PERSAMAAN SCHRODINGER

Ukuran: px
Mulai penontonan dengan halaman:

Download "PERSAMAAN SCHRODINGER"

Transkripsi

1 5 PRSMN SCHRODNGR uivsi ii brssui g sousi umum prsm 5. utu gombg hrmoi mooromti t trm m rh + yitu : Y = i ω t /v 5. tu Y = cos [ωt-/v] isi [ωt-/v] 5.. Prsm Schroigr Brgtug Wtu : iћ δψ/δt = -ћ /m δ Ψ/δ + δ Ψ/δy + δ Ψ/δz + V,y,zΨ 5.6 B. Prsm Schroigr T Brgtug Wtu Ψ = i/ћt-p = i/ћt ip/ћ Ψ = Ψ i/ћt 5.7 g Ψ = ip/ћt. Ji Ψ mrup pri ri fugsi gombg brgtug wtu i/ћt fugsi gombg brgtug p uu Ψ.. Subtitusi prsm 5.7 m prsm 5.5 m iproh: i i / i / t m i / t v i / t m v tu m V 5.8 m V 5.9

2 C. pisi Prsm Schroigr P Prmsh Srh utu Ksus Stu Dimsi.. Prti Bbs Fr Prtic. Proto i Dm Siotro V V= Gmbr 5. Grfi rgi prti bbs m mis : m m Sousiy h : u mugi yitu :. Prti brgr B = i i m ; g i rgi prtiy ih : m i = i m i = i tu : = m Kostt ormissi pt ittu sbgi briut : Ji pjg its prti itu

3 i i = = = M prsm y h : ψ = i g m Ψ,t = ψ. ψt = i i h t Bi iyt m vrib gombg smuy : = hυ m Ψ,t = i t Hrg rt-rt ri vrib momtumy : ˆ i i i rgi prti pt icri sbgi briut : Subsitusi ψ = i m prsm Schroigr m i = i m i i i m. Prti brgr iri

4 = Ψ = B i Dg cr yg sm, ttuh : B b ψ,t c <P> ostt ormissi B pt icri sbgi briut : Ψ = B i ; = b i i, t i i i i t i h c <P> =.? t i t i t ˆ i i i =? 5

5 6 m i m m i i i i i. Prti m K Trit Bou Stts. tro-tro Kousi yg Br i Prmu ogm t : Gmbr 5. Grfi rgi tro p prmu ogm Drh : < V = ; rgi prti Prsm schroigry ih: i i m mis m m : Drh ; V V

6 V = V, < V m V Mis m : V m V m V - Sousi ih C + D Fugsi yg iigi ih fugsi gombg bru bi : im M C = ri D i i B i : < = D ; Sousi ri fugsi gombg yg iproh msih trputus i = t otiu m, it gu rumus pymbug tu prsm otiuits. = +B=D... i B = - D... Dri u prsm trsbut pt ittu hrg ostt,b D +B=D - + B=- D i i B = - D i i B = - D + +i + -i B= 7

7 +i = -i B i B= i D = +B=D i i + i B = - D i i B = - D i i B = - D + i =i - D D = i i i i i ; i i ; b. Nutro yg mcob mps iri ri iti V V Gmbr 5. Grfi rgi Nutro Drh : < V = ; rgi prti Prsm schroigr ih : 8

8 m m m mis : i i Drh > V=V ;rgi >V Prsm schroigry : m V Mis : m V h m V h m V h i i C D Syrt gombg yg bru bi : i C D= i i B ; i C ; Prsm otiuitsi = gr fugsi gombg trsbut brsimbug: = +B=C - B= C K - B= C - B= C + = + C 9

9 C= i i i ; i i ; c. Prti α yg Mcob Mps Diri ri Brrir Couomb V Gmbr 5. Grfi rgi Prti α Drh ; < V= rgiy <V Prsm schroigry : V m m Drh = g = V= ; << m Prsm schroigry : V m m V g = m V i i = C D Drh ; > 5

10 V= Prsm schroigry : m V i i = F G m P rh ii, prtiy mrup prti bbs rtiy ti ssutu yg mybb prti utu iptu mbi ji G= i = F = C F i i ; B D i ; ; Prsm trsbut msih trputus i = = m igu prsm otiuits: = = +B=C+D... i -i B= C- D... C C D D F i i F i..... Dri mpt prsm trsbut pt icri ostt,b,c,d F. Dri prsm : +B=C+D i i +i B= C-i D i -i B= C- D i -i B= C- D + Dri prsm i =i + C+i + D...5 5

11 C + D - = F i i i C +i D - = i F i C D - = i F i C D - = i F i i - C = -i - D D D i i i i C.. C....6 Subsitusi 6 5 : i C i i i i C i i i i i i i i i i C C...7 Subsitusi 7 6 : i i D i i i i i....8 Subsitusi 7 8 : i i F F i i i i i i i i i i i i i i i i i Subsitusi 7 8 B = C + D i i i i i i i i i i i i F i F i 5

12 5 i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i m prsm ri prti trsbut ih ; ; ; i i i i i i i i i i i i i i i i i i i i i i i i i i i. tro yg Dihmbur Oh tom yg Trioissi Ngtif

13 V Gmbr 5.5 Grfi rgi tro yg ihmbur oh tom trioissi gtif Drh ; < V= Prsm Schroigry, V m m = i i g = m B Drh ; << V=V rgiy >V Prsm schroigry : m V m m V V i i = C D g = m V Drh ; > V= Prsm Schroigry, m 5

14 m i i = F G g = m P rh ii prti iggp sbgi prti bbs shig G= i = F m prsm y ih = C F i i ; B D i ; ; Prsm trsbut msih trputus i = = m iguh prsm otiuits : = = +B=C+D... -i B= C- D... C i C D D F i i F i..... Mcri ostt,b,c,d & G. Dri prsm : +B=C+D i +i B= C-i D -i B= C- D -i B= C- D + i =i + C+i + D...5 Dri prsm : C + D - = F i i i C +i D - = i F i C D - = i F i C D - = i F i 55

15 56 i - C = -i - D i i D C i i D Subsitusi 6 5 :...7 i i i i i C C i i i i i C i i i C i i Substitusi 7 6, iproh : 8... D i i Substitusi 7 8, iproh : F i i i Subsitusi 7 8 B = C + D B i i i

16 57 i i i i i i i i i i i i i i ; ; ;. Nutro yg trit m iti Gmbr 5.6 Grfi rgi utro yg trit m iti Drh ; < V=V ; <V Prsm Schroigry, V m m V = B g mrp syrt fugsi bru bi yitu im mti gtif t higg m ii fugsi hrus brhigg, m hrush B = shigg sousi irh stu ih = g = m V Drh ; << V V V=

17 V= Prsm Schroigry, m V m i i = C D g = m Drh ; > V=V rgiy <V Prsm schroigry : V m m V = F G Syrt fugsi bru bi : F = G ; < im o Ψ = C D i i ; << G ; > Fugsi trsbut msih trputus i titi = = m igu prsm otiuits : = = = C+D... -= i C i D... 58

18 C i C D D G i G i Mcri ostt,c,d G. Dri prsm = C + D..... i i = i C-i D = i C i D -= i C-i D + Subsitusi 5 C = D C C C i i i i i i i Subsitusi 5 6 i - =i D i D i i i i i i i G G i i i i i i ; Ψ = i i i i i i i i i i i i ; ; f. Mou Gs yg Trprgp i Dm Kot 59

19 V X Gmbr 5.7 Grfi rgi prti m ot Kr bsr iig potsiy t higg, m prti ti mmpuyi pug utu oct rh < - > brrti, sousiy hy trt i rh g V =. Prsm Schroigry : m V m = g = m i i B tu Ψ = cos + i si + B cos i si = + B cos + i - B si = C cos + D si g C = + B D = i - B Diiht ri sousiy, u mugi yitu :. Ψ = C cos ; D= Fugsi gombg yg ipiih hrus mmuhi syrt bts: Ψ- = Ψ = Ψ- = Ψ = C cos - = C cos = C cos - = C cos = Ku syrt suh trpuhi, m icri hrg yitu : 6

20 C cos = Cos = π/ g =,,5,7, big gji m C cos Hrg C pt icri g mormissi fugsi trsbut : C cos rgiyyitu : m m m cos C g: biggji cos g big gji cos 8m cos. ψ = D si ; C= Fugsi gombg yg ipiih hrus mmuhi syrt bts: Ψ- = Ψ = Ψ- = Ψ = D si = D si = -D si = D si = Si = si = Ku syrt suh trpuhi, m icri hrg, yitu : D si = si = = π = π/, g : =,,,,,.. 6

21 6 D si Kostt D iproh g cr mormissi fugsi trsbut : biggp biggp m biggp g m m m rgiyyitu D D ' ; ' si ; ' ',,,,... : 8 si si : si si Prsm ri mou yg trprgp m ot tryt mmpuyi prits gji gp, g rgi m Utu = = 9

22 cos h = m si h = m cos Gmbr 5.8 rgi prti m ot p brbgi or g. Mou Ditomi yg Brvibrsi Mmbtu Ositor Hrmoi Srh V - Gmbr 5.9 Grfi rgi Ositor Hrmoi Srh Mou Ditomi Prsm Schroigry ih : m m m 6

23 mis : m m mis : m m mis : g : m m Sousi ri prsm sh stuy yitu g ti tri & rror. Kit piih smbrg fugsi im fugsi yg ipiih hrus mmuhi syrt fugsi bru bi, yiutu: im Mis fugsi smbrg itu ih :.... Diuji : im ipuhi Substitusi prsm prsm : 6

24 65... Prsm ii im prsm Hrmit Sousi ri prsm Hrmit icri g cr rt ijbr m btu rt sbgi briut : b Substitusi prsm 5 prsm : tu scr umum pt iugp sbgi briut :

25 g : r tu :, m:,,,,... Utu bsr tu mti : Brrti u sousi, yitu : gp... gji Prbig tr u suuy yitu Ji, rt trsbut mmpuyi u simptoti utu suruh rtg sbig g : tu... 6 Substitusi prsm 6 prsm 5: Bi iuji g : im brrti sh Utu mgtsi h trsbut, m iu cr g mgubh rt mji btu poiom yitu g mu pmotog suu rt. Mis rtg hrg ti smpi tu iproh bi tpi smpi trttu, mis smpi m tu : m: Kr =,,,, it gti sj g

26 Substitusi prsm 7 g mggti Hrmit H : g poiomi H H H iht prsm : mji H : Dg : H H H H g : m Sousiy yitu : H g = ostt pt icri sbgi briut :!! ; m! ; m. 67

27 D. Rpt Probbiits. Proto i m brs siotro Ksus i i Ksus i i : Gmbr 5. Sts grfi rpt probbiits sbgi fugsi posisi. tro-tro Kousi yg Br i Prmu ogm i i i i i i i i i i i i i i 68

28 69 i i i i : Gmbr 5. Sts grfi hubug rpt probbiits utro ousi trhp posisiy. Nutro yg Mcob Mps Diri ri ti i i i i i i i i Gmbr 5. Sts grfi hubug rpt probbiits utro yg mps iri ri iti trhp posisiy

29 7. Prti yg Mcob Mps Diri ri Potsi Couomb i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i Gmbr 5. Sts grfi probbiits prti 5. tro yg ihmbur oh io yg trioissi gtif

30 7 i i i i i i i i i i i i i i i i i i i i i i i i i i Gmbr 5. Sts grfi probbiits tro yg ihmbur io 6. Nutro yg trit m iti

31 7 i i i i i i i i i i Grfiy : Gmbr 5.5 Sts grfi probbiits utro m iti 7. Mou gs yg trprgp m ot gp bi tu gji bi. ; si :. ; cos Gmbr 5.6 Sts grfi probbiits prti m ot 8. Mou itomi yg brvibrsi mmbtu ositor srh +

32 Gmbr 5.7. Sts grfi probbiits ositor hrmoi srh Mou itomi 7

SOAL-SOAL OLIMPIADE MATEMATIKA DAN PENYELESAIANNYA

SOAL-SOAL OLIMPIADE MATEMATIKA DAN PENYELESAIANNYA SOL-SOL OLIMPIDE MTEMTIK DN PENYELESINNY. ui uu sip ilg rl, rlu! ui :. ui uu sip ilg rl, g rlu ui :! : u il sgi M GM im M g rihmi M sg GM g Gomri M.. ui uu sip ilg posii,, rlu ui :!. ui uu sip ilg rl,

Lebih terperinci

FUNGSI EKSPONENSIAL DAN FUNGSI LOGARITMIK

FUNGSI EKSPONENSIAL DAN FUNGSI LOGARITMIK M AT E M AT I K A E K O N O M I FUNGSI EKSPONENSIAL DAN FUNGSI LOGARITMIK TO N I BAKHTIAR I N S TITUT P ERTA N I A N BOGOR 2 0 2 Pgkt Jik sutu bilg diklik diri sdiri sbk kli mk ditulis Bilg disbut kspo

Lebih terperinci

ANALISIS FREKUENSI SINYAL DAN SISTEM

ANALISIS FREKUENSI SINYAL DAN SISTEM AALISIS FREKUESI SIYAL DA SISTEM AALISIS FREKUESI SIYAL DA SISTEM Alisis Siyl dlm Sptrum Frusi Alisis frusi siyl wtu otiu Alisis frusi siyl wtu disrit Sift-sift trsformsi Fourir Domi frusi sistm LTI Sistm

Lebih terperinci

SISTEM PENGOLAHAN ISYARAT. Kuliah 4 Transformasi Fourier

SISTEM PENGOLAHAN ISYARAT. Kuliah 4 Transformasi Fourier TKE 403 SISTEM PENGOLAHAN ISYARAT Kulih 4 Trsformsi Fourir Bgi I Idh Susilwi, S.T., M.Eg. Progrm Sudi Tkik Elkro Fkuls Tkik d Ilmu Kompur Uivrsis Mrcu Bu Yogykr 009 KULIAH 4 SISTEM PENGOLAHAN ISYARAT TRANSFORMASI

Lebih terperinci

ISYARAT DAN SISTEM Bab 4 Deret Fourier Untuk Isyarat Periodik

ISYARAT DAN SISTEM Bab 4 Deret Fourier Untuk Isyarat Periodik KE 5 ISYARA DA SISEM Bb Dr Fourir Uu Isyr Priodi Idh Susilwi, S.., M.Eg. Progrm Sudi i Elro Fuls i d Ilmu Kompur Uivrsis Mrcu Bu Yogyr 9 79 B A B I V DERE FOURIER UUK ISYARA PERIODIK uu Isrusiol. Umum

Lebih terperinci

Analisa Frekuensi Sinyal dan Sistem

Analisa Frekuensi Sinyal dan Sistem Alis Frusi Siyl d Sistm Alisis frusi siyl wtu otiu Alisis frusi siyl wtu disrit Sift-sift trsformsi Fourir Domi frusi sistm LT Sistm LT sbgi filtr Pristiw Disprsi Alisis Frusi wto 67 Fruhofr 787 Kirhoff

Lebih terperinci

Deret dan Transformasi Fourier

Deret dan Transformasi Fourier Dr d rsformsi Fourir Risuri Hidy, Jurus i Elro d ologi Iformsi, F UGM, gri gyogyr Hdiigr 558, IDOESIA [email protected] ([email protected] Dlm ulis ii dijls domi frusi uu isyr priodis d opriodis yg mmpuyi

Lebih terperinci

Mr.Alex Hu Method Halaman 1. Gunakan info : 1. Uan 2004/P-7/No.13 A. 180 B. 190 C. 200 D. 210 E. 220

Mr.Alex Hu Method Halaman 1. Gunakan info : 1. Uan 2004/P-7/No.13 A. 180 B. 190 C. 200 D. 210 E. 220 . 00/P-7/No. 0 Nili dri ( 0 )... A. 80 B. 90 C. 00 D. 0 E. 0 Gu ifo : 0 ( 0 ) = = =0 = (.+0)+.+0)+...+(.0+0) = + +...+0 Yg terhir ii merup deret ritmeti deg : = b = = = 0 ( ( )b ) 0 (. ( 0 ( 9. ) ( ( 0

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN Perumus Pedug Bgi θ Misl N dlh proses Poisso pd itervl [0 deg rt μ yg otiu mutl d fugsi itesits λ yg teritegrl lol. Utu setip himpu Borel terts B m μ( B Ε N( B λ( s ds

Lebih terperinci

Eliminasi Gauss Gauss Jordan

Eliminasi Gauss Gauss Jordan Persm Liier Simult Elimisi Guss Guss Jor Persm Liier Simult Persm liier simult lh sutu betuk persm-persm p yg secr bersm-sm meyjik byk vribel bebs. Betuk persm liier simult eg m persm vribel bebs pt itulisk

Lebih terperinci

JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER 1

JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER 1 FITRIANA RICHA HIDAYATI 7 46 Dose Pembimbig M. ARIEF BUSTOMI, M.Si Surby, Jui JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER Alis disesuik deg geometri

Lebih terperinci

IDENTIFIKASI PARAMETER SISTEM PADA PLANT SIMULATOR SECARA ON-LINE

IDENTIFIKASI PARAMETER SISTEM PADA PLANT SIMULATOR SECARA ON-LINE IDENIFIKASI PARAMEER SISEM PADA PAN SIMUAOR SECARA ON-INE Olh : Nimh Dwi Idriti F 5 Jurus i Eltro Fults i Uivrsits Dipogoro Jl. Prof. H. Sudrto, S.H mblg, Smrg E-mil : [email protected] Abstr Idtifisi sistm

Lebih terperinci

Nuryanto,ST.,MT. Integral merupakan operasi invers dari turunan. Jika turunan dari F(x) adalah F (x) = f(x), maka F(x) = f(x) dx.

Nuryanto,ST.,MT. Integral merupakan operasi invers dari turunan. Jika turunan dari F(x) adalah F (x) = f(x), maka F(x) = f(x) dx. Nuryto,ST.,MT d c. INTEGRAL TAK TENTU KONSEP DASAR INTGRAL f. ALJABAR INTEGRAL f. TRIGONO CONTOH SOAL SOAL LATIHAN UJI KOMPETENSI Itegrl merupk opersi ivers dri turu. Jik turu dri F dlh F = f, mk F = f

Lebih terperinci

JURNAL MATEMATIKA DAN PEMBELAJARANNYA 2016 VOLUME 2, NO. 1. ISSN PENERAPAN FUNGSI GAMMA DALAM PEMBUKTIAN 0! = 1

JURNAL MATEMATIKA DAN PEMBELAJARANNYA 2016 VOLUME 2, NO. 1. ISSN PENERAPAN FUNGSI GAMMA DALAM PEMBUKTIAN 0! = 1 JURNAL MATEMATIKA DAN PEMBELAJARANNYA 6 VOLUME, NO.. ISSN -99 PENERAPAN FUNGSI GAMMA DALAM PEMBUKTIAN! = Amr Hs Dos STKIP Pmg Idosi Mkssr 85 557 6956, E-mil: [email protected] ABSTRAK Pmkti! = dt dilkk dri

Lebih terperinci

KONVERGENSI DAN STABILITAS SOLUSI PERSAMAAN LAPLACE PADA BATAS DIRICHLET. Lasker P. Sinaga. Abstract. terdapat y0

KONVERGENSI DAN STABILITAS SOLUSI PERSAMAAN LAPLACE PADA BATAS DIRICHLET. Lasker P. Sinaga. Abstract. terdapat y0 99 KONVERGENSI DAN STABILITAS SOLUSI PERSAMAAN LAPLACE PADA BATAS DIRICHLET Lskr P. Sig Abstrct Prsm lplc dlh slh stu btuk prsm diffrsil tip liptik yg dpt dislsik dg mtod pmish ribl. Mtod pmish ribl mmbut

Lebih terperinci

PENERAPAN PERSAMAAN SCHRODINGER PADA PERMASALAHAN PARTIKEL DALAM KEADAAN TERIKAT (BOUND STATES) UNTUK TIGA DIMENSI

PENERAPAN PERSAMAAN SCHRODINGER PADA PERMASALAHAN PARTIKEL DALAM KEADAAN TERIKAT (BOUND STATES) UNTUK TIGA DIMENSI ENEAAN ESAMAAN SHODINGE ADA EMASAAHAN ATIKE DAAM KEADAAN TEIKAT (BOUND STATES) UNTUK TIGA DIMENSI A. At Hg (Mslh Gy Stl). Hlt Nl Eg ^ H ^ p ^ z. (7.) s Schg yg bt g sst bup hg t tu lh: ^ p ^ z E (7.) tu

Lebih terperinci

Ringkasan Limit Fungsi Kelas XI IPS 1 NAMA : KELAS : theresiaveni.wordpress.com

Ringkasan Limit Fungsi Kelas XI IPS 1 NAMA : KELAS : theresiaveni.wordpress.com Riks Limit Fusi Kels XI IPS NAMA : KELAS : theresivei.wordpress.com Riks Limit Fusi Kels XI IPS LIMIT FUNGSI Limit dlm kt-kt sehri-hri: Medekti hmpir, sedikit li, tu hr bts, sesutu y dekt tetpi tidk dpt

Lebih terperinci

BARISAN DAN DERET A. POLA BILANGAN B. BARISAN BILANGAN. Contoh Soal

BARISAN DAN DERET A. POLA BILANGAN B. BARISAN BILANGAN. Contoh Soal BARIAN DAN DERET A. POLA BILANGAN Bergi jeis ilg yg serig it pergu mempuyi pol tertetu. Pol ii serig digu dlm meetu urut / let ilg dri seumpul ilg yg ditetu, cotoh ilg gjil e-5 dri ilg :,, 5, 7, yitu 9.

Lebih terperinci

( ) ( ) ( ) ( ) ( ) 1 tan = 1 tan Diketahui 8. a. Tentukan nilai tan (a + b + c) Jawab : tan( )tan

( ) ( ) ( ) ( ) ( ) 1 tan = 1 tan Diketahui 8. a. Tentukan nilai tan (a + b + c) Jawab : tan( )tan Diethui t t, t Tetu ili t Jw : t t t t t t t t t t,, lh ilg rel g memeuhi persm : Tetu ili! Jw : Misl v u M : tu Ji u tu u u u uv u v v u Diethui > > Tetu ili! Jw : > > Sustitusi e ji Ar-r persm lh,, Ji

Lebih terperinci

mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x

mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x B 4. Peerp Itegrl BAB 4. PENGGUNAAN INTEGRAL 4.. Lus re dtr Perhtik derh di wh kurv y = f () di tr du gris tegk = d = di ts sumu, deg f fugsi kotiu. Seperti pd s medefiisik itegrl tertetu, kit gi itervl

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN . LIMIT DAN KEKONTINUAN . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

SOAL UJIAN AKHIR MATEMATIKA INFORMATIKA 4 (A & B) Dosen: Dr. Asep Juarna Jumlah Soal: 3 Uraian Tanggal Ujian: 02/03/12 Waktu Ujian: 2 jam

SOAL UJIAN AKHIR MATEMATIKA INFORMATIKA 4 (A & B) Dosen: Dr. Asep Juarna Jumlah Soal: 3 Uraian Tanggal Ujian: 02/03/12 Waktu Ujian: 2 jam SOAL UJIAN AKHIR MATEMATIKA INFORMATIKA 4 A & B Dose: Dr. Asep Jur Jumlh Sol: Uri Tggl Uji: // Wktu Uji: jm jik. Solusi t dlh: t + log, yg dpt dibuktik sbb: t jik t t + [t/ + ] + t/ + t/4 + t/8 + 4 t/

Lebih terperinci

x = Tegangan yang diterapkan, kg/mm 2 y = waktu patah, jam

x = Tegangan yang diterapkan, kg/mm 2 y = waktu patah, jam INTERPOLASI Pr resw d hli ilmu lm serig beerj deg sejumlh dt disrit g umum disji dlm betu tbel. Dt didlm tbel mugi dieroleh dri hsil egmt dilg hsil eguur dilbortorium tu tbel g dimbil dri buu-buu cu. Cotoh

Lebih terperinci

BAB 12 METODE SIMPLEX

BAB 12 METODE SIMPLEX METODE ANAISIS PERENCANAAN Mteri 9 : TP 3 SKS Oleh : Ke Mrti Ksikoe BAB METODE SIMPE Metode Simplex dlh metode pemrogrm liier yg mempuyi peubh (vrible) byk, sehigg dimesiy lebih dri 3. Metode simplex dpt

Lebih terperinci

BAB I DERET DAFTAR ISI

BAB I DERET DAFTAR ISI DAFTAR ISI BAB I DERET BAB II BIANGAN KOMEK BAB III ANAISIS VEKTOR BAB IV ANAISIS KOMEK BAB V TRANSFORMASI AACE BAB VI ERSAMAAN DIFERENSIA BAB VII DERET FOURIER BAB VIII FUNGSI GAMMA BETA DAN INTEGRA EITIK

Lebih terperinci

DIFERENSIASI. dy dx nx e kx. e x. ke a x ln a 1. ln x. y sinh x. sec x 2

DIFERENSIASI. dy dx nx e kx. e x. ke a x ln a 1. ln x. y sinh x. sec x 2 DIFERENSIASI Kofi ifrnsil bku Tbl brikut mmut ftr itrnsil bku ng psti prnh n gunkn bbrp kli sblum ini. n k ln log f () tn cot c h h n n k k ln. ln sc c c. cot h h Bukti untuk u fungsi ng trkhir ibrikn

Lebih terperinci

Soal-soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2008

Soal-soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2008 Sol-sol d Pembhs Mtemtik Dsr SBMPTN - SNMPTN 8 y. Dlm betuk pgkt positif, ( y). A. ( + y ) ( y ) C. ( y ) E. - ( y ) B. - ( + y ) ( y ) D. ( y ) y ( y) y ( y) y y ( y) y (y). (y) y - ( y ) ( y + ) - (-y+

Lebih terperinci

III. LIMIT DAN KEKONTINUAN

III. LIMIT DAN KEKONTINUAN KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM PPDU TELKOM UNIVERSITY III. LIMIT DAN KEKONTINUAN 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi

Lebih terperinci

Persamaan Linier Simultan

Persamaan Linier Simultan Persm Liier Simult Elimisi Guss Guss Jord Elimisi_GussJord Persm Liier Simult Persm liier simult dlh sutu etuk persm-persm yg ser ersm-sm meyjik yk vriel es. etuk persm liier simult deg m persm d vriel

Lebih terperinci

Metode Pengikatan Kemuka dan Kebelakang

Metode Pengikatan Kemuka dan Kebelakang Metoe Peniktn Kemuk n Keelkn PERHITUNGAN KOORDINAT DENGAN METODE POLAR Utr P (X P,Y P )? Sumu X X 0,Y 0 X P = sin Y P = cos Timur Sumu Y Secr mtemtis pt itulis : X P = X 0 + sin Y P = Y 0 + cos PERHITUNGAN

Lebih terperinci

MATEMATIKA DISKRIT FUNGSI 2 FUNGSI PEMBANGKIT (GENERATION FUNGTIONS) TITI RATNASARI, SSi., MSi. Modul ke: Fakultas ILKOM

MATEMATIKA DISKRIT FUNGSI 2 FUNGSI PEMBANGKIT (GENERATION FUNGTIONS) TITI RATNASARI, SSi., MSi. Modul ke: Fakultas ILKOM MATEMATIKA DISKRIT Modul e: FUNGSI 2 FUNGSI PEMBANGKIT GENERATION FUNGTIONS Fults ILKOM TITI RATNASARI, SSi., MSi Pogm Studi TEKNIK INFORMATIKA www.mecubu.c.id Fugsi pembgit Fugsi pembgit digu utu meepesetsi

Lebih terperinci

BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ. Definisi 3.1 Matriks Toeplitz adalah suatu matriks., dengan nilai,, dan indeks yang

BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ. Definisi 3.1 Matriks Toeplitz adalah suatu matriks., dengan nilai,, dan indeks yang BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ 3. Mtriks Toeplitz Defiisi 3. Mtriks Toeplitz dlh sutu mtriks [ t ; k, j = 0,,..., ] : T =, k j, deg ili,, d ideks yg diguk setip etriy

Lebih terperinci

BAB III MODEL MATEMATIKA KEPENDUDUKAN

BAB III MODEL MATEMATIKA KEPENDUDUKAN 5 A III MODEL MATEMATIKA KEENDUDUKAN 3.1 Uu Filis Filis mup pfom podusi ul di sog i u slompo idividu yg pd umumy di pd sog i u slompo i. iu p uu filis yg dil olh o 1997 diy dlh Cud ih R CR u g lhi s, mup

Lebih terperinci

Optik Moderen. S3 Fisika

Optik Moderen. S3 Fisika O M S F I. Glg M II. I Glg M g M III. Rfl Rf Glg g IV. MI RLPIS ISOTROPIK V. MI RLPIS PRIOIK - 7. GLOMNG TRPNU LM MI RLPIS 8. OPTIK NONLINIR . P Mwll H J ρ 4 ρ u I. Glg M 5 6 ε μ H v l; H v g v g l l h;

Lebih terperinci

SOLUSI SOAL ESSAY. No. 1 s.d 15. Jadi, uang tabungan Laila akan menjadi $6 kurang dari pada tabungan Tina setelah 13 minggu.

SOLUSI SOAL ESSAY. No. 1 s.d 15. Jadi, uang tabungan Laila akan menjadi $6 kurang dari pada tabungan Tina setelah 13 minggu. SOUSI SO ESSY No. s.. Solusi: Misly umur yh sy, iu sy, ik lki-lki sy sekrg lh x, y, z, mk x : y : z : 9 : x : z : x z. ( x 4 x 4 Jik : c :, mk c c x 36. ( ri ( (, kit memperoleh: x 36 x 36 z 3 Ji, ik lki-lki

Lebih terperinci

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang VEKTOR 1. Pengertin Vektor dlh besrn yng memiliki besr (nili dn rh. Vektor merupkn sebuh rus gris yng P berrh dn memiliki pnjng. Pnjng rus gris tersebut dlh pnjng vektor. Rus gris dri titik P dn berujung

Lebih terperinci

Metode Iterasi Gauss Seidell

Metode Iterasi Gauss Seidell Metode Itersi Guss Seidell Metode itersi Guss-Seidel : metode yg megguk proses itersi higg diperoleh ili-ili yg berubh. Bil dikethui persm liier simult: Berik ili wl dri setip i (i s/d ) kemudi persm liier

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN 3. LIMIT DAN KEKONTINUAN 1 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi di =1, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp

Lebih terperinci

Matematika Dasar INTEGRAL TENTU . 2. Partisi yang terbentuk merupakan segiempat dengan ukuran x dan f ( x k ) sebagai

Matematika Dasar INTEGRAL TENTU . 2. Partisi yang terbentuk merupakan segiempat dengan ukuran x dan f ( x k ) sebagai Mtemtik Dsr INTEGRAL TENTU Pegerti tu kosep itegrl tetu pertm kli dikelk oleh Newto d Leiiz. Nmu pegerti secr leih moder dikelk oleh Riem. Mteri pemhs terdhulu yki tetg itegrl tk tetu d otsi sigm k kit

Lebih terperinci

Penyelesaian Persamaan Linier Simultan

Penyelesaian Persamaan Linier Simultan Peyelesi Persm Liier Simult Persm Liier Simult Persm liier simult dlh sutu betuk persm-persm yg ser bersm-sm meyjik byk vribel bebs Betuk persm liier simult deg m persm d vribel bebs ij utuk i= s/d m d

Lebih terperinci

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini: ) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut

Lebih terperinci

Definisi 1: Sebuah fungsi f(x) dikatakan periodic dengan periode T > 0, jika berlaku: f(x + T) = f(x) untuk samua x.

Definisi 1: Sebuah fungsi f(x) dikatakan periodic dengan periode T > 0, jika berlaku: f(x + T) = f(x) untuk samua x. DERE FOURIER PENDAHUUAN Dlm ii k dihs pryt drt dri sutu ugsi priodik. Jis ugsi ii mrik kr srig mucul dlm rgi prsol isik, sprti gtr mkik, rus listrik olk-lik AC, glomg uyi, glomg Elktromgt, htr ps, ds.

Lebih terperinci

SISTEM PERSAMAAN LINEAR. Nurdinintya Athari (NDT)

SISTEM PERSAMAAN LINEAR. Nurdinintya Athari (NDT) SISTEM PERSAMAAN LINEAR Nurdiity Athri (NDT) Sistem Persm Lier (SPL) Sub Pokok Bhs Pedhulu Solusi SPL deg OBE Solusi SPL deg Ivers mtriks d Atur Crmmer SPL Homoge Beberp Apliksi Sistem Persm Lier Rgki

Lebih terperinci

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar . LIMIT DAN KEKONTINUAN INF8 Klkulus Dsr . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn

Lebih terperinci

LIMIT DAN KONTINUITAS

LIMIT DAN KONTINUITAS LIMIT DAN KONTINUITAS Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

Analisis Rangkaian Listrik

Analisis Rangkaian Listrik Sudry Sudirhm lisis Rgki Lisrik Mgguk rsrmsi urir Sudry Sudirhm, lisis Rgki Lisrik BB rsrmsi urir Ki lh mmplri ggp rkusi dri suu rgki. lisis dg mgguk rsrmsi urir yg k ki plri riku ii k mmprlus pmhm ki

Lebih terperinci

BAB XVIII. NOTASI SIGMA, BARISAN, DERET DAN INDUKSI MATEMATIKA

BAB XVIII. NOTASI SIGMA, BARISAN, DERET DAN INDUKSI MATEMATIKA BAB XVIII. NOTASI SIGMA, BARISAN, DERET DAN INDKSI MATEMATIKA Notsi Sig : dlh otsi sig, digu utu eyt ejulh beuut di sutu bilg yg sudh beol. eu huuf citl S dl bjd Yui dlh huuf et di t SM yg beti julh. Betu

Lebih terperinci

1. bentuk eksplisit suku ke-n 2. ditulis barisannya sejumlah berhingga suku awalnya. 3. bentuk rekursi ...

1. bentuk eksplisit suku ke-n 2. ditulis barisannya sejumlah berhingga suku awalnya. 3. bentuk rekursi ... Bris d Deret Defiisi Bris bilg didefiisik sebgi fugsi deg derh sl merupk bilg sli. Notsi: f: N R f( ) = Fugsi tersebut dikel sebgi bris bilg Rel { } deg dlh suku ke-. Betuk peulis dri bris :. betuk eksplisit

Lebih terperinci

METODE NUMERIK PERTEMUAN : 5 & 6 M O H A M A D S I D I Q 3 S K S - T E K N I K I N F O R M A T I K A - S1

METODE NUMERIK PERTEMUAN : 5 & 6 M O H A M A D S I D I Q 3 S K S - T E K N I K I N F O R M A T I K A - S1 METODE NUMERIK S K S - T E K N I K I N F O R M A T I K A - S M O H A M A D S I D I Q PERTEMUAN : 5 & 6 PENYELESAIAN PERSAMAAN LINIER SIMULTAN S K S - T E K N I K I N F O R M A T I K A - S M O H A M A D

Lebih terperinci

DERET FOURIER MATEMATIKA FISIKA II JURUSAN PENDIDIKAN FISIKA FPMIPA UPI

DERET FOURIER MATEMATIKA FISIKA II JURUSAN PENDIDIKAN FISIKA FPMIPA UPI DERET FOURIER MATEMATIKA FISIKA II JURUSAN PENDIDIKAN FISIKA FPMIPA UPI PENDAHUUAN Dlm ii k dihs uri drt dri sutu ugsi priodik. Jis ugsi ii mrik kr srig mucul dlm rgi prsol isik, sprti gtr mkik, rus listrik

Lebih terperinci

Interpolasi dan Turunan Numerik (Rabu, 2 Maret 2016) Hidayatul Mayyani G

Interpolasi dan Turunan Numerik (Rabu, 2 Maret 2016) Hidayatul Mayyani G Iterpolsi d Turu Numeri (Rbu Mret 6) Hidytul Myyi G55535 Outlie: Iterpolsi Lier - Poliomil Lgrge - Poliomil Newto - Vdermode Mtris - Ivers Iterpolsi - Iterpolsi Neville Glt Iterpolsi Turu Numeri Estrpolsi

Lebih terperinci

BAB IV INTEGRAL RIEMANN

BAB IV INTEGRAL RIEMANN Itegrl Rie BAB IV INTEGRAL RIEMANN Utuk epeljri leih ljut tetg kosep itegrl Rie, k leih ik jik pec ehi eerp hl erikut. A. Prtisi Defiisi 4.1 Dierik itervl tertutup [, ], hipu terurut d erhigg P = { = x

Lebih terperinci

Fungsi Khusus Lanjutan (PDB) JURDIK FISIKA FPMIPA UPI Bandung

Fungsi Khusus Lanjutan (PDB) JURDIK FISIKA FPMIPA UPI Bandung Fugsi Kusus Ljut DB MATEMATIKA FISIKA II URDIK FISIKA FMIA UI Bug Fugsi Kusus betuk DB teriri ts : oioi Legere berbgi jeis Fugsi Besse berbgi betuk oioi Herite oioi Lgurre Seu oit i ts ieroe ri sousisousi

Lebih terperinci

Ringkasan Materi Kuliah PERSAMAAN DIFERENSIAL LINEAR. 1. Pendahuluan Bentuk umum persamaan diferensial linear orde n adalah

Ringkasan Materi Kuliah PERSAMAAN DIFERENSIAL LINEAR. 1. Pendahuluan Bentuk umum persamaan diferensial linear orde n adalah Rigks Mtri Klih PERSAMAAN DIFERENSIAL LINEAR Pdhl Btk mm rsm dirsil lir ord dlh () dg koisi-koisi d () mrk gsigsi g koti d slg I d tk sti I Slg I disbt slg diisi (slg sl) dri rsm dirsil it Jik gsi () =

Lebih terperinci

MA SKS Silabus :

MA SKS Silabus : Aljr Lier Elemeter A SKS Silus : B I triks d Opersiy B II Determi triks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige 7//7

Lebih terperinci

Kalkulus 2. Deret Pangkat dan Uji Konvergensi. Department of Chemical Engineering Semarang State University. Dhoni Hartanto S.T., M.T., M.Sc.

Kalkulus 2. Deret Pangkat dan Uji Konvergensi. Department of Chemical Engineering Semarang State University. Dhoni Hartanto S.T., M.T., M.Sc. Klkulus Deret Pgkt d Uji Kovergesi Dhoi Hrtto S.T., M.T., M.S. Deprtmet o Chemil Egieerig Semrg Stte Uiversity Eperimetl Deret Pgkt Urut d deret sequees d series). Urut gk merupk rgki gk tk terbts jumlh

Lebih terperinci

( ) τ k τ HASIL DAN PEMBAHASAN. Perumusan Penduga Bagi θ

( ) τ k τ HASIL DAN PEMBAHASAN. Perumusan Penduga Bagi θ HASIL DAN PEMBAHASAN Perumus Pedug Bgi θ Mislk N dlh proses Poisso pd itervl [, deg rt µ yg kotiu mutlk, d fugsi itesits λ yg teritegrlk lokl Sehigg, utuk setip himpu Borel terbts B mk: µ ( B Ε N( B λ(

Lebih terperinci

Deret dan Transformasi Fourier

Deret dan Transformasi Fourier 5 Drpulic Npmr 3 www.drpulic.cm Dr d rrmi urir Dr urir Kii urir. Suu ugi pridi dp diuri mdi mpmp iu. Pguri ii id li dlh pry ugi pridi dlm dr urir. Ji dlh ugi pridi yg mmuhi pryr Dirichl, m dp diy gi dr

Lebih terperinci

APLIKASI TEORI RESIDU DALAM PERHITUNGAN SUATU INTEGRAL. Oleh: Dian Devita Yohanie Dosen Jurusan Pend. Matematika FKIP UNP Kediri

APLIKASI TEORI RESIDU DALAM PERHITUNGAN SUATU INTEGRAL. Oleh: Dian Devita Yohanie Dosen Jurusan Pend. Matematika FKIP UNP Kediri APLIKASI TEOI ESIDU DALAM PEHITUNGAN SUATU INTEGAL Olh: D Dvt Yh Ds Jurus Pd. Mtmt FKIP UNP Kdr Abstr Fugs mpls mrup sub p bhs yg sgt ptg dlm mtmt trp. Tr rsdu mrup slh stu mtr mtmt dr fugs mpls. Dlm hl

Lebih terperinci

MATERI: 7.1.Asal mula celah energi.model elektron hampir bebas. 7.2.Nilai energi celah.fungsi Bloch.Model Kronig-Peney.

MATERI: 7.1.Asal mula celah energi.model elektron hampir bebas. 7.2.Nilai energi celah.fungsi Bloch.Model Kronig-Peney. BAB 7 PITA ENERI MATERI: 7.1.Asl mul celh energi.model eletron hmpir bebs. 7..Nili energi celh.fungsi Bloch.Model Kronig-Peney.Persmn sentrl INDIKATOR: Mhsisw hrus dpt : Menjelsn sl mul celh energi. Menggunn

Lebih terperinci

Revisi JAWABAN Persiapan TO - 3

Revisi JAWABAN Persiapan TO - 3 Revisi JAWAAN Persi TO - Mt IPS l l l l l l l Cr li: l l l U ulu sis lrit- eji sis k iseut u kli sl itu sis l l l l l l l l l l l Ar rl eiliki ili ksiu st = k = Mksiu & iiu rl (usi kurt) sti terji i suu

Lebih terperinci

Bab 4: Sinyal dan Sistem di Domain Frekuensi

Bab 4: Sinyal dan Sistem di Domain Frekuensi BAB 4 Siyl d Sitm di Dmi Bb 4: Siyl d Sitm di Dmi rui K Strum rui Sutu Siyl dt didmii mdi m-m iuidl tu il ml. Dg dmii mm itu, buh iyl dit dirrti dlm Dmi rui. Pd iyl ridi, dmii mdi m iuidl dibut Drt urir.

Lebih terperinci

syarat atau nilai awal a, , dengan solusi umum pola barisan aritmetika dan a, solusi umum pola barisan aritmetika tingkat tiga

syarat atau nilai awal a, , dengan solusi umum pola barisan aritmetika dan a, solusi umum pola barisan aritmetika tingkat tiga SUKU KE- BARISAN ARITMETIKA TINGKAT DUA, TIGA DAN EMPAT DENGAN PENDEKATAN AKAR KARAKTERISTIK Drs Sumro Imil, MP ABSTRAK Utu memeuhi eutuh lm pegemg pemhm terhp sustsi mteri ris ritmeti, ji ii memeri uri

Lebih terperinci

DERET FOURIER FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN. Oleh :

DERET FOURIER FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN. Oleh : DERET FOURIER Oleh : Nm :. Neti Okmyti 7..6). Reto Fti Amh 7..6). Feri Febrisyh 7..8) Kels : 6. Mt Kulih : Mtemtik jut Dose Pegsuh : Fdli, S.Si FAKUTAS KEGURUAN DAN IMU PENDIDIKAN UNIVERSITAS PGRI PAEMBANG

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer Aljr Lier Elemeter MA SKS Silus : B I Mtriks d Opersiy B II Determi Mtriks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige

Lebih terperinci

Prestasi itu diraih bukan didapat!!!

Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 00 TIM OLIMPIADE MATEMATIKA INDONESIA 00 Prestsi itu dirih ukn didpt!!! SOLUSI SOAL Bidng Mtemtik Disusun oleh : Olimpide Mtemtik Tk Kupten/Kot 00 BAGIAN PERTAMA.

Lebih terperinci

Pertemuan ke-5 Persamaan Linier Simultan. 11 Oktober Dr.Eng. Agus S. Muntohar Department of Civil Engineering

Pertemuan ke-5 Persamaan Linier Simultan. 11 Oktober Dr.Eng. Agus S. Muntohar Department of Civil Engineering Pertemu ke-5 Persm Liier Simult Oktober Metode Elimisi Guss (Gussi Elimitio) Metode Elimisi Gus Sutu metode utuk meyelesik persm liier simult dri [A][X][C] Du lgkh peyelesi peyelesi:: Elimisi mju (Forwrd

Lebih terperinci

BARISAN DAN DERET BARISAN DAN DERET. U n. 2 n. 2 a = suku pertama = U 1 b = beda deret = U n U n 1. I. Perngertian Barisan dan Deret

BARISAN DAN DERET BARISAN DAN DERET. U n. 2 n. 2 a = suku pertama = U 1 b = beda deret = U n U n 1. I. Perngertian Barisan dan Deret BARISAN DAN DERET I. Pergerti Bris d Deret Bris bilg dlh pemet dri bilg sli ke bilg rel yg diurutk meurut tur tertetu. U III. Deret Geometri Ciriy : rsio tetp U = r S r = r S r = r = bilg sli U = suku

Lebih terperinci

PENDAHULUAN. X dikatakan peubah acak kontinu, jika ada sebuah fungsi non negatif f, yang didefinisikan pada semua bilangan real, x (,

PENDAHULUAN. X dikatakan peubah acak kontinu, jika ada sebuah fungsi non negatif f, yang didefinisikan pada semua bilangan real, x (, EUBAH ACAK KONTINU ENDAHULUAN diktkn puh ck kontinu, jik d suh ungsi non ngti, yng didinisikn pd smu ilngn rl,,, Mmpunyi sit hw untuk smrng himpunn ilngn rl B B d B Fungsi disut sgi ungsi kpktn plung Brp

Lebih terperinci

III PEMBAHASAN. x x. 3.1 Analisis Metode Perhatikan persamaan integral Volterra berikut. x. atau (11)

III PEMBAHASAN. x x. 3.1 Analisis Metode Perhatikan persamaan integral Volterra berikut. x. atau (11) III PEMBAHASAN 3 Alisis Metode Perhtik persm itegrl Volterr berikut y ( f( λ Ktyt ( ( (8 deg y( merupk fugsi yg k ditetuk sutu kostt f( fugsi sembrg yg dikethui d terdefiisi pd R d K(ty(t sutu fugsi yg

Lebih terperinci

Lampiran A.1 Peta Kontur DAS Citarum Hulu

Lampiran A.1 Peta Kontur DAS Citarum Hulu Lpir. Pet Kotr DS itr l W Sl j Keter Gbr Pet : Pet ii sl sliy :. e ls DS. spi e otlet j, seh slit t iliht secr st t t r erts. t ept br y jels ri otr hrs iplot l r erts, itp l beberp lebr. Dri br tersebt

Lebih terperinci

II. TINJAUAN PUSTAKA. pasangan itu dengan operasi-operasi tertentu yang sesuai padanya dapat

II. TINJAUAN PUSTAKA. pasangan itu dengan operasi-operasi tertentu yang sesuai padanya dapat 3 II. TINJUN PUSTK. Sistm ilnn Komplks Sistm ilnn komplks dpt dinytkn scr orml dnn mnunkn konsp psnn trurut ordrd pir ilnn riil,. Himpunn smu psnn itu dnn oprsi-oprsi trtntu yn ssui pdny dpt didinisikn

Lebih terperinci

Two-Stage Nested Design

Two-Stage Nested Design Mteri #13 TIN309 DESAIN EKSPERIMEN Two-Stge Nested Design Nested design dlh slh stu ksus dri desin multi fktor dimn level dri slh stu fktor (misl: fktor B) serup tpi tidk identik untuk setip level yng

Lebih terperinci

BARISAN DAN DERET. Jawaban : D a = 3, b = 2, U 10 = (a + 9b) U 10 = = 21. Jawaban : E a = 2,5 S ~ =

BARISAN DAN DERET. Jawaban : D a = 3, b = 2, U 10 = (a + 9b) U 10 = = 21. Jawaban : E a = 2,5 S ~ = pge of SOAL Jumlh ke-0 dri bris :,, 7, 9,.dlh.. d. e. 7 9 Ebts 99 Sebuh bol jtuh dri ketiggi, meter d memtul deg ketiggi kli tiggi semul. D setip kli memtul berikuty, mecpi ketiggi kli tiggi ptul sebelumy.

Lebih terperinci

NOTASI SIGMA, BARISAN, DERET DAN INDUKSI MATEMATIKA

NOTASI SIGMA, BARISAN, DERET DAN INDUKSI MATEMATIKA NOTASI SIGMA, BARISAN, DERET DAN INDKSI MATEMATIKA 4. K i K i Notsi Sigm : 5. ( ± V i i i V i i ± dlh otsi sigm, digu utu meyt ejumlh beuut di sutu bilg yg sudh beol. meu huuf citl S dlm bjd Yui dlh huuf

Lebih terperinci

Dosen Mata Kuliah Andhy Setiawan, M.Si

Dosen Mata Kuliah Andhy Setiawan, M.Si Dos M Kulh Adh Sw M.S Pdhulu Mu Um Prsm Mwll Prsm Glombg lromg Trsvrsls Glombg lromg Vor Pog d Kl rg Glombg lromg dlm Mdum Glombg dlm Mdum Koduf lro bbs dlm Koduor d Plsm Pmul d Pmbs Glombg lromg Huum

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II ANDASAN TERI Tori dsr g diguk pd ugs khir ii, iu: ord kovrgsi, dr Tlor, mod Nwo d ord kovrgsi, mod hbshv- Hll d ord kovrgsi, vri mod hbshv-hll d ord kovrgsi, d ugsi kudrik.. rd Kovrgsi rd kovrgsi

Lebih terperinci

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII Kesumwti Prodi Sttistik FMIPA-UII Mrch 25, 205 Sutu integrl tertentu b f (x)dx () diktkn wjr jik i memenuhi du syrt berikut: i. Bts integrsi dn b merupkn bilngn berhingg ii. fungsi f (x) terbts pd intervl

Lebih terperinci

Lu r 2 r h v u, r Oh o r uu r Bu B Brw u hu 300 h u h Th Bu, D rh u r 30 r uh h - u u hu u f) ( f uju f U j S - uu ) (ooo Drh rh 999 Thu 22 Noor u cu

Lu r 2 r h v u, r Oh o r uu r Bu B Brw u hu 300 h u h Th Bu, D rh u r 30 r uh h - u u hu u f) ( f uju f U j S - uu ) (ooo Drh rh 999 Thu 22 Noor u cu Lu r j r Th L Trh u Brju B r u Suruh r ru hu ru h Sur ru rrhru uu rrhru u hu f rcu r r rh hru o j rrhru rj o u u Brju u o rr B u, u r r ru - M r D r (MDL) Lu D r u for r o r rur u u Nu h u h, v r u uh,

Lebih terperinci

IAH IAAH I H HAAH xaah I A b x2ah x23h I A 3 x23b H 2

IAH IAAH I H HAAH xaah I A b x2ah x23h I A 3 x23b H 2 GRMMR CONTEXT-FREE DN PRING entuk umum produksi CFG dlh :, V N, (V N V T )* nlisis sintks dlh penelusurn seuh klimt (tu sentensil) smpi pd simol wl grmmr. nlisis sintks dpt dilkukn mellui derivsi tu prsing.

Lebih terperinci

PEMBAHASAN SOAL OSN MATEMATIKA SMP 2013 TINGKAT KABUPATEN

PEMBAHASAN SOAL OSN MATEMATIKA SMP 2013 TINGKAT KABUPATEN www.sip-osn.blogspot.com @Mret 0 PEMBAHASAN SOAL OSN MATEMATIKA SMP 0 TINGKAT KABUPATEN. B. x ( x ) ( x + )( x ) ( x ( ) )( x ) ( x + )( x )( x + )( x ) (d fktor) Tidk d penjelsn tentng fktor hrus bilngn

Lebih terperinci

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015 PAKET. Sit: SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN. ~ p q p ~ q. ~ p q~ p ~ q Jdi, igkr dri pert dlh Air sugi melup d kot tidk kejir tu eerp wrg kot tidk hidup mederit. []. Sit:. p q ~ q ~

Lebih terperinci

Matematika SKALU Tahun 1978

Matematika SKALU Tahun 1978 Mtemtik SKALU Thun 978 MA-78-0 Persmn c + b + = 0, mempunyi kr-kr dn, mk berlku A. + = b B. + = c C. = c = c = c MA-78-0 Akr dri persmn 5 - = 7 + dlh A. B. C. 4 5 MA-78-0 Hrg dri log b. b log c. c log

Lebih terperinci

BAB 7. LIMIT DAN LAJU PERUBAHAN

BAB 7. LIMIT DAN LAJU PERUBAHAN BAB 7. LIMIT DAN LAJU PERUBAHAN 7. LIMIT FUNGSI 7.. Limit fungsi di sutu titik Menggmbrkn perilku fungsi jik peubhn mendekti sutu titik Illustrsi: Dikethui f( ) f(), 3,30,0 3,030,00 3,003 3 f() = f() 3,000?

Lebih terperinci

BAB 1 DERET TAKHINGGA

BAB 1 DERET TAKHINGGA Di Kulih EL- Memi Tei I BAB DERET TAKHINGGA Bris Thigg Bris dlh susu bilg-bilg riil secr beruru. Perhi cooh beriu. ),, 8, 6, b),,,, 8 6 c),, 7,,, Secr umum, bris d diulis { },,, deg memeuhi ersm ereu.

Lebih terperinci

A. Pusat Massa Suatu Batang

A. Pusat Massa Suatu Batang Perteu 7 Pust ss sutu Kepg, Setrod, d Teore Pppus A. Pust ss Sutu Btg Dskusk!. slk ss,,..., terletk pd tg pdt sgsg d ttk,...,,, d = jrk errh tr ss ke sutu ttk tetp 0 pd tg,,,...,. ss prtkel, oe prtkel

Lebih terperinci

http://meetbied.wordpress.com SMAN Bone-Bone, Luwu Utr, Sul-Sel Bnyk keggln dlm hidup ini dikrenkn orng tidk menydri betp dektny merek dengn keberhsiln, st merek menyerh (Thoms Alf Edison) [RUMUS CEPAT

Lebih terperinci

APLIKASI INTEGRAL TENTU

APLIKASI INTEGRAL TENTU APLIKASI INTEGRAL TENTU Apliksi Itegrl Tetu థ Lus ditr 2 kurv థ Volume ed dlm idg (deg metode ckrm d cici) థ Volume ed putr (deg metode kulit tug) థ Lus permuk ed putr థ Mome d pust mss 1 2 1. LUAS DIANTARA

Lebih terperinci

F E A S I B I L I T Y F A T T E N I N G B E E F C A T T L E W I T H D I F F E R E N T F E E D

F E A S I B I L I T Y F A T T E N I N G B E E F C A T T L E W I T H D I F F E R E N T F E E D F E A S I B I L I T Y F A T T E N I N G B E E F C A T T L E W I T H D I F F E R E N T F E E D IN C I B E U R E U M D I S T R I C T K U N I N G A N R E G E N C Y B y : T a t a n g R u s t e n d i T e d

Lebih terperinci

BAB V INTEGRAL DARBOUX

BAB V INTEGRAL DARBOUX Itegrl Droux BAB V INTEGRAL DARBOUX Pd thu 1875, mtemtikw I.G. Droux secr kostruktif memodifiksi defiisi itegrl Riem deg terleih dhulu medefiisik jumlh Droux ts (upper Droux sum) d jumlh Droux wh (lower

Lebih terperinci

KATA PENGANTAR. Tugas akhir ini yang berjudul Algoritma Petkovšek untuk Persamaan

KATA PENGANTAR. Tugas akhir ini yang berjudul Algoritma Petkovšek untuk Persamaan KT PENGNTR lhdulillh, puji suur hdirt llh SWT pulis up, ts rht d hidh-n g tlh diri, shigg pulis dpt lsi tugs hir ii. Suh r tulis ilih g gitu sdrh d juh dri spur. Tugs hir ii g rjudul lgorit Ptovš utu Prs

Lebih terperinci

SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI. Prasetyo Budi Darmono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo

SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI. Prasetyo Budi Darmono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI Prsetyo Budi Drmoo Jurus Pedidik Mtemtik FKIP Uiversits Muhmmdiyh Purworejo Abstrk Persm lier dlm vribel 1, 2, 3,.. sebgi sebuh persm yg dpt diytk dlm

Lebih terperinci

LOKALISASI ORE. Lucia Ratnasari Jurusan Matematika FMIPA UNDIP Jl. Prof. H. Soedarto, S.H, Semarang 50275

LOKALISASI ORE. Lucia Ratnasari Jurusan Matematika FMIPA UNDIP Jl. Prof. H. Soedarto, S.H, Semarang 50275 LOKALA OE Luci ti Juu Mtmtik FMPA UNDP Jl Pof H odto, H, mg 575 Abtct Lt b ocommuttiv ig d b multiplictiv ubt of Th ight lft ig of quotit do ot xit fo vy A cy coditio of xitc ight lft ig of quotit i ight

Lebih terperinci

METODE NUMERIK. Sistem Persamaan Linier (SPL) (1) Pertemuan ke 5. Rinci Kembang Hapsari, S.Si, M.Kom

METODE NUMERIK. Sistem Persamaan Linier (SPL) (1) Pertemuan ke 5. Rinci Kembang Hapsari, S.Si, M.Kom METODE NUMERIK Pertemu ke 5 Sistem Persm Liier (SPL) () Rici Kemg Hpsri, S.Si, M.Kom www.rkhcdemy.com/wp Represetsi SPL Betuk umum persm lier deg peuh Dim :,, : koefisie dri persm, d,,..., merupk peuh.

Lebih terperinci

SISTEM PENGOLAHAN ISYARAT. Kuliah 3 Deret Fourier

SISTEM PENGOLAHAN ISYARAT. Kuliah 3 Deret Fourier TKE 43 SSTEM PENGOLAHAN SYARAT Kulih 3 Dr Fourir dh Susilwi, S.T., M.Eg. Progr Sudi Tkik Elkro Fkuls Tkik d lu Kopur Uivrsis Mrcu Bu Yogykr 9 KULAH 3 SSTEM PENGOLAHAN SYARAT DERET FOURER Pd pbhs ii k dijlsk

Lebih terperinci

SISTEM KENDALI OTOMATIS Transformasi Laplace

SISTEM KENDALI OTOMATIS Transformasi Laplace SISTEM KENDALI OTOMATIS Trormi Lplc Op Loop/Clod Loop Sym Ipu/ Dird oupu Corollr Corol igl Acuor Acuig igl Pl Pl oupu Ipu/ Dird oupu + - Error igl Corollr Corol igl Acuor Acuig igl Pl Pl oupu Sor Iilh-iilh

Lebih terperinci

KEPUTUSAN MENTERI PENDIDIKAN DAN KEBUDAYAAN REPUBLIK INDONESIA, NOMOR 009/M/2015 TENTANG

KEPUTUSAN MENTERI PENDIDIKAN DAN KEBUDAYAAN REPUBLIK INDONESIA, NOMOR 009/M/2015 TENTANG SALINAN KEPUTUSAN MENTERI PENDIDIKAN DAN KEBUDAYAAN REPUBLIK INDONESIA NOMOR 009/M/2015 TENTANG PENGHAPUSAN BARANG MILIK NEGARA DI LINGKUNGAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN

Lebih terperinci

INTERPOLASI PERTEMUAN : S K S - T E K N I K I N F O R M A T I K A - S1 M O H A M A D S I D I Q

INTERPOLASI PERTEMUAN : S K S - T E K N I K I N F O R M A T I K A - S1 M O H A M A D S I D I Q INTERPOLASI 3 S K S - T E K N I K I N F O R M A T I K A - S M O H A M A D S I D I Q PERTEMUAN : - SEBELUM-UTS Pegtr Metode Numerik Sistem Bilg d Keslh Peyji Bilg Bult & Pech Nili Sigiik Akursi d Presisi

Lebih terperinci