Hasil dan Pembahasan

Ukuran: px
Mulai penontonan dengan halaman:

Download "Hasil dan Pembahasan"

Transkripsi

1 Bab IV Hasil dan Pembahasan Beberapa hasil pengolahan data simulasi model kopel akan ditampilkan dalam Bab IV ini, tetapi sebagian lainnya dimasukkan dalam lampiran A. IV.1 Distribusi Curah Hujan Berdasarkan Variabilitas SST Hasil plot time series curah hujan bulanan untuk wilayah Maluku Utara dapat dilihat pada Gambar IV.1, sedangkan untuk kedua wilayah pembanding (Maluku bagian selatan dan Laut Jawa) dapat dilihat pada Lampiran A.1 dan A.2. Sementara plot time series SST bulanan pada ketiga wilayah dapat dilihat pada Lampiran A.3, A.4 dan A.5. Garis putus-putus berwarna hijau menunjukkan hasil skenario coupled on, sedangkan garis tipis berwarna ungu menunjukkan skenario coupled off. Pada Gambar IV.1 ditambahkan juga plot data pengamatan yang digunakan sebagai verifikasi, yaitu data rain gauge bulanan dari beberapa stasiun di sekitar wilayah penelitian (garis tebal penuh berwarna biru). Plot hasil running REMO berdiri sendiri (stand alone) menggunakan forcing batas ERA15 dari penelitian terdahulu (garis titik-titik berwarna merah) juga ditampilkan sebagai pembanding. Dari plot time series curah hujan bulanan dan SST bulanan wilayah Maluku Utara terlihat bahwa, secara umum hasil simulasi model dengan skenario coupled on dan dengan skenario coupled off menghasilkan fasa yang sama, tetapi amplitudonya bervariasi. Sementara pada kedua wilayah pembanding, terlihat bahwa plot time series curah hujan bulanan dan SST bulanan untuk kedua skenario cenderung sefasa dan memiliki amplitudo yang hampir sama. Hal ini sesuai dengan perlakuan yang diberikan dalam simulasi model kopel dan dapat dijelaskan sebagai berikut. Pada skenario coupled on, di seluruh domain model atmosfer terjadi interaksi dari laut ke atmosfer, karena SST yang digunakan dalam model atmosfer diperoleh dari hasil perhitungan model laut, sehingga pada setiap langkah waktu simulasi, SST yang digunakan dalam REMO terus diperbarui setiap 6 jam. Sementara pada 31

2 a b Gambar IV.1 Plot time series curah hujan bulanan wilayah Maluku Utara, (a) tahun 1979 hingga tahun 1986 dan (b) tahun 1987 hingga tahun skenario coupled off, di wilayah Maluku Utara tidak terjadi interaksi dari laut ke atmosfer (suplai dari laut diabaikan), karena SST yang digunakan dalam model atmosfer diambil dari data reanalisis, yang merupakan rata-rata interpolasi data mingguan. Sedangkan pada domain model atmosfer yang lain tetap terjadi interaksi dari laut ke atmosfer, karena SST yang digunakan dalam model atmosfer tetap diperoleh dari hasil perhitungan model laut. Dengan demikian dapat 32

3 disimpulkan bahwa untuk wilayah Maluku Utara, variabilitas SST lokal yang diterapkan pada simulasi model kopel menghasilkan distribusi curah hujan bulanan yang berbeda. Pada skenario coupled on (yang menggunakan SST dari hasil perhitungan model laut), distribusi curah hujan bulanan cenderung lebih besar/lebih tinggi daripada hasil simulasi skenario coupled off (yang menggunakan SST yang berasal dari data ERA15). Range distribusi nilai SST skenario coupled on lebih besar daripada coupled off (lihat Lampiran A.6). Sementara untuk kedua wilayah pembanding, variabilitas SST lokal yang diterapkan tersebut tidak menghasilkan distribusi curah hujan bulanan yang berbeda (distribusi curah hujan bulanan cenderung sama). Kemudian curah hujan bulanan tersebut diverifikasi menggunakan data rain gauge dari beberapa stasiun di sekitar wilayah penelitian, menggunakan metoda statistik korelasi. Hasil perhitungan metoda statistik korelasi (Tabel IV.I) menunjukkan bahwa, korelasi antara hasil skenario coupled on dengan data pengamatan (0,668) paling besar dibanding korelasi antara hasil skenario coupled off dengan data pengamatan (0,633), ataupun antara REMO-ERA dengan data pengamatan (0,569). Tabel IV.1 Korelasi antara skenario coupled on, coupled off dan data pengamatan Korelasi antara Koefisien korelasi, R Coupled on vs data pengamatan 0,668 Coupled off vs data pengamatan 0,633 REMO-ERA vs data pengamatan 0,569 Dari hasil curah hujan rata-rata antartahunan (Gambar IV.2) diperlihatkan bahwa, di wilayah Maluku Utara, pola curah hujan rata-rata antartahunan skenario coupled on lebih menyerupai pola curah hujan rata-rata antartahunan data pengamatan yang bertipe anti monsunal, dibanding pola curah hujan rata-rata antartahunan skenario coupled off. Sementara pada wilayah Maluku bagian selatan dan Laut Jawa, hasil pengolahan data curah hujan rata-rata antartahunan kedua skenario menunjukkan pola yang cenderung sama dengan referensi, yaitu 33

4 bertipe monsunal (Gambar IV.3). Dari hasil korelasi dan grafik curah hujan ratarata antartahunan dapat disimpulkan bahwa hasil simulasi dengan skenario coupled on lebih baik daripada hasil simulasi dengan skenario coupled off ataupun REMO-ERA. Gambar IV.2 Curah hujan rata-rata antartahunan ( ) wilayah Maluku Utara. Gambar IV.3 Curah hujan rata-rata antartahunan ( ) wilayah Maluku bagian selatan dan Laut Jawa. 34

5 Pada Gambar IV.2 terlihat bahwa secara umum curah hujan rata-rata antartahunan skenario coupled on lebih besar daripada skenario coupled off, kecuali bulan Pebruari, Maret dan April, curah hujan rata-rata antartahunan skenario coupled on-nya lebih kecil daripada skenario coupled off. Jika dilihat per perioda, maka dapat dikatakan bahwa pada perioda MAM, variabilitas SST lokal yang diterapkan dalam penelitian ini, cenderung menghasilkan distribusi curah hujan yang lebih fluktuatif pada kedua skenario, dibanding pada perioda lainnya. IV.2 Hubungan antara Tipe Hujan Stratiform dan Tipe Hujan Konvektif dengan Variabilitas SST Lokal Scatter diagram antartahunan antara nilai normalisasi perbedaan tipe hujan stratiform dan tipe hujan konvektif rata-rata bulanan kedua skenario terhadap variabilitas SST lokal rata-rata bulanan dapat dilihat pada Gambar IV.4. Pada masing-masing scatter diagram tersebut terdapat nilai koefisien korelasi dan slop yang kemudian diplot dalam bentuk grafik (Gambar IV.5). Sementara nilai minimum, maksimum, median dan rata-rata bulanan SST dapat dilihat pada Gambar IV.6, sedangkan plot SST rata-rata antartahunan wilayah Maluku Utara dapat dilihat pada Lampiran A.6. Scatter diagram pada Gambar IV.4 menggambarkan hubungan antara variabilitas SST lokal yang diterapkan dengan perbedaan karakteristik tipe hujan. Terlihat bahwa dengan mengganti SST, misalnya sebesar 0,5 C, akan menghasilkan perbedaan karakteristik tipe hujan yang berbeda setiap bulannya. Hal ini mengindikasikan bahwa variabilitas SST lokal yang diterapkan mempengaruhi perbedaan karakteristik tipe hujan. Ini berarti bahwa variabilitas SST lokal yang lebih dominan. Secara umum, perbedaan karakteristik tipe hujan tersebut lebih berpengaruh terhadap perbedaan tipe hujan konvektif dibanding perbedaan tipe hujan stratiform. Tetapi pada bulan Desember, variabilitas SST lokal menghasilkan pengaruh yang lebih besar terhadap perbedaan tipe hujan stratiform dibanding perbedaan tipe hujan konvektif. 35

6 Gambar IV.4 Scatter diagram antartahunan antara perbedaan tipe hujan stratiform dan tipe hujan konvektif yang dinormalisasi terhadap SST 36

7 Gambar IV.4. (Lanjutan) 37

8 Perbedaan karakteristik tipe hujan terbesar terjadi pada bulan April, yaitu dengan nilai slop sebesar 2,055 untuk perbedaan tipe hujan konvektif dan 1,3982 untuk perbedaan tipe hujan stratiform. Pada bulan April ini, variabilitas SST lokalnya kecil, tetapi ternyata dapat menghasilkan perbedaan karakteristik tipe hujan terbesar. Sebaliknya pada bulan Juli, Agustus dan September, variabilitas SST lokalnya jauh lebih besar, tetapi ternyata perbedaan karakteristik tipe hujan yang dihasilkan tidak signifikan. Perbedaan tipe hujan konvektif terkecil terjadi pada bulan September dengan nilai slop sebesar 0,4247, sementara perbedaan tipe hujan stratiform terkecil terjadi pada bulan Juli, dengan nilai slop sebesar 0,15. a b Gambar IV.5 (a) Slop antartahunan dan (b) koefisien korelasi antartahunan antara tipe hujan stratiform dan tipe hujan konvektif/lokal. 38

9 a b Gambar IV.6 Minimum, maksimum, median dan rata-rata curah hujan antartahunan skenario coupled on dan coupled off wilayah Maluku Utara. Jika dilihat per perioda, terlihat bahwa sekalipun variabilitas SST lokal pada perioda MAM kecil, tetapi dapat menghasilkan pengaruh yang lebih besar terhadap perbedaan tipe hujan konvektif dan stratiform, sementara variabilitas SST lokal yang lebih besar pada perioda JJA dan SON, tidak menghasilkan pengaruh yang besar pula terhadap perbedaan tipe hujan konvektif dan stratiform. Dengan perkataan lain, perbedaan tipe hujan konvektif dan tipe hujan stratiform tersebut cenderung lebih bervariasi atau lebih fluktuatif pada perioda MAM atau saat musim semi di belahan bumi utara, dibanding perioda JJA atau saat musim panas di belahan bumi utara ataupun perioda lainnya. Hasil yang diperoleh pada 39

10 penilitian ini sesuai dengan pola atau sifat hujan Indonesia yang lebih fluktuatif pada saat MAM dan lebih stabil pada saat JJA (Aldrian dkk, 2004, 2007). Tipe hujan konvektif ini mengindikasikan pengaruh iklim lokal, sedangkan tipe hujan stratiform mengindikasikan efek skala yang lebih luas seperti sirkulasi angin regional. Karena variabilitas SST lokal menghasilkan pengaruh yang besar terhadap perbedaan tipe hujan konvektif, mak dapat dikatakan bahwa pola curah hujan lokal di wilayah Maluku Utara lebih dipengaruhi oleh variabilitas SST lokal dibanding faktor sirkulasi angin regional. Pernyataan ini diperkuat juga dengan nilai koefisien korelasi antartahunan tipe hujan konvektif yang umumnya lebih besar daripada tipe hujan stratiform. Tetapi kesimpulan dari sub bab ini belumlah menjawab mengapa pola curah hujan lokal di wilayah Maluku Utara cenderung maksimum pada pertengahan tahun. IV.3 Analisis Mean Difference Significance Perubahan interaksi laut-atmosfer yang timbul akibat diterapkannya metoda masking ini dapat dilihat juga dari hasil meandiffsignif. Hasil meandiffsignif curah hujan antartahunan dan tipe hujan konvektif skenario coupled off yang di-overlay terhadap hasil skenario coupled on (coupled off coupled on) bulan Maret dan Mei, dengan beda nyata 95%, dapat dilihat pada Gambar IV.7 dan Gambar IV.8. Sementara hasil meandiffsignif curah hujan antartahunan (tipe hujan konvektif antartahunan) bulan lainnya dapat dilihat pada Lampiran A.7 (Lampiran A.8). Sedangkan hasil meandiffsignif tipe hujan stratiform antartahunan diperoleh bahwa kedua skenario menunjukkan hasil distribusi yang tidak berbeda nyata. Terlihat bahwa distribusi beda nyata curah hujan antartahunan lebih dipengaruhi oleh tipe hujan konvektif antartahunan dibanding tipe hujan stratiform, karena tipe hujan konvektif memiliki pola distribusi beda nyata yang hampir sama dengan curah hujan antartahunan. Beda nyata ini kemudian dirata-ratakan secara wilayah (area average) khusus untuk Maluku Utara saja, sehingga diperoleh gambaran secara kuantitatif, yang dapat dilihat pada Gambar IV.9a (rata-rata wilayah meandiffsignif curah hujan antartahunan) dan Gambar IV.9b (rata-rata wilayah 40

11 meandiffsignif tipe hujan konvektif antartahunan). Garis tipis berwarna merah merupakan rata-rata meandiffsignif/overlay coupled off terhadap coupled on. Sebaliknya rata-rata meandiffsignif coupled on terhadap coupled off ditunjukkan oleh garis putus-putus berwarna hijau. Gambar IV.7 Mean difference significance curah hujan antartahunan bulan Maret dan Mei Gambar IV.8 Mean difference significance tipe hujan konvektif antartahunan bulan Maret dan Mei Rata-rata wilayah meandiffsignif coupled off terhadap coupled on wilayah Maluku Utara memperlihatkan bahwa fluktuasi beda nyata antara kedua skenario juga terjadi pada perioda MAM, dengan beda nyata terbesar terjadi pada bulan Maret. Sedangkan untuk perioda lainnya beda nyatanya hampir mendekati nol. Sebaliknya, rata-rata wilayah meandiffsignif coupled on terhadap coupled off memperlihatkan bahwa fluktuasi beda nyata antara kedua skenario yang besar terjadi pada perioda JJA dan SON. Hal ini mengindikasikan bahwa pada perioda 41

12 tersebut, variabilitas SST lokal yang diterapakan menghasilkan nilai naik turun curah hujan dan tipe hujan konvektif yang berbeda. a b Gambar IV.9 Rata-rata wilayah meandiffsignif (a) curah hujan antartahunan, (b) tipe hujan konvektif antartahunan IV.4 Lead-Lag Correlation antara Variabel Curah Hujan dengan SST, Variabel Panas Laten dengan SST, dan Variabel Radiasi Gelombang Pendek di Permukaan dengan SST Karena hasil simulasi model kopel skenario pertama lebih baik daripada hasil simulasi model kopel skenario kedua, maka untuk selanjutnya pengolahan data keluaran REMO dilakukan terhadap hasil skenario pertama tersebut. Selain itu, 42

13 pengolahan data dimaksudkan juga untuk mendukung hasil penelitian sebelumnya yang menyebutkan bahwa, perioda MAM lebih fluktuatif dibanding perioda lainnya. Sebagai gambaran umum, dibuat rata-rata antartahunan variabel panas laten dan radiasi gelombang pendek di permukaan yang digabung dalam satu grafik (Lampiran A.9(a)). Sementara curah hujan dan SST rata-rata antartahunan juga digabung dalam satu grafik dan dapat dilihat pada Lampiran A.9(b). Lampiran A.9 tersebut memperlihatkan gambaran secara umum bahwa keempat variabel tersebut memiliki pola equatorial. Dalam hal ini, rata-rata antartahunan panas laten dan radiasi gelombang pendek di permukaan cenderung sefasa dengan rata-rata antartahunan SST, tetapi berkebalikan fasa dengan curah hujan rata-rata antartahunan. Rata-rata pentad antartahunan monsunal hasil perhitungan lead-lag correlation antara dua variabel dapat dilihat pada Gambar IV.10. Tetapi pembahasan lebih ditekankan pada korelasi yang memiliki nilai diatas tingkat signifikan 0,231. Untuk lebih ringkasnya, grafik-grafik yang memiliki koefisien korelasi terbesarnya diatas tingkat signifikan, digabung dalam sebuah tabel (Tabel IV.2). Masing-masing bentuk grafik tersebut menunjukkan hubungan antara kedua variabel yang berkorelasi. Secara garis besar, bentuk korelasi yang ada terbagi menjadi tiga tipe hubungan yang berbeda, yaitu: 1. Tanda menyatakan bahwa atmosfer mempengaruhi/mengontrol laut 2. Tanda menyatakan bahwa laut mempengaruhi/mengontrol atmosfer 3. Tanda menyatakan bahwa atmosfer dan laut saling mempengaruhi 43

14 a b c Gambar IV.10 Rata-rata korelasi pentad antartahunan antara variabel-variabel (a) curah hujan dengan SST; (b) panas laten dengan SST; dan (c) radiasi gelombang pendek di permukaan dengan SST. 44

15 Tabel IV. 2 Definisi proses interaksi atau hubungan antara variabel-variabel SST dengan curah hujan, panas laten dan radiasi gelombang pendek di permukaan berdasarkan nilai koefisien korelasi yang berada diatas tingkat signifikan. No Korelasi Variabel Bentuk Korelasi lag lead Perioda Keterangan 1 Curah Hujan vs SST SON DJF 2 Panas Laten vs SST MAM JJA SON 3 Radiasi Gelombang Pendek di Permukaan vs SST DJF MAM SON Dari Gambar IV.10 dan Tabel IV.2 terlihat bahwa pada perioda MAM, korelasi yang koefisien terbesarnya diatas tingkat signifikan adalah korelasi antara panas laten dengan SST dan korelasi antara radiasi gelombang pendek di permukaan dengan SST. Koefisien korelasi panas laten-sst terbesar terjadi pada lead 5/ pentad 5 (-0,47775), sedangkan untuk korelasi antara radiasi gelombang pendek di permukaan dengan SST, koefisien korelasi terbesar terjadi pada lag 1/pentad 1 (0,2638). Dari bentuk grafik korelasi diketahui bahwa SST dan panas laten saling mempengaruhi. SST juga mempengaruhi radiasi gelombang pendek di permukaan tetapi tidak sebaliknya. Sementara pada perioda JJA, hanya terdapat satu korelasi yang koefisien korelasi terbesarnya diatas tingkat signifikan, yaitu korelasi antara panas laten dengan SST, yang terjadi pada lag 1/pentad 1 (0,2513). Dari bentuk grafik korelasi diketahui bahwa SST mengontrol panas laten. Pada perioda SON, terlihat bahwa ketiga korelasi memiliki koefisien korelasi terbesar diatas tingkat signifikan, yaitu pada lag 1/pentad 1 (-0,3778) untuk curah 45

16 hujan-sst; pada lag 1/pentad 1 (0,3896) untuk panas laten-sst; dan pada lag 1/ pentad 1 (0,4874) untuk radiasi gelombang pendek di permukaan-sst. Dari bentuk-bentuk grafik korelasinya diketahui bahwa curah hujan mengontrol SST, sebaliknya SST mempengaruhi panas laten dan radiasi gelombang pendek di permukaan. Pada perioda DJF, korelasi yang koefisien korelasi terbesarnya diatas tingkat signifikan adalah korelasi antara curah hujan dengan SST dan korelasi antara panas laten dengan SST, yang terjadi pada lead 2/pentad 2 (0,3064) untuk curah hujan-sst dan pada lead 2/pentad 2 (-0,4) untuk panas laten-sst. Dari bentuk grafik korelasi diketahui bahwa SST mengontrol curah hujan, tetapi panas laten dan SST saling mempengaruhi. Dari uraian diatas dapat disimpulkan bahwa penyebab perioda MAM lebih fluktuatif dibanding perioda lainnya adalah karena terjadinya interaksi antara laut dan atmosfer, terutama antara panas laten dan SST. Interaksi ini terjadi pada perioda MAM dan DJF, tetapi pada perioda MAM, koefisien korelasinya lebih besar daripada perioda DJF. 46

Bab III Data dan Metodologi III.1 Data

Bab III Data dan Metodologi III.1 Data Bab III Data dan Metodologi III.1 Data Data yang digunakan pada simulasi model kopel ini berasal dari data reanalisis ECMWF 15 tahun, yaitu selama perioda tahun 1979 hingga tahun 1993, yang disingkat dengan

Lebih terperinci

STUDI INTERAKSI LAUT-ATMOSFER TERHADAP CURAH HUJAN MENGGUNAKAN SKENARIO MODEL KOPEL (STUDI KASUS MALUKU UTARA) TESIS

STUDI INTERAKSI LAUT-ATMOSFER TERHADAP CURAH HUJAN MENGGUNAKAN SKENARIO MODEL KOPEL (STUDI KASUS MALUKU UTARA) TESIS STUDI INTERAKSI LAUT-ATMOSFER TERHADAP CURAH HUJAN MENGGUNAKAN SKENARIO MODEL KOPEL (STUDI KASUS MALUKU UTARA) TESIS Karya tulis sebagai salah satu syarat untuk memperoleh gelar Magister dari Institut

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN 4.. Parameter Curah Hujan model REMO Data curah hujan dalam keluaran model REMO terdiri dari 2 jenis, yaitu curah hujan stratiform dengan kode C42 dan curah hujan konvektif dengan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Analisis Perubahan Rasio Hutan Sebelum membahas hasil simulasi model REMO, dilakukan analisis perubahan rasio hutan pada masing-masing simulasi yang dibuat. Dalam model

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN 8 eigenvalue masing-masing mode terhadap nilai total eigenvalue (dalam persen). PC 1 biasanya menjelaskan 60% dari keragaman data, dan semakin menurun untuk PC selanjutnya (Johnson 2002, Wilks 2006, Dool

Lebih terperinci

BAB III DATA DAN METODOLOGI

BAB III DATA DAN METODOLOGI BAB III DATA DAN METODOLOGI 3.1 Data dan Daerah Penelitian 3.1.1 Data Input model REMO dapat diambil dari hasil keluaran model iklim global atau hasil reanalisa global. Dalam penelitian ini data input

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN ./ 3.3.2 Penentuan nilai gradien T BB Gradien T BB adalah perbedaan antara nilai T BB suatu jam tertentu dengan nilai

Lebih terperinci

Tinjauan Pustaka. II.1 Variabilitas ARLINDO di Selat Makassar

Tinjauan Pustaka. II.1 Variabilitas ARLINDO di Selat Makassar BAB II Tinjauan Pustaka II.1 Variabilitas ARLINDO di Selat Makassar Matsumoto dan Yamagata (1996) dalam penelitiannya berdasarkan Ocean Circulation General Model (OGCM) menunjukkan adanya variabilitas

Lebih terperinci

Kementerian PPN/Bappenas

Kementerian PPN/Bappenas + Rencana Aksi Nasional Adaptasi Perubahan Iklim (RAN-API) Kementerian PPN/Bappenas Perubahan Iklim dan Dampaknya di Indonesia 2013 + OUTLINE 2 I. LATAR BELAKANG II. III. IV. HISTORI KONDISI IKLIM INDONESIA

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN 7 d) phase spectrum, dengan persamaan matematis: e) coherency, dengan persamaan matematis: f) gain spektrum, dengan persamaan matematis: IV. HASIL DAN PEMBAHASAN 4.1 Keadaan Geografis dan Cuaca Kototabang

Lebih terperinci

BAB 4 HASIL DAN PEMBAHASAN

BAB 4 HASIL DAN PEMBAHASAN BAB 4 HASIL DAN PEMBAHASAN 4.1 Hasil Pengukuran Beda Tinggi Antara Bench Mark Dengan Palem Dari hasil pengukuran beda tinggi dengan metode sipat datar didapatkan beda tinggi antara palem dan benchmark

Lebih terperinci

DAFTAR ISI BAB I PENDAHULUAN Latar Belakang Permasalahan Penelitian Tujuan Penelitian Manfaat Penelitian...

DAFTAR ISI BAB I PENDAHULUAN Latar Belakang Permasalahan Penelitian Tujuan Penelitian Manfaat Penelitian... DAFTAR ISI Halaman Judul.. Halaman Pengesahan Halaman Pernyataan. i ii iii Kata Pengantar... iv Daftar Isi.. vi Daftar Tabel... Daftar Gambar.. Daftar Lampiran Intisari Abstract.. ix x xiii xiv xv BAB

Lebih terperinci

PENGARUH DIPOLE MODE TERHADAP CURAH HUJAN DI INDONESIA

PENGARUH DIPOLE MODE TERHADAP CURAH HUJAN DI INDONESIA Pengaruh Dipole Mode Terhadap Curah Hujan di Indonesia (Mulyana) 39 PENGARUH DIPOLE MODE TERHADAP CURAH HUJAN DI INDONESIA Erwin Mulyana 1 Intisari Hubungan antara anomali suhu permukaan laut di Samudra

Lebih terperinci

Luas Luas. Luas (Ha) (Ha) Luas. (Ha) (Ha) Kalimantan Barat

Luas Luas. Luas (Ha) (Ha) Luas. (Ha) (Ha) Kalimantan Barat II. TINJAUAN PUSTAKA 2.1. Hutan Hujan Tropis Hujan hujan tropis adalah daerah yang ditandai oleh tumbuh-tumbuhan subur dan rimbun serta curah hujan dan suhu yang tinggi sepanjang tahun. Hutan hujan tropis

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN 9 menguji kelayakan model sehingga model sementara tersebut cukup memadai. Salah satu caranya adalah dengan menganalisis galat (residual). Galat merupakan selisih antara data observasi dengan data hasil

Lebih terperinci

SIMULASI PENGARUH DEFORESTASI DAN REFORESTASI TERHADAP PERUBAHAN PARAMETER IKLIM MENGGUNAKAN REGIONAL MODEL (REMO) (Studi Kasus: Pulau Kalimantan)

SIMULASI PENGARUH DEFORESTASI DAN REFORESTASI TERHADAP PERUBAHAN PARAMETER IKLIM MENGGUNAKAN REGIONAL MODEL (REMO) (Studi Kasus: Pulau Kalimantan) SIMULASI PENGARUH DEFORESTASI DAN REFORESTASI TERHADAP PERUBAHAN PARAMETER IKLIM MENGGUNAKAN REGIONAL MODEL (REMO) (Studi Kasus: Pulau Kalimantan) TUGAS AKHIR Disusun Untuk Memenuhi Syarat Kurikuler Program

Lebih terperinci

STASIUN METEOROLOGI KLAS III NABIRE

STASIUN METEOROLOGI KLAS III NABIRE STASIUN METEOROLOGI KLAS III NABIRE KARAKTERISTIK RATA-RATA SUHU MAKSIMUM DAN SUHU MINIMUM STASIUN METEOROLOGI NABIRE TAHUN 2006 2015 OLEH : 1. EUSEBIO ANDRONIKOS SAMPE, S.Tr 2. RIFKI ADIGUNA SUTOWO, S.Tr

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Sejak tahun 1980-an para peneliti meteorologi meyakini bahwa akan terjadi beberapa penyimpangan iklim global, baik secara spasial maupun temporal. Kenaikan temperatur

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN 4.1. Analisis pengaruh ENSO dan IOD terhadap curah hujan Pola hujan di Jawa Barat adalah Monsunal dimana memiliki perbedaan yang jelas antara periode musim hujan dan periode musim

Lebih terperinci

Fakultas Ilmu dan Teknologi Kebumian

Fakultas Ilmu dan Teknologi Kebumian Fakultas Ilmu dan Teknologi Kebumian Program Studi Meteorologi PENERBITAN ONLINE AWAL Paper ini adalah PDF yang diserahkan oleh penulis kepada Program Studi Meteologi sebagai salah satu syarat kelulusan

Lebih terperinci

ANALISIS VARIABILITAS TEMPERATUR UDARA DI DAERAH KOTOTABANG PERIODE

ANALISIS VARIABILITAS TEMPERATUR UDARA DI DAERAH KOTOTABANG PERIODE ANALISIS VARIABILITAS TEMPERATUR UDARA DI DAERAH KOTOTABANG PERIODE 2003 2012 Wildan Hafni, Dwi Pujiastuti, Wendi Harjupa Jurusan Fisika FMIPA Universitas Andalas, Padang Kampus Unand Limau Manis, Pauh

Lebih terperinci

5. HUBUNGAN ANTARA PEUBAH-PEUBAH PENJELAS GCM CSIRO Mk3 DAN CURAH HUJAN BULANAN

5. HUBUNGAN ANTARA PEUBAH-PEUBAH PENJELAS GCM CSIRO Mk3 DAN CURAH HUJAN BULANAN 5. HUBUNGAN ANTARA PEUBAH-PEUBAH PENJELAS GCM CSIRO Mk3 DAN CURAH HUJAN BULANAN 5.1 Pendahuluan Dalam pemodelan statistical downscaling (SD), khususnya fungsi transfer diawali dengan mencari model hubungan

Lebih terperinci

Hasil dan Analisis. IV.1.2 Pengamatan Data IR1 a) Identifikasi Pola Konveksi Diurnal dari Penampang Melintang Indeks Konvektif

Hasil dan Analisis. IV.1.2 Pengamatan Data IR1 a) Identifikasi Pola Konveksi Diurnal dari Penampang Melintang Indeks Konvektif Bab IV Hasil dan Analisis IV.1 Pola Konveksi Diurnal IV.1.1 Pengamatan Data OLR Pengolahan data OLR untuk periode September 2005 Agustus 2006 menggambarkan perbedaan distribusi tutupan awan. Pada bulan

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN 16 5.1 Hasil 5.1.1 Pola curah hujan di Riau BAB V HASIL DAN PEMBAHASAN Data curah hujan bulanan dari tahun 2000 sampai dengan 2009 menunjukkan bahwa curah hujan di Riau menunjukkan pola yang sama dengan

Lebih terperinci

ANALISIS DAMPAK PERUBAHAN TUTUPAN LAHAN HUTAN TERHADAP IKLIM DI PULAU KALIMANTAN MENGGUNAKAN MODEL IKLIM REGIONAL (REMO) SOFYAN AGUS SALIM G

ANALISIS DAMPAK PERUBAHAN TUTUPAN LAHAN HUTAN TERHADAP IKLIM DI PULAU KALIMANTAN MENGGUNAKAN MODEL IKLIM REGIONAL (REMO) SOFYAN AGUS SALIM G ANALISIS DAMPAK PERUBAHAN TUTUPAN LAHAN HUTAN TERHADAP IKLIM DI PULAU KALIMANTAN MENGGUNAKAN MODEL IKLIM REGIONAL (REMO) SOFYAN AGUS SALIM G02400013 DEPARTEMEN GEOFISIKA DAN METEOROLOGI FAKULTAS MATEMATIKA

Lebih terperinci

PERUBAHAN KLIMATOLOGIS CURAH HU]AN DI DAERAH ACEH DAN SOLOK

PERUBAHAN KLIMATOLOGIS CURAH HU]AN DI DAERAH ACEH DAN SOLOK PERUBAHAN KLIMATOLOGIS CURAH HU]AN DI DAERAH ACEH DAN SOLOK Junlartl Visa PenelW Pusat Pwnanfeatan Sains Atmosfer dan IkHm, LAPAN ABSTRACT The analysis of rainfall climatologic change of Aceh and Solok

Lebih terperinci

ANALISIS PERIODISITAS SUHU DAN TEKANAN PARAS MUKA LAUT DI INDONESIA DAN HUBUNGANNYA DENGAN AKTIVITAS MATAHARI R. HIKMAT KURNIAWAN

ANALISIS PERIODISITAS SUHU DAN TEKANAN PARAS MUKA LAUT DI INDONESIA DAN HUBUNGANNYA DENGAN AKTIVITAS MATAHARI R. HIKMAT KURNIAWAN ANALISIS PERIODISITAS SUHU DAN TEKANAN PARAS MUKA LAUT DI INDONESIA DAN HUBUNGANNYA DENGAN AKTIVITAS MATAHARI R. HIKMAT KURNIAWAN DEPARTEMEN GEOFISIKA DAN METEOROLOGI FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

INDIKASI PERUBAHAN IKLIM DARI PERGESERAN BULAN BASAH, KERING, DAN LEMBAB

INDIKASI PERUBAHAN IKLIM DARI PERGESERAN BULAN BASAH, KERING, DAN LEMBAB ISBN : 978-979-79--8 INDIKASI PERUBAHAN IKLIM DARI PERGESERAN BULAN BASAH, KERING, DAN LEMBAB Lilik Slamet S., Sinta Berliana S. Pusat Pemanfaatan Sains Atmosfer dan Iklim LAPAN, lilik_lapan@yahoo.com,

Lebih terperinci

Musim Hujan. Musim Kemarau

Musim Hujan. Musim Kemarau mm IV. HASIL DAN PEMBAHASAN. Analisis Data Curah hujan Data curah hujan yang digunakan pada penelitian ini adalah wilayah Lampung, Pontianak, Banjarbaru dan Indramayu. Selanjutnya pada masing-masing wilayah

Lebih terperinci

SENSITIVITAS CURAH HUJAN DI JAWA BARAT TERHADAP SUHU PERMUKAAN LAUT DI SEKITARNYA MENGGUNAKAN MODEL IKLIM REGIONAL REMO YANUAR MURIANTO

SENSITIVITAS CURAH HUJAN DI JAWA BARAT TERHADAP SUHU PERMUKAAN LAUT DI SEKITARNYA MENGGUNAKAN MODEL IKLIM REGIONAL REMO YANUAR MURIANTO SENSITIVITAS CURAH HUJAN DI JAWA BARAT TERHADAP SUHU PERMUKAAN LAUT DI SEKITARNYA MENGGUNAKAN MODEL IKLIM REGIONAL REMO YANUAR MURIANTO DEPARTEMEN GEOFISIKA DAN METEOROLOGI FAKULTAS MATEMATIKA DAN ILMU

Lebih terperinci

Analisis Spasial Pengaruh Dinamika Suhu Muka Laut Terhadap Distribusi Curah Hujan di Sulawesi Utara

Analisis Spasial Pengaruh Dinamika Suhu Muka Laut Terhadap Distribusi Curah Hujan di Sulawesi Utara JURNAL MIPA UNSRAT ONLINE 3 (1) 25-29 dapat diakses melalui http://ejournal.unsrat.ac.id/index.php/jmuo Analisis Spasial Pengaruh Dinamika Suhu Muka Laut Terhadap Distribusi Curah Hujan di Sulawesi Utara

Lebih terperinci

4 BAB IV HASIL DAN ANALISA

4 BAB IV HASIL DAN ANALISA 4 BAB IV HASIL DAN ANALISA 4.1 Evaluasi Persamaan Rain Rate 4.1.1 Hasil Estimasi curah hujan untuk satu titik (Bandung) perjam diakumulasi selama 24 jam untuk memperoleh curah hujan harian, selama rentang

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Hasil Peta lokasi penelitian disajikan pada Lampiran A. Hasil pengolahan data arus polar current rose disajikan pada Lampiran B. Hasil pengolahan data komponen arus setelah

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN memiliki nilai WWZ yang sama pada tahun yang dan periode yang sama pula. Hubungan keterpengaruhan juga teridentifikasi jika pada saat nilai WWZ bintik matahari maksimum, didapatkan nilai WWZ parameter

Lebih terperinci

Keywords : sea surface temperature, rainfall, time lag

Keywords : sea surface temperature, rainfall, time lag ANALISA TIME LAG SUHU PERMUKAAN LAUT YANG BERHUBUNGAN DENGAN CURAH HUJAN RATA-RATA DASARIAN DI PROVINSI BALI I Made Sudarma Yadnya 1*, Winardi Tjahyo Baskoro 1, M. Dwi Jendra Putra 2 1 Jurusan Fisika,

Lebih terperinci

ANALISA VARIABILITAS CURAH HUJAN DI PALU BERDASARKAN DATA PENGAMATAN TAHUN

ANALISA VARIABILITAS CURAH HUJAN DI PALU BERDASARKAN DATA PENGAMATAN TAHUN ANALISA VARIABILITAS CURAH HUJAN DI PALU BERDASARKAN DATA PENGAMATAN TAHUN 1981-2010 Wenas Ganda Kurnia Stasiun Pemantan Atmosfer Global Lore Lindu Bariri Palu Email: wenasbmkg@gmail.com ABSTRAK Curah

Lebih terperinci

Gambar 4 Diagram alir penelitian

Gambar 4 Diagram alir penelitian 10 Gambar 4 Diagram alir penelitian IV. HASIL DAN PEMBAHASAN Dalam penelitian ini periode yang digunakan dibagi dua, yaitu jangka panjang; Januari 2007 sampai dengan Juli 2009 dan jangka pendek. Analisis

Lebih terperinci

MONITORING DINAMIKA ATMOSFER DAN PRAKIRAAN CURAH HUJAN SEPTEMBER 2016 FEBRUARI 2017

MONITORING DINAMIKA ATMOSFER DAN PRAKIRAAN CURAH HUJAN SEPTEMBER 2016 FEBRUARI 2017 BMKG MONITORING DINAMIKA ATMOSFER DAN PRAKIRAAN CURAH HUJAN SEPTEMBER 2016 FEBRUARI 2017 Status Perkembangan 26 September 2016 PERKEMBANGAN ENSO, MONSUN, MJO & IOD 2016/17 Angin ANALISIS ANGIN LAP 850mb

Lebih terperinci

PERUBAHAN KLIMATOLOGIS CURAH HUJAN DI YOGJAKARTA, SEMARANG, SURABAYA, PROBOLINGGO DAN MALANG

PERUBAHAN KLIMATOLOGIS CURAH HUJAN DI YOGJAKARTA, SEMARANG, SURABAYA, PROBOLINGGO DAN MALANG Prosiding Seminar Nasional Penelitian, Penerapan dan Pendidikan MIPA Fakultas MIPA, Universitas Negeri Yogyakarta, 16 Mei 29 PERUBAHAN KLIMATOLOGIS CURAH HUJAN DI YOGJAKARTA, SEMARANG, SURABAYA, PROBOLINGGO

Lebih terperinci

BAB I PENDAHULUAN. permukaan Bumi (Shauji dan Kitaura, 2006) dan dapat dijadikan sebagai dasar

BAB I PENDAHULUAN. permukaan Bumi (Shauji dan Kitaura, 2006) dan dapat dijadikan sebagai dasar BAB I PENDAHULUAN 1.1 Latar Belakang Hujan merupakan salah satu sumber ketersedian air untuk kehidupan di permukaan Bumi (Shauji dan Kitaura, 2006) dan dapat dijadikan sebagai dasar dalam penilaian, perencanaan

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang

BAB I PENDAHULUAN. A. Latar Belakang BAB I PENDAHULUAN A. Latar Belakang Kalimantan Selatan sebagai salah satu wilayah Indonesia yang memiliki letak geografis di daerah ekuator memiliki pola cuaca yang sangat dipengaruhi oleh aktifitas monsoon,

Lebih terperinci

EVALUASI CUACA BULAN JUNI 2016 DI STASIUN METEOROLOGI PERAK 1 SURABAYA

EVALUASI CUACA BULAN JUNI 2016 DI STASIUN METEOROLOGI PERAK 1 SURABAYA EVALUASI CUACA BULAN JUNI 2016 DI STASIUN METEOROLOGI PERAK 1 SURABAYA OLEH : ANDRIE WIJAYA, A.Md FENOMENA GLOBAL 1. ENSO (El Nino Southern Oscillation) Secara Ilmiah ENSO atau El Nino dapat di jelaskan

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN 18 HASIL DAN PEMBAHASAN Eksplorasi data Tahap pertama dalam pembentukan model VAR adalah melakukan eksplorasi data untuk melihat perilaku data dari semua peubah yang akan dimasukkan dalam model. Eksplorasi

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Pendahuluan Peramalan merupakan upaya memperkirakan apa yang terjadi pada masa mendatang berdasarkan data pada masa lalu, berbasis pada metode ilmiah dan kualitatif yang dilakukan

Lebih terperinci

Fakultas Ilmu dan Teknologi Kebumian

Fakultas Ilmu dan Teknologi Kebumian Fakultas Ilmu dan Teknologi Kebumian Program Studi Meteorologi PENERBITAN ONLINE AWAL Paper ini adalah PDF yang diserahkan oleh penulis kepada Program Studi Meteologi sebagai salah satu syarat kelulusan

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1 Pelapisan Massa Air di Perairan Raja Ampat Pelapisan massa air dapat dilihat melalui sebaran vertikal dari suhu, salinitas dan densitas di laut. Gambar 4 merupakan sebaran menegak

Lebih terperinci

LAPORAN KEJADIAN BANJIR DAN CURAH HUJAN EKSTRIM DI KOTA MATARAM DAN KABUPATEN LOMBOK BARAT TANGGAL JUNI 2017

LAPORAN KEJADIAN BANJIR DAN CURAH HUJAN EKSTRIM DI KOTA MATARAM DAN KABUPATEN LOMBOK BARAT TANGGAL JUNI 2017 BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA STASIUN KLIMATOLOGI KELAS I LOMBOK BARAT NTB Jl. TGH. Ibrahim Khalidy Telp.(0370)674134, Fax.(0370)674135, Kediri-Lobar, NTB 83362 Website : http://iklim.ntb.bmkg.go.id

Lebih terperinci

STASIUN METEOROLOGI PATTIMURA AMBON

STASIUN METEOROLOGI PATTIMURA AMBON BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA STASIUN METEOROLOGI PATTIMURA AMBON Alamat : Bandar Udara Pattimura Ambon 97236, ext: 274 Telp : (0911) 3300340,341172 Telp / Fax: (0911) 311751,341172 Analisis

Lebih terperinci

Sumber : Hasil olah data,2009

Sumber : Hasil olah data,2009 pengelompokan data terlihat data curah hujan yang tercatat di Stasiun Poncokusumo yang cukup baik yaitu sebesar.52 untuk time lag (waktu sekarang) namun bila digeser sampai dengan minus 3 hari nilai korelasinya

Lebih terperinci

Analisis Variasi Cuaca di Daerah Jawa Barat dan Banten

Analisis Variasi Cuaca di Daerah Jawa Barat dan Banten Analisis Variasi Cuaca di Daerah Jawa Barat dan Banten Ankiq Taofiqurohman S Jurusan Perikanan Fakultas Pertanian Universitas Padjadjaran, Jatinangor, Bandung 40600 ABSTRACT A research on climate variation

Lebih terperinci

4. HASIL DAN PEMBAHASAN. (suhu manual) dianalisis menggunakan analisis regresi linear. Dari analisis

4. HASIL DAN PEMBAHASAN. (suhu manual) dianalisis menggunakan analisis regresi linear. Dari analisis 4. HASIL DAN PEMBAHASAN 4.1. Koreksi Suhu Koreksi suhu udara antara data MOTIWALI dengan suhu udara sebenarnya (suhu manual) dianalisis menggunakan analisis regresi linear. Dari analisis tersebut dihasilkan

Lebih terperinci

I. PENDAHULUAN. 143,5 mm/tahun dengan kelembaban 74% - 85%. Kecepatan angin pada musim

I. PENDAHULUAN. 143,5 mm/tahun dengan kelembaban 74% - 85%. Kecepatan angin pada musim I. PENDAHULUAN 1.1. Latar Belakang Kabupaten Aceh Singkil beriklim tropis dengan curah hujan rata rata 143,5 mm/tahun dengan kelembaban 74% - 85%. Kecepatan angin pada musim timur maksimum 15 knot, sedangkan

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Total Data Sebaran Klorofil-a citra SeaWiFS Total data sebaran klorofil-a pada lokasi pertama, kedua, dan ketiga hasil perekaman citra SeaWiFS selama 46 minggu. Jumlah data

Lebih terperinci

HIDROMETEOROLOGI Tatap Muka Keenam (SUHU UDARA II)

HIDROMETEOROLOGI Tatap Muka Keenam (SUHU UDARA II) HIDROMETEOROLOGI Tatap Muka Keenam (SUHU UDARA II) Dosen : DR. ERY SUHARTANTO, ST. MT. JADFAN SIDQI FIDARI, ST. MT 5. Penyebaran Suhu Menurut Ruang dan Waktu A. Penyebaran Suhu Vertikal Pada lapisan troposfer,

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Distribusi SPL Dari pengamatan pola sebaran suhu permukaan laut di sepanjang perairan Selat Sunda yang di analisis dari data penginderaan jauh satelit modis terlihat ada pembagian

Lebih terperinci

Pasang Surut Surabaya Selama Terjadi El-Nino

Pasang Surut Surabaya Selama Terjadi El-Nino Pasang Surut Surabaya Selama Terjadi El-Nino G181 Iva Ayu Rinjani dan Bangun Muljo Sukojo Jurusan Teknik Geomatika, Fakultas Teknik Sipil dan Perencanaan, Institut Teknologi Sepuluh Nopember (ITS) Jl.

Lebih terperinci

Gambar 3 Sebaran curah hujan rata-rata tahunan Provinsi Jawa Barat.

Gambar 3 Sebaran curah hujan rata-rata tahunan Provinsi Jawa Barat. 11 yang akan datang, yang cenderung mengalami perubahan dilakukan dengan memanfaatkan keluaran model iklim. Hasil antara kondisi iklim saat ini dan yang akan datang dilakukan analisis dan kemudian dilakukan

Lebih terperinci

ANALISIS VARIABILITAS CURAH HU]AN Dl SUMATERA BARAT DAN SELATAN DIKAITKAN DENGAN KEJADIAN DIPOLE MODE

ANALISIS VARIABILITAS CURAH HU]AN Dl SUMATERA BARAT DAN SELATAN DIKAITKAN DENGAN KEJADIAN DIPOLE MODE ANALISIS VARIABILITAS CURAH HU]AN Dl SUMATERA BARAT DAN SELATAN DIKAITKAN DENGAN KEJADIAN DIPOLE MODE Eddy Hermawan' 1, Sopia Lestari" 1 "' Penellti Pusat Pemanfaatan Sains Atmosfer dan Ikiim, LAPAN "'

Lebih terperinci

Angin Meridional. Analisis Spektrum

Angin Meridional. Analisis Spektrum menyebabkan pola dinamika angin seperti itu. Proporsi nilai eigen mempresentasikan seberapa besar pengaruh dinamika angin pada komponen utama angin baik zonal maupun meridional terhadap keseluruhan pergerakan

Lebih terperinci

Perangkat Lunak Tahun Fungsi Linux Suse 9.0 Windows XP

Perangkat Lunak Tahun Fungsi Linux Suse 9.0 Windows XP III. METODOLOGI 3.1. Tempat Penelitian Penelitian dilaksanakan di Unit Pelaksanaan Teknis (UPT) Hujan Buatan, Badan Pengkajian dan Penerapan Teknologi (BPPT), Jakarta. 3.2. Bahan dan Alat Data iklim tahun

Lebih terperinci

BAB II LANDASAN TEORITIS

BAB II LANDASAN TEORITIS BAB I PENDAHULUAN Pengaruh pemanasan global yang sering didengungkan tidak dapat dihindari dari wilayah Kalimantan Selatan khususnya daerah Banjarbaru. Sebagai stasiun klimatologi maka kegiatan observasi

Lebih terperinci

3. METODOLOGI PENELITIAN

3. METODOLOGI PENELITIAN 3. METODOLOGI PENELITIAN 3.1. Waktu dan Tempat Penelitian Peta lokasi penelitian di perairan Teluk Bone, Perairan Sulawesi dan sekitarnya, Indonesia (Gambar 6). Gambar 6. Peta Lokasi Penelitian Teluk Bone,

Lebih terperinci

Grafik tegangan (chanel 1) terhadap suhu

Grafik tegangan (chanel 1) terhadap suhu IV. HASIL DAN PEMBAHASAN 4.1 KONVERSI RANGKAIAN PENGUKUR SUHU Rangkaian pengukur suhu ini keluarannya adalah tegangan sehingga dibutuhkan pengambilan data konversi untuk mengetahui bentuk persamaan yang

Lebih terperinci

I. INFORMASI METEOROLOGI

I. INFORMASI METEOROLOGI I. INFORMASI METEOROLOGI I.1 ANALISIS DINAMIKA ATMOSFER I.1.1 MONITORING DAN PRAKIRAAN FENOMENA GLOBAL a. ENSO ( La Nina dan El Nino ) Berdasarkan pantauan suhu muka laut di Samudra Pasifik selama bulan

Lebih terperinci

METODE KUANTITATIF, MENGGUNAKAN BERBAGAI MODEL MATEMATIS YANG MENGGUNAKAN DATA HISTORIES DAN ATAU VARIABLE-VARIABEL KAUSAL UNTUK MERAMALKAN

METODE KUANTITATIF, MENGGUNAKAN BERBAGAI MODEL MATEMATIS YANG MENGGUNAKAN DATA HISTORIES DAN ATAU VARIABLE-VARIABEL KAUSAL UNTUK MERAMALKAN METODE KUANTITATIF, MENGGUNAKAN BERBAGAI MODEL MATEMATIS YANG MENGGUNAKAN DATA HISTORIES DAN ATAU VARIABLE-VARIABEL KAUSAL UNTUK MERAMALKAN Peramalan kuantitatif hanya dapat digunakan apabila terdapat

Lebih terperinci

Perubahan iklim dunia: apa dan bagaimana?

Perubahan iklim dunia: apa dan bagaimana? Perubahan iklim dunia: apa dan bagaimana? Oleh : Imam Hambali Pusat Kajian Kemitraan & Pelayanan Jasa Transportasi Kementerian Perhubungan Pada awal Februari 2007 yang lalu Intergovernmental Panel on Climate

Lebih terperinci

Variabilitas Suhu dan Salinitas Perairan Selatan Jawa Timur Riska Candra Arisandi a, M. Ishak Jumarang a*, Apriansyah b

Variabilitas Suhu dan Salinitas Perairan Selatan Jawa Timur Riska Candra Arisandi a, M. Ishak Jumarang a*, Apriansyah b Variabilitas Suhu dan Salinitas Perairan Selatan Jawa Timur Riska Candra Arisandi a, M. Ishak Jumarang a*, Apriansyah b a Program Studi Fisika, Fakultas MIPA, Universitas Tanjungpura, b Program Studi Ilmu

Lebih terperinci

BAB I PENDAHULUAN. perencanaan dan pengelolaan sumber daya air (Haile et al., 2009).

BAB I PENDAHULUAN. perencanaan dan pengelolaan sumber daya air (Haile et al., 2009). BAB I PENDAHULUAN 1.1 Latar Belakang Hujan merupakan salah satu sumber ketersedian air untuk kehidupan di permukaan Bumi (Shoji dan Kitaura, 2006) dan dapat dijadikan sebagai dasar dalam penilaian, perencanaan

Lebih terperinci

BAB IV HASIL DAN ANALISIS

BAB IV HASIL DAN ANALISIS BAB IV HASIL DAN ANALISIS IV.1 Uji Sensitifitas Model Uji sensitifitas dilakukan dengan menggunakan 3 parameter masukan, yaitu angin (wind), kekasaran dasar laut (bottom roughness), serta langkah waktu

Lebih terperinci

PENERAPAN DISTRIBUSI PELUANG UNTUK IDENTIFIKASI PERUBAHAN KLIMATOLOGIS CURAH HUJAN EKSTRIM

PENERAPAN DISTRIBUSI PELUANG UNTUK IDENTIFIKASI PERUBAHAN KLIMATOLOGIS CURAH HUJAN EKSTRIM Juniarti Visa (Penerapan Distribusi untuk Identifikasi Perubahan Klimatologis Curah Hujan Ekstrim) PENERPN DISTRIUSI PELUNG UNTUK IDENTIFIKSI PERUHN KLIMTOLOGIS CURH HUJN EKSTRIM Juniarti Visa Pusat Pemanfaatan

Lebih terperinci

ANALISIS HUJAN BULAN MEI 2011 DAN PRAKIRAAN HUJAN BULAN JULI, AGUSTUS DAN SEPTEMBER 2011 PROVINSI DKI JAKARTA

ANALISIS HUJAN BULAN MEI 2011 DAN PRAKIRAAN HUJAN BULAN JULI, AGUSTUS DAN SEPTEMBER 2011 PROVINSI DKI JAKARTA ANALISIS HUJAN BULAN MEI 2011 DAN PRAKIRAAN HUJAN BULAN JULI, AGUSTUS DAN SEPTEMBER 2011 PROVINSI DKI JAKARTA Sumber : BADAN METEOROLOGI, KLIMATOLOGI DAN GEOFISIKA STASIUN KLIMATOLOGI PONDOK BETUNG TANGERANG

Lebih terperinci

Membuat keputusan yang baik

Membuat keputusan yang baik Membuat keputusan yang baik Apakah yang dapat membuat suatu perusahaan sukses? Keputusan yang dibuat baik Bagaimana kita dapat yakin bahwa keputusan yang dibuat baik? Akurasi prediksi masa yang akan datang

Lebih terperinci

KETERKAITAN ANTARA MONSUN INDO-AUSTRALIA...

KETERKAITAN ANTARA MONSUN INDO-AUSTRALIA... KETERKAITAN ANTARA MONSUN INDO-AUSTRALIA DENGAN VARIABILITAS MUSIMAN CURAH HUJAN DI BENUA MARITIM INDONESIA SECARA SPASIAL BERBASIS HASIL ANALISIS DATA SATELIT TRMM RELATIONSHIP BETWEEN INDO-AUSTRALIAN

Lebih terperinci

Variasi Iklim Musiman dan Non Musiman di Indonesia *)

Variasi Iklim Musiman dan Non Musiman di Indonesia *) Musiman dan Non Musiman di Indonesia *) oleh : Bayong Tjasyono HK. Kelompok Keahlian Sains Atmosfer Fakultas Ilmu dan Teknologi Kebumian Institut Teknologi Bandung Abstrak Beda pemanasan musiman antara

Lebih terperinci

ANALISIS STATISTIK INTENSITAS CURAH HUJAN DI INDONESIA UNTUK EVALUASI PERUBAHAN IKLIM

ANALISIS STATISTIK INTENSITAS CURAH HUJAN DI INDONESIA UNTUK EVALUASI PERUBAHAN IKLIM ANALISIS STATISTIK INTENSITAS CURAH HUJAN DI INDONESIA UNTUK EVALUASI PERUBAHAN IKLIM Lilik Slamet S, Sinta Berliana S Pusat Pemanfaatan Sains Atmosfer Dan Iklim-Lapan Jl. Dr. Djundjunan 133 Bandung lilik_lapan@yahoo.com

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1 Pembuatan algoritma empiris klorofil-a Tabel 8, Tabel 9, dan Tabel 10 dibawah ini adalah percobaan pembuatan algoritma empiris dibuat dari data stasiun nomor ganjil, sedangkan

Lebih terperinci

ANALISIS HUJAN BULAN JUNI 2011 DAN PRAKIRAAN HUJAN BULAN AGUSTUS, SEPTEMBER DAN OKTOBER 2011 PROVINSI DKI JAKARTA

ANALISIS HUJAN BULAN JUNI 2011 DAN PRAKIRAAN HUJAN BULAN AGUSTUS, SEPTEMBER DAN OKTOBER 2011 PROVINSI DKI JAKARTA ANALISIS HUJAN BULAN JUNI 2011 DAN PRAKIRAAN HUJAN BULAN AGUSTUS, SEPTEMBER DAN OKTOBER 2011 PROVINSI DKI JAKARTA 1. TINJAUAN UMUM 1.1. Curah Hujan Curah hujan merupakan ketinggian air hujan yang jatuh

Lebih terperinci

BAB II TEORI DASAR. 2.1 Perubahan Iklim

BAB II TEORI DASAR. 2.1 Perubahan Iklim BAB II TEORI DASAR 2.1 Perubahan Iklim Perubahan iklim sebagai implikasi dari pemanasan global telah mengakibatkan ketidakstabilan atmosfer di lapisan bawah terutama yang dekat dengan permukaan bumi. Perubahan

Lebih terperinci

I. INFORMASI METEOROLOGI

I. INFORMASI METEOROLOGI I. INFORMASI METEOROLOGI I.1 ANALISIS DINAMIKA ATMOSFER I.1.1 MONITORING DAN PRAKIRAAN FENOMENA GLOBAL a. ENSO ( La Nina dan El Nino ) Berdasarkan pantauan suhu muka laut di Samudra Pasifik selama bulan

Lebih terperinci

Hubungan Suhu Muka Laut Perairan Sebelah Barat Sumatera Terhadap Variabilitas Musim Di Wilayah Zona Musim Sumatera Barat

Hubungan Suhu Muka Laut Perairan Sebelah Barat Sumatera Terhadap Variabilitas Musim Di Wilayah Zona Musim Sumatera Barat 1 Hubungan Suhu Muka Laut Perairan Sebelah Barat Sumatera Terhadap Variabilitas Musim Di Wilayah Zona Musim Sumatera Barat Diyas Dwi Erdinno NPT. 13.10.2291 Sekolah Tinggi Meteorologi Klimatologi Dan Geofisika,

Lebih terperinci

BAB I Pendahuluan I.1 Latar Belakang I.1.1 Historis Banjir Jakarta

BAB I Pendahuluan I.1 Latar Belakang I.1.1 Historis Banjir Jakarta BAB I Pendahuluan I.1 Latar Belakang I.1.1 Historis Banjir Jakarta Menurut Caljouw et al. (2004) secara morfologi Jakarta didirikan di atas dataran aluvial pantai dan sungai. Bentang alamnya didominasi

Lebih terperinci

ANALISIS UNSUR CUACA BULAN FEBRUARI 2018 DI STASIUN METEOROLOGI MALIKUSSALEH-ACEH UTARA. Oleh Febryanto Simanjuntak S.Tr

ANALISIS UNSUR CUACA BULAN FEBRUARI 2018 DI STASIUN METEOROLOGI MALIKUSSALEH-ACEH UTARA. Oleh Febryanto Simanjuntak S.Tr ANALISIS UNSUR CUACA BULAN FEBRUARI 2018 DI STASIUN METEOROLOGI MALIKUSSALEH-ACEH UTARA Oleh Febryanto Simanjuntak S.Tr Stasiun Meteorologi Klas III Malikussaleh Aceh Utara adalah salah satu Unit Pelaksana

Lebih terperinci

I. INFORMASI METEOROLOGI

I. INFORMASI METEOROLOGI I. INFORMASI METEOROLOGI I.1 ANALISIS DINAMIKA ATMOSFER I.1.1 MONITORING DAN PRAKIRAAN FENOMENA GLOBAL a. ENSO ( La Nina dan El Nino ) Berdasarkan pantauan suhu muka laut di Samudra Pasifik selama bulan

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Variabilitas Kesuburan Perairan dan Oseanografi Fisika 4.1.1. Sebaran Ruang (Spasial) Suhu Permukaan Laut (SPL) Sebaran Suhu Permukaan Laut (SPL) di perairan Selat Lombok dipengaruhi

Lebih terperinci

I. INFORMASI METEOROLOGI

I. INFORMASI METEOROLOGI I. INFORMASI METEOROLOGI I.1 ANALISIS DINAMIKA ATMOSFER I.1.1 MONITORING DAN PRAKIRAAN FENOMENA GLOBAL a. ENSO ( La Nina dan El Nino ) Berdasarkan pantauan suhu muka laut di Samudra Pasifik selama bulan

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1 Musim Panas Tahun 1999 Pola grafik R rs dari masing-masing lokasi pengambilan data radiansi dan irradiansi pada musim panas 1999 selengkapnya disajikan pada Gambar 7.Grafik

Lebih terperinci

tunda satu bulan (lag 2) berarti faktor iklim mempengaruhi luas serangan pada WBC pada fase telur.

tunda satu bulan (lag 2) berarti faktor iklim mempengaruhi luas serangan pada WBC pada fase telur. 6 regresi linier berganda untuk semua faktor iklim yang dianalisis. Data faktor iklim digunakan sebagai peubah bebas dan data luas serangan WBC sebagai peubah respon. Persamaan regresi linier sederhana

Lebih terperinci

VARIASI TEMPORAL KANDUNGAN HCO - 3 TERLARUT PADA MATAAIR SENDANG BIRU DAN MATAAIR BEJI DI KECAMATAN SUMBERMANJING WETAN DAN KECAMATAN GEDANGAN

VARIASI TEMPORAL KANDUNGAN HCO - 3 TERLARUT PADA MATAAIR SENDANG BIRU DAN MATAAIR BEJI DI KECAMATAN SUMBERMANJING WETAN DAN KECAMATAN GEDANGAN TERSEDIA SECARA ONLINE http://journal2.um.ac.id/index.php /jpg/ JURNAL PENDIDIKAN GEOGRAFI: Kajian, Teori, dan Praktek dalam Bidang Pendidikan dan Ilmu Geografi Tahun 22, No. 1, Januari 2017 Halaman: 1621

Lebih terperinci

STASIUN METEOROLOGI GAMAR MALAMO GALELA

STASIUN METEOROLOGI GAMAR MALAMO GALELA STASIUN METEOROLOGI GAMAR MALAMO GALELA ANALISIS CUACA EKSTRIM ANGIN KENCANG DI TERNATE TANGGAL 13 JANUARI 2017 OLEH : RUDI BAMBANG HARYONO, A.Md GALELA 2017 ANALISIS CUACA EKSTRIM ANGIN KENCANG DI TERNATE

Lebih terperinci

ANALISIS DINAMIKA ATMOSFER LAUT. ANALISIS & PREDIKSI CURAH HUJAN UPDATED DASARIAN I APRIL 2017

ANALISIS DINAMIKA ATMOSFER LAUT. ANALISIS & PREDIKSI CURAH HUJAN UPDATED DASARIAN I APRIL 2017 BMKG ANALISIS DINAMIKA ATMOSFER LAUT. ANALISIS & PREDIKSI CURAH HUJAN UPDATED DASARIAN I APRIL 2017 BIDANG ANALISIS VARIABILITAS IKLIM 1 BMKG OUTLINE Analisis dan Prediksi Angin, Monsun, Analisis OLR Analisis

Lebih terperinci

V. GAMBARAN UMUM. Pulau Untung Jawa berada pada posisi ,21 Lintang Selatan dan

V. GAMBARAN UMUM. Pulau Untung Jawa berada pada posisi ,21 Lintang Selatan dan V. GAMBARAN UMUM 5.1 Keadaan Umum Lokasi Penelitian Pulau Untung Jawa berada pada posisi 05 0 58 45,21 Lintang Selatan dan 106 0 42 11,07 Bujur Timur. Wilayah Kelurahan Pulau Untung Jawa adalah salah satu

Lebih terperinci

BAB 4 PENGUMPULAN, PENGOLAHAN, DAN ANALISIS DATA

BAB 4 PENGUMPULAN, PENGOLAHAN, DAN ANALISIS DATA 23 BAB 4 PENGUMPULAN, PENGOLAHAN, DAN ANALISIS DATA 4.1 Sejarah Perusahaan Pertama berdirinya PT. Tri Tunggal Bangun Sejahtera di Tangerang adalah melalui tahapan yang begitu kecil. Dalam awal pendiriannya

Lebih terperinci

V. INTERPRETASI DAN ANALISIS

V. INTERPRETASI DAN ANALISIS V. INTERPRETASI DAN ANALISIS 5.1.Penentuan Jenis Sesar Dengan Metode Gradien Interpretasi struktur geologi bawah permukaan berdasarkan anomali gayaberat akan memberikan hasil yang beragam. Oleh karena

Lebih terperinci

PROSPEK KEJADIAN SIKLON TROPIS DI WILAYAH SAMUDERA HINDIA SELATAN INDONESIA PADA MUSIM SIKLON 2016/2017

PROSPEK KEJADIAN SIKLON TROPIS DI WILAYAH SAMUDERA HINDIA SELATAN INDONESIA PADA MUSIM SIKLON 2016/2017 PROSPEK KEJADIAN SIKLON TROPIS DI WILAYAH SAMUDERA HINDIA SELATAN INDONESIA PADA MUSIM SIKLON 2016/2017 Disusun oleh : Kiki, M. Res. Miming Saepudin, M. Si. PUSAT METEOROLOGI PUBLIK BADAN METEOROLOGI KLIMATOLOGI

Lebih terperinci

Restu Tresnawati, Kurnia Endah Komalasari Puslitbang BMKG, Jl Angkasa 1 No.2 Kemayoran Jakarta Pusat

Restu Tresnawati, Kurnia Endah Komalasari Puslitbang BMKG, Jl Angkasa 1 No.2 Kemayoran Jakarta Pusat SKENARIO TENGGANG WAKTU SST NINO 3.4 TERHADAP CURAH HUJAN UNTUK MENINGKATKAN AKURASI PREDIKSI KALMAN FILTER SCENARIOS OF TIME LAG SST NINO 3.4 TO PRECIPITATION FOR ACCURATION INCREASING OF KALMAN FILTER

Lebih terperinci

ANALISIS KLIMATOLOGIS CURAH HUJAN EKSTREM DI KABUPATEN LOMBOK TIMUR TANGGAL NOVEMBER 2017

ANALISIS KLIMATOLOGIS CURAH HUJAN EKSTREM DI KABUPATEN LOMBOK TIMUR TANGGAL NOVEMBER 2017 ANALISIS KLIMATOLOGIS CURAH HUJAN EKSTREM DI KABUPATEN LOMBOK TIMUR TANGGAL 18-19 NOVEMBER 2017 BADAN METEOROLOGI, KLIMATOLOGI DAN GEOSFISIKA STASIUN KLIMATOLOGI KELAS I LOMBOK BARAT-NTB NOVEMBER 2017

Lebih terperinci

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA STASIUN KLIMATOLOGI SERAM BAGIAN BARAT

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA STASIUN KLIMATOLOGI SERAM BAGIAN BARAT BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA STASIUN KLIMATOLOGI SERAM BAGIAN BARAT Alamat: Jl. Hutitetu, Kec. Kairatu, Kab. Seram Bagian Barat e-mail: staklim.kairatu@bmkg.go.id Kode Pos 97566 TINJAUAN

Lebih terperinci

BAB III METODOLOGI. 3.1 Data. Data yang digunakan dalam studi ini meliputi :

BAB III METODOLOGI. 3.1 Data. Data yang digunakan dalam studi ini meliputi : BAB III METODOLOGI 3.1 Data Data yang digunakan dalam studi ini meliputi : Data citra satelit NOAA Citra Satelit NOAA yang digunakan merupakan hasil olahan yang menampilkan tampakan pewarnaan laut untuk

Lebih terperinci

PENGARUH MONSUN MUSIM PANAS LAUT CHINA SELATAN TERHADAP CURAH HUJAN DI BEBERAPA WILAYAH INDONESIA

PENGARUH MONSUN MUSIM PANAS LAUT CHINA SELATAN TERHADAP CURAH HUJAN DI BEBERAPA WILAYAH INDONESIA PENGARUH MONSUN MUSIM PANAS LAUT CHINA SELATAN TERHADAP CURAH HUJAN DI BEBERAPA WILAYAH INDONESIA Martono Pusat Pemanfaatan Sains Atmosfer dan Iklim LAPAN, Jl.dr.Djundjunan 133, Bandung, 40173 E-mail :

Lebih terperinci

PEMBOBOTAN SUB DIMENSION INDICATOR INDEX UNTUK PENGGABUNGAN CURAH HUJAN (Studi Kasus : 15 Stasiun Penakar Curah Hujan di Kabupaten Indramayu)

PEMBOBOTAN SUB DIMENSION INDICATOR INDEX UNTUK PENGGABUNGAN CURAH HUJAN (Studi Kasus : 15 Stasiun Penakar Curah Hujan di Kabupaten Indramayu) Xplore, 2013, Vol. 1(1):e3(1-7) c 2013 Departemen Statistika FMIPA IPB PEMBOBOTAN SUB DIMENSION INDICATOR INDEX UNTUK PENGGABUNGAN CURAH HUJAN (Studi Kasus : 15 Stasiun Penakar Curah Hujan di Kabupaten

Lebih terperinci