RANCANG BANGUN SISTEM INFORMASI DATA HIDROAKUSTIK BERBASIS WEB
|
|
|
- Hengki Wibowo
- 8 tahun lalu
- Tontonan:
Transkripsi
1 RANCANG BANGUN SISTEM INFORMASI DATA HIDROAKUSTIK BERBASIS WEB Hery M. Mik 1) d Asep M mu 2) 1) Dose d Peeliti Bgi Akustik d Istrumetsi Kelut Deprteme Ilmu d Tekologi Kelut, Fkults Perik d Ilmu Kelut IPB Jl. Ligkr Akdemik, Kmpus IPB Drmg, Bogor Correspodig Author E-mil: [email protected] 2) Alumi Progrm Studi Ilmu d Tekologi Kelut, Fkults Perik d Ilmu Kelut IPB ABSTRAK Hidrokustik merupk sutu tekologi pedeteksi bwh ir deg megguk pergkt kustik (coustic istrumet), tr li; Echosouder, Fishfider, SONAR d ADCP (Acoustic Doppler Curret Profiler). Tekologi ii megguk sur tu buyi utuk melkuk pedeteksi. Keuggul komprtif metode kustik tr li: berkecept tiggi (gret speed), sehig serig disebut quick ssessmet method, memugkik memperoleh d memproses dt secr rel time, kursi d ketept (ccurcy d precisio), dilkuk deg jrk juh (remote sesig). Bil dibdigk deg metode kovesiol liy dlm hl estimsi tu pedug stok ik, tekologi hidrokustik memiliki kelebih, tr li: iformsi pd rel yg dideteksi dpt diperoleh secr cept (rel time), d secr lgsug di wilyh deteksi (i situ). Istrume kustik sekrg ii telh berkembg deg pest sehigg dpt meghitug trget stregth ik mellui pegukur secr lgsug mellui berbgi percob - percob khususy echosouder bim gd (dul bem) d bim terbgi (split bem), kedu istrume ii jug telh diguk utuk estimsi kelimph mellui echo itegrtio. Dt yg diperoleh sistem hidrokustik pd umumy berup echogrm yg merupk ili estimsi Trget Stregth, Sctterig Volume d btimetri. Deg dy sistem iformsi dt yg dihsilk dpt dikses d diperguk oleh pihk-pihk yg membutuhk deg mudh mellui web.. Kt Kuci: Hidrokustik,Prisip Kerj Metode Hidrokustik, Nili estimsi, Sistem Iformsi 1 SISTEM INFORMASI DATA HIDROAKUSTIK 1.1 Sistem Iformsi Sistem iformsi dlh sutu kestu (etity) forml yg terdiri dri berbgi sumber dy fisik mupu logik. Secr umum, sistem dpt didefiisik sebgi sekumpul hl tu kegit tu eleme tu subsistem yg slig bekerj sm tu yg dihubugk deg cr-cr tertetu, sehigg membetuk stu kestu utuk melksk sutu fugsi gu mecpi sutu tuju (Prhst, 2005). Iformsi terbetuk dri proses peggbug dt-dt dlm susu yg mempuyi rti (Dvis,1991). Sistem pegkses iformsi dlm iteret yg plig terkel dlh World Wide Web (WWW) tu bis dikel deg istilh Web. Web megguk protokol yg disebut HTTP (HyperText Trsfer Protocol). Dokume Web ditulis dlm formt HTML (HyperText Mrkup Lguge). Iformsi yg terdpt pd Web disebut hlm Web (web pge). HTML dpt diguk secr bebs d yg plig umum diguk tr li dlh PHP, ASP, JSP, CFM 1.2 Hidrokustik Hidrokustik merupk ilmu yg mempeljri gelombg sur d permbty dlm sutu medium, dlm hl ii mediumy. Dt hidrokustik merupk dt hsil estimsi echo coutig d echo itegrtio mellui proses pedeteksi bwh ir. Proses tersebut tr li seperti berikut: 1. Trsmitter meghsilk listrik deg frekuesi tertetu, kemudi dislurk ke trsduser. 2. Trsduser k megubh eergi listrik mejdi sur, kemudi sur tersebut dlm berbetuk puls sur dipcrk deg stu pig. 3. Sur yg dipcrk tersebut k megei objek, kemudi sur itu k diptulk kembli oleh obyek dlm betuk echo d kemudi diterim kembli oleh trduser. 4. Echo yg diperoleh tersebut diubh kembli mejdi eergi listrik di trsduser kemudi diterusk ke receiver. 5. Pemroses siyl echo deg megguk metode echo itegrtio. Echo yg diperoleh dpt megestimsi beberp dt tr li Trget stregth, Sctterig volume, desits ik, btimetri, pjg ik, lpis dsr perir d dpt dipliksik utuk kegit liy. Gmbr 1. merupk prisip kerj metode hidrokustik megguk echosouder. H-12
2 Semir Nsiol Apliksi Tekologi Iformsi 2009 (SNATI 2009) ISSN: Gmbr 1. Prisip Kerj Metode Hidrokustik (McLe d Simmods, 1992) Hsil dri pedeteksi deg metode kustik disutu perir dpt diperoleh beberp fktor tr li Trget stregth, Sctterig volume, desits ik, pjg ik, keksr d kekers substrt dsr sert dpt megukur kedlm sutu perir. Pegolh dt hidrokustik ii megguk beberp progrm tr li Echoview 3.5, Microsoft excel, Surfer 8 d Mtlb R2008b. 2 METODOLOGI 2.1 Loksi Peeliti Peeliti ii dilkuk di Perir Lut Selt Jw pd Tggl 10 Oktober Berikut cotoh peggl sitx yg diguk: % % Progrm Sebr Btimetri % Mtlb Progrmmig % Oleh : sepmmu % cler ll; clc; disp(' '); disp('progrm Btimetri'); disp(' '); % membut dt x y d z % x y z lod kedlmgood.txt; subplot(2,1,2) xmi=mi(kedlmgood(:,1)); xmx=mx(kedlmgood(:,1)); ymi=mi(kedlmgood(:,2)); ymx=mx(kedlmgood(:,2)); [XI,YI]=meshgrid(lispce(xmi,xmx,50),lispce(ymi,ymx,50)); X = kedlmgood(:,1); Y = kedlmgood(:,2); Z = kedlmgood(:,3); ZI = griddt(x,y,z,xi,yi,'cubic'); mesh(zi); Berikut gmbr sebr yg diperoleh dri pegolh dt hidrokustik : L i 7.1 t g S e 8.0 l t i i Jw Tegh Jw Brt CILACAP Pgdr S m u d e r H d 0 km 37 km 74 km 111 km Bujur Timur PETA TREK AKUSTIK DI LAUT SELATAN JAWA INSET Keterg : = Bts Propisi = Trek Akustik = Leg Diolh oleh : ASEP MA'MUN C Deprteme Ilmu d Tekologi Kelut FPIK - IPB. Trget stregth Gmbr 2. Loksi peeliti 2.2 Metode Dt hsil perekm oleh echosouder diklibrsi d di ubh kedlm betuk echogrm, kemudi diolh kedlm betuk rw dt yg tiy dt tersebut divisulissik kedlm betuk 2 dimesi d 3 dimesi. Rw dt d gmbr sebr yg diperoleh tiy k diguk sebgi bh dsr dri sistem iformsi dt hidrokustik. 3. HASIL DAN PEMBAHASAN 3.1 Dt Hidrokustik Pegolh dt hidrokustik disii megguk Mtlb R2008b, pegolh dt disii bersl dri hsil perhitug d pegolh yg telh diperoleh. Gmbr 3. Trget stregth Dri Gmbr 3. diperoleh TS terbesr terdpt pd strt kedlm m yitu sebesr -32,95 db d ili TS terkecil terdpt pd strt kedlm m yitu sebesr -62,78 db. H-13
3 b.sctterig volume Diperoleh ili pjg ik terbesr yitu cm pd posisi LS d BT, sedgk ili pjg ik terkecil dlh cm pd posisi LS d BT. e. Btimetri Gmbr 4. Sctterig volume Dri Gmbr 4. diperoleh Nili Sctterig Volume terbesr terdpt pd strt kedlm 0-10 meter yitu sebesr db d ili Sctterig Volume terkecil terdpt pd strt kedlm meter yitu sebesr db. c. Desits Ik Desits ik secr horizotl dpt digmbrk seperti berikut: Gmbr 7. Btimetri Dri Gmbr 7 diperoleh bhw Lut Selt Jw termsuk dlm ktegori perir yg dgkl deg rt-rt kedlm sebesr 122,9 meter. Kedlm tertiggi yitu m terletk pd posisi 8 o 5 24 LS d 108 o BT, sedgk kedlm teredh yitu m terletk pd posisi 8 o LS d 108 o BT. f. Keksr (E1) d Kekers (E2) Gmbr berikut dlh hsil perkir substrt dsr deg metode kustik. Gmbr 5. Desits ik Desits ik terbesr yitu 40,56 ik / m 3 terletk pd posisi 8 o 5 24 LS d 108 o BT, sedgk desits ik teredh yitu 40,34 ik / m 3 terletk pd posisi 8 o 2 90 LS d 108 o BT. d. Pjg ik Berikut grfik pjg ik hsil estimsi deg metode kustik. Gmbr 8. Nili keksr (E1) & Kekers (E2) Ptul pertm (E1) memiliki kisr tr -30,06 db smpi -20,41 db. Nili E2 ii berkisr tr db smpi deg -34,86 db. Dri kedu hsil tersebut dpt disimpulk bhw frksi psir berlumpur medomisi perir tersebut. Gmbr 6. Pjg ik H-14
4 3.2 Sistem iformsi dt hidrokustik Berikut dlh gmbr relsi hubug pd ystem iformsi hidrokustik: Berikut dlh beberp tmpil dri sistem iformsi dt hidrokustik : Gmbr 11. Hlm utm sistem iformsi Gmbr 9. Hubug relsi tr dtbse Dpt diliht hubug relsi tr tbel pd sistem iformsi hidrokustik dlh hubug relsi oe to oe, oe to my tu my to oe. Atr tbel dihubugk oleh sutu kt kuci tu yg serig disebut Primry key. Berikut digrm lir output iformsi dri Sistem iformsi dt hidrokustik. Pd hlm utm ii terdpt posisi-posisi yg dpt memberik iformsi dt hidrokustik. Gmbr 12. meujuk formul yg diguk utuk megestimsi dt hidrokusitk Gmbr 12. Formul yg diguk. Gmbr 13. beberp lik istsi tu bd yg terkit deg sistem iformsi hidrokustik ii Gmbr 10. Digrm output iformsi dt hidrokustik Gmbr 13. Lik istsi terkit H-15
5 PUSTAKA Dvis, G Kergk Dsr Sistem Iformsi Mjeme, Bgi I Pegtr. Pustk Bim Pressido. Jkrt. McLe, D.N d Simmods, E.J.(1992). Fisheries Acoustic. Chpm d Hll. 325 p. Prhst, E Kosep-kosep Dsr Sistem Iformsi Geogrfi. Edisi Revisi cetk kedu. Iformtik Bdug. Gmbr 14. Alisis dt hidrokustik Gmbr 15. merupk cotoh iformsi dt hidrokustik dlm stu re peeliti Gmbr 15. Tmpil Iformsi Trget stregth Sistem iformsi hidrokustik ii jug memiliki fsilits user utuk meguplod dt hsil peeliti yg telh dilkuk oleh user tersebut. Kesimpul Deg meliht ili-ili dri hsil pegolh dt hidrokustik seperti Trget stregth d Sctterig volume,ili-ili tersebut bis diguk utuk megestimsi pjg ik,desits ik bhk substrt dsr dri sutu perir. Deg megguk metode hidrokutik ii dimugkik megolh d memperoleh dt secr rel time. Rcg Bgu Sistem Iformsi Hidrokustik berbsis Web perlu dikembgk di Idoesi megigt sumberdy kelut yg melimph (budt) d belum dieksplorsi. H-16
III PEMBAHASAN. x x. 3.1 Analisis Metode Perhatikan persamaan integral Volterra berikut. x. atau (11)
III PEMBAHASAN 3 Alisis Metode Perhtik persm itegrl Volterr berikut y ( f( λ Ktyt ( ( (8 deg y( merupk fugsi yg k ditetuk sutu kostt f( fugsi sembrg yg dikethui d terdefiisi pd R d K(ty(t sutu fugsi yg
JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER 1
FITRIANA RICHA HIDAYATI 7 46 Dose Pembimbig M. ARIEF BUSTOMI, M.Si Surby, Jui JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER Alis disesuik deg geometri
BAB 12 METODE SIMPLEX
METODE ANAISIS PERENCANAAN Mteri 9 : TP 3 SKS Oleh : Ke Mrti Ksikoe BAB METODE SIMPE Metode Simplex dlh metode pemrogrm liier yg mempuyi peubh (vrible) byk, sehigg dimesiy lebih dri 3. Metode simplex dpt
III PEMBAHASAN. peubah. Sistem persamaan (6) dapat diringkas menjadi Bentuk Umum dari Magic Square, Bilangan Magic, dan Matriks SPL
III PEMBAHASAN 3.1. Betuk Umum dri Mgic Squre, Bilg Mgic, d Mtriks SPL Mislk eleme dri bris ke-i d kolom ke-j dlh i,j mk mgic squrey secr umum dlh 1,1 1, 1,,1,,,1,, Gmbr 1. Betuk umum mgic squre deg: i,j
BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ. Definisi 3.1 Matriks Toeplitz adalah suatu matriks., dengan nilai,, dan indeks yang
BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ 3. Mtriks Toeplitz Defiisi 3. Mtriks Toeplitz dlh sutu mtriks [ t ; k, j = 0,,..., ] : T =, k j, deg ili,, d ideks yg diguk setip etriy
Matematika Dasar INTEGRAL TENTU . 2. Partisi yang terbentuk merupakan segiempat dengan ukuran x dan f ( x k ) sebagai
Mtemtik Dsr INTEGRAL TENTU Pegerti tu kosep itegrl tetu pertm kli dikelk oleh Newto d Leiiz. Nmu pegerti secr leih moder dikelk oleh Riem. Mteri pemhs terdhulu yki tetg itegrl tk tetu d otsi sigm k kit
bila nilai parameter sesungguhnya adalah. Jadi, K( ) P( SU jatuh ke dalam WP bila nilai parameter sama dengan )
Kus Uji d Lem Neym-Perso Kebik sutu uji serig diukur oleh d. Di dlm prktek, bisy ditetpk, d kibty wilyh peolk (WP) mejdi tertetu pul. Kierj sutu uji jug serig diukur oleh p yg disebut kus uji (power of
Penyelesaian Persamaan Linier Simultan
Peyelesi Persm Liier Simult Persm Liier Simult Persm liier simult dlh sutu betuk persm-persm yg ser bersm-sm meyjik byk vribel bebs Betuk persm liier simult deg m persm d vribel bebs ij utuk i= s/d m d
Pada Bab 12 kita mengasumsikan bahwa f kontinu pada [a, b] dan mendefinisikan f(x) dx sebagai supremum dari himpunan semua jumlah luas daerah
13. INTEGRAL RIEMANN 13.1 Jumlh Riem Ats d Jumlh Riem Bwh Pd Bb 12 kit megsumsik bhw f kotiu pd [, b] d medefiisik itegrl b f(x) dx sebgi supremum dri himpu semu jumlh lus derh persegi-pjg kecil di bwh
Bab 3 SISTEM PERSAMAAN LINIER
Alis Numerik Bh Mtrikulsi B SISTEM PERSAMAAN LINIER Pedhulu Pd kulih ii k dipeljri eerp metode utuk meelesik sistem persm liier Peelesi sistem persm deg jumlh vriel g tidk dikethui serig ditemui didlm
( ) τ k τ HASIL DAN PEMBAHASAN. Perumusan Penduga Bagi θ
HASIL DAN PEMBAHASAN Perumus Pedug Bgi θ Mislk N dlh proses Poisso pd itervl [, deg rt µ yg kotiu mutlk, d fugsi itesits λ yg teritegrlk lokl Sehigg, utuk setip himpu Borel terbts B mk: µ ( B Ε N( B λ(
DETERMINAN MATRIKS dan
DETERMINN MTRIKS d TRNSFORMSI ELEMENTER gusti Prdjigsih, M.Si. Jurus Mtemtik FMIP UNEJ [email protected] DEFINISI Utuk setip mtriks bujursgkr berordo x dpt dikitk deg tuggl sutu bilg rel yg dimk determi.
Catatan Kuliah 1 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks
Ctt Kulih Mtemtik Ekoomi Memhmi d Meglis ljbr Mtriks. Mtriks d Vektor Mtriks Mtriks dlh kumpul bilg, prmeter tu vribel tersusu dlm bris d kolom sehigg terbetuk segi empt. Susu ii bisy diletkk dlm td kurug
SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI. Prasetyo Budi Darmono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo
SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI Prsetyo Budi Drmoo Jurus Pedidik Mtemtik FKIP Uiversits Muhmmdiyh Purworejo Abstrk Persm lier dlm vribel 1, 2, 3,.. sebgi sebuh persm yg dpt diytk dlm
BAB 5 PENDEKATAN FUNGSI
BAB 5 ENDEKATAN FUNGSI DEVIDE DIFFERENCE SELISIH TERBAGI A. Tuju. Memhmi oliomil Newto Selisih Terbgi b. Mmpu meetu oeisie-oeisie oliomil Newto c. Mmpu meetu oeisie-oeisie oliomil Newto deg Mtlb B. ergt
METODE NUMERIK PERTEMUAN : 5 & 6 M O H A M A D S I D I Q 3 S K S - T E K N I K I N F O R M A T I K A - S1
METODE NUMERIK S K S - T E K N I K I N F O R M A T I K A - S M O H A M A D S I D I Q PERTEMUAN : 5 & 6 PENYELESAIAN PERSAMAAN LINIER SIMULTAN S K S - T E K N I K I N F O R M A T I K A - S M O H A M A D
Soal-soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2008
Sol-sol d Pembhs Mtemtik Dsr SBMPTN - SNMPTN 8 y. Dlm betuk pgkt positif, ( y). A. ( + y ) ( y ) C. ( y ) E. - ( y ) B. - ( + y ) ( y ) D. ( y ) y ( y) y ( y) y y ( y) y (y). (y) y - ( y ) ( y + ) - (-y+
mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x
B 4. Peerp Itegrl BAB 4. PENGGUNAAN INTEGRAL 4.. Lus re dtr Perhtik derh di wh kurv y = f () di tr du gris tegk = d = di ts sumu, deg f fugsi kotiu. Seperti pd s medefiisik itegrl tertetu, kit gi itervl
Hendra Gunawan. 21 Februari 2014
MA0 MATEMATIKA A Hedr Guw Semester II, 03/04 Februri 04 Kulih Sebelumy 9.4 Deret Positif: Uji Liy Memeriks kekoverge deret positif deg ujiperbdigd ujirsio 9.5 Deret Gti Td: Kekoverge Mutlk d Kekoverge
Nuryanto,ST.,MT. Integral merupakan operasi invers dari turunan. Jika turunan dari F(x) adalah F (x) = f(x), maka F(x) = f(x) dx.
Nuryto,ST.,MT d c. INTEGRAL TAK TENTU KONSEP DASAR INTGRAL f. ALJABAR INTEGRAL f. TRIGONO CONTOH SOAL SOAL LATIHAN UJI KOMPETENSI Itegrl merupk opersi ivers dri turu. Jik turu dri F dlh F = f, mk F = f
Metode Iterasi Gauss Seidell
Metode Itersi Guss Seidell Metode itersi Guss-Seidel : metode yg megguk proses itersi higg diperoleh ili-ili yg berubh. Bil dikethui persm liier simult: Berik ili wl dri setip i (i s/d ) kemudi persm liier
Sistem Bilangan dan Kesalahan. Sistim Bilangan Metode Numerik 1
Sistem Bilg d Keslh Sistim Bilg Metode Numerik Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Sistim Bilg Metode Numerik Cotoh : 673 * 3 6* 7* 3*
Sistem Bilangan dan Kesalahan. Metode Numerik
Sistem Bilg d Keslh Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Cotoh : 673 * 3 6* 7* 3* Bilg ult deg ilg dsr c didefiisik segi : ( )... c N c
DERET FOURIER FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN. Oleh :
DERET FOURIER Oleh : Nm :. Neti Okmyti 7..6). Reto Fti Amh 7..6). Feri Febrisyh 7..8) Kels : 6. Mt Kulih : Mtemtik jut Dose Pegsuh : Fdli, S.Si FAKUTAS KEGURUAN DAN IMU PENDIDIKAN UNIVERSITAS PGRI PAEMBANG
METODE NUMERIK SISTEM PERSAMAAN ALJABAR LINIER (SPL) SIMULTAN.
METODE NUMERIK SISTEM PERSAMAAN ALJABAR LINIER (SPL) SIMULTAN http://mul.lecture.u.c.id/lecture/metode-umerik/ Sistem Persm Liier Misl terdpt SPL deg uh vriel es Mtriks: m m m m Peyelesi Sistem Persm Liier
Perbedaan Interpolasi dan Ekstrapolasi
Iterolsi Iterolsi Perbed Iterolsi d Ekstrolsi Iterolsi Liier L Iterolsi Kudrt L h h Iterolsi Qubic L h h h Iterolsi dg Poliomil 5 Tble : Si equidisttly sced oits i [- ] y 5 -..846 -.6. -..5..5.6...846
MA1201 MATEMATIKA 2A Hendra Gunawan
MA0 MATEMATIKA A Hedr Guw Semester II, 06/07 0 Februri 07 9. Deret Tk Terhigg Kulih yg Llu Memeriks kekoverge sutu deret d, bil mugki, meghitug jumlhy 9.3 Deret Positif: Uji Itegrl Memeriks kekoverge deret
SISTEM PERSAMAAN LINEAR. Nurdinintya Athari (NDT)
SISTEM PERSAMAAN LINEAR Nurdiity Athri (NDT) Sistem Persm Lier (SPL) Sub Pokok Bhs Pedhulu Solusi SPL deg OBE Solusi SPL deg Ivers mtriks d Atur Crmmer SPL Homoge Beberp Apliksi Sistem Persm Lier Rgki
Hendra Gunawan. 19 Februari 2014
MA0 MATEMATIKA A Hedr Guw Semester II, 03/0 9 Februri 0 9. Deret Tk Terhigg Kulih yg Llu Memeriks kekoverge sutu deret d, bil mugki, meghitug jumlhy 9.3 Deret Positif: Uji Itegrl Memeriks kk kekoverge
dan mempunyai vektor normal n =(a b c). Misal P(x,y,z) suatu titik berada pada bidang. 1. Persamaan bidangnya adalah n P P
Rug Vektor Tuju:. Megigt kembli persm gris d bidg di rug.. Memhmi ksiom rug vektor, kombisi liier d rug bgi.. Megigt kembli pegerti bebs d bergtug liier, bsis d dimesi. Arti geometris dri determi Jik A
Kalkulus 2. Deret Pangkat dan Uji Konvergensi. Department of Chemical Engineering Semarang State University. Dhoni Hartanto S.T., M.T., M.Sc.
Klkulus Deret Pgkt d Uji Kovergesi Dhoi Hrtto S.T., M.T., M.S. Deprtmet o Chemil Egieerig Semrg Stte Uiversity Eperimetl Deret Pgkt Urut d deret sequees d series). Urut gk merupk rgki gk tk terbts jumlh
Pertemuan ke-5 Persamaan Linier Simultan. 11 Oktober Dr.Eng. Agus S. Muntohar Department of Civil Engineering
Pertemu ke-5 Persm Liier Simult Oktober Metode Elimisi Guss (Gussi Elimitio) Metode Elimisi Gus Sutu metode utuk meyelesik persm liier simult dri [A][X][C] Du lgkh peyelesi peyelesi:: Elimisi mju (Forwrd
RENCANA PELAKSANAAN PERKULIAHAN
Lesso Study FMIPA UNY RENCANA PELAKSANAAN PERKULIAHAN MATA KULIAH : ALJABAR LINEAR II SEMESTER : III TOPIK : NILAI EIGEN DAN VEKTOR EIGEN SUB TOPIK : NILAI EIGEN DAN VEKTOR EIGEN WAKTU : X 5 A. Stdr Kompetesi:
BARISAN DAN DERET. Jawaban : D a = 3, b = 2, U 10 = (a + 9b) U 10 = = 21. Jawaban : E a = 2,5 S ~ =
pge of SOAL Jumlh ke-0 dri bris :,, 7, 9,.dlh.. d. e. 7 9 Ebts 99 Sebuh bol jtuh dri ketiggi, meter d memtul deg ketiggi kli tiggi semul. D setip kli memtul berikuty, mecpi ketiggi kli tiggi ptul sebelumy.
SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB VIII SISTEM BILANGAN REAL DAN PERPANGKATAN
SUMBER BELAJAR PENUNJANG PLPG 207 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB VIII SISTEM BILANGAN REAL DAN PERPANGKATAN Dr. Djdir, M.Pd. Dr. Ilhm Miggi, M.Si J fruddi,s.pd.,m.pd. Ahmd Zki, S.Si.,M.Si
INTERPOLASI PERTEMUAN : S K S - T E K N I K I N F O R M A T I K A - S1 M O H A M A D S I D I Q
INTERPOLASI 3 S K S - T E K N I K I N F O R M A T I K A - S M O H A M A D S I D I Q PERTEMUAN : - SEBELUM-UTS Pegtr Metode Numerik Sistem Bilg d Keslh Peyji Bilg Bult & Pech Nili Sigiik Akursi d Presisi
SOLUSI EKSAK DAN SOLUSI ELEMEN HINGGA PERSAMAAN LAPLACE ORDE DUA PADA RECTANGULAR. Kata kunci: Laplace, Eigen, Rectangular, Solusi Elemen Hingga
SOLUSI EKSAK DA SOLUSI ELEME HIGGA PERSAMAA LAPLACE ORDE DUA PADA RECAGULAR Lsker P. Sig Abstrk ekik pemish vribel seprtio of vrible pd persm lplce orde du mereduksi persm mejdi beberp persm differesil
CARA LAIN MENENTUKAN TAKSIRAN ERROR UNTUK METODE INTEGRAL NUMERIK ABSTRACT ABSTRAK
CARA LAIN MENENTUKAN TAKSIRAN ERROR UNTUK METODE INTEGRAL NUMERIK D. S. Wti 1, M. Imr, L. Deswit 1 Mhsisw Progrm Studi S1 Mtemtik Dose Jurus Mtemtik Fkults Mtemtik d Ilmu Pegethu Alm Uiversits Riu Kmpus
BAB 2 SISTEM BILANGAN DAN KESALAHAN
Metode Numerik Segi Algoritm Komputsi 5 BAB SISTEM BILANGAN DAN KESALAHAN.. Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik : N ( )...... Cotoh : 67. 6. 7.. Bilg
Bentuk Kanonik Persamaan Ruang Keadaan. Institut Teknologi Sepuluh Nopember
Betuk Koik Persm Rug Ked Istitut Tekologi Sepuluh Nopember Pegtr Mteri Betuk Koik Observble Betuk Koik Jord Cotoh Sol Rigks Ltih Asesme Pegtr Mteri Cotoh Sol Ltih Rigks Pd bgi ii k dibhs megei Persm Ked
TEORI PERMAINAN. Aplikasi Teori Permainan. Strategi Murni
TEORI PERMAINAN Apliksi Teori Peri Lw pei (puy itelegesi yg s) Setip pei epuyi beberp strtegi utuk slig eglhk Two-Perso Zero-Su Ge Peri deg pei deg peroleh (keutug) bgi slh stu pei erupk kehilg (kerugi)
METODE NUMERIK. Sistem Persamaan Linier (SPL) (1) Pertemuan ke 5. Rinci Kembang Hapsari, S.Si, M.Kom
METODE NUMERIK Pertemu ke 5 Sistem Persm Liier (SPL) () Rici Kemg Hpsri, S.Si, M.Kom www.rkhcdemy.com/wp Represetsi SPL Betuk umum persm lier deg peuh Dim :,, : koefisie dri persm, d,,..., merupk peuh.
Bab 3. Penyelesaian Sistem Persamaan Linier (SPL)
Bb. Peelesi Sistem Persm Liier (SPL) Yuli Setiowti Politekik Elektroik Negeri Surb 7 Topik Defiisi SPL Betuk Mtrik SPL Augmeted Mtrik Peelesi SPL Opersi-opersi Dsr (Elemetr Opertios) Sistem equivlet Opersi
STATISTIK. Diskusi dan Presentasi_ p.31
STATISTIK Diskusi d Presetsi_ p.31 No.1 Tetuk populsi d smpel yg mugki jik kit melkuk peeliti tu pegmt tetg kejdi-kejdi erikut:. Jeis-jeis ik yg hidup di terumu krg. Wh peykit demm erdrh di kot Mlg, d
BILANGAN TETRASI. Sumardyono, M.Pd
BILAGA TETRASI Sumrdyoo, M.Pd Megp Tetrsi? Di dlm ritmetik tu ilmu berhitug, opersi hitug merupk kosep yg mt petig bhk mugki sm petigy deg kosep bilg itu sediri. Tp kehdir opersi hitug, mk tmpky musthil
Modul 8. (Pertemuan 12 s/d 16) DERET FOURIER
Modul 8. (Pertemu s/d 6) DERET FOURIER 8. FUNGSI PERIODIK DAN FUNGSI KONTINU TERPOTONG Defiisi Fugsi f diseut fugsi periodik il terdpt p > sedemiki sehigg utuk setip erlku f ( p) f ( ). Nili p > terkecil
SOAL UJIAN AKHIR MATEMATIKA INFORMATIKA 4 (A & B) Dosen: Dr. Asep Juarna Jumlah Soal: 3 Uraian Tanggal Ujian: 02/03/12 Waktu Ujian: 2 jam
SOAL UJIAN AKHIR MATEMATIKA INFORMATIKA 4 A & B Dose: Dr. Asep Jur Jumlh Sol: Uri Tggl Uji: // Wktu Uji: jm jik. Solusi t dlh: t + log, yg dpt dibuktik sbb: t jik t t + [t/ + ] + t/ + t/4 + t/8 + 4 t/
n 1 dengan memasukkan beberapa input yang terdapat pada GUI. Sebagai contoh bentuk tampilan untuk interface satu layer seperti di bawah ini.
Dri lyout tmpil wl dits diguk utuk memggil iterfce utuk berbgi mcm ksus yg disedik. Slh stu cotoh tmpil iterfce utuk kristl fotoik stu lyer periodik. deg memsukk beberp iput yg terdpt pd GUI. Sebgi cotoh
Bentuk umum persamaan aljabar linear serentak :
BAB III Pers Aljr Lier Seretk Betuk umum persm ljr lier seretk : x + x + + x = x + x + + x = x + x + + x = dim dlh koefisie-koefisie kost t, dlh kosttkostt d dlh yky persm Peyelesi persm lier seretk dpt
Kajian Integral Cavalieri-Wallis dan Integral Porter-Wallis serta Kaitannya dengan Integral Riemann
J. Mth. d Its Appl. ISSN: 1829-605X Vol. 3, No. 2, Nov 2006, 81 93 Kji Itegrl Cvlieri-Wllis d Itegrl Porter-Wllis sert Kity deg Itegrl Riem Rt Sri Dewi d Sursii Jurus Mtemtik ITS Istitut Tekologi Sepuluh
DERET PANGKAT TAK HINGGA
DERET PANGKAT TAK HINGGA TEOREMA-TEOREMA PENTING TERKAIT DERET PANGKAT TEOREMA-TEOREMA PENTING. Itegrsi d diferesisi deret pgkt dpt dilkuk per suku, yitu: ( ) d p q d d ( ) q p d d ( ) ( ) d, d p, q Selg
Bila kita mempunyai suatu sistem persamaan linier 2x + 3y + 3z = 0 x + y + 3z = 0 x + 2y z = 0
LJBR MTRIKS Bil kit mempui sutu sistem persm liier + + z = + + z = + z = Mk koefisie tersebut di ts disebut MTRIKS, d secr umum dpt ditulisk sbb : Jjr bilg tersebut di ts disebut MTRIKS, d secr umum dpt
Barisan dan Deret Tak Hingga
Modul Bris d Deret Tk Higg Dr. Spti Whyuigsih, M.Si. M PENDAHULUAN odul ii meyjik kji tetg Bris d Deret Tk Higg. Kji tetg bris d deret memegg per sgt petig kre sebgi dsr utuk pembhs Itegrl Tetu. Bris d
MA1201 MATEMATIKA 2A Hendra Gunawan
MA1201 MATEMATIKA 2A Hedr Guw Semester II, 2016/2017 24 Februri 2017 9.6 Deret Pgkt Kulih yg Llu Meetuk selg kekoverge deret pgkt 9.7 Opersi pd Deret Pgkt Melkuk opersi pd deret pgkt yg dikethui jumlhy
1. bentuk eksplisit suku ke-n 2. ditulis barisannya sejumlah berhingga suku awalnya. 3. bentuk rekursi ...
Bris d Deret Defiisi Bris bilg didefiisik sebgi fugsi deg derh sl merupk bilg sli. Notsi: f: N R f( ) = Fugsi tersebut dikel sebgi bris bilg Rel { } deg dlh suku ke-. Betuk peulis dri bris :. betuk eksplisit
GEMATIKA JURNAL MANAJEMEN INFORMATIKA, VOLUME 7 NOMOR 1, DESEMBER 2005
GEMATIKA JURNAL MANAJEMEN INFORMATIKA, VOLUME 7 NOMOR, DESEMBER 25 PENCARIAN BOBOT ATRIBUT PADA MULTIPLE ATTRIBUTE DECISION MAKING (MADM) DENGAN PENDEKATAN OBYEKTIF MENGGUNAKAN ALGORITMA GENETIKA (Stdi
FUNGSI KARAKTERISTIK. penelitian ini akan ditentukan fungsi karakteristik dari distribusi four-parameter
IV. FUNGSI KARAKTERISTIK Pd bgi seljuty k dijbrk megei ugsi krkteristik. Pd peeliti ii k ditetuk ugsi krkteristik dri distribusi our-prmeter geerlized t deg megguk deiisi d kemudi k membuktik ugsi krkteristik
APLIKASI INTEGRAL TENTU
APLIKASI INTEGRAL TENTU Apliksi Itegrl Tetu థ Lus ditr 2 kurv థ Volume ed dlm idg (deg metode ckrm d cici) థ Volume ed putr (deg metode kulit tug) థ Lus permuk ed putr థ Mome d pust mss 1 2 1. LUAS DIANTARA
Aljabar Linear Elementer
Aljr Lier Elemeter MA SKS Silus : B I Mtriks d Opersiy B II Determi Mtriks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige
BAB VI SIFAT-SIFAT LANJUTAN INTEGRAL RIEMANN
BAB VI SIFAT-SIFAT LANJUTAN INTEGAL IEMANN Sift-sift Ljut Itegrl iem Teorem 6.1 Jik f [, ] d f [, ] deg < < mk f [, ]. Leih ljut f x dx f x dx + () f x dx f [, ] d f [, ], mislk () f x dx A 1 d () f x
Estimasi Koefisien Fungsi Regular- Dari kelas Fungsi Analitik Bieberbach-Eilemberg
Estimsi Koefisie Fugsi Regulr- Dri kels Fugsi Alitik Bieberbch-Eilemberg Oleh Edg Chy M.A Jurus Mtemtik FPMIPA UPI Abstrk Tulis ii mejelsk tetg estimsi koefisie fugsi regulr- yg dideretk, sebgi fugsi yg
juga dinyatakan sebagai a n atau a n n n 0,1, 2, 3,... Pada barisan dibagi menjadi barisan konvergen dan barisan divergen.
MATERI: ) Perbed bris d deret b) Defiisi d teorem tetg deret c) Deret suku positif d uji kovergesiy d) Deret hiperhrmois e) Deret ukur f) Deret ltertig d uji kovergesiy g) Deret kus d opersiy h) Deret
TRANSFORMASI-Z RASIONAL
TRANSFORMASI-Z RASIONAL. Pole d Zeo Zeo di sutu tsfomsi- dlh ili-ili deg X() = 0. Pole di sutu tsfomsi- dlh ili-ili deg X() =. Jik X() dlh fugsi siol, mk () Jik 0 0 d 0 0, kit dt meghidi gkt egtif deg
Saintek Vol 5. No 3 Tahun Penyelesaian Analitik dan Pemodelan Fungsi Bessel
Sitek Vol 5. No 3 Thu 1 Peyelesi Alitik d Peodel Fugsi Bessel Lily Yhy Jurus Mtetik Fkults MIPA Uiersits Negeri Gorotlo bstrk Dl klh ii k dilkuk peyelesi litik d peodel pers diferesil Bessel sert eujukk
BAB I SISTEM PERSAMAAN LINEAR
BAB I SISTEM PERSAMAAN LINEAR Sistem persm ditemuk hmpir di semu cg ilmu pegethu Dlm idg ilmu ukur sistem persm diperluk utuk mecri titik potog eerp gris yg seidg, di idg ekoomi tu model regresi sttistik
MATERI LOGARITMA. Oleh : Hartono
MATERI LOGARITMA Oleh : Hrtoo Mteri dispik pd Peltih Mpel Mtetik SMA/ SMK Progr Pscsrj UNY Yogykrt 01 Kopetesi Kopetesi yg dihrpk dicpi oleh pr pesert setelh ebc odul ii d egikuti peltih dlh pu : ehi kosep
PENGANTAR TEORI INTEGRAL
BAB 6 PENGANTAR TEORI INTEGRAL Oe c ot uderstd... the uiverslity of lw of ture, the reltioship of thigs, without uderstdig of mthemtics. There is o wy to do it. Richrd P FEYNMAN 6. Pedhul Dlm klkulus sisw
DERET PANGKAT TAK HINGGA
DERET PANGKAT TAK HINGGA DERET PANGKAT Defiisi deret pgkt : C ( ) c c ( ) c ( ) c ( )... o dim dlh vribel c d dlh kostt Perhtik bhw dlm otsi deret pgkt telh segj memilih ideks ol utuk meytk suku pertm
MA SKS Silabus :
Aljr Lier Elemeter A SKS Silus : B I triks d Opersiy B II Determi triks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige 7//7
LIMIT FUNGSI. lim lim. , c = konstanta 6. lim f(x) Penting : Persoalan limit adalah mengubah bentuk tak tentuk menjadi bentuk tertentu.
LIMIT FUNGSI Teoem. f() g() f() g( ). f().g() f(). g( ) f(). f() g() f() g( ). deg g() g() g(). c.f() c. f(), c = kostt. f() f() f() Betuk Tk Tetu Betuk di dlm mtemtik d mcm, yitu :. Betuk tedefiisi (tetetu)
Optimasi Waktu Penggantian Komponen Air Cycle Machine (ACM) Pesawat Terbang CRJ-1000 Menggunakan Metode Geometric Process
JURAL SAIS DA SEI ITS Vol. 5, o., (06) 337-350 (30-98 Prit) D-3 Optimsi Wktu Peggti Kompoe Air Cycle Mchie (ACM) Peswt Terbg CRJ-000 Megguk Metode eometric Process Puspit Permtsri, Hryoo, d Diz Fitr Aksiom
BAB V INTEGRAL DARBOUX
Itegrl Droux BAB V INTEGRAL DARBOUX Pd thu 1875, mtemtikw I.G. Droux secr kostruktif memodifiksi defiisi itegrl Riem deg terleih dhulu medefiisik jumlh Droux ts (upper Droux sum) d jumlh Droux wh (lower
TEKNIK BARU MENYELESAIKAN SISTEM PERSAMAAN DIFERENSIAL LINEAR ORDE SATU NONHOMOGEN
TEKNIK BARU MENYELESAIKAN SISTEM PERSAMAAN DIFERENSIAL LINEAR ORDE SATU NONHOMOGEN Yo Hedri 1* Asmr Krm Musrii 1 Mhsisw Progrm S1 Mtemtik Dose JurusMtemtik Fkults Mtemtik d Ilmu Pegethu Alm Uiversits Riu
SISTEM PERSAMAAN LINEAR. Systems of Linear Algebraic Equations
SISTEM PERSAMAAN LINEAR Systems of Lier Algebri Equtios Sistem Persm Lier Au Chpr, S.C., Cle R.P., 99, Numeril Methods for Egieers, d Ed., MGrw-Hill Book Co., New York. Chpter 7, 8, d 9, hlm. -9. Sistem
BARISAN DAN DERET BARISAN DAN DERET. U n. 2 n. 2 a = suku pertama = U 1 b = beda deret = U n U n 1. I. Perngertian Barisan dan Deret
BARISAN DAN DERET I. Pergerti Bris d Deret Bris bilg dlh pemet dri bilg sli ke bilg rel yg diurutk meurut tur tertetu. U III. Deret Geometri Ciriy : rsio tetp U = r S r = r S r = r = bilg sli U = suku
HASIL DAN PEMBAHASAN
HASIL DAN PEMBAHASAN Perumus Pedug Bgi θ Misl N dlh proses Poisso pd itervl [0 deg rt μ yg otiu mutl d fugsi itesits λ yg teritegrl lol. Utu setip himpu Borel terts B m μ( B Ε N( B λ( s ds
PENENTUAN ANUITAS JIWA BERJANGKA INDIVIDU KASUS KONTINU MENGGUNAKAN METODE WOOLHOUSE
PENENTUAN ANUITAS JIWA BERJANGKA INDIVIDU KASUS KONTINU MENGGUNAKAN METODE WOOLHOUSE Desi Rtsri, Nev Styhdewi, Shtik Mrth 3,,3 Uiversits Tjugpur, Potik Emil korespodesi : [email protected] Auits dlh sergki
A. Barisan Geometri. r u. 1).Definisi barisan geometri. 2). Suku ke-n barisan geometri
A. Bis Geometi ).Defiisi bis geometi Sutu bis yg suku-sukuy dipeoleh deg c meglik suku sebelumy deg sutu kostt (sio/pembdig) tu ili kost. Betuk umum bis geometi (deg suku wl d sio ) dlh : + + + +... +
APLIKASI PROGRAM MATLAB DALAM MEMECAHKAN KASUS FISIKA: DINAMIKA SISTEM MASSA DAN PEGAS (PRINSIP NILAI DAN VEKTOR EIGEN)
Jurl Pedidik Fisik Vol No, Mret 5 ISSN 55-5785 http://jourlui-luddicid/ideksphp/pedidikfisik APLIKASI PROGRAM MATLAB DALAM MEMECAHKAN KASUS FISIKA: DINAMIKA SISTEM MASSA DAN PEGAS (PRINSIP NILAI DAN VEKTOR
Representasi Matriks Graf Cut-Set Dan Sirkuit
PROSIDING ISBN : 978 979 65 6 Represetsi Mtriks Grf Cut-Set D Sirkuit A 5 Pdri Ferdis, Wmili Mhsisw S Mtemtik Jurus Mtemtik FMIPA UGM Dose Uiersits PGRI Yogykrt emil : [email protected] Dose Jurus Mtemtik
SILABUS MATA KULIAH TEKNOLOGI DAN MEDIA PEMBELAJARAN MATEMATIKA
SILABUS MATA KULIAH TEKNOLOGI DAN MEDIA PEMBELAJARAN MATEMATIKA Perguru Tiggi : Uiversits Syih Kul Fk/Progrm Studi : KIP/Pedidik Mtemtik Kode Mt Kulih : KMM 089 Nm Mt Kulih : Tekologi d Medi Pembeljr Mtemtik
Jurnal Teknologi Informasi. Volume 3, Nomor 1, Desember Pembina Ketua STMIK MURA
ISS 2085-6156 Jurl Teklgi Ifrmsi Vlume 3, mr 1, Desember 2011 Pembi Ketu STMIK MURA Tim Redksi Ketu Peyutig Prf. Dr. Ir. Hziri Smullh, M. Eg Sekertris Peyutig vi Lestri, M. Km Peyutig Adri At Tri Susil,
Seminar Tugas Akhir Juni 2017
KALIBRATOR SUHU DENGAN THERMOCOUPLE DAN THERMOHYGROMETER DILENGKAPI PENYIMPANAN DATA (Avili Kusum Bitri 1, Adjr Pudji 2, Syifudi 3 ) Jurus Tekik Elektromedik POLITEKNIK KESEHATAN KEMENTRIAN KESEHATAN SURABAYA
BAB XVIII. NOTASI SIGMA, BARISAN, DERET DAN INDUKSI MATEMATIKA
BAB XVIII. NOTASI SIGMA, BARISAN, DERET DAN INDKSI MATEMATIKA Notsi Sigm : dlh otsi sigm, diguk utuk meytk pejumlh beuut di sutu bilg yg sudh bepol. meupk huuf cpitl S dlm bjd Yui dlh huuf petm di kt SM
Dia yang menjadikan matahari dan bulan bercahaya, serta mengaturnya pada beberapa tempat, supaya kamu mengetahui bilangan tahun dan perhitunganya
Pemeljr M t e m t i k... Di g mejdik mthri d ul erch, sert megtur pd eerp tempt, sup kmu megethui ilg thu d perhitug (QS Yuus:5 ) Pedhulu us Sift : - us derh rt dlh ilg riil tk egtif - persegipjg=pjg ler
SISTEM PERSAMAAN LINEAR
http://istirto.stff.ugm..id SISTEM PERSAMAAN LINEAR Systems of Lier Algebri Equtios Sistem Persm Lier http://istirto.stff.ugm..id Au Chpr, S.C., Cle R.P., 99, Numeril Methods for Egieers, d Ed., MGrw-Hill
TAKSIRAN PARAMETER BENTUK, LOKASI DAN SKALA DARI DISTRIBUSI WEIBULL Siti Rukiyah 1*, Bustami 2, Sigit Sugiarto 2
TAKSIRAN PARAMETER BENTUK, LOKASI DAN SKALA DARI DISTRIBUSI WEIBULL Siti Ruiyh, Bustmi, Sigit Sugirto Mhsisw Progrm S Mtemti Dose Jurus Mtemti Fults Mtemti d Ilmu Pegethu Alm Uiversits Riu Kmpus Biwidy
BAB IV INTEGRAL RIEMANN
Itegrl Rie BAB IV INTEGRAL RIEMANN Utuk epeljri leih ljut tetg kosep itegrl Rie, k leih ik jik pec ehi eerp hl erikut. A. Prtisi Defiisi 4.1 Dierik itervl tertutup [, ], hipu terurut d erhigg P = { = x
Sub Pokok Bahasan Bilangan Bulat
MODUL MATERI PELAJARAN MATEMATIKA Sub Pokok Bhs Bilg Bult Kels : VII (tujuh) Seester: 1 (gjil) Kurikulu KTSP Disusu Oleh: Seri Rhwti, S.Pd NIP. 171101 001 001 MTsN SELAT KUALA KAPUAS TAHUN PELAJARAN 010/011
APLIKASI PROGRAM LINIER DALAM PEMBELIAN BAHAN BAKU
Semir Si d Tekologi ISSN : 693 6809 APLIKASI PROGRAM LINIER DALAM PEMBELIAN BAHAN BAKU Tri Herwti Jurus Tekik Idustri, Fkults Tekik, Uiversits Islm Sumter Utr Med Abstrk Pegmbil keputus pembeli bh bku
MENGHITUNG DETERMINAN SUATU MATRIKS DENGAN MENGGUNAKAN METODE CORNICE
ENGHITUNG DETERINN SUTU TRIKS DENGN ENGGUNKN ETDE RNIE Gusrisyh Sri Gemwti sli Sirit [email protected] hsisw Progrm S temtik Dose Jurus temtik Fkults temtik d Ilmu Pegethu lm Uiversits Riu Kmpus Biwidy
PENDAHULUAN. 3). Pembatas linear (linear constraints) Fitriani Agustina Jurusan Pendidikan Matematika UPI
PENDAHULUAN A. Pegerti Umum Pegerti progrm lier yg diteremhk dri Lier Progrmmig (LP) dlh sutu cr utuk meyelesik persol pegloksi sumber-sumber yg terbts di tr beberp ktivits yg bersig, deg cr yg terbik
TEOREMA DERET PANGKAT
TEOEMA DEET PANGKAT Kosep Dsr Deret pgkt erupk sutu etuk deret tk higg 3 + ( + + 3( +... ( disusik,, d koefisie i erupk ilg rel. Julh prsil utuk suku pert etuk di ts dlh s yg dpt ditulisk segi s ( + (
KETAKSAMAAN HERMITE-HADAMARD TERHADAP INTEGRAL RIEMANN-STIELTJES
JMP : Volume 4 Nomor 1, Jui 2012, hl. 59-68 KETAKSAMAAN HERMITE-HADAMARD TERHADAP INTEGRAL RIEMANN-STIELTJES Dey Ivl Hkim Deprteme Mtemtik Istitut Tekologi Bdug Bdug 40132, Idoesi [email protected] Hedr
Persamaan Linier Simultan
Persm Liier Simult Elimisi Guss Guss Jord Elimisi_GussJord Persm Liier Simult Persm liier simult dlh sutu etuk persm-persm yg ser ersm-sm meyjik yk vriel es. etuk persm liier simult deg m persm d vriel
Pengaturan Kecepatan Spindle pada Retrofit Mesin Bubut CNC Menggunakan Kontroler PI Gain Scheduling
JURNAL 1 TENI POMITS Vol. 1, No. 1, (212) 1-5 1 Pegtur ecept Spidle pd Retrofit Mesi Bubut CNC Megguk otroler PI Gi Schedulig Fikri Yog Perm, Dr.Ir. Moch. Rmeli Jurus Tekik Elektro, Fkults Tekologi Idustri,
RELASI REKURENSI. Heru Kurniawan Program Studi Pendidikan Matematika Jalan KHA. Dahlan 3 Purworejo. Abstrak
RELASI REKURENSI Heru Kuriw Progrm Studi Pedidik Mtemtik Jl KHA. Dhl Purworejo Abstrk Relsi Rekuresi merupk slh stu mslh dlm Mtemtik Diskrit. Sebuh relsi rekuresi medeiisik suku ke- dri sebuh bris secr
Contoh Soal log 9 = 2 b. 5 log 1 = log 32 = 2p. Jawab: log 9 = 2 9 = log 1 = 3 1 =
Ifo Mth Joh Npier (0 67). Cotoh Sol. Nytk logrit berikut dl betuk pgkt.. log 9 = log = log = p Jwb:. log 9 = 9 = log = = Suber: ctiques.krokes.free.fr Metode logrit pert kli dipubliksik oleh tetikw Scotldi,
