PERSAMAAN SCHRODINGER
|
|
|
- Verawati Atmadja
- 8 tahun lalu
- Tontonan:
Transkripsi
1 5 PRSMN SCHRODNGR uivsi ii brssui g sousi umum prsm 5. utu gombg hrmoi mooromti t trm m rh + yitu : Y = i ω t /v 5. tu Y = cos [ωt-/v] isi [ωt-/v] 5.. Prsm Schroigr Brgtug Wtu : iћ δψ/δt = -ћ /m δ Ψ/δ + δ Ψ/δy + δ Ψ/δz + V,y,zΨ 5.6 B. Prsm Schroigr T Brgtug Wtu Ψ = i/ћt-p = i/ћt ip/ћ Ψ = Ψ i/ћt 5.7 g Ψ = ip/ћt. Ji Ψ mrup pri ri fugsi gombg brgtug wtu i/ћt fugsi gombg brgtug p uu Ψ.. Subtitusi prsm 5.7 m prsm 5.5 m iproh: i i / i / t m i / t v i / t m v tu m V 5.8 m V 5.9
2 C. pisi Prsm Schroigr P Prmsh Srh utu Ksus Stu Dimsi.. Prti Bbs Fr Prtic. Proto i Dm Siotro V V= Gmbr 5. Grfi rgi prti bbs m mis : m m Sousiy h : u mugi yitu :. Prti brgr B = i i m ; g i rgi prtiy ih : m i = i m i = i tu : = m Kostt ormissi pt ittu sbgi briut : Ji pjg its prti itu
3 i i = = = M prsm y h : ψ = i g m Ψ,t = ψ. ψt = i i h t Bi iyt m vrib gombg smuy : = hυ m Ψ,t = i t Hrg rt-rt ri vrib momtumy : ˆ i i i rgi prti pt icri sbgi briut : Subsitusi ψ = i m prsm Schroigr m i = i m i i i m. Prti brgr iri
4 = Ψ = B i Dg cr yg sm, ttuh : B b ψ,t c <P> ostt ormissi B pt icri sbgi briut : Ψ = B i ; = b i i, t i i i i t i h c <P> =.? t i t i t ˆ i i i =? 5
5 6 m i m m i i i i i. Prti m K Trit Bou Stts. tro-tro Kousi yg Br i Prmu ogm t : Gmbr 5. Grfi rgi tro p prmu ogm Drh : < V = ; rgi prti Prsm schroigry ih: i i m mis m m : Drh ; V V
6 V = V, < V m V Mis m : V m V m V - Sousi ih C + D Fugsi yg iigi ih fugsi gombg bru bi : im M C = ri D i i B i : < = D ; Sousi ri fugsi gombg yg iproh msih trputus i = t otiu m, it gu rumus pymbug tu prsm otiuits. = +B=D... i B = - D... Dri u prsm trsbut pt ittu hrg ostt,b D +B=D - + B=- D i i B = - D i i B = - D + +i + -i B= 7
7 +i = -i B i B= i D = +B=D i i + i B = - D i i B = - D i i B = - D + i =i - D D = i i i i i ; i i ; b. Nutro yg mcob mps iri ri iti V V Gmbr 5. Grfi rgi Nutro Drh : < V = ; rgi prti Prsm schroigr ih : 8
8 m m m mis : i i Drh > V=V ;rgi >V Prsm schroigry : m V Mis : m V h m V h m V h i i C D Syrt gombg yg bru bi : i C D= i i B ; i C ; Prsm otiuitsi = gr fugsi gombg trsbut brsimbug: = +B=C - B= C K - B= C - B= C + = + C 9
9 C= i i i ; i i ; c. Prti α yg Mcob Mps Diri ri Brrir Couomb V Gmbr 5. Grfi rgi Prti α Drh ; < V= rgiy <V Prsm schroigry : V m m Drh = g = V= ; << m Prsm schroigry : V m m V g = m V i i = C D Drh ; > 5
10 V= Prsm schroigry : m V i i = F G m P rh ii, prtiy mrup prti bbs rtiy ti ssutu yg mybb prti utu iptu mbi ji G= i = F = C F i i ; B D i ; ; Prsm trsbut msih trputus i = = m igu prsm otiuits: = = +B=C+D... i -i B= C- D... C C D D F i i F i..... Dri mpt prsm trsbut pt icri ostt,b,c,d F. Dri prsm : +B=C+D i i +i B= C-i D i -i B= C- D i -i B= C- D + Dri prsm i =i + C+i + D...5 5
11 C + D - = F i i i C +i D - = i F i C D - = i F i C D - = i F i i - C = -i - D D D i i i i C.. C....6 Subsitusi 6 5 : i C i i i i C i i i i i i i i i i C C...7 Subsitusi 7 6 : i i D i i i i i....8 Subsitusi 7 8 : i i F F i i i i i i i i i i i i i i i i i Subsitusi 7 8 B = C + D i i i i i i i i i i i i F i F i 5
12 5 i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i m prsm ri prti trsbut ih ; ; ; i i i i i i i i i i i i i i i i i i i i i i i i i i i. tro yg Dihmbur Oh tom yg Trioissi Ngtif
13 V Gmbr 5.5 Grfi rgi tro yg ihmbur oh tom trioissi gtif Drh ; < V= Prsm Schroigry, V m m = i i g = m B Drh ; << V=V rgiy >V Prsm schroigry : m V m m V V i i = C D g = m V Drh ; > V= Prsm Schroigry, m 5
14 m i i = F G g = m P rh ii prti iggp sbgi prti bbs shig G= i = F m prsm y ih = C F i i ; B D i ; ; Prsm trsbut msih trputus i = = m iguh prsm otiuits : = = +B=C+D... -i B= C- D... C i C D D F i i F i..... Mcri ostt,b,c,d & G. Dri prsm : +B=C+D i +i B= C-i D -i B= C- D -i B= C- D + i =i + C+i + D...5 Dri prsm : C + D - = F i i i C +i D - = i F i C D - = i F i C D - = i F i 55
15 56 i - C = -i - D i i D C i i D Subsitusi 6 5 :...7 i i i i i C C i i i i i C i i i C i i Substitusi 7 6, iproh : 8... D i i Substitusi 7 8, iproh : F i i i Subsitusi 7 8 B = C + D B i i i
16 57 i i i i i i i i i i i i i i ; ; ;. Nutro yg trit m iti Gmbr 5.6 Grfi rgi utro yg trit m iti Drh ; < V=V ; <V Prsm Schroigry, V m m V = B g mrp syrt fugsi bru bi yitu im mti gtif t higg m ii fugsi hrus brhigg, m hrush B = shigg sousi irh stu ih = g = m V Drh ; << V V V=
17 V= Prsm Schroigry, m V m i i = C D g = m Drh ; > V=V rgiy <V Prsm schroigry : V m m V = F G Syrt fugsi bru bi : F = G ; < im o Ψ = C D i i ; << G ; > Fugsi trsbut msih trputus i titi = = m igu prsm otiuits : = = = C+D... -= i C i D... 58
18 C i C D D G i G i Mcri ostt,c,d G. Dri prsm = C + D..... i i = i C-i D = i C i D -= i C-i D + Subsitusi 5 C = D C C C i i i i i i i Subsitusi 5 6 i - =i D i D i i i i i i i G G i i i i i i ; Ψ = i i i i i i i i i i i i ; ; f. Mou Gs yg Trprgp i Dm Kot 59
19 V X Gmbr 5.7 Grfi rgi prti m ot Kr bsr iig potsiy t higg, m prti ti mmpuyi pug utu oct rh < - > brrti, sousiy hy trt i rh g V =. Prsm Schroigry : m V m = g = m i i B tu Ψ = cos + i si + B cos i si = + B cos + i - B si = C cos + D si g C = + B D = i - B Diiht ri sousiy, u mugi yitu :. Ψ = C cos ; D= Fugsi gombg yg ipiih hrus mmuhi syrt bts: Ψ- = Ψ = Ψ- = Ψ = C cos - = C cos = C cos - = C cos = Ku syrt suh trpuhi, m icri hrg yitu : 6
20 C cos = Cos = π/ g =,,5,7, big gji m C cos Hrg C pt icri g mormissi fugsi trsbut : C cos rgiyyitu : m m m cos C g: biggji cos g big gji cos 8m cos. ψ = D si ; C= Fugsi gombg yg ipiih hrus mmuhi syrt bts: Ψ- = Ψ = Ψ- = Ψ = D si = D si = -D si = D si = Si = si = Ku syrt suh trpuhi, m icri hrg, yitu : D si = si = = π = π/, g : =,,,,,.. 6
21 6 D si Kostt D iproh g cr mormissi fugsi trsbut : biggp biggp m biggp g m m m rgiyyitu D D ' ; ' si ; ' ',,,,... : 8 si si : si si Prsm ri mou yg trprgp m ot tryt mmpuyi prits gji gp, g rgi m Utu = = 9
22 cos h = m si h = m cos Gmbr 5.8 rgi prti m ot p brbgi or g. Mou Ditomi yg Brvibrsi Mmbtu Ositor Hrmoi Srh V - Gmbr 5.9 Grfi rgi Ositor Hrmoi Srh Mou Ditomi Prsm Schroigry ih : m m m 6
23 mis : m m mis : m m mis : g : m m Sousi ri prsm sh stuy yitu g ti tri & rror. Kit piih smbrg fugsi im fugsi yg ipiih hrus mmuhi syrt fugsi bru bi, yiutu: im Mis fugsi smbrg itu ih :.... Diuji : im ipuhi Substitusi prsm prsm : 6
24 65... Prsm ii im prsm Hrmit Sousi ri prsm Hrmit icri g cr rt ijbr m btu rt sbgi briut : b Substitusi prsm 5 prsm : tu scr umum pt iugp sbgi briut :
25 g : r tu :, m:,,,,... Utu bsr tu mti : Brrti u sousi, yitu : gp... gji Prbig tr u suuy yitu Ji, rt trsbut mmpuyi u simptoti utu suruh rtg sbig g : tu... 6 Substitusi prsm 6 prsm 5: Bi iuji g : im brrti sh Utu mgtsi h trsbut, m iu cr g mgubh rt mji btu poiom yitu g mu pmotog suu rt. Mis rtg hrg ti smpi tu iproh bi tpi smpi trttu, mis smpi m tu : m: Kr =,,,, it gti sj g
26 Substitusi prsm 7 g mggti Hrmit H : g poiomi H H H iht prsm : mji H : Dg : H H H H g : m Sousiy yitu : H g = ostt pt icri sbgi briut :!! ; m! ; m. 67
27 D. Rpt Probbiits. Proto i m brs siotro Ksus i i Ksus i i : Gmbr 5. Sts grfi rpt probbiits sbgi fugsi posisi. tro-tro Kousi yg Br i Prmu ogm i i i i i i i i i i i i i i 68
28 69 i i i i : Gmbr 5. Sts grfi hubug rpt probbiits utro ousi trhp posisiy. Nutro yg Mcob Mps Diri ri ti i i i i i i i i Gmbr 5. Sts grfi hubug rpt probbiits utro yg mps iri ri iti trhp posisiy
29 7. Prti yg Mcob Mps Diri ri Potsi Couomb i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i Gmbr 5. Sts grfi probbiits prti 5. tro yg ihmbur oh io yg trioissi gtif
30 7 i i i i i i i i i i i i i i i i i i i i i i i i i i Gmbr 5. Sts grfi probbiits tro yg ihmbur io 6. Nutro yg trit m iti
31 7 i i i i i i i i i i Grfiy : Gmbr 5.5 Sts grfi probbiits utro m iti 7. Mou gs yg trprgp m ot gp bi tu gji bi. ; si :. ; cos Gmbr 5.6 Sts grfi probbiits prti m ot 8. Mou itomi yg brvibrsi mmbtu ositor srh +
32 Gmbr 5.7. Sts grfi probbiits ositor hrmoi srh Mou itomi 7
SOAL-SOAL OLIMPIADE MATEMATIKA DAN PENYELESAIANNYA
SOL-SOL OLIMPIDE MTEMTIK DN PENYELESINNY. ui uu sip ilg rl, rlu! ui :. ui uu sip ilg rl, g rlu ui :! : u il sgi M GM im M g rihmi M sg GM g Gomri M.. ui uu sip ilg posii,, rlu ui :!. ui uu sip ilg rl,
FUNGSI EKSPONENSIAL DAN FUNGSI LOGARITMIK
M AT E M AT I K A E K O N O M I FUNGSI EKSPONENSIAL DAN FUNGSI LOGARITMIK TO N I BAKHTIAR I N S TITUT P ERTA N I A N BOGOR 2 0 2 Pgkt Jik sutu bilg diklik diri sdiri sbk kli mk ditulis Bilg disbut kspo
ANALISIS FREKUENSI SINYAL DAN SISTEM
AALISIS FREKUESI SIYAL DA SISTEM AALISIS FREKUESI SIYAL DA SISTEM Alisis Siyl dlm Sptrum Frusi Alisis frusi siyl wtu otiu Alisis frusi siyl wtu disrit Sift-sift trsformsi Fourir Domi frusi sistm LTI Sistm
SISTEM PENGOLAHAN ISYARAT. Kuliah 4 Transformasi Fourier
TKE 403 SISTEM PENGOLAHAN ISYARAT Kulih 4 Trsformsi Fourir Bgi I Idh Susilwi, S.T., M.Eg. Progrm Sudi Tkik Elkro Fkuls Tkik d Ilmu Kompur Uivrsis Mrcu Bu Yogykr 009 KULIAH 4 SISTEM PENGOLAHAN ISYARAT TRANSFORMASI
ISYARAT DAN SISTEM Bab 4 Deret Fourier Untuk Isyarat Periodik
KE 5 ISYARA DA SISEM Bb Dr Fourir Uu Isyr Priodi Idh Susilwi, S.., M.Eg. Progrm Sudi i Elro Fuls i d Ilmu Kompur Uivrsis Mrcu Bu Yogyr 9 79 B A B I V DERE FOURIER UUK ISYARA PERIODIK uu Isrusiol. Umum
Analisa Frekuensi Sinyal dan Sistem
Alis Frusi Siyl d Sistm Alisis frusi siyl wtu otiu Alisis frusi siyl wtu disrit Sift-sift trsformsi Fourir Domi frusi sistm LT Sistm LT sbgi filtr Pristiw Disprsi Alisis Frusi wto 67 Fruhofr 787 Kirhoff
Deret dan Transformasi Fourier
Dr d rsformsi Fourir Risuri Hidy, Jurus i Elro d ologi Iformsi, F UGM, gri gyogyr Hdiigr 558, IDOESIA [email protected] ([email protected] Dlm ulis ii dijls domi frusi uu isyr priodis d opriodis yg mmpuyi
Mr.Alex Hu Method Halaman 1. Gunakan info : 1. Uan 2004/P-7/No.13 A. 180 B. 190 C. 200 D. 210 E. 220
. 00/P-7/No. 0 Nili dri ( 0 )... A. 80 B. 90 C. 00 D. 0 E. 0 Gu ifo : 0 ( 0 ) = = =0 = (.+0)+.+0)+...+(.0+0) = + +...+0 Yg terhir ii merup deret ritmeti deg : = b = = = 0 ( ( )b ) 0 (. ( 0 ( 9. ) ( ( 0
HASIL DAN PEMBAHASAN
HASIL DAN PEMBAHASAN Perumus Pedug Bgi θ Misl N dlh proses Poisso pd itervl [0 deg rt μ yg otiu mutl d fugsi itesits λ yg teritegrl lol. Utu setip himpu Borel terts B m μ( B Ε N( B λ( s ds
Eliminasi Gauss Gauss Jordan
Persm Liier Simult Elimisi Guss Guss Jor Persm Liier Simult Persm liier simult lh sutu betuk persm-persm p yg secr bersm-sm meyjik byk vribel bebs. Betuk persm liier simult eg m persm vribel bebs pt itulisk
JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER 1
FITRIANA RICHA HIDAYATI 7 46 Dose Pembimbig M. ARIEF BUSTOMI, M.Si Surby, Jui JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER Alis disesuik deg geometri
IDENTIFIKASI PARAMETER SISTEM PADA PLANT SIMULATOR SECARA ON-LINE
IDENIFIKASI PARAMEER SISEM PADA PAN SIMUAOR SECARA ON-INE Olh : Nimh Dwi Idriti F 5 Jurus i Eltro Fults i Uivrsits Dipogoro Jl. Prof. H. Sudrto, S.H mblg, Smrg E-mil : [email protected] Abstr Idtifisi sistm
Nuryanto,ST.,MT. Integral merupakan operasi invers dari turunan. Jika turunan dari F(x) adalah F (x) = f(x), maka F(x) = f(x) dx.
Nuryto,ST.,MT d c. INTEGRAL TAK TENTU KONSEP DASAR INTGRAL f. ALJABAR INTEGRAL f. TRIGONO CONTOH SOAL SOAL LATIHAN UJI KOMPETENSI Itegrl merupk opersi ivers dri turu. Jik turu dri F dlh F = f, mk F = f
JURNAL MATEMATIKA DAN PEMBELAJARANNYA 2016 VOLUME 2, NO. 1. ISSN PENERAPAN FUNGSI GAMMA DALAM PEMBUKTIAN 0! = 1
JURNAL MATEMATIKA DAN PEMBELAJARANNYA 6 VOLUME, NO.. ISSN -99 PENERAPAN FUNGSI GAMMA DALAM PEMBUKTIAN! = Amr Hs Dos STKIP Pmg Idosi Mkssr 85 557 6956, E-mil: [email protected] ABSTRAK Pmkti! = dt dilkk dri
KONVERGENSI DAN STABILITAS SOLUSI PERSAMAAN LAPLACE PADA BATAS DIRICHLET. Lasker P. Sinaga. Abstract. terdapat y0
99 KONVERGENSI DAN STABILITAS SOLUSI PERSAMAAN LAPLACE PADA BATAS DIRICHLET Lskr P. Sig Abstrct Prsm lplc dlh slh stu btuk prsm diffrsil tip liptik yg dpt dislsik dg mtod pmish ribl. Mtod pmish ribl mmbut
PENERAPAN PERSAMAAN SCHRODINGER PADA PERMASALAHAN PARTIKEL DALAM KEADAAN TERIKAT (BOUND STATES) UNTUK TIGA DIMENSI
ENEAAN ESAMAAN SHODINGE ADA EMASAAHAN ATIKE DAAM KEADAAN TEIKAT (BOUND STATES) UNTUK TIGA DIMENSI A. At Hg (Mslh Gy Stl). Hlt Nl Eg ^ H ^ p ^ z. (7.) s Schg yg bt g sst bup hg t tu lh: ^ p ^ z E (7.) tu
Ringkasan Limit Fungsi Kelas XI IPS 1 NAMA : KELAS : theresiaveni.wordpress.com
Riks Limit Fusi Kels XI IPS NAMA : KELAS : theresivei.wordpress.com Riks Limit Fusi Kels XI IPS LIMIT FUNGSI Limit dlm kt-kt sehri-hri: Medekti hmpir, sedikit li, tu hr bts, sesutu y dekt tetpi tidk dpt
BARISAN DAN DERET A. POLA BILANGAN B. BARISAN BILANGAN. Contoh Soal
BARIAN DAN DERET A. POLA BILANGAN Bergi jeis ilg yg serig it pergu mempuyi pol tertetu. Pol ii serig digu dlm meetu urut / let ilg dri seumpul ilg yg ditetu, cotoh ilg gjil e-5 dri ilg :,, 5, 7, yitu 9.
( ) ( ) ( ) ( ) ( ) 1 tan = 1 tan Diketahui 8. a. Tentukan nilai tan (a + b + c) Jawab : tan( )tan
Diethui t t, t Tetu ili t Jw : t t t t t t t t t t,, lh ilg rel g memeuhi persm : Tetu ili! Jw : Misl v u M : tu Ji u tu u u u uv u v v u Diethui > > Tetu ili! Jw : > > Sustitusi e ji Ar-r persm lh,, Ji
mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x
B 4. Peerp Itegrl BAB 4. PENGGUNAAN INTEGRAL 4.. Lus re dtr Perhtik derh di wh kurv y = f () di tr du gris tegk = d = di ts sumu, deg f fugsi kotiu. Seperti pd s medefiisik itegrl tertetu, kit gi itervl
3. LIMIT DAN KEKONTINUAN
. LIMIT DAN KEKONTINUAN . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti
SOAL UJIAN AKHIR MATEMATIKA INFORMATIKA 4 (A & B) Dosen: Dr. Asep Juarna Jumlah Soal: 3 Uraian Tanggal Ujian: 02/03/12 Waktu Ujian: 2 jam
SOAL UJIAN AKHIR MATEMATIKA INFORMATIKA 4 A & B Dose: Dr. Asep Jur Jumlh Sol: Uri Tggl Uji: // Wktu Uji: jm jik. Solusi t dlh: t + log, yg dpt dibuktik sbb: t jik t t + [t/ + ] + t/ + t/4 + t/8 + 4 t/
x = Tegangan yang diterapkan, kg/mm 2 y = waktu patah, jam
INTERPOLASI Pr resw d hli ilmu lm serig beerj deg sejumlh dt disrit g umum disji dlm betu tbel. Dt didlm tbel mugi dieroleh dri hsil egmt dilg hsil eguur dilbortorium tu tbel g dimbil dri buu-buu cu. Cotoh
BAB 12 METODE SIMPLEX
METODE ANAISIS PERENCANAAN Mteri 9 : TP 3 SKS Oleh : Ke Mrti Ksikoe BAB METODE SIMPE Metode Simplex dlh metode pemrogrm liier yg mempuyi peubh (vrible) byk, sehigg dimesiy lebih dri 3. Metode simplex dpt
BAB I DERET DAFTAR ISI
DAFTAR ISI BAB I DERET BAB II BIANGAN KOMEK BAB III ANAISIS VEKTOR BAB IV ANAISIS KOMEK BAB V TRANSFORMASI AACE BAB VI ERSAMAAN DIFERENSIA BAB VII DERET FOURIER BAB VIII FUNGSI GAMMA BETA DAN INTEGRA EITIK
DIFERENSIASI. dy dx nx e kx. e x. ke a x ln a 1. ln x. y sinh x. sec x 2
DIFERENSIASI Kofi ifrnsil bku Tbl brikut mmut ftr itrnsil bku ng psti prnh n gunkn bbrp kli sblum ini. n k ln log f () tn cot c h h n n k k ln. ln sc c c. cot h h Bukti untuk u fungsi ng trkhir ibrikn
Soal-soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2008
Sol-sol d Pembhs Mtemtik Dsr SBMPTN - SNMPTN 8 y. Dlm betuk pgkt positif, ( y). A. ( + y ) ( y ) C. ( y ) E. - ( y ) B. - ( + y ) ( y ) D. ( y ) y ( y) y ( y) y y ( y) y (y). (y) y - ( y ) ( y + ) - (-y+
III. LIMIT DAN KEKONTINUAN
KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM PPDU TELKOM UNIVERSITY III. LIMIT DAN KEKONTINUAN 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi
Persamaan Linier Simultan
Persm Liier Simult Elimisi Guss Guss Jord Elimisi_GussJord Persm Liier Simult Persm liier simult dlh sutu etuk persm-persm yg ser ersm-sm meyjik yk vriel es. etuk persm liier simult deg m persm d vriel
Metode Pengikatan Kemuka dan Kebelakang
Metoe Peniktn Kemuk n Keelkn PERHITUNGAN KOORDINAT DENGAN METODE POLAR Utr P (X P,Y P )? Sumu X X 0,Y 0 X P = sin Y P = cos Timur Sumu Y Secr mtemtis pt itulis : X P = X 0 + sin Y P = Y 0 + cos PERHITUNGAN
MATEMATIKA DISKRIT FUNGSI 2 FUNGSI PEMBANGKIT (GENERATION FUNGTIONS) TITI RATNASARI, SSi., MSi. Modul ke: Fakultas ILKOM
MATEMATIKA DISKRIT Modul e: FUNGSI 2 FUNGSI PEMBANGKIT GENERATION FUNGTIONS Fults ILKOM TITI RATNASARI, SSi., MSi Pogm Studi TEKNIK INFORMATIKA www.mecubu.c.id Fugsi pembgit Fugsi pembgit digu utu meepesetsi
BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ. Definisi 3.1 Matriks Toeplitz adalah suatu matriks., dengan nilai,, dan indeks yang
BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ 3. Mtriks Toeplitz Defiisi 3. Mtriks Toeplitz dlh sutu mtriks [ t ; k, j = 0,,..., ] : T =, k j, deg ili,, d ideks yg diguk setip etriy
BAB III MODEL MATEMATIKA KEPENDUDUKAN
5 A III MODEL MATEMATIKA KEENDUDUKAN 3.1 Uu Filis Filis mup pfom podusi ul di sog i u slompo idividu yg pd umumy di pd sog i u slompo i. iu p uu filis yg dil olh o 1997 diy dlh Cud ih R CR u g lhi s, mup
Optik Moderen. S3 Fisika
O M S F I. Glg M II. I Glg M g M III. Rfl Rf Glg g IV. MI RLPIS ISOTROPIK V. MI RLPIS PRIOIK - 7. GLOMNG TRPNU LM MI RLPIS 8. OPTIK NONLINIR . P Mwll H J ρ 4 ρ u I. Glg M 5 6 ε μ H v l; H v g v g l l h;
SOLUSI SOAL ESSAY. No. 1 s.d 15. Jadi, uang tabungan Laila akan menjadi $6 kurang dari pada tabungan Tina setelah 13 minggu.
SOUSI SO ESSY No. s.. Solusi: Misly umur yh sy, iu sy, ik lki-lki sy sekrg lh x, y, z, mk x : y : z : 9 : x : z : x z. ( x 4 x 4 Jik : c :, mk c c x 36. ( ri ( (, kit memperoleh: x 36 x 36 z 3 Ji, ik lki-lki
VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang
VEKTOR 1. Pengertin Vektor dlh besrn yng memiliki besr (nili dn rh. Vektor merupkn sebuh rus gris yng P berrh dn memiliki pnjng. Pnjng rus gris tersebut dlh pnjng vektor. Rus gris dri titik P dn berujung
Metode Iterasi Gauss Seidell
Metode Itersi Guss Seidell Metode itersi Guss-Seidel : metode yg megguk proses itersi higg diperoleh ili-ili yg berubh. Bil dikethui persm liier simult: Berik ili wl dri setip i (i s/d ) kemudi persm liier
3. LIMIT DAN KEKONTINUAN
3. LIMIT DAN KEKONTINUAN 1 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi di =1, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp
Matematika Dasar INTEGRAL TENTU . 2. Partisi yang terbentuk merupakan segiempat dengan ukuran x dan f ( x k ) sebagai
Mtemtik Dsr INTEGRAL TENTU Pegerti tu kosep itegrl tetu pertm kli dikelk oleh Newto d Leiiz. Nmu pegerti secr leih moder dikelk oleh Riem. Mteri pemhs terdhulu yki tetg itegrl tk tetu d otsi sigm k kit
Penyelesaian Persamaan Linier Simultan
Peyelesi Persm Liier Simult Persm Liier Simult Persm liier simult dlh sutu betuk persm-persm yg ser bersm-sm meyjik byk vribel bebs Betuk persm liier simult deg m persm d vribel bebs ij utuk i= s/d m d
1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:
) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut
Definisi 1: Sebuah fungsi f(x) dikatakan periodic dengan periode T > 0, jika berlaku: f(x + T) = f(x) untuk samua x.
DERE FOURIER PENDAHUUAN Dlm ii k dihs pryt drt dri sutu ugsi priodik. Jis ugsi ii mrik kr srig mucul dlm rgi prsol isik, sprti gtr mkik, rus listrik olk-lik AC, glomg uyi, glomg Elktromgt, htr ps, ds.
SISTEM PERSAMAAN LINEAR. Nurdinintya Athari (NDT)
SISTEM PERSAMAAN LINEAR Nurdiity Athri (NDT) Sistem Persm Lier (SPL) Sub Pokok Bhs Pedhulu Solusi SPL deg OBE Solusi SPL deg Ivers mtriks d Atur Crmmer SPL Homoge Beberp Apliksi Sistem Persm Lier Rgki
3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar
. LIMIT DAN KEKONTINUAN INF8 Klkulus Dsr . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn
LIMIT DAN KONTINUITAS
LIMIT DAN KONTINUITAS Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti
Analisis Rangkaian Listrik
Sudry Sudirhm lisis Rgki Lisrik Mgguk rsrmsi urir Sudry Sudirhm, lisis Rgki Lisrik BB rsrmsi urir Ki lh mmplri ggp rkusi dri suu rgki. lisis dg mgguk rsrmsi urir yg k ki plri riku ii k mmprlus pmhm ki
BAB XVIII. NOTASI SIGMA, BARISAN, DERET DAN INDUKSI MATEMATIKA
BAB XVIII. NOTASI SIGMA, BARISAN, DERET DAN INDKSI MATEMATIKA Notsi Sig : dlh otsi sig, digu utu eyt ejulh beuut di sutu bilg yg sudh beol. eu huuf citl S dl bjd Yui dlh huuf et di t SM yg beti julh. Betu
1. bentuk eksplisit suku ke-n 2. ditulis barisannya sejumlah berhingga suku awalnya. 3. bentuk rekursi ...
Bris d Deret Defiisi Bris bilg didefiisik sebgi fugsi deg derh sl merupk bilg sli. Notsi: f: N R f( ) = Fugsi tersebut dikel sebgi bris bilg Rel { } deg dlh suku ke-. Betuk peulis dri bris :. betuk eksplisit
METODE NUMERIK PERTEMUAN : 5 & 6 M O H A M A D S I D I Q 3 S K S - T E K N I K I N F O R M A T I K A - S1
METODE NUMERIK S K S - T E K N I K I N F O R M A T I K A - S M O H A M A D S I D I Q PERTEMUAN : 5 & 6 PENYELESAIAN PERSAMAAN LINIER SIMULTAN S K S - T E K N I K I N F O R M A T I K A - S M O H A M A D
DERET FOURIER MATEMATIKA FISIKA II JURUSAN PENDIDIKAN FISIKA FPMIPA UPI
DERET FOURIER MATEMATIKA FISIKA II JURUSAN PENDIDIKAN FISIKA FPMIPA UPI PENDAHUUAN Dlm ii k dihs uri drt dri sutu ugsi priodik. Jis ugsi ii mrik kr srig mucul dlm rgi prsol isik, sprti gtr mkik, rus listrik
Interpolasi dan Turunan Numerik (Rabu, 2 Maret 2016) Hidayatul Mayyani G
Iterpolsi d Turu Numeri (Rbu Mret 6) Hidytul Myyi G55535 Outlie: Iterpolsi Lier - Poliomil Lgrge - Poliomil Newto - Vdermode Mtris - Ivers Iterpolsi - Iterpolsi Neville Glt Iterpolsi Turu Numeri Estrpolsi
BAB IV INTEGRAL RIEMANN
Itegrl Rie BAB IV INTEGRAL RIEMANN Utuk epeljri leih ljut tetg kosep itegrl Rie, k leih ik jik pec ehi eerp hl erikut. A. Prtisi Defiisi 4.1 Dierik itervl tertutup [, ], hipu terurut d erhigg P = { = x
Fungsi Khusus Lanjutan (PDB) JURDIK FISIKA FPMIPA UPI Bandung
Fugsi Kusus Ljut DB MATEMATIKA FISIKA II URDIK FISIKA FMIA UI Bug Fugsi Kusus betuk DB teriri ts : oioi Legere berbgi jeis Fugsi Besse berbgi betuk oioi Herite oioi Lgurre Seu oit i ts ieroe ri sousisousi
Ringkasan Materi Kuliah PERSAMAAN DIFERENSIAL LINEAR. 1. Pendahuluan Bentuk umum persamaan diferensial linear orde n adalah
Rigks Mtri Klih PERSAMAAN DIFERENSIAL LINEAR Pdhl Btk mm rsm dirsil lir ord dlh () dg koisi-koisi d () mrk gsigsi g koti d slg I d tk sti I Slg I disbt slg diisi (slg sl) dri rsm dirsil it Jik gsi () =
MA SKS Silabus :
Aljr Lier Elemeter A SKS Silus : B I triks d Opersiy B II Determi triks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige 7//7
Kalkulus 2. Deret Pangkat dan Uji Konvergensi. Department of Chemical Engineering Semarang State University. Dhoni Hartanto S.T., M.T., M.Sc.
Klkulus Deret Pgkt d Uji Kovergesi Dhoi Hrtto S.T., M.T., M.S. Deprtmet o Chemil Egieerig Semrg Stte Uiversity Eperimetl Deret Pgkt Urut d deret sequees d series). Urut gk merupk rgki gk tk terbts jumlh
( ) τ k τ HASIL DAN PEMBAHASAN. Perumusan Penduga Bagi θ
HASIL DAN PEMBAHASAN Perumus Pedug Bgi θ Mislk N dlh proses Poisso pd itervl [, deg rt µ yg kotiu mutlk, d fugsi itesits λ yg teritegrlk lokl Sehigg, utuk setip himpu Borel terbts B mk: µ ( B Ε N( B λ(
Deret dan Transformasi Fourier
5 Drpulic Npmr 3 www.drpulic.cm Dr d rrmi urir Dr urir Kii urir. Suu ugi pridi dp diuri mdi mpmp iu. Pguri ii id li dlh pry ugi pridi dlm dr urir. Ji dlh ugi pridi yg mmuhi pryr Dirichl, m dp diy gi dr
APLIKASI TEORI RESIDU DALAM PERHITUNGAN SUATU INTEGRAL. Oleh: Dian Devita Yohanie Dosen Jurusan Pend. Matematika FKIP UNP Kediri
APLIKASI TEOI ESIDU DALAM PEHITUNGAN SUATU INTEGAL Olh: D Dvt Yh Ds Jurus Pd. Mtmt FKIP UNP Kdr Abstr Fugs mpls mrup sub p bhs yg sgt ptg dlm mtmt trp. Tr rsdu mrup slh stu mtr mtmt dr fugs mpls. Dlm hl
MATERI: 7.1.Asal mula celah energi.model elektron hampir bebas. 7.2.Nilai energi celah.fungsi Bloch.Model Kronig-Peney.
BAB 7 PITA ENERI MATERI: 7.1.Asl mul celh energi.model eletron hmpir bebs. 7..Nili energi celh.fungsi Bloch.Model Kronig-Peney.Persmn sentrl INDIKATOR: Mhsisw hrus dpt : Menjelsn sl mul celh energi. Menggunn
Revisi JAWABAN Persiapan TO - 3
Revisi JAWAAN Persi TO - Mt IPS l l l l l l l Cr li: l l l U ulu sis lrit- eji sis k iseut u kli sl itu sis l l l l l l l l l l l Ar rl eiliki ili ksiu st = k = Mksiu & iiu rl (usi kurt) sti terji i suu
Bab 4: Sinyal dan Sistem di Domain Frekuensi
BAB 4 Siyl d Sitm di Dmi Bb 4: Siyl d Sitm di Dmi rui K Strum rui Sutu Siyl dt didmii mdi m-m iuidl tu il ml. Dg dmii mm itu, buh iyl dit dirrti dlm Dmi rui. Pd iyl ridi, dmii mdi m iuidl dibut Drt urir.
syarat atau nilai awal a, , dengan solusi umum pola barisan aritmetika dan a, solusi umum pola barisan aritmetika tingkat tiga
SUKU KE- BARISAN ARITMETIKA TINGKAT DUA, TIGA DAN EMPAT DENGAN PENDEKATAN AKAR KARAKTERISTIK Drs Sumro Imil, MP ABSTRAK Utu memeuhi eutuh lm pegemg pemhm terhp sustsi mteri ris ritmeti, ji ii memeri uri
DERET FOURIER FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN. Oleh :
DERET FOURIER Oleh : Nm :. Neti Okmyti 7..6). Reto Fti Amh 7..6). Feri Febrisyh 7..8) Kels : 6. Mt Kulih : Mtemtik jut Dose Pegsuh : Fdli, S.Si FAKUTAS KEGURUAN DAN IMU PENDIDIKAN UNIVERSITAS PGRI PAEMBANG
Aljabar Linear Elementer
Aljr Lier Elemeter MA SKS Silus : B I Mtriks d Opersiy B II Determi Mtriks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige
Prestasi itu diraih bukan didapat!!!
SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 00 TIM OLIMPIADE MATEMATIKA INDONESIA 00 Prestsi itu dirih ukn didpt!!! SOLUSI SOAL Bidng Mtemtik Disusun oleh : Olimpide Mtemtik Tk Kupten/Kot 00 BAGIAN PERTAMA.
Pertemuan ke-5 Persamaan Linier Simultan. 11 Oktober Dr.Eng. Agus S. Muntohar Department of Civil Engineering
Pertemu ke-5 Persm Liier Simult Oktober Metode Elimisi Guss (Gussi Elimitio) Metode Elimisi Gus Sutu metode utuk meyelesik persm liier simult dri [A][X][C] Du lgkh peyelesi peyelesi:: Elimisi mju (Forwrd
BARISAN DAN DERET BARISAN DAN DERET. U n. 2 n. 2 a = suku pertama = U 1 b = beda deret = U n U n 1. I. Perngertian Barisan dan Deret
BARISAN DAN DERET I. Pergerti Bris d Deret Bris bilg dlh pemet dri bilg sli ke bilg rel yg diurutk meurut tur tertetu. U III. Deret Geometri Ciriy : rsio tetp U = r S r = r S r = r = bilg sli U = suku
PENDAHULUAN. X dikatakan peubah acak kontinu, jika ada sebuah fungsi non negatif f, yang didefinisikan pada semua bilangan real, x (,
EUBAH ACAK KONTINU ENDAHULUAN diktkn puh ck kontinu, jik d suh ungsi non ngti, yng didinisikn pd smu ilngn rl,,, Mmpunyi sit hw untuk smrng himpunn ilngn rl B B d B Fungsi disut sgi ungsi kpktn plung Brp
III PEMBAHASAN. x x. 3.1 Analisis Metode Perhatikan persamaan integral Volterra berikut. x. atau (11)
III PEMBAHASAN 3 Alisis Metode Perhtik persm itegrl Volterr berikut y ( f( λ Ktyt ( ( (8 deg y( merupk fugsi yg k ditetuk sutu kostt f( fugsi sembrg yg dikethui d terdefiisi pd R d K(ty(t sutu fugsi yg
Lampiran A.1 Peta Kontur DAS Citarum Hulu
Lpir. Pet Kotr DS itr l W Sl j Keter Gbr Pet : Pet ii sl sliy :. e ls DS. spi e otlet j, seh slit t iliht secr st t t r erts. t ept br y jels ri otr hrs iplot l r erts, itp l beberp lebr. Dri br tersebt
II. TINJAUAN PUSTAKA. pasangan itu dengan operasi-operasi tertentu yang sesuai padanya dapat
3 II. TINJUN PUSTK. Sistm ilnn Komplks Sistm ilnn komplks dpt dinytkn scr orml dnn mnunkn konsp psnn trurut ordrd pir ilnn riil,. Himpunn smu psnn itu dnn oprsi-oprsi trtntu yn ssui pdny dpt didinisikn
Two-Stage Nested Design
Mteri #13 TIN309 DESAIN EKSPERIMEN Two-Stge Nested Design Nested design dlh slh stu ksus dri desin multi fktor dimn level dri slh stu fktor (misl: fktor B) serup tpi tidk identik untuk setip level yng
BARISAN DAN DERET. Jawaban : D a = 3, b = 2, U 10 = (a + 9b) U 10 = = 21. Jawaban : E a = 2,5 S ~ =
pge of SOAL Jumlh ke-0 dri bris :,, 7, 9,.dlh.. d. e. 7 9 Ebts 99 Sebuh bol jtuh dri ketiggi, meter d memtul deg ketiggi kli tiggi semul. D setip kli memtul berikuty, mecpi ketiggi kli tiggi ptul sebelumy.
NOTASI SIGMA, BARISAN, DERET DAN INDUKSI MATEMATIKA
NOTASI SIGMA, BARISAN, DERET DAN INDKSI MATEMATIKA 4. K i K i Notsi Sigm : 5. ( ± V i i i V i i ± dlh otsi sigm, digu utu meyt ejumlh beuut di sutu bilg yg sudh beol. meu huuf citl S dlm bjd Yui dlh huuf
Dosen Mata Kuliah Andhy Setiawan, M.Si
Dos M Kulh Adh Sw M.S Pdhulu Mu Um Prsm Mwll Prsm Glombg lromg Trsvrsls Glombg lromg Vor Pog d Kl rg Glombg lromg dlm Mdum Glombg dlm Mdum Koduf lro bbs dlm Koduor d Plsm Pmul d Pmbs Glombg lromg Huum
BAB II LANDASAN TEORI
BAB II ANDASAN TERI Tori dsr g diguk pd ugs khir ii, iu: ord kovrgsi, dr Tlor, mod Nwo d ord kovrgsi, mod hbshv- Hll d ord kovrgsi, vri mod hbshv-hll d ord kovrgsi, d ugsi kudrik.. rd Kovrgsi rd kovrgsi
Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII
Kesumwti Prodi Sttistik FMIPA-UII Mrch 25, 205 Sutu integrl tertentu b f (x)dx () diktkn wjr jik i memenuhi du syrt berikut: i. Bts integrsi dn b merupkn bilngn berhingg ii. fungsi f (x) terbts pd intervl
Lu r 2 r h v u, r Oh o r uu r Bu B Brw u hu 300 h u h Th Bu, D rh u r 30 r uh h - u u hu u f) ( f uju f U j S - uu ) (ooo Drh rh 999 Thu 22 Noor u cu
Lu r j r Th L Trh u Brju B r u Suruh r ru hu ru h Sur ru rrhru uu rrhru u hu f rcu r r rh hru o j rrhru rj o u u Brju u o rr B u, u r r ru - M r D r (MDL) Lu D r u for r o r rur u u Nu h u h, v r u uh,
IAH IAAH I H HAAH xaah I A b x2ah x23h I A 3 x23b H 2
GRMMR CONTEXT-FREE DN PRING entuk umum produksi CFG dlh :, V N, (V N V T )* nlisis sintks dlh penelusurn seuh klimt (tu sentensil) smpi pd simol wl grmmr. nlisis sintks dpt dilkukn mellui derivsi tu prsing.
PEMBAHASAN SOAL OSN MATEMATIKA SMP 2013 TINGKAT KABUPATEN
www.sip-osn.blogspot.com @Mret 0 PEMBAHASAN SOAL OSN MATEMATIKA SMP 0 TINGKAT KABUPATEN. B. x ( x ) ( x + )( x ) ( x ( ) )( x ) ( x + )( x )( x + )( x ) (d fktor) Tidk d penjelsn tentng fktor hrus bilngn
SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015
PAKET. Sit: SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN. ~ p q p ~ q. ~ p q~ p ~ q Jdi, igkr dri pert dlh Air sugi melup d kot tidk kejir tu eerp wrg kot tidk hidup mederit. []. Sit:. p q ~ q ~
Matematika SKALU Tahun 1978
Mtemtik SKALU Thun 978 MA-78-0 Persmn c + b + = 0, mempunyi kr-kr dn, mk berlku A. + = b B. + = c C. = c = c = c MA-78-0 Akr dri persmn 5 - = 7 + dlh A. B. C. 4 5 MA-78-0 Hrg dri log b. b log c. c log
BAB 7. LIMIT DAN LAJU PERUBAHAN
BAB 7. LIMIT DAN LAJU PERUBAHAN 7. LIMIT FUNGSI 7.. Limit fungsi di sutu titik Menggmbrkn perilku fungsi jik peubhn mendekti sutu titik Illustrsi: Dikethui f( ) f(), 3,30,0 3,030,00 3,003 3 f() = f() 3,000?
BAB 1 DERET TAKHINGGA
Di Kulih EL- Memi Tei I BAB DERET TAKHINGGA Bris Thigg Bris dlh susu bilg-bilg riil secr beruru. Perhi cooh beriu. ),, 8, 6, b),,,, 8 6 c),, 7,,, Secr umum, bris d diulis { },,, deg memeuhi ersm ereu.
A. Pusat Massa Suatu Batang
Perteu 7 Pust ss sutu Kepg, Setrod, d Teore Pppus A. Pust ss Sutu Btg Dskusk!. slk ss,,..., terletk pd tg pdt sgsg d ttk,...,,, d = jrk errh tr ss ke sutu ttk tetp 0 pd tg,,,...,. ss prtkel, oe prtkel
http://meetbied.wordpress.com SMAN Bone-Bone, Luwu Utr, Sul-Sel Bnyk keggln dlm hidup ini dikrenkn orng tidk menydri betp dektny merek dengn keberhsiln, st merek menyerh (Thoms Alf Edison) [RUMUS CEPAT
APLIKASI INTEGRAL TENTU
APLIKASI INTEGRAL TENTU Apliksi Itegrl Tetu థ Lus ditr 2 kurv థ Volume ed dlm idg (deg metode ckrm d cici) థ Volume ed putr (deg metode kulit tug) థ Lus permuk ed putr థ Mome d pust mss 1 2 1. LUAS DIANTARA
F E A S I B I L I T Y F A T T E N I N G B E E F C A T T L E W I T H D I F F E R E N T F E E D
F E A S I B I L I T Y F A T T E N I N G B E E F C A T T L E W I T H D I F F E R E N T F E E D IN C I B E U R E U M D I S T R I C T K U N I N G A N R E G E N C Y B y : T a t a n g R u s t e n d i T e d
BAB V INTEGRAL DARBOUX
Itegrl Droux BAB V INTEGRAL DARBOUX Pd thu 1875, mtemtikw I.G. Droux secr kostruktif memodifiksi defiisi itegrl Riem deg terleih dhulu medefiisik jumlh Droux ts (upper Droux sum) d jumlh Droux wh (lower
KATA PENGANTAR. Tugas akhir ini yang berjudul Algoritma Petkovšek untuk Persamaan
KT PENGNTR lhdulillh, puji suur hdirt llh SWT pulis up, ts rht d hidh-n g tlh diri, shigg pulis dpt lsi tugs hir ii. Suh r tulis ilih g gitu sdrh d juh dri spur. Tugs hir ii g rjudul lgorit Ptovš utu Prs
SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI. Prasetyo Budi Darmono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo
SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI Prsetyo Budi Drmoo Jurus Pedidik Mtemtik FKIP Uiversits Muhmmdiyh Purworejo Abstrk Persm lier dlm vribel 1, 2, 3,.. sebgi sebuh persm yg dpt diytk dlm
LOKALISASI ORE. Lucia Ratnasari Jurusan Matematika FMIPA UNDIP Jl. Prof. H. Soedarto, S.H, Semarang 50275
LOKALA OE Luci ti Juu Mtmtik FMPA UNDP Jl Pof H odto, H, mg 575 Abtct Lt b ocommuttiv ig d b multiplictiv ubt of Th ight lft ig of quotit do ot xit fo vy A cy coditio of xitc ight lft ig of quotit i ight
METODE NUMERIK. Sistem Persamaan Linier (SPL) (1) Pertemuan ke 5. Rinci Kembang Hapsari, S.Si, M.Kom
METODE NUMERIK Pertemu ke 5 Sistem Persm Liier (SPL) () Rici Kemg Hpsri, S.Si, M.Kom www.rkhcdemy.com/wp Represetsi SPL Betuk umum persm lier deg peuh Dim :,, : koefisie dri persm, d,,..., merupk peuh.
SISTEM PENGOLAHAN ISYARAT. Kuliah 3 Deret Fourier
TKE 43 SSTEM PENGOLAHAN SYARAT Kulih 3 Dr Fourir dh Susilwi, S.T., M.Eg. Progr Sudi Tkik Elkro Fkuls Tkik d lu Kopur Uivrsis Mrcu Bu Yogykr 9 KULAH 3 SSTEM PENGOLAHAN SYARAT DERET FOURER Pd pbhs ii k dijlsk
SISTEM KENDALI OTOMATIS Transformasi Laplace
SISTEM KENDALI OTOMATIS Trormi Lplc Op Loop/Clod Loop Sym Ipu/ Dird oupu Corollr Corol igl Acuor Acuig igl Pl Pl oupu Ipu/ Dird oupu + - Error igl Corollr Corol igl Acuor Acuig igl Pl Pl oupu Sor Iilh-iilh
KEPUTUSAN MENTERI PENDIDIKAN DAN KEBUDAYAAN REPUBLIK INDONESIA, NOMOR 009/M/2015 TENTANG
SALINAN KEPUTUSAN MENTERI PENDIDIKAN DAN KEBUDAYAAN REPUBLIK INDONESIA NOMOR 009/M/2015 TENTANG PENGHAPUSAN BARANG MILIK NEGARA DI LINGKUNGAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN
INTERPOLASI PERTEMUAN : S K S - T E K N I K I N F O R M A T I K A - S1 M O H A M A D S I D I Q
INTERPOLASI 3 S K S - T E K N I K I N F O R M A T I K A - S M O H A M A D S I D I Q PERTEMUAN : - SEBELUM-UTS Pegtr Metode Numerik Sistem Bilg d Keslh Peyji Bilg Bult & Pech Nili Sigiik Akursi d Presisi
