Metode Pengikatan Kemuka dan Kebelakang
|
|
|
- Sukarno Sutedja
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Metoe Peniktn Kemuk n Keelkn
2 PERHITUNGAN KOORDINAT DENGAN METODE POLAR Utr P (X P,Y P )? Sumu X X 0,Y 0 X P = sin Y P = cos Timur Sumu Y Secr mtemtis pt itulis : X P = X 0 + sin Y P = Y 0 + cos
3 PERHITUNGAN KOORDINAT DENGAN METODE POLAR Utr Y Q X Q = X P + PQ sin PQ Y Q = Y P + PQ cos PQ Q Y P P PQ PR PQ X R = X P + PR sin PR Y R = Y P + PR cos PR PR Y R R Sumu X X P X Q X R Timur Sumu Y
4 P srny metoe menikt kemuk lh penentun seuh titik yn kn icri koorintny mellui u (2) uh titik yn suh ikethui koorintny Mislny kit kn menentukn koorint titik R yn iukur ri titik P (Xp;Yp) n Titik Q (Xq;Yq). Alt itemptkn i keu titik yn suh ikethui.
5 METODE MENGIKAT KEMUKA P srny metoe menikt kemuk lh penentun seuh titik yn kn icri koorintny mellui 2 (u) uh titik yn suh ikethui koorintny. Mislny kit kn menentukn koorint titik R yn iukur ri Titik P(Xp;Yp) n Titik Q(Xq;Yq). Alt itemptkn i keu titik yn suh ikethui. pq pr P qr (Xp;Yp) pq pr Q (Xq;Yq) qr qp R? 38
6 METODE MENGIKAT KEMUKA 1. Hitun suut =180 o - 2. Hitun pq n pq. T pq Xq - Xp = Yq - Yp pq pq ipt Xq - Xp Sin pq = pq = Yq -Yp Cos pq = pq = pq Diperoleh pq rt-rt Xq-Xp Sin pq Yq-Yp Cos pq pq pr P qr (Xp;Yp) pq pr qr Q (Xq;Yq) qp R? 39
7 METODE MENGIKAT KEMUKA 3. Denn Rumus Sinus lm seiti PQR. Hitun Pnjn Sisi pr n sisi qr pq pr pq pr Sin Sin Sin sin pq qr pq qr Sin Sin Sin sin 4. Hitun pr n qr pr = pq - qr = qp kren qp = pq mk qr = pq pq pr P qr (Xp;Yp) pq pr qr Q (Xq;Yq) qp R? 40
8 METODE MENGIKAT KEMUKA 5. Hitun Koorint Titik R. X R1 = Xp + pr Sinpr Y R1 = Yp + pr Cospr n pr R? X R2 = Xq + qr Sinqr Y R2 = Yq + qr Cosqr JADI DIPEROLEH X R rt-rt n Y R rt-rt pq pr P qr (Xp;Yp) pq qr Q (Xq;Yq) qp 41
9 » Menentukn sutu titik ru enn jln menkn penukurn suut p titik yn tik ikethui koorintny kit nmkn penentun titik enn cr menikt ke elkn.» Ketentun yn hrus ipenuhi lh iperlukn plin seikit ti titik penint yn suh ikethui koorintny esert suut yn iukur ri titik yn kn itentukn koorint ts.» Keuntunn metoe ini lh kit hny stu kli menemptkn instrumen, yitu p titik yn kn kit cri terseut.» Terpt u cr perhitunn yn kit kenl, yitu Metoe Collins n Cssini.
10 » Bil kit kn menentukn sutu koorint (mislny titik P), Mk titik terseut hrus iiktkn p titik-titik yn suh ikethui koorintny (mislny titik A, B, n C), Kemuin kit ukur suut α n β.
11 METODE MENGIKAT KEBELAKANG 1. METODE COLLINS Bil kit kn menentukn sutu koorint (mislny titik P), mk titik terseut hrus iiktkn p titik-titik yn suh ikethui koorintny (mislny titik A, B, n C), kemuin kit ukur suut n. A (X;Y) P? p p h h (X;Y) B H - h hc C (Xc;Yc) 44
12 » Butlh seuh linkrn mellui titik ABP, linkrn ini kn memoton ris PC i titik H (titik ini iseut sei titik penolon collins)
13 METODE MENGIKAT KEBELAKANG LANGKAH PERHITUNGAN 1. Butlh seuh linkrn mellui titik ABP, linkrn ini kn memoton ris PC i titik H (titik ini iseut sei titik penolon Collins) 2. Mencri Suut Jurusn n Jrk T X - X ipt. A (X;Y) P? p p h h (X;Y) B H + h hc C (Xc;Yc) = Y - Y X-X 1 = Sin Y-Y 2 = Cos
14 METODE MENGIKAT KEBELAKANG LANGKAH PERHITUNGAN 3. Mencri Koorint Titik H (Titik Penolon Collins) ) Dri Titik A 1) Cri h = + 2) Denn Rumus Sinus menentukn h h Sin Sin A (X;Y) hc h P? p p h h (X;Y) B H + h hc C (Xc;Yc) sin h Sin Xh 1 = X + h. Sin h Yh 1 = Y + h. Cos h 46
15 METODE MENGIKAT KEBELAKANG LANGKAH PERHITUNGAN 3. Mencri Koorint Titik H (Titik Penolon Collins) ) Dri Titik B 1) Cri h = + (+) 2) Denn Rumus Sinus menentukn h h Sin β Sin α h Sin β sin α Xh 2 = X + h. Sin h Yh 2 = Y + h. Cos h. A (X;Y) P? p p X h Y h h h X h1 Y h X 2 + Y 2 h2 h2 (X;Y) B H + C (Xc;Yc) 47 h hc
16 METODE MENGIKAT KEBELAKANG LANGKAH PERHITUNGAN 4. Mencri hc n T α = hc Xc - Xh αhcipt Yc - Yh hc h = hc (h-180) = hc h 5. Mencri Titik P ). DARI TITIK A 1) Cri p = 2) Mencri p p Sin α Sin (α+γ) p Sin 180-(α+γ) sin α X P 3) Xp1= X + p.sin p Yp1= Y + p.cos p ) DARI TITIK B 1) Cri p = {180-(+)} Ji p = ++ 2) Mencri p p Sin α Sin γ p Sin γ sin α 3) Xp2= X + p.sin p Yp2= Y + p.cos p X + 2 X P1 P2 P1 P2 YP 48 Y + Y 2
METODE MENGIKAT KEBELAKANG
METODE MENGIKAT KEBELAKANG Metoe mengikat ke belakang aalah menentukan suatu titik baru engan jalan mengaakan pengukuran suut paa titik yang tiak iketahui koorinatnya. Ketentuan yang harus ipenuhi aalah
PERSAMAAN LINIER. b a dimana : a, b, c, d adalah
PERSAMAAN LINIER ). Persmn Linier Stu Vriel Bentuk umum : x, imn n konstnt Penyelesin : x Contoh : ). 5x x x 5 8 ). x 8 x x 8 ). Persmn Linier Vriel Bentuk umum : ). Persmn Linier Tig Vriel Bentuk umum
matematika WAJIB Kelas X FUNGSI K-13 A. Definisi Fungsi
K- Kels X mtemtik WAJIB FUNGSI TUJUAN PEMBELAJARAN Setelh mempeljri mteri ini, kmu ihrpkn memiliki kemmpun erikut.. Memhmi iefinisi fungsi.. Memhmi omin n rnge fungsi liner.. Memhmi omin n rnge fungsi
E-LEARNING MATEMATIKA
MODUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYADIN EKO RAHARJO, M.PD. NIP. 97 Penulisn Moul e Lerning ini iii oleh n DIPA BLU UNY TA Sesui engn Surt Perjnjin Pelksnn e Lerning Nomor 99.9/H4./PL/ Tnggl
LEMBAR KERJA SISWA. Pengurangan matriks A dengan B, dilakukan dengan menjumlahkan matriks A dengan matriks negatif (lawan) B.
LEMBAR KERJA SISWA Juul (Mteri Pokok) : Pengertin, Kesmn, Trnspos, Opersi n Sift Mtriks Mt Peljrn : Mtemtik Kels / Semester : XII / Wktu : menit Stnr Kompetensi : Menggunkn konsep mtriks, vektor n trnsformsi
a 2 b 2 (a + b)(a b) Bentuk aljabar selisih dua kuadrat
SKL Nomor : Memhmi opersi entuk ljr, konsep persmn n pertiksmn liner, persmn gris, himpunn, relsi, fungsi, sistem persmn liner, sert menggunknny lm pemehn mslh.. Menglikn entuk ljr. * = * = * = (*)*(**)
2.2. BENTUK UMUM PERSAMAAN GARIS LURUS
B II : Fungsi Liner Dlil : Grfik ri fungsi-fungsi liner (liner rtin pngkt stu tu stright) lh sutu gris lurus... GARIS LURUS MELALUI TITIK ASAL (,) S. Y Trik Gris ri titik O ke titik P imn OP terletk p
Beberapa Aplikasi Graf
B 6 Grf 139 Beerp Apliksi Grf. Lintsn Terpenek (Shortest Pth) grf eroot (weighte grph), lintsn terpenek: lintsn yng memiliki totl oot minimum. Contoh pliksi: 1. Menentukn jrk terpenek/wktu tempuh tersingkt/ongkos
Jarak Titik, Garis dan Bidang dalam Ruang
Pge of Kegitn eljr. Tujun Pembeljrn Setelh mempeljri kegitn beljr, dihrpkn sisw dpt :. Menentukn jrk titik dn gris dlm rung b. Menentukn jrk titik dn bidng dlm rung c. Menentukn jrk ntr du gris dlm rung.
DETERMINAN dan INVERS MATRIKS
// DETERMINN n INVERS MTRIKS Trnspose Mtriks () Jik mtriks mxn, mk trnspose ri mtriks ( t ) lh mtriks erukurn nxm yng iperoleh ri mtriks engn menukr ris engn kolom. Ex: t // SIFT Trnspose Mtriks () Sift:.
Matematika Dasar VOLUME BENDA PUTAR
OLUME BENDA PUTAR Ben putr yng seerhn pt kit mil ontoh lh tung engn esr volume lh hsilkli lus ls ( lus lingkrn ) n tinggi tung. olume ri en putr ser umum pt ihitung ri hsilkli ntr lus ls n tinggi. Bil
PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 1
PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 6y y 8y. Dikethui R dn. Temukn nili y. y y 8y 6 Solusi: 6y y 8y y y 8y 6 6y y 8y 8y y 6 y 8 0 y y y 0 y y y 0 ( y ) ( y ) 0 y y 8y 6 ( y )(y ) 0 y 0tu y 0
BAB 2 MATRIKS. ( ) merupakan array dimana array adalah susunan objek dalam baris.
BB MTRIKS Pengertin ( -) merupkn rry imn rry lh susunn ojek lm ris. merupkn vektor imn vektor lh susunn ojek lm kolom. 8 kolom. Ji: merupkn mtriks imn mtriks lh susunn ojek lm ris n rry pt iseut jug mtriks
( ) ( 1) ( ) ( ) ( ) ( ) 3 Ú Ú Ú Ú ÚÚ Ú Ú Ú ÚÚ Ú Ú. Ú dx sukar dihitung. ÚÚ ÚÚ ÚÚ. Contoh Hitunglah. Cara lain. e dy sukar dihitung.
Integrl lipt u p erh persegi pnjng i = f () c i b Lus = f () [ b, ] = f (,) b A B c R = Volum B fa (, ) c R A b Integrl tunggl Integrl ri fungsi kontinu = f () p selng tutup [,b] iefinisikn sebgi () b
matematika WAJIB Kelas X RASIO TRIGONOMETRI Kurikulum 2013 A. Definisi Trigonometri
Kurikulum 0 Kels X mtemtik WAJIB RASIO TRIGONOMETRI Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi rsio-rsio trigonometri yng meliputi sinus, kosinus, tngen,
BAB I PENDAHULUAN. Sebuah sistem sebarang yang terdiri dari m persamaan linear dengan n M M M M M
BAB I PENDAHUUAN Sebuh sistem sebrng yng teriri ri m persmn liner engn n bilngn tk ikethui kn ituliskn sebgi : x + x +... + n x n = b x + x +... + n x n = b n x + n x +... + nn x n = b n imn x, x,...,
Kombinasi Linier. Definisi Kombinasi Linier. Contoh Kombinasi Linier 1
Kominsi Linier Definisi Kominsi Linier Misln V rung vetor. S{u, u,..., u n } V. Misln V. Vetor iseut pt inytn segi ominsi linier ri S, ji terpt slr-slr (onstnt riil),,..., n, sehingg memenuhi persmn: u
MATEMATIKA. Sesi INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR B. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR TERHADAP SUMBU-X
MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 6 Sesi N INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR Apliksi integrl erikutn dlh menentukn volume end ng memiliki sumu putr. Contoh endn dlh tung,
INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut:
INTEGRAL.PENGERTIAN INTEGRAL Integrl dlh cr mencri sutu fungsi jik turunnn di kethui tu kelikn dri diferensil (turunn) ng diseut jug nti derivtif tu nti diferensil. Untuk menentukn integrl tidk semudh
FUNGSI TRANSENDEN. Definisi 1 Fungsi logaritma natural, ditulis sebagai ln, didefenisikan dengan
2 FUNGSI TRANSENDEN Fungsi trnsenen tu fungsi non-ljbr lh fungsi yng tik pt inytkn lm sejumlh berhingg opersi ljbr. Fungsi trnsenen yng bis ijumpi lm hl ini teriri ri fungsi eksponensil, fungsi logritmik,
LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan
LUAS DAERAH APLIKASI INTEGRAL TENTU Indiktor Pencpin Hsil Beljr Mhsisw menunjukkn kemmpun dlm :. Menghitung lus pd idng dtr Ringksn Mteri Perkulihn Jik sutu derh ditsi oleh kurv f(), g(), gris dn dengn
ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE)
ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Mcm Mtriks Mtriks Nol () Mtriks yng semu entriny nol. Ex: Mtriks Identits (I) Mtriks persegi dengn entri pd digonl utmny dn pd tempt lin.
Hendra Gunawan. 30 Oktober 2013
MA MATEMATIKA A Hendr Gunwn Semester I, 2/24 Oktoer 2 Ltihn. Fungsi g =,, terintegrlkn pd [, ]. Nytkn integrl tentu g pd [, ] segi limit jumlh Riemnn dengn prtisi reguler, dn hitunglh niliny. //2 c Hendr
BAB VIII INTEGRAL LIPAT DUA DENGAN MAPLE. integral lipat satu merupakan materi pendukung untuk pembahasan dalam materi
BAB VIII INTEGRAL LIPAT DUA DENGAN MAPLE A. Pengntr Konsep integrl tentu untuk fungsi engn stu peuh pt iperlus menji untuk fungsi engn nyk peuh.integrl fungsi stu peuh selnjutny kn inmkn integrl lipt stu,
Sistim BALOK SILANG (GRID SYSTEM)
// Sistim BOK SING ( SYSEM) nlisis Struktur II r.eng. chfs Zcoe, S., M. Jurusn eknik Sipil Fkults eknik Universits Brwij Penhulun (Introuction) Pelt lnti p ngunn ertingkt merupkn gin struktur ng terpsng
VEKTOR. Dua vektor dikatakan sama jika besar dan arahnya sama. Artinya suatu vektor letaknya bisa di mana saja asalkan besar dan arahnya sama.
-1- VEKTOR PENGERTIAN VEKTOR dlh sutu esrn yng mempunyi nili (esr) dn rh. Sutu vektor dpt digmrkn segi rus gris errh. Nili (esr) vektor dinytkn dengn pnjng gris dn rhny dinytkn dengn tnd pnh. Notsi vektor
Matriks yang mempunyai jumlah baris sama dengan jumlah kolomnya disebut matriks bujur sangkar (square matrix). contoh :
TRIKS. PENGERTIN triks dlh sutu deretn elemen yng mementuk empt persegi pnjng, terdiri dri m ris dn n kolom. Elemen terseut dpt erentuk koefisien, ilngn tu simul. triks yng mempunyi m ris dn n kolom diseut
LIMIT FUNGSI. Tapi jika x hanya mendekati 1, f(x) mendekati nilai berapa..? x 0,9 0,99 0,999 0, ,0001 1,001 1,01 1,1
Rinksn Limit Funsi Kels XI IPS SMA Trknit Jkrt LIMIT FUNGSI Limit dlm kt-kt sehri-hri: Mendekti hmpir, sedikit li, tu hr bts, sesutu yn dekt tetpi tidk dpt dicpi. Ilustrsi it = = Funsi ini tk mempunyi
MATEMATIKA DASAR. 1. Jika x 1 dan x 2 adalah penyelesaian. persamaan Diketahui x 1 dan x 2 akar-akar persamaan 6x 2 5x + 2m 5 = 0.
MATEMATIKA ASAR. Jik dn dlh penyelesin persmn mk ( ).. E. B 7 6 6 + - ( + ) ( ). ( ) ( ) 7. Jik dn y b dengn, y > + y, mk. + y + b log b. + b log b b E. + log b E log dn y log b + y + y log + log b log
A. PENGERTIAN B. DETERMINAN MATRIKS
ATRIKS A. PENGERTIAN triks dlh sutu deretn elemen yng mementuk empt persegi pnjng, terdiri dri m ris dn n kolom. Elemen terseut dpt erentuk koefisien, ilngn tu simul. triks yng mempunyi m ris dn n kolom
CONTOH SOAL BERIKUT KUNCI JAWABNYA. Dimensi Tiga
ONO SOL RIKU KUNI JWNY imensi ig. ikethui kubus. dengn rusuk. Mellui digonl dn titik tengh rusuk dibut bidng dtr. entukn lus bgin bidng di dlm kubus! Q L Q.Q... 6. Kubus. berusuk cm. itik, Q dn R dlh titik-titik
Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0
PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh c 0,,,c R, 0 Penyelesin Persmn Kudrt. Rumus c Rumus menentukn kr persmn kudrt c 0;,, c R dn 0, = ± 4c. Memfktorkn
matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s
K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn
4. SISTEM PERSAMAAN LINEAR
Persipn UN / Beh SKL http://vigt.worpress.om SMA Negeri Mlng Pge. SISTEM PERSAMAAN LINEAR A. Sistem Persmn Liner Du Vriel (SPLDV). Bentuk umum :. Dpt iselesikn engn metoe grfik, sustitusi, eliminsi, n
matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran
K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN HIPERBLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi dn unsur-unsur hiperol.. Dpt menentukn persmn
1.3 PENGUKURAN SUDUT. Program D3/D4 Teknik Sipil ITS ILMU UKUR TANAH 1
1.3 PENGUKURN SUDUT Program D3/D4 Teknik Sipil ITS ILMU UKUR TNH 1 Materi ini menerangkan prinsip dasar Sudut Tujuan Instruksional Khusus: Mahasiswa mengetahui apa itu sudut dalam () dan sudut jurusan
Definisi Vektor. Vektor adalah besaran yang mempunyai besar dan arah
VEKTOR Definisi Vektor Vektor dlh esrn yng mempunyi esr dn rh Besr vektor rtiny pnjng vektor Arh vektor rtiny sudut yng dientuk dengn sumu X positif Vektor disjikn dlm entuk rus gris errh Gmr Vektor B
Muatan Pada Konstruksi
Mutn Pd Konstruksi Konstruksi sutu ngunn sellu diciptkn untuk dn hrus dpt menhn ergi mcm mutn. Mutn yng dimksud dlh mutn yng terseut dlm Perturn Mutn Indonesi 197 NI 18. ergi mcm mutn tergntung pd perencnn,
VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang
VEKTOR 1. Pengertin Vektor dlh besrn yng memiliki besr (nili dn rh. Vektor merupkn sebuh rus gris yng P berrh dn memiliki pnjng. Pnjng rus gris tersebut dlh pnjng vektor. Rus gris dri titik P dn berujung
ELIPS. A. Pengertian Elips
ELIPS A. Pengertin Elips Elips dlh tempt kedudukn titik-titik yng jumlh jrkny terhdp du titik tertentu mempunyi nili yng tetp. Kedu titik terseut dlh titik focus / titik pi. Elips jug didefinisikn segi
IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran
K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi elips.. Memhmi unsur-unsur elips. 3. Memhmi eksentrisits
PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN MENGGUNAKAN DETERMINAN (ATURAN CRAMER)
PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN MENGGUNAKAN DETERMINAN (ATURAN CRAMER) Dikethui system Persmn Linier x+ x + x = x+ x + x = x+ x + x = dlm entuk mtriks x x x Penyelesin Dengn Aturn Crmer dlh
DETERMINAN. Matematika Industri I. TIP FTP UB Mas ud Effendi. Matematika Industri I
DETERMINAN Mtemtik Industri I TIP FTP UB Ms ud Effendi Mtemtik Industri I Pokok Bhsn Determinn Determinn orde-ketig Persmn simultn dengn tig ilngn tidk dikethui Konsistensi sutu set persmn Sift-sift determinn
IV. NFA Dengan ε - Move. Pada NFA dengan ε move (transisi ε ) diperbolehkan merubah state
IV. NFA Dengn - Move Pd NFA dengn move (trnsisi ) diperolehkn meruh stte tnp memc input. Diktkn dengn trnsisi kren tidk ergntung pd sutu input ketik melkukn trnsisi. Contoh : q, q Penjelsn : Dri q tnp
INTEGRAL. 1. Macam-macam Integral. Nuria Rahmatin TIP L. A. Integral Tak Tentu
INTEGRAL Nuri Rhmtin 5000006 TIP L. Mcm-mcm Integrl A. Integrl Tk Tentu Integrl dlh entuk invers dri turunn. Secr umum jik seuh fungsi diintegrlkn terhdp vrile tertentu dpt disjikn dlm entuk : f ( F( C
STATIKA (Reaksi Perletakan)
STTIK (Reksi erletkn) Meknik Rekys I Norm uspit, ST.MT. Tumpun Tumpun merupkn tempt perletkn konstruksi tu dukungn bgi konstruksi dlm meneruskn gy gyyng bekerj ke pondsi Dlm ilmu Meknik Rekys dikenl 3
Integral Tak Tentu dan Integral Tertentu
Integrl Tk Tentu dn Integrl Tertentu Pengertin Integrl Jik F dlh fungsi umum yng ersift F = f, mk F merupkn ntiturunn tu integrl dri f. Pengintegrln fungsi f terhdp dinotsikn segi erikut : f d F c notsi
STUDI EPIDEMIOLOGI (Case Control, Cohort dan Cross Sectional)
STUDI EPIDEMIOLOGI (Cse Control, Cohort n Cross Sectionl) Epiemiologi nlitik merupkn sutu stui tu penelitin yng erupy mengnlisis huungn ntr sutu fktor engn fktor linny. Prinsip stui ini lh memningkn risiko
PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT
PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT Persmn Kudrt. Bentuk Umum Persmn Kudrt Mislkn,, Є R dn 0 mk persmn yng erentuk 0 dinmkn persmn kudrt dlm peuh. Dlm persmn kudrt 0, dlh koefisien
IAH IAAH I H HAAH xaah I A b x2ah x23h I A 3 x23b H 2
GRMMR CONTEXT-FREE DN PRING entuk umum produksi CFG dlh :, V N, (V N V T )* nlisis sintks dlh penelusurn seuh klimt (tu sentensil) smpi pd simol wl grmmr. nlisis sintks dpt dilkukn mellui derivsi tu prsing.
Materi IX A. Pendahuluan
Mteri IX Tujun :. Mhsisw dpt memhmi vektor. Mhsisw mmpu mengunkn vektor dlm persoln sederhn 3. Mhsisw mengimplementsikn konsep vektor pd rngkin listrik. Pendhulun Sudh menjdi kesepktn umum hw untuk menentukn
Parabola adalah tempat kedudukan titik-titik yang jaraknya ke satu titik tertentu sama dengan jaraknya ke sebuah garis tertentu (direktriks).
Prol dlh tempt kedudukn titik-titik ng jrkn ke stu titik tertentu sm dengn jrkn ke seuh gris tertentu (direktriks). Persmn Prol 1. Persmn Prol dengn Punck O(,) Perhtikn gmr erikut ini! PARABOLA g A P(,
A. Kompetensi Dasar : Menyelesaikan sistem persamaan linear. B. Materi : 1. Sistem Persamaan Linear dan Matriks 2. Determinan
(Oleh: Winit Sulndri, M.Si) A. Kompetensi Dsr : Menyelesikn sistem persmn liner B. Mteri :. Sistem Persmn Liner dn Mtriks. Determinn C. Indiktor :. Mendefinisikn persmn liner dn sistem persmn liner. Mengenl
TS1019: ANALISA STRUKTUR I
TS09: ANALISA STRUKTUR I Progrm Stui Teknik Sipil Universits Bnr Lmpung UJIAN AKHIR SEMESTER Kmis, 9 Juni 2008 Pukul 08:00.20 Wi Sift Ujin: Open Book Dosen: Ronny H. Pur, ST., MSCE. Nm : NPM : 2 3 4 (tn
PEMBAHASAN PERSIAPAN UAS X MATEMATIKA PEMINATAN
PEMBAHASAN PERSIAPAN UAS X MATEMATIKA PEMINATAN Sol Dierikn du vektor segi erikut: Grkn vektor ) ) Jw: ) Untuk enggr vektor, gr dhulu vektor, llu disung dengn vektor Vektor dlh vektor yng pnjngny kli vektor
TEORI BAHASA DAN AUTOMATA
MODUL VII TEORI BAHASA DAN AUTOMATA Tujun : Mhsisw memhmi ekspresi reguler dn dpt menerpknny dlm ergi penyelesin persoln. Mteri : Penerpn Ekspresi Regulr Notsi Ekspresi Regulr Huungn Ekspresi Regulr dn
INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L.
INTEGRAL FOURIER Disumsikn syrt-syrt berikut pd f(x):. f x memenuhi syrt Dirichlet pd setip intervl terhingg L, L.. f x dx konvergen, yitu f(x) dpt diintegrsikn secr mutlk dlm (, ). Selnjutny, Teorem integrl
SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!
SELEKSI OLIMPIADE MATEMATIKA INDONESIA 006 TINGKAT PROVINSI TAHUN 005 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Pertama Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi
A x = b apakah solusi x
MTRIKS INVERSI & SIFT-SIFTNY Bil, x, dlh sklr ilngn rel yng memenuhi x, mk x pil. Sekrng, untuk sistem persmn linier x pkh solusi x dpt diselesikn dengn x? Mtriks Identits Untuk sklr (rel numer dn ), mk.
MATERI I : VEKTOR. Pertemuan-01
MATERI I : VEKTOR Pertemun-0. Pendhulun Definisi Vektor didefinisikn segi esrn yng memiliki rh. Keeptn, gy dn pergesern merupkn ontoh ontoh dri vektor kren semuny memiliki esr dn rh wlupun untuk keeptn
BAB 5 KECEPATAN, JARAK, DAN WKATU
BAB 5 KECEPATAN, JARAK, DAN WKATU. Huungn Keceptn, Jrk, dn Wktu Huungn keceptn, jrk, dn wktu ditentukn oleh rumus segi erikut.. Jrk Keceptn Wktu tu S t.. Keceptn Wktu Jrk Wktu Jrk Keceptn tu tu S t S t
MODEL MATEMATIKA SIR
MODEL MATEMATKA R (UCEPTBLE, NFECTON, RECOVERY UNTUK PENYEBARAN WABAH PENYAKT PADA UATU POPULA TERTUTUP Muhmd Zki Riynto NM: 2/56792/PA/8944 E-mil: zki@milugmcid http://zkimthwebid Dosen Pembimbing: Dr
PERTEMUAN 4 Metode Simpleks Kasus Maksimum
PERTEMUAN 4 Metode Simpleks Ksus Mksimum Untuk menyelesikn Persoln Progrm Linier dengn Metode Simpleks untuk fungsi tujun memksimumkn dn meminimumkn crny ered Model mtemtik dri Permslhn Progrm Linier dpt
SOLUSI SOAL ESSAY. No. 1 s.d 15. Jadi, uang tabungan Laila akan menjadi $6 kurang dari pada tabungan Tina setelah 13 minggu.
SOUSI SO ESSY No. s.. Solusi: Misly umur yh sy, iu sy, ik lki-lki sy sekrg lh x, y, z, mk x : y : z : 9 : x : z : x z. ( x 4 x 4 Jik : c :, mk c c x 36. ( ri ( (, kit memperoleh: x 36 x 36 z 3 Ji, ik lki-lki
D E F I N I S I. Contoh 1: 08/11/2015. Anita T. Kurniawati. Mendefinisikan fungsi f yang mengawankan bilangan dengan bilangan x
08//05 Anit T. Kurniwti disebut unsi dri jik dpt ditentukn sutu hubunn ntr dn SDH untuk setip nili menentukn secr tunl nili. Hubunn ntr dn bisn ditulis : Contoh : ) ) Mendeinisikn unsi n menwnkn bilnn
INTEGRAL. Integral Tak Tentu Dan Integral Tertentu Dari Fungsi Aljabar
INTEGRAL Integrl Tk Tentu Dn Integrl Tertentu Dri Fungsi Aljr A. Integrl Tk Tentu Hitung integrl dlh kelikn dri hitung differensil. Pd hitung differensil yng dicri dlh fungsi turunnny, sedngkn pd hitung
Bab. Vektor. A. Vektor B. Perkalian Vektor. Hasil yang harus Anda capai: menerapkan konsep besaran Fisika dan pengukurannya.
2 Sumer: Dsr-Dsr Foto Jurnlistik, 2003 esrn yng memiliki esr dn rh diseut esrn vektor. Keceptn merupkn slh stu esrn vektor. Vektor Hsil yng hrus nd cpi: menerpkn konsep esrn Fisik dn pengukurnny. Setelh
1 Sifat Penambahan Selang
BAB : INTEGRAL TOPIK: Sift-sift Integrl Tentu Kometensi yng iukur lh kemmun mhsisw menyelesikn integrl tentu engn menggunkn sift-sift integrl tentu. Sift Penmbhn Selng. UAS Klkulus, Semester Penek 4 no.
MODEL SIR (SUSCEPTIBLES, INFECTION, RECOVERY) UNTUK PENYEBARAN WABAH PENYAKIT PADA SUATU POPULASI TERTUTUP
MODEL IR (UCEPTIBLE, INFECTION, RECOVERY) UNTUK PENYEBARAN WABAH PENYAKIT PADA UATU POPULAI TERTUTUP Dosen Pengmpu : Dr Lin Aryti DIUUN OLEH: Nm : Muh Zki Riynto Nim : 2/56792/PA/8944 Progrm tudi : Mtemtik
MATEMATIKA DIMENSI TIGA & RUANG
SOL N MSN SOL ilengkpi kunci jwbn dn embhsn setip nomor sol MMIK IMNSI I & RUN Untuk SM, SMK ersipn Ujin Nsionl opyright sol-uns.blogspot.com rtikel ini boleh dicopy, dikutip, di cetk dlm medi kerts tu
matematika K-13 TRIGONOMETRI ATURAN SEGITIGA K e l a s
K-3 mtemtik K e l s XI TRIGONOMETRI TURN SEGITIG Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi turn sinus dn kosinus, sert pembuktinny.. Memhmi turn sinus dn
PREDIKSI UJIAN NASIONAL TAHUN PELAJARAN
PREDIKSI UJIAN NASIONAL TAHUN PELAJARAN - Mt Peljrn Progrm : Mtemtik (MA) : IPA Petunjuk : Pilihlh slh stu jwn yng pling tept!. Dikethui: 5. Dikethui log = dn log = y. Nili log P : Hri tidk hujn tu Rudi
PROGRAM LINEAR. A. Fungsi Tujuan (Obyektif / Sasaran), Nilai Maksimum, dan Nilai Minimum. (b,0) g
PROGRAM LINEAR A. Funsi Tujun (Oyektif / Ssrn), Nili Mksimum, dn Nili Minimum I. Metode titik Uji 1) Funsi tujun dl nili f untuk x dn y tertentu dri sutu rorm liner, dn dinytkn f(x, y) 2) Nili funsi ssrn
GRAPH. b Gambar 1. Graph
GRAPH m GRAPH merupkn sutu koleksi ri himpunn V G n E G. Notsi : G = { VG, EG } G = Grph VG = Himpunn titik EG = HImpunn gris Titik : Noe / Vertex Gris : Ar / Ege Contoh : Grph G teriri ri : G = { VG,
Matematika EBTANAS Tahun 1992
Mtemtik EBTANAS Thun 99 EBT-SMA-9-0 Grfik fungsi kudrt yng persmnny y = x 5x memotong sumu x. Slh stu titik potongny dlh (, 0), mk nili sm dengn EBT-SMA-9-0 Persmn x px + 5 = 0 kr-krny sm. Nili p 0 tu
III. LIMIT DAN KEKONTINUAN
KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM PPDU TELKOM UNIVERSITY III. LIMIT DAN KEKONTINUAN 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi
Tiara Ariqoh Bawindaputri TIP / kelas L
Tir Ariqoh Bwindputri 500008 TIP / kels L INTEGRAL Integrl Tk tentu Integrl dlh entuk invers dri turunn. Secr umum jik seuh fungsi diintegrlkn terhdp vrile tertentu dpt disjikn dlm entuk : f ( F( C Untuk
Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1
K-3 mtemtik K e l s XI IRISAN KERUCUT: PERSAMAAN GARIS SINGGUNG PADA ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (,
6. Himpunan Fungsi Ortogonal
6. Himpunn Fungsi Ortogonl Mislkn f periodik dengn periode, dn mulus bgin demi bgin pd [ π, π]. Jik S f N (θ) = N n= N c ne inθ, n =,, 2,..., dlh jumlh prsil dri deret Fourier f, mk kit telh menunjukkn
7. APLIKASI INTEGRAL
7. APLIKASI INTEGRAL 7. Menghitung Lus Derh.Mislkn derh D (, ), f ( ) D f() Lus D =? Lngkh :. Iris D menjdi n gin dn lus stu uh irisn dihmpiri oleh lus persegi pnjng dengn tinggi f() ls(ler) A f ( ). Lus
BAB III TRANSFORMASI LINEAR
Diktt ljr Liner II BB III RNSFORMSI LINER DEFINISI RNSFORMSI LINER Jik V W msing msing lh rung vektor mk V W msing msing merupkn himpunn Dengn emikin pt iut sutu fungsi ntr V n W erkit engn struktur ri
PRINSIP DASAR SURVEYING
POKOK HSN : PRINSIP DSR SURVEYING Metri system, Dsr Mtemtik, Prinsip pengkurn : pengkurn jrk, pengkurn sudut dn pengukurn jrk dn sudut,.. Sistem Ukurn Jrk Unit pling dsr dlm sistem metrik dlh meter, dimn
selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik
Hiperol 7.1. Persmn Hiperol Bentuk Bku Hiperol dlh himpunn semu titik (, ) pd idng sedemikin hingg selisih positif jrk titik (, ) terhdp psngn du titik tertentu ng diseut titik fokus (foci) dlh tetp. Untuk
1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:
) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut
Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1
K-3 mtemtik K e l s XI IRISAN KERUCUT: GARIS SINGGUNG PADA HIPERBOLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (, ) pd
Soal Latihan dan Pembahasan Dimensi Tiga
Sol Ltihn dn embhsn imensi ig i susun Oleh : Yuyun Somntri http://bimbingnbeljr.net/ i dukung oleh : ortl eduksi rtis Indonesi Open Knowledge nd duction http://oke.or.id utoril ini diperbolehkn untuk di
APLIKASI INTEGRAL TENTU
APLIKASI INTEGAL TENTU A. Lus Derh Bing t 1. Mislkn erh = x, y x, y f x. Lus? y = f(x) x Lngkh-lngkh: 1. Iris menji n gin ri lus stu uh irisn ihmpiri oleh lus persegi pnjng engn tinggi f(x). ls (ler) x
IRISAN KERUCUT. 1. Persamaan lingkaran dengan pusat (0,0) dan jari-jari r. Persamaan = TK titik T = =
IRISAN KERUCUT Bb 9 A. LINGKARAN. Persmn lingkrn dengn pust (0,0) dn jri-jri r 0 r T(x,y) X Persmn = TK titik T = { T / OT r } = = {( x, y) / r } {( x, y) / r }. Persmn lingkrn dengn pust (,b) dengn jri-jri
matematika wajib ATURAN SEGITIGA K e l a s Kurikulum 2013
Kurikulum 03 mtemtik wjib K e l s X TURN SEGITIG Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi turn sinus dn kosinus, sert pembuktinny.. Dpt menerpkn turn sinus
KHAIRUL BASARI khairulfaiq.wordpress.com
SOA DAN EMBAHASAN JIAN NASIONA TAHN EAJARAN / SMA/MA ROGRAM STDI IS MATEMATIKA AKET B Disusun KHAIR BASARI khirulfiq.worpress.om e-mil :[email protected] Sol n sol N pket B Disusun oleh Khirul Bsri, S. Khirulfiq.worpress.om,
Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1
Pge of 8 Kegitn eljr 5. Tujun Pembeljrn Setelh mempeljri kegitn beljr 5, dihrpkn sisw dpt. Menentukn unsur-unsur segitig dengn turn sinus b. Menentukn unsur-unsur segitig dengn turn kosinus. Menghitung
TS1019: ANALISA STRUKTUR I
TS09: ANALISA STRUKTUR I Progrm Stui Teknik Sipil Universits Bnr Lmpung UJIAN AKHIR SEMESTER Sels, 0 Mei 2007 Pukul 0:30 3.30 Wi Sift Ujin: Close Book Dosen: Ronny H. Pur, ST., MSCE. Nm : NPM : 2 3 4 (tn
Hendra Gunawan. 15 November 2013
MA1101 MATEMATIKA 1A Hendr Gunwn Semester I, 2013/2014 15 Novemer 2013 Ltihn 1. Pnjng lmi sutu pegs dlh 0.08 m. Gy seesr 0.6 N diperlukn untuk menekn dn menhnny pd pnjng 0.07 m. Tentukn kerjyng dilkukn
Prestasi itu diraih bukan didapat!!!
SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 00 TIM OLIMPIADE MATEMATIKA INDONESIA 00 Prestsi itu dirih ukn didpt!!! SOLUSI SOAL Bidng Mtemtik Disusun oleh : Olimpide Mtemtik Tk Kupten/Kot 00 BAGIAN PERTAMA.
TRIGONOMETRI 3. A. Aturan Sinus dan Cosinus 11/20/2015. Peta Konsep. A. Aturan Sinus dan Kosinus. Nomor W4801 Aturan Sinus
Jurnal Materi Umum Perbandingan dan Trigonometri Peta Konsep Peta Konsep Daftar Hadir Materi SoalLatihan TRIGONOMETRI 3 Kelas XI, Semester 4 A. Aturan Sinus dan Kosinus Ukuran Sudut Perbandingan trigonometri
IV V a b c d. a b c d. b c d. bukan fungsi linier y = x = x y 5xy + y = B.2 Konsep Fungsi Linier
8. Dri fungsi-fungsi ng disjikn dengn digrm pnh erikut ini mnkh ng merupkn fungsi onto, injektif tu ijektif, jik relsi dri A ke B? A c d IV B A c d V B A c d VI B B. Konsep Fungsi Linier. Tujun Setelh
ANALISIS NUMERIK. Inter polasi. SPL simultan. Akar Persama. linear
ANALISIS NUMERIK Inter polsi SPL simultn Akr Persm n Non liner INTERPOLASI Tujun Interpolsi bergun untuk menksir hrg-hrg tengh ntr titik dt yng sudh tept. Interpolsi mempunyi orde tu derjt. Mcm Interpolsi
SOAL DAN PEMBAHASAN TRIGONOMETRI SUDUT BERELASI KUADRAN I
SOAL DAN PEMBAHASAN TRIGONOMETRI SUDUT BERELASI KUADRAN I Trigonometri umumnya terdiri dari beberapa bab yang dibahas secara bertahap sesuai dengan tingkatannya. untuk kelas X, biasanya pelajaran trigonometri
MATEMATIKA INTEGRAL TENTU DAN LUAS DAERAH
MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 5 Sesi N INTEGRAL TENTU DAN LUAS DAERAH A. DEFINISI INTEGRAL TENTU Bentuk integrl f d = f + c diseut segi integrl tk tentu kren hsil dri pengintegrlnn msih erup
