rasio dan u 4. Tiga bilangan membentuk barisan geometri naik yang jumlahnya 93 dan hasil kalinya 3375. Tentukan barisan tersebut. 5. Harga suatu mesin menyusut setiap tahun 0% dari harga pada permulaan tahun. Jika mesin itu dibeli seharga Rp. 5.000.000,-, berapakah harga mesin itu setelah 5 tahun? 6. Sebidang tanah berharga Rp. 0.000.000,-. Setiap tahun harga tanah itu naik 5 %. Berapakah harga tanah itu pada tahun ke-8? 7. Tiga bilangan membentuk barisan aritmetika. Jika suku tengah dikurangi 5 maka terbentuk barisan geometri dengan rasio. Tentukan bilangan-bilangan tersebut. 8. Tiga bilangan membentuk barisan aritmetika. Jumlah ketiga bilangan itu sama dengan. Jika bilangan ke-3 ditambah dengan maka terbentuk suatu barisan geometri. Tentukan bilangan-bilangan tersebut. c. Deret Geometri Banyak orang di sekitar kita yang bekerja dalam bisnis Multi Level Marketing (MLM) seperti Sophie Martin, Avon, Sara Lee, dan sebagainya. Seseorang yang membangun bisnis ini mengembangkan bisnisnya dengan mencari agen di bawahnya yang memasarkan produk. Masing- 30
masing agen itu juga mencari agen lagi dan seterusnya. Keuntungan yang diperoleh oleh orang pertama sangat tergantung dari kerja para agen di bawahnya untuk memasarkan produk MLM itu. Semakin banyak orang yang terlibat untuk memasarkan produk itu akan menambah banyak pendapatan dari orang pertama. Banyak orang yang terlibat adalah + + 4 + 8 + Jumlahan + + 4 + 8 + merupakan salah satu contoh deret geometri. Jika n suku pertama barisan geometri u,u,u3,u4,..., un dijumlahkan maka diperoleh deret geometri S n = n n u + u + u3 + u4 +... + un = u k = ar n. k = k = Rumus umum jumlah n suku deret geometri dapat ditentukan sebagai berikut: S n = u + u + u3 + u4 +... + un = a + ar + ar + ar 3 + + ar n-..() Masing-masing ruas pada persamaan () dikalikan dengan r sehingga didapat r S n = ar + ar + ar 3 + + ar n- + ar n...() Kurangkan persamaan () dengan persamaan (), diperoleh S n r S n = a ar n 3
S n ( r ) = a ( r n ) S n = a( r n ) ( r) atau S n = a(r n ) (r ) Dengan demikian jumlah n suku pertama deret geometri adalah: S n = a( r n ) ( r) berlaku untuk r < S n = a(r n ) (r ) berlaku untuk r > Contoh 4: Tentukan jumlah 5 suku pertama deret 3 + 6 + 8 + 4+ Jawab: a = 3, r = S n = a( r n ) = ( r) 5 3[ ( ) ] = 6 ( ) Jadi jumlah 5 suku pertama deret tersebut adalah 6 Contoh 5: 3
n Tentukan nilai n jika k = 50 k= Jawab: n k k = = + + 3 + 4 +... + n = 50 a =, r = S n = a(r n ) (r ) 50 = ( n ) = ( n+ ) 5 = n+ n = 8 Latihan 6. Hitunglah jumlah 0 suku pertama tiap deret geometri berikut a. + 4 + 6 + 64 + d. - + 4 8+ b. + + + + e. 8 64 + 8 54 + 4 33
4 8 6 3 9 7 c. + + + +... f. - + +... 3 9 7 4 6 64. Hitunglah jumlah deret geometri berikut a. + 4 + 8 + + + 5 c. + 5 + 5 + 5 + + 35 b. 43 + 8 + 7 + + 3 d. +, + (,) + (,) 3 + + (,) 0 3. Dari suatu deret geometri diketahui u 9 = 8 dan u 4 = -4. Hitunglah S 0 4. Dari suatu deret geometri diketahui S = 4 dan S 4 = 40.Tentukan a. rasio dan suku pertama deret tersebut b. jumlah 8 suku pertama 5. Jumlah n suku pertama suatu deret geometri ditentukan dengan rumus S n = 8 3-n. Tentukan a. suku pertama dan rasio deret itu b. jumlah lima suku yang pertama 6. Sebuah bola dijatuhkan dari ketinggian m di atas permukaan lantai. Setiap kali sesudah jatuh mengenai lantai bola dipantulkan lagi 34
mencapai 4 3 dari tinggi sebelumnya. Hitunglah panjang seluruh lintasan yang ditempuh bola itu selama enam pantulan yang pertama. 7. Seutas tali dipotong menjadi 6 ruas dan panjang masing-masing potongan itu membentuk barisan geometri. Jika potongan tali yang paling pendek sama dengan 3 cm dan potongan tali yang paling panjang adalah 96 cm, hitunglah panjang tali keseluruhan. 8. Jumlah penduduk suatu kota setiap 4 tahun menjadi lipat dua dari jumlah sebelumnya. Jika jumlah penduduk pada tahun 997 adalah 00.000 orang, berapakah jumlah penduduk kota itu pada tahun 0? 9. Beni menyimpan uang di bank dengan bunga majemuk ( bunga diperhitungkan dari jumlah uang sebelumnya) sebesar 8 % per tahun. Jika uang yang disimpan pada tahun 996 adalah Rp. 0.000.000,- berapakah jumlah uang Budi pada tahun 003? d. Deret Geometri Tak Hingga Untuk membahas masalah deret geometri tak hingga dapat menggunakan benda yang sudah dikenal siswa. Sebuah kertas yang berbentuk persegi dibagi menjadi dua bagian. Salah satu bagian kertas itu kemudian dibagi lagi menjadi dua bagian. Selanjutnya bagian terkecil dari kertas itu dibagi lagi menjadi dua bagian dan seterusnya seperti digambarkan di bawah ini: 35
Kertas Pembagian Pembagian Pembagian Pembagian semula pertama kedua ketiga keempat Secara teoritis proses pembagian ini dapat diulangi terus menerus sampai tak berhingga kali. Pada pembagian yang pertama diperoleh bagian, yang ke- diperoleh 4 bagian, yang ke-3 diperoleh 8 bagian dan seterusnya sampai tak berhingga kali. Tampak jelas bahwa jumlah dari seluruh hasil pembagian sampai tak berhingga kali adalah bagian. + 4 + 8 + 6 +... = Proses tadi menjelaskan pengertian jumlah deret geometri tak hingga yang bisa diperagakan secara sederhana. Untuk penjelasan secara teoritis perhatikan jumlah n suku pertama deret geometri S n = a( r n ). ( r) Jika suku-suku deret itu bertambah terus maka deret akan menjadi deret geometri tak hingga. Dengan demikian jumlah deret geometri menjadi lim S n = n lim n a( r n ) ( r) = lim a - n ( r) lim n a ( r) n r 36
= a - ( r) a ( r) lim n n r Terlihat jelas bahwa nilai S n sangat dipengaruhi oleh nilai lim n n r. Jika ) < r <, lim n n r akan menjadi nol sehingga deret tak hingga itu mempunyai jumlah S = a ( r) Deret geometri tak hingga yang mempunyai jumlah disebut konvergen atau mempunyai limit jumlah. ) r < - atau r >, lim n n r = ± sehingga deret tak hingga itu tidak mempunyai limit jumlah. Deret yang seperti ini disebut divergen. Contoh 6: Hitunglah jumlah deret geometri tak hingga 4 + + jawab: a = 4 dan r = S = a = ( r) 4 8 = 3 ( + ) 37
Jadi jumlah deret geometri tak hingga itu adalah 3 8. Latihan 7. Hitunglah jumlah tiap deret geometri tak hingga berikut ini 4 8 6 a. + + + +... b. + + + +... 4 6 64 3 9 7 c. 9 6 + 4-3 8 + d. 0 5 +,5,5 +. Hitunglah 4 4 4 a. lim (4 + + + +...) n 3 9 7 b. lim ( n ) n k 4 k = 3. Deret geometri tak hingga suku pertamanya 3. Deret itu konvergen dengan jumlah 9. Tentukan suku ketiga dan rasio deret tersebut. 4. Jumlah suatu deret geometri tak hingga adalah (4 + ) sedangkan rasionya adalah. Tentukan suku pertama deret tersebut. 5. Jumlah suku-suku nomor ganjil dari suatu deret geometri tak hingga adalah 8. Deret itu sendiri mempunyai jumlah 4. Tentukan rasio dan suku pertama deret geometri itu. 38
6. Jumlah deret geometri tak hingga 8 x x + x 3... sama dengan 5 5. Carilah nilai x. 3 7. Suku pertama suatu deret geometri tak hingga adalah a, sedangkan rasionya adalah r = log(x 3). Carilah batas-batas nilai x sehingga deret geometri itu konvergen. 8. Sebuah bola tenis dijatuhkan ke lantai dari suatu tempat yang tingginya m. Setiap kali setelah bola itu memantul akan mencapai 3 dari tinggi yang dicapai sebelumnya. Hitunglah panjang lintasan bola sampai bola itu berhenti. C. Barisan Sebagai Fungsi Untuk menentukan suku-suku suatu barisan kita melihat keteraturan pola dari suku-suku sebelumnya. Salah satu cara untuk menentukan rumus umum suku ke-n suatu barisan adalah dengan memperhatikan selisih antara dua suku yang berurutan. Bila pada satu tingkat pengerjaan belum diperoleh selisih tetap, maka pengerjaan dilakukan pada tingkat berikutnya sampai diperoleh selisih tetap. Suatu barisan disebut berderajat satu (linear) bila selisih tetap diperoleh dalam satu tingkat pengerjaan, disebut berderajat dua bila selisih tetap diperoleh dalam dua tingkat pengerjaan dan seterusnya. 39
Bentuk umum dari barisan-barisan itu merupakan fungsi dalam n sebagai berikut: Selisih tetap tingkat U n = an + b Selisih tetap tingkat U n = an + bn + c Selisih tetap 3 tingkat U n = an 3 + bn + cn + d Perlu diperhatikan bahwa a dan b pada fungsi ini tidak sama dengan a = suku pertama dan b = beda pada suku-suku barisan aritmetika. Untuk memahami pengertian barisan berderajat satu, berderajat dua, dan seterusnya perhatikan contoh berikut: Barisan, 5, 8,, disebut barisan berderajat satu karena selisih tetap diperoleh pada satu tingkat penyelidikan. 5 8, 3 3 3 selisih tetap = 3 Barisan 5, 8, 3, 0, 9, disebut barisan berderajat dua karena selisih tetap diperoleh pada dua tingkat penyelidikan. 5 8 3 0 9 3 5 7 9 selisih tetap = 40
Barisan, 5, 8, 45, 90, disebut barisan berderajat tiga karena selisih tetap diperoleh pada tiga tingkat penyelidikan. 5 8 45 90 3 3 7 45 0 4 8 4 4 selisih tetap = 4 Untuk menentukan rumus suku ke-n masing-masing barisan itu dilakukan dengan cara sebagai berikut:. Barisan Linear ( Berderajat Satu) Bentuk umum U n = an + b. Dengan demikian u = a + b, u = a + b, u 3 = 3a + b, u 4 = 4a + b, dan seterusnya. (i) (ii) a + b, a + b, 3a + b, 4a + b, a a a Rumus umum suku ke-n barisan, 5, 8,, dapat ditentukan dengan cara: (i) (ii) 5 8, 3 3 3 (ii) a = 3 (i) a+ b = 4
3 + b = b = -, sehingga u n = 3n. Barisan Berderajat Dua Bentuk umum U n = an + bn + c. Dengan demikian u = a + b + c, u = 4a + b + c, u 3 = 9a + 3b + c, u 4 = 6a + 4b + c, dan seterusnya. Identifikasi selisih tetapnya adalah sebagai berikut: (i) a + b + c, 4a + b + c, 9a + 3b + c, 6a + 4b + c, (ii) 3a + b 5a + b 7a + b (iii) a a Rumus umum suku ke-n barisan 5, 8, 3, 0, 9, dapat ditentukan dengan cara: (i) 5 8 3 0 9 (ii) 3 5 7 9 (iii) (iii) a = a = (ii) 3a+ b = 3 b = 0 (i) a + b + c = 5 c = 4, sehingga U n = n + 4 4
3. Barisan Berderajat Tiga Bentuk umum U n = an 3 + bn + cn + d. Dengan demikian u = a + b + c + d, u = 8a + 4b + c + d, u 3 = 7a + 9b + 3c + d, u 4 = 64a + 6b + 4c + d, dan seterusnya. Identifikasi selisih tetapnya adalah sebagai berikut: (i) a + b + c + d, 8a + 4b + c + d, 7a + 9b + 3c+ d, 64a + 6b + 4c+d (ii) 7a +3 b + c 9a + 5b +c 37a +7b +c (iii) a + b 8a + b (iv) 6a Rumus umum suku ke-n barisan, 5, 8, 45, 90, dapat ditentukan dengan cara: (i) 5 8 45 90 (ii) 3 3 7 45 (iii) 0 4 8 (iv) 4 4 Dengan menyelesaikan persamaan (iv), (iii), (ii) dan (i) seperti yang dilakukan pada barisan berderajat satu maupun barisan berderajat dua diperoleh 43
4 a =, b =, c = dan d = 5 sehingga rumus suku ke-n 3 3 U n = n 3 + n 4 n + 5 3 3 = (n 3 + 3n 4n + 5) 3 Latihan 8. Tentukan rumus suku ke-n untuk tiap-tiap barisan berikut ini: a. 5, 9, 3, 7, d., 5,, 3, b. 6,, 6,, e., 9, 7, 6, c., 6, 3,, f., 0, 8, 68,. Tentukan rumus suku ke-n a. barisan bilangan segi tiga, 3, 6, 0, 5, b. barisan bilangan persegi panjang, 6,, 0, c. barisan bilangan balok 6, 4, 60, 0, 44
D. Lembar Kerja Lembar Kerja Materi Kompetensi dasar : Barisan Aritmetika : Menentukan rumus ke-n barisan aritmetika Waktu : Bahan/ alat : gelas aqua plastik ( bisa diganti wadah plastik yang bisa ditumpuk), garisan, pita ukuran. Langkah-langkah:. Ukur tinggi gelas aqua plastik dengan garisan atau pita ukuran. Ambil satu lagi gelas plastik, kemudian tumpukkan di atas yang pertama. Lakukan lagi sampai 4 kali. Selanjutnya isilah tabel berikut berdasarkan hasil pengukuran: Tumpukkan gelas 3 4 5 Tinggi (bulatkan dalam cm) Apakah tinggi tumpukkan gelas itu mempunyai pola tertentu? Jelaskan hasil pengamatanmu. 45
. Dari hasil pengamatan tadi, tentukan rumus tinggi n tumpukkan gelas. Berdasarkan rumus yang sudah diperoleh tentukan tinggi 0 tumpukkan gelas. Lembar Kerja Materi Kompetensi Dasar : Deret Geometri Tak Hingga : Menentukan jumlah deret geometri tak hingga Waktu : Bahan/ alat : kertas dan gunting Langkah- langkah:. Guntinglah sehelai kertas berbentuk persegi secara horizontal atau vertikal menjadi bagian yang sama. Masing-masing bagian ini disebut separuh. Jika bagian itu dinyatakan dengan bilangan ditulis sebagai. (isi titik-titik ini). Tuliskan bilangan ini di bagian kertas yang bersesuaian.. Ambil separuh bagian tadi dan gunting lagi seperti di atas menjadi bagian yang sama. Masing-masing bagian ini jika dinyatakan dengan bilangan ditulis sebagai ( isi titik-titik ini). Tuliskan bilangan ini di bagian kertas yang bersesuaian. 3. Ulangi lagi langkah sampai empat kali lagi. Semua potongan kertas tidak boleh hilang. Gabungkan lagi tiap-tiap potongan kertas hasil guntingan sehingga membentuk persegi lagi. Nyatakan dengan 46
operasi bilangan hasil penggabungan potongan-potongan kertas tersebut. 4. Tuliskan hasil ( kesimpulan) yang diperoleh. Lembar Kerja 3 Materi Kompetensi Dasar : Barisan Sebagai Fungsi : Menyatakan rumus suku ke-n suatu barisan sebagai fungsi Waktu : Bahan/ alat : - Langkah-langkah:. Perhatikan semua persegi panjang di bawah ini, kemudian lengkapi tabel berikut: Banyak persegi panjang kecil 3 4 5 Banyak seluruh persegi panjang 47
. Perhatikan pola bilangan yang Anda dapat. Jika ada n persegi panjang kecil berapa jumlah seluruh persegi panjang? Jika ada 0 persegi panjang kecil berapa jumlah seluruh persegi panjang? E. Evaluasi 0 6 7. Buktikan k k = + 3 k + 0 k= k= k= 6. Hitunglah nilai.3 n n= 3. Tentukan n jika: a. + 3 + 5 + 7 + + n = 59 b. 75 + 70 + 65 + 60 + +n = 0 4. loga, a log, b a log b,. Barisan bilangan apakah ini? 5. Suku tengah barisan aritmetika adalah 5. Jika beda adalah 4 dan suku ke-5 adalah, berapa jumlah semua suku pada barisan tersebut? 6. Suatu deret aritmetika suku ke-5 adalah 5 3 dan suku ke- adalah + 9. Tentukan jumlah 0 suku pertama. 7. Sebuah deret aritmetika mempunyai suku umum a n dan beda. Jika a + a 4 + a 6 + + a 0 = 38. Tentukan jumlah 5 suku pertama deret itu. 8. Suku tengah barisan aritmetika adalah 5. Jika beda adalah 4 dan suku ke-5 adalah. Berapa jumlah semua suku pada barisan tersebut? 48
9. Suatu deret aritmetika diketahui u + u 3 + u 5 + u 7 + u 9 + u = 7. Tentukan nilai u + u 6 + u 0. Sepotong kawat yang panjangnya 4 cm dipotong menjadi 5 bagian sehingga panjang potongan-potongannya membentuk barisan geometri. Jika potongan kawat yang paling pendek 4 cm, berapa ukuran kawat yang terpanjang?. A berhutang pada B sebesar Rp..000. 000,-. A berjanji untuk membayar kembali hutangnya setiap bulan sebesar Rp. 00. 000,- ditambah bunga % perbulan dari sisa pinjamannya. Berapa jumlah bunga yang dibayarkan sampai hutangnya lunas?. Suku pertama suatu deret geometri tak hingga adalah a, sedangkan rasionya adalah r = log(x 3). Carilah batas-batas nilai x sehingga deret geometri itu konvergen. 3. Tiga bilangan membentuk barisan aritmetika. Jika suku ke-3 ditambah dan suku ke- dikurangi diperoleh barisan geometri. Jika suku ke-3 barisan arritmetika ditambah maka hasilnya menjadi 4 kali suku pertama. Berapa beda barisan aritmetika itu? 4. Nyatakan penjumlahan berikut dengan bentuk notasi sigma: a. + 3 + 6 + 0 + b. + 6 + + 0+ 5. Tiga bilangan merupakan barisan aritmetika turun. Jika yang terbesar ditambah 4 terjadi barisan geometri yang hasil kali ketiga suku itu 49
5. Jika dibentuk deret geometri tak hingga dengan tiga suku pertama yang diperoleh di atas tentukan limit jumlah deret tersebut. F. Rangkuman Notasi sigma ( ) digunakan untuk menyingkat penjumlahan yang panjang. n a k k= = a + a + a3 +... + an Sifat-sifat Notasi Sigma Untuk setiap bilangan bulat a, b dan n berlaku: n. = n k =. b cf(k) k = a b f(k) k=a = c b 3. [f(k)+ g(k)] k=a = f (k) + g (k) b k=a m n n 4. f(k) + f(k) = f(k) k = k = m k = n n+ p 5. f (k) = f(k p) k = m k = m+ p b k=a Barisan aritmetika adalah barisan yang mempunyai selisih yang tetap antara dua suku yang berurutan yang disebut beda. 50
Contoh barisan aritmetika: ) 3, 7,, 5, ), 5, 8,, Rumus suku ke-n barisan aritmetika adalah u n = a + (n-)b dengan a = suku pertama dan b= beda = u n u n- Deret aritmetika adalah jumlahan dari suku-suku barisan aritmetika. Contoh deret aritmetika: ) 3 + 7 + + 5 + ) + 5 + 8 + + Rumus jumlah n suku pertama deret aritmetika S n = n (a + un ) atau S n = n [(a + (n-)b ] Barisan geometri adalah barisan yang mempunyai perbandingan (rasio) yang tetap antara dua suku yang berurutan. Contoh deret geometri: ),, 4, 8, 6, ), 6, 8, 54, 5
Rumus suku ke-n barisan geometri adalah: u n n = ar dengan a = suku pertama dan r = rasio = un un Deret geometri adalah jumlahan dari suku-suku barisan geometri. Contoh deret geometri: ) + + 4 + 8 + 6 + ) + 6 + 8 + 54 + Rumus jumlah n suku pertama deret geometri: S n = a( r n ) ( r) berlaku untuk r < S n = a(r n ) (r ) berlaku untuk r > Untuk -< r <, deret geometri mempunyai jumlah tak hingga S dengan S = a ( r) Barisan, 5, 8,, disebut barisan berderajat karena selisih tetap dipeoleh pada satu tingkat penyelidikan. 5 8, 3 3 3 5
selisih tetap = 3 Suku ke-n barisan ini jika dinyatakan sebagai fungsi adalah U n = an + b. Barisan 5, 8, 3, 0, 9, disebut barisan berderajat karena selisih tetap dipeoleh pada dua tingkat penyelidikan. 5 8 3 0 9 3 5 7 9 selisih tetap = Suku ke-n barisan ini jika dinyatakan sebagai fungsi adalah U n = an + bn + c. 53
54
55