BAB III METODE PENELITIAN
|
|
|
- Devi Hartono
- 9 tahun lalu
- Tontonan:
Transkripsi
1 digilib.uns.ac.id BAB III METODE PENELITIAN Penelitian ini sebelumnya diawali oleh pengumpulan litelatur dan pengumpulan data. Pengumpulan literatur merupakan pengumpulan bahan-bahan seperti jurnal, buku, papper, penelitian, makalah dan informasi lainnya yang membahas tentang penjadwalan mata kuliah di universitas, algoritma genetika dan algoritma Palgunadi. Pengumpulan data dilakukan dengan mengumpukan data-data yang dibutuhkan untuk melakukan penelitian dan akan berperan sebagai data yang nantinya diolah untuk diimplementasi. Data-data yang dibutuhkan antara lain data mata kuliah, dosen, kelas, mahasiswa, ruangan, jadwal, waktu kuliah, dan batasanbatasan penjadwalan. Setelah semua bahan litelatur dan data telah didapatkan penelitian ini dimulai dengan melakukan beberapa tahap yaitu: 3.1 Pemodelan Data Memodelkan data yang telah didapatkan menjadi model data yang terstruktur agar lebih mudah dipahami serta mengurangi data-data yang tidak perlu untuk digunakan. Pada tahap ini akan dibuat variabel-variabel dan skema objek penjadwalan secara umum. Variable-variabel penjadwalan ini secara garis besar dapat didefinisikan sebagai berikut: Dosen, merupakan set dari dosen D = {d1, d2,, dn} Kelas, merupakan set dari kelas K = {k1, k2,, kn}. Kelas terdiri dari sejumlah mahasiswa. Telah ditentukan bahwa mahasiswa telah dikelompokan dalam kelas, sehingga kelas bersifat disjoint berarti tidak ada mahasiswa yang sama dalam beberapa kelas. Mata kuliah, merupakan set dari mata kuliah M = {m1, m2, m3,, mn}. Timeslots, merupakan set dari timeslots T = {t1, t2,, tn}. Timeslots merupakan interval waktu dimana perkuliahan akan dilakukan. Timeslots memiliki waktu mulai dan waktu akhir. Elemen dari set timeslots memiliki bentuk <hari><jam> seperti senin1, senin2,, jumat10.
2 digilib.uns.ac.id 32 Ruangan, merupakan set dari ruangan R = {r1, r2,, rn}. Kegiatan Perkuliahan, merupakan set dari kegiatan perkuliahan (event) E = {e1, e2,, en}. Kegiatan perkuliahan memiliki atribut: Mata kuliah yang diajarkan, M_E = {m} Dosen yang mengajar di mata kuliah, set dari D_E = {d1, d2,, dn} Kelas yang diajar di mata kuliah, set dari K_E = {k1, k2,, kn} Total durasi timeslot dala sebuah perkuliahan, Dur_E = {dur } Ruangan Timeslots, set dari ruangan-timeslots dengan alasan untuk mempersimpel proses pencarian. RxT = {rxt1, rxt2,, rxtn}, memiliki atribut Ruangan, R_RxT = {r} Waktu timeslot, T_RxT = {t} Jadwal, set dari jadwal, Merupakan gabungan dari ruangan timeslot dengan event. J = {r1t1e1, r1t2e1, r2t1e2,, rntnen} Dari variabel tersebut dapat dipetakan kedalam skema sederhana seperti Gambar 3.1. Kelas Durasi Ruangan Dosen Event Jadwal Ruangan Timeslots Matakuliah Timeslot Gambar 3.1. Skema penjadwalan 3.2 Implementasi Perancangan Algoritma Palgunadi Pada dasarnya algoritma Palgunadi dirancang dalam masalah penjadwalan klasik dengan hanya menggunakan batasan kaku. Karena pada kasus ini terdapat dua jenis batasan yaitu batasan kaku dan batasan lunak maka perlu dilakukan penyesuaian algoritma Palgunadi agar dapat bekerja pada dua jenis batasan tersebut. Penyesuaian ini membuat proses algoritma Palgunadi dibagi menjadi dua
3 digilib.uns.ac.id 33 tahap. Tahap pertama adalah pengalokasian jadwal dengan pengecekan batasan kaku dan batasan lunak. Tahap kedua dilakukan jika matriks ANS memiliki nilai (terdapat mata kuliah yang tidak terjadwal), maka mata kuliah pada matriks ANS akan dijadwalkan dengan pengecekan batasan kaku saja. Jika matriks ANS masih memiliki nilai maka penjadwalan dinyatakan gagal. Diagram alur untuk algoritma Palgunadi terdapat pada gambar 3.2.
4 digilib.uns.ac.id 34 START INPUT DATA INISIALISASI MATRIKS URUTKAN EVENT BERDASARKAN PRIORITAS MAKUL WAJIB - PILIHAN URUTKAN RxT BERDASARKAN WAKTU UNTUK SETIAP EVENT PILIH RxT TEORI SECARA URUT JIKA EVENT TEORI? PILIH RxT PRAKTEK SECARA URUT CHECK PELANGGARAN CONSTRAINTS MASIH ADA SISA RtX MELANGGAR EVENT DIJADWALKAN DENGAN PENGECEKAN HARD CONSTRAINT SAJA MASUKAN KE JADWAL MASIH ADA EVENT BLM TERJADWAL? TERJADWAL? BUAT JADWAL GAGAL END Gambar 3.2. Diagram alur Algoritma Palgunadi
5 digilib.uns.ac.id Perancangan Algoritma Genetika Biasa Tahap-tahap yang dilakukan adalah: Pengkodeam kromosom Mengacu kepada skema yang telah dibuat sebelumnya, pada algoritma genetika ini kromosom direpresentasikan dengan menggunakan enkoding nilai. Terdapat sebuah vector berupa list dari setiap Event yang memiliki nilai id posisi Ruangan-Tiemeslots jam pertamanya. Selain itu terdapat sebuah vector berupa list dari setiap Ruangan-Timeslots yang memiliki nilai berupa list id Event yang dialokasikan di Ruangan-Timeslots tersebut. Representasi kromosom dapat dilihat pada Gambar 3.4 dan contoh bentuk kromosom yang telah diprint sebagai array dapat dilihat pada Gambar 3.5. e2 e2 e1 e1 e1 e13 e13 e3 R1T1 R1T2 R1T R2T7 R2T8 R2T R16T5 R16T RnTn Event-1 Event-2 Event Event Event-n R1T1 R1T2 R16T5 R2T8 RnTn Gambar 3.4. Representasi Kromosom
6 digilib.uns.ac.id Inisialisasi Kromosom Gambar 3.5 Contoh Kromosom Inisialisasi kromosom pada tahap ini dilakukan dengan menggenerate nilai RxT random untuk setiap event pada kromosom, lalu membentuk struktur tambahan setiap RxT diberi nilai event Penentuan fungsi evaluasi Setelah sejumlah populasi telah dibentuk, setiap populasi akan dievaluasi untuk mengetahui nilai fitnessnya. Evaluasi ditentukan berdasarkan batasan kaku(hard constraints) dan batasan lunak (soft constraints) yang telah dijelaskan sebelumnya. Setiap batasan kaku memiliki nilai poin 2 dan setiap batasan lunak memiliki nilai poin 1, sehingga untuk evaluasi fitnes dapat dirumuskan sebagai: fitness = Bk + Bl Bkmax + Blmax Keterangan: Bk = Nilai batasan kaku Bl = Nilai batasan lunak Bkmax = Nilai batasan kaku maksimal Blmax = Nilai batasan lunak maksimal Seleksi Seleksi dilakukan untuk memilih beberapa pasang kromosom yang dijadikan induk atau sebagai orang tua untuk sejumlah n anak berikutnya yang akan menggantikan individu dalam populasi pada setiap generasi. Pemilihan pasangan kromosom dilakukan dengan menggunakan seleksi tournament. Pada
7 digilib.uns.ac.id 37 metode seleksi dengan turnamen ini akan ditetapkan dua buah individu yang dipilh secara acak (random) dari suatu populasi. Individu yang terbaik dalam kelompok ini akan diseleksi sebagai induk pertama, demikian juga untuk pemilihan induk kedua Crossover Setelah dua kromosom induk selesai dipilih, langkah berikutnya adalah melakukan rekombinasi yaitu penyilangan (crossover) terhadap pasangan kromosom. Penyilangan akan menukar informasi genetik antara dua kromosom induk yang terpilih dari proses seleksi untuk membentuk sebuah kromosom anak. Crossover dilakukan dengan menggunakan crossover satu titik. Dimana dicari titik potong sebuah kromosom, potongan kromosom pertama berasal dari induk 1, dan sisa kromosom diambil dari induk Mutasi Anak hasil crossover sebelum dilepaskan ke populasi memiliki kemungkinan untuk terjadinya mutasi. Pada proses mutasi ini dilakukan perubahan nilai pada beberapa gen untuk menggenerate nilai RxT barunya Pergantian kromosom Pada tahap ini kromosom anak hasil crossover dan mutasi akan menggantikan posisi kromosom yang lama untuk membentuk sebuah populasi baru dengan ukuran yang sama. Pada prosedur pergantian ini diterapkan konsep elitism yang memastikan kromosom dengan fitness tertinggi tidak tersingkirkan dalam populasi. Diagram alur algoritma genetika ini dapat dilihat pada Gambar 3.3.
8 digilib.uns.ac.id 38 START DATA INPUT PEMBUATAN KROMOSOM INISIALISASI EVALUASI FITNESS == 0? SELEKSI CROSSOVER AMBIL KROMOSOM DENGAN BEST FITNESS MUTASI MEMBUAT JADWAL REPLACE DENGAN ELITISM FITNESS == 0? END EVALUASI Gambar 3.3. Diagram alur algoritma genetika Perancangan Algoritma Kombinasi Pada kombinasi ini konsep yang ingin diterapkan adalah pengeleminasian batasan kaku pada setiap proses heuristik algoritma genetika dengan menggunakan algoritma palgunadi. Perbedaan kombinasi ini dengan algoritma genetika biasa terletak pada proses inisialisasi, crossover, dan mutasi. Proses ini memastikan
9 digilib.uns.ac.id 39 kromosom yang dibentuk pada setiap proses inisialisasi, crossover, mutasi tidak melanggar batasan kaku, sehingga yang dilakukan oleh algoritma genetika adalah meminimalkan pelanggaran batasan lunaknya Inisialisasi Kromosom Inisialisasi kromosom pada tahap ini dilakukan dengan menggunakan prinsip algoritma Palgunadi namun constraint yang dicek hanya berupa batasan kaku dan RxT dipilih secara random. Untuk setiap Event diberikan sebuah nilai yang berupa kode RxT, lalu pada struktur tambahan setiap RxT sejumlah n durasi dari Event ditempatkan Eventnya. Proses inisialisasi dijelaskan pada diagram alur Gambar 3.4.
10 digilib.uns.ac.id 40 START INPUT DATA INISIALISASI MATRIKS URUTKAN EVENT BERDASARKAN PRIORITAS MAKUL WAJIB - PILIHAN ACAK RxT UNTUK SETIAP EVENT PILIH RxT TEORI JIKA EVENT TEORI? PILIH RxT PRAKTEK CHECK PELANGGARAN HARD CONSTRAINTS MASIH ADA SISA RtX MELANGGAR GAGAL, BUAT ULANG KROMOSOM MASUKAN KE KROMOSOM MASIH ADA EVENT BLM TERJADWAL? BUAT KROMOSOM END Gambar 3.4. Diagram Alur Proses Inisialisasi Kromosom
11 digilib.uns.ac.id Crossover Crossover dilakukan dengan menggunakan crossover satu titik. Dimana dicari titik potong sebuah kromosom, potongan kromosom pertama berasal dari induk 1, dan sisa kromosom diambil dari induk 2 dengan dilakukan sebuah fungsi untuk mengecek pelanggaran batasan kaku. Jika terdapat pelanggaran batasan kaku, maka dilakukan perbaikan bertahap. Perbaikan ini terdiri dari dua tahap yaitu repair 1(R1), dan repair 2(R2). R1 mengganti nilai gen yang melanggar batasan kaku dengan nilai baru yang tidak melanggar. R2 menukar nilai gen yang melanggar batasan kaku dengan nilai pada gen lain sehingga tidak melanggar. Jika sebuah kromosom induk 2 melanggar hard constraint maka tahap selanjutnya yang dilakukan adalah R1 jika R1 tidak dapat memperbaiki kromosom, maka dilakukan tahap R2. Jika kedua tahap R1 dan R2 tidak bisa memperbaiki kromosom, maka kromosom anak dibuang. Proses crossover dijelaskan pada diagram alur Gambar 3.5.
12 digilib.uns.ac.id 42 START PILIH TITIK POTONG KROMOSOM KOPI GEN DARI ORTU 1 GENERATE GEN URUT DARI RtX MELANGGAR HC AMBIL GEN BERIKUTNYA DARI ORTU 2 MELANGGAR HC MASUKAN GEN KE ANAK KOPI GEN DARI ORTU 2 KE ANAK ANAK MASIH KEKURANGAN GEN? MASIH ADA PILIHAN RxT PILIH RANDOM GEN DARI ANAK LAKUKAN SWAP GEN SWAP RxT nya DENGAN GEN BARU MELANGGAR HC PROSSES CROSS OVER SELESAI PROSES CROSSOVER DIBATALKAN END Gambar 3.5 Diagram Alur Proses Crossover Algoritma Kombinasi Mutasi Anak hasil crossover sebelum dilepaskan ke populasi memiliki kemungkinan untuk terjadinya mutasi. Pada proses mutasi ini pergantian nilai pada setiap gen dilakukan dengan sebuah proses pengecekan pelanggaran batasan kaku jika melanggar maka akan dicari nilai baru yang tidak melanggar hard consrtraint, proses ini dilakukan hingga didapat kromosom yang tidak melanggar batasan kaku. Proses mutasi dijelaskan pada diagram alur Gambar 3.6.
13 digilib.uns.ac.id 43 START AMBIL SECARA RANDOM TITIK MUTASI GEN PADA TITIK MUTASI DI HAPUS, GEN-X ACAK RxT UNTUK SETIAP EVENT PILIH RxT TEORI JIKA EVENT TEORI? PILIH RxT PRAKTEK CHECK PELANGGARAN HARD CONSTRAINTS MASIH ADA SISA RtX MELANGGAR GAGAL, CARI TITIK LAIN MASUKAN KE GEN-X BUAT KROMOSOM END Gambar 3.6 Diagram Alur Proses Mutasi Algoritma Kombinasi
14 digilib.uns.ac.id Pengujian Pada tahap ini dilakukan pengujian terhadap kombinasi algoritma genetika dengan algoritma Palgunadi. Sebagai perbandingan dari algoritma yang diusulkan tersebut, dilakukan pula pengujian terhadap algoritma Palgunadi dan algoritma genetika biasa. Pengujian dilakukan dengan menggunakan data jadwal jurusan informatika dan fisika semester genap periode februari-juli 2013 Universitas Sebelas Maret dengan total 9 kelas mahasiswa, 59 mata kuliah, 107 perkuliahan, 17 ruangan, 5 hari kuliah, dan 10 jam kuliah. Inputan berupa list event (Lapiran B), list ruangan (Lampiran C), dengan 5 hari kuliah dan 10 jam kuliah. Algoritma yang diuji adalah algoritma Palgunadi, algoritma genetika dan kombinasi algoritma genetika dengan algoritma Palgunadi. Parameter yang diuji adalah: Total waktu proses Jumlah pelanggaran pada batasan kaku Jumlah pelanggaran pada batasan lunak Khusus untuk algoritma genetika dan hibdridasi algoritma genetika terdapat beberapa setting pengujian yaitu: Populasi maksimum: 10 populasi dan 20 populasi Kromosom yang diganti pada setiap generasi: 5(10 populasi) dan10(20 populasi) Kromosom elitism: 5 Kemungkinan terjadi crossover: 0,7 Kemungkinan terjadi mutasi: 0,3 Setting kemungkinan terjadi crossover 0,7 dan kemungkinan terjadi mutasi 0,3 diambil dari hasil percobaan kombinasi setting crossover (70, 80, 90) dengan kemungkinan mutasi (10, 20, 30) yang memiliki fitness terbaik (Lampiran A). Pengujian dilakukan dengan menggunakan Laptop ASUS K43U dengan processor AMD E-450 (2 CPUs) ~1.6 GHz, dan RAM tersedia 1.6 GB.
ANALISA KOMBINASI ALGORITMA GENETIKA DENGAN ALGORITMA PALGUNADI UNTUK PENJADWALAN MATA KULIAH DI UNIVERSITAS SEBELAS MARET
Analisa Kombinasi Algoritma Genetika dengan (Siswono dan Palgunadi) ANALISA KOMBINASI ALGORITMA GENETIKA DENGAN ALGORITMA PALGUNADI UNTUK PENJADWALAN MATA KULIAH DI UNIVERSITAS SEBELAS MARET Teno Siswono
BAB I PENDAHULUAN 1.1 Latar Belakang
digilib.uns.ac.id BAB I PENDAHULUAN 1.1 Latar Belakang Jadwal merupakan daftar atau tabel kegiatan atau rencana kegiatan dengan pembagian waktu pelaksanaan yang terperinci. Universitas menggunakan tabel
BAB II LANDASAN TEORI
27 BAB II LANDASAN TEORI 2.1. Penelitian Terkait Penelitian terkait yang menggunakan algoritma genetika untuk menemukan solusi dalam menyelesaikan permasalahan penjadwalan kuliah telah banyak dilakukan.
BAB I PENDAHULUAN. sejumlah aktivitas kuliah dan batasan mata kuliah ke dalam slot ruang dan waktu
18 BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Penjadwalan merupakan kegiatan administrasi utama di berbagai institusi. Masalah penjadwalan merupakan masalah penugasan sejumlah kegiatan dalam periode
BAB III METODE PENELITIAN. Penelitian dilakukan dilingkungan Jurusan Ilmu Komputer Fakultas Matematika
BAB III METODE PENELITIAN 3.1. Waktu dan Tempat Penelitian Penelitian dilakukan dilingkungan Jurusan Ilmu Komputer Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lampung. Waktu penelitian dilaksanakan
1 BAB III METODE PENELITIAN
30 1 BAB III METODE PENELITIAN 3.1 Desain Penelitian Studi Literatur Observasi dan Wawancara Pengumpulan data : 1. Data dosen, matakuliah, ruangan, waktu, dan rombel dari PGSD 2. Jadwal yang terdahulu,
Perancangan Sistem Penjadwalan Asisten Dosen Menggunakan Algoritma Genetika (Studi Kasus: STIKOM Bali)
Konferensi Nasional Sistem & Informatika 2017 STMIK STIKOM Bali, 10 Agustus 2017 Perancangan Sistem Penjadwalan Asisten Dosen Menggunakan Algoritma Genetika (Studi Kasus: STIKOM Bali) I Made Budi Adnyana
Optimasi Penjadwalan Ujian Menggunakan Algoritma Genetika
Optimasi Penjadwalan Ujian Menggunakan Algoritma Genetika Nia Kurnia Mawaddah Wayan Firdaus Mahmudy, ([email protected]) Jurusan Matematika, FMIPA Universitas Brawijaya, Malang 65145 Abstrak Penjadwalan
TAKARIR. algorithm algoritma/ kumpulan perintah untuk menyelesaikan suatu masalah. kesalahan program
TAKARIR advanced tingkat lanjut algorithm algoritma/ kumpulan perintah untuk menyelesaikan suatu masalah alleles nilai suatu gen. bug kesalahan program chromosome kromosom crossover penyilangan kromosom
Penggunaan Algoritma Genetik dengan Pemodelan Dua Tingkat dalam Permasalahan Penjadwalan Perawat pada Unit Gawat Darurat Rumah Sakit Umum XYZ Surabaya
Penggunaan Algoritma Genetik dengan Pemodelan Dua Tingkat dalam Permasalahan Penjadwalan Perawat pada Unit Gawat Darurat Rumah Sakit Umum XYZ Surabaya Oleh: Anisa Ulya 5206 100 101 Dosen pembimbing 1:
PENGEMBANGAN APLIKASI PENJADWALAN KULIAH SEMESTER I MENGGUNAKAN ALGORITMA GENETIKA
PENGEMBANGAN APLIKASI PENJADWALAN KULIAH SEMESTER I MENGGUNAKAN ALGORITMA GENETIKA Bagus Priambodo Program Studi Sistem Informasi Fakultas Ilmu Komputer Universitas Mercu Buana e- mail : [email protected]
BAB 3 ANALISIS DAN PERANCANGAN APLIKASI
27 BAB 3 ANALISIS DAN PERANCANGAN APLIKASI 3.1 Analisis Pada subbab ini akan diuraikan tentang analisis kebutuhan untuk menyelesaikan masalah jalur terpendek yang dirancang dengan menggunakan algoritma
OPTIMASI PENJADWALAN KEGIATAN BELAJAR MENGAJAR DENGAN ALGORITMA GENETIK
OPTIMASI PENJADWALAN KEGIATAN BELAJAR MENGAJAR DENGAN ALGORITMA GENETIK Usulan Skripsi S-1 Jurusan Matematika Diajukan oleh 1. Novandry Widyastuti M0105013 2. Astika Ratnawati M0105025 3. Rahma Nur Cahyani
Implementasi Algoritma Genetika dalam Pembuatan Jadwal Kuliah
Implementasi Algoritma Genetika dalam Pembuatan Jadwal Kuliah Leonard Tambunan AMIK Mitra Gama Jl. Kayangan No. 99, Duri-Riau e-mail : [email protected] Abstrak Pada saat ini proses penjadwalan kuliah
KNAPSACK PROBLEM DENGAN ALGORITMA GENETIKA
LAPORAN TUGAS BESAR ARTIFICIAL INTELLEGENCE KNAPSACK PROBLEM DENGAN ALGORITMA GENETIKA Disusun Oleh : Bayu Kusumo Hapsoro (113050220) Barkah Nur Anita (113050228) Radityo Basith (113050252) Ilmi Hayyu
BAB 4 IMPLEMENTASI DAN EVALUASI
BAB 4 IMPLEMENTASI DAN EVALUASI BAB 4 IMPLEMENTASI DAN EVALUASI 4.1 Spesifikasi Sistem Spesifikasi perangkat lunak dan perangkat keras yang digunakan dalam pengembangan aplikasi adalah sebagai berikut
BAB III PERANCANGAN. Gambar 3.1 di bawah ini mengilustrasikan jalur pada TSP kurva terbuka jika jumlah node ada 10:
BAB III PERANCANGAN Pada bagian perancangan ini akan dipaparkan mengenai bagaimana mencari solusi pada persoalan pencarian rute terpendek dari n buah node dengan menggunakan algoritma genetika (AG). Dari
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1 Tinjauan Pustaka. Penelitian serupa mengenai penjadwalan matakuliah pernah dilakukan oleh penelliti yang sebelumnya dengan metode yang berbeda-neda. Berikut
PENJADWALAN UJIAN AKHIR SEMESTER DENGAN ALGORITMA GENETIKA (STUDI KASUS JURUSAN TEKNIK INFORMATIKA UNESA)
Penjadwalan Ujian Akhir Semester dengan Algoritma Genetika PENJADWALAN UJIAN AKHIR SEMESTER DENGAN ALGORITMA GENETIKA (STUDI KASUS JURUSAN TEKNIK INFORMATIKA UNESA) Anita Qoiriah Jurusan Teknik Informatika,
T I N J A U A N P U S T A K A Algoritma Genetika [5]
Algoritma Genetika [5] Fitness adalah nilai yang menyatakan baik-tidaknya suatu jalur penyelesaian dalam permasalahan TSP,sehingga dijadikan nilai acuan dalam mencari jalur penyelesaian optimal dalam algoritma
TEKNIK PENJADWALAN KULIAH MENGGUNAKAN METODE ALGORITMA GENETIKA. Oleh Dian Sari Reski 1, Asrul Sani 2, Norma Muhtar 3 ABSTRACT
TEKNIK PENJADWALAN KULIAH MENGGUNAKAN METODE ALGORITMA GENETIKA Oleh Dian Sari Reski, Asrul Sani 2, Norma Muhtar 3 ABSTRACT Scheduling problem is one type of allocating resources problem that exist to
OPTIMASI PENJADWALAN CERDAS MENGGUNAKAN ALGORITMA MEMETIKA
OPTIMASI PENJADWALAN CERDAS MENGGUNAKAN ALGORITMA MEMETIKA Muhammad Arief Nugroho 1, Galih Hermawan, S.Kom., M.T. 2 1, 2 Universitas Komputer Indonesia Jl. Dipatiukur No. 112-116, Bandung 40132 E-mail
BAB III KONSEP DAN PERANCANGAN APLIKASI
BAB III KONSEP DAN PERANCANGAN APLIKASI 3.1 Konsep Pada bab ini penulis akan membahas konsep mengenai perangkat lunak yang digunakan serta akan dibahas mengenai tujuan, kegunaan dan untuk siapa aplikasi
BAB I PENDAHULUAN 1.1. Latar Belakang
BAB I PENDAHULUAN 1.1. Latar Belakang Penjadwalan adalah proses, cara, pembuatan menjadwalkan atau memasukkan dalam jadwal. Persoalan penjadwalan berkaitan dengan pengalokasian sumber daya ke dalam tugas-tugas
Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 45 Edisi... Volume..., Bulan 20.. ISSN :
Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 45 IMPLEMENTASI ALGORITMA GENETIKA UNTUK PENJADWALAN MATA PELAJARAN DI SMAN 1 CIWIDEY Rismayanti 1, Tati Harihayati 2 Teknik Informatika Universitas Komputer
BAB III. Metode Penelitian
BAB III Metode Penelitian 3.1 Diagram Alir Penelitian Secara umum diagram alir algoritma genetika dalam penelitian ini terlihat pada Gambar 3.1. pada Algoritma genetik memberikan suatu pilihan bagi penentuan
1. Pendahuluan 1.1. Latar Belakang
1. Pendahuluan 1.1. Latar Belakang Perkembangan teknologi informasi yang begitu pesat sekarang ini memberikan dampak yang besar terhadap kinerja manusia khususnya dalam bekerja. Segala sesuatu yang dahulu
BAB 2 LANDASAN TEORI
7 BAB 2 LANDASAN TEORI 2.1 Penjadwalan Perkuliahan Penjadwalan memiliki pengertian durasi dari waktu kerja yang dibutuhkan untuk melakukan serangkaian untuk melakukan aktivitas kerja[10]. Penjadwalan juga
OPTIMALISASI PENJADWALAN ACARA TELEVISI SWASTA MENGGUNAKAN ALGORITMA GENETIKA
OPTIMALISASI PENJADWALAN ACARA TELEVISI SWASTA MENGGUNAKAN ALGORITMA GENETIKA Aek Mustofa *, Esmeralda C Djamal, Agus Komarudin Jurusan Informatika, Fakultas MIPA, Universitas Jenderal Achmad Yani Jl.
BAB 2 DASAR TEORI. 2.1 Teka-Teki Silang
BAB 2 DASAR TEORI 2.1 Teka-Teki Silang Teka-teki silang atau disingkat TTS adalah suatu permainan yang mengharuskan penggunanya untuk mengisi ruang-ruang kosong dengan huruf-huruf yang membentuk sebuah
OPTIMASI PENJADWALAN BIMBINGAN BELAJAR MENGGUNAKAN METODE ALGORITMA GENETIKA
OPTIMASI PENJADWALAN BIMBINGAN BELAJAR MENGGUNAKAN METODE ALGORITMA GENETIKA SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana Komputer (S.kom) Pada Program Studi Sistem Informasi
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Pada awal diciptakan, komputer hanya difungsikan sebagai alat hitung saja. Namun seiring dengan perkembangan zaman, maka peran komputer semakin mendominasi kehidupan.
Pengantar Kecerdasan Buatan (AK045218) Algoritma Genetika
Algoritma Genetika Pendahuluan Struktur Umum Komponen Utama Seleksi Rekombinasi Mutasi Algoritma Genetika Sederhana Referensi Sri Kusumadewi bab 9 Luger & Subblefield bab 12.8 Algoritma Genetika 1/35 Pendahuluan
BAB 1 PENDAHULUAN. disebut Univesitas Timetabling Problems (UTP). Permasalahan ini dilihat dari sisi
1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Penjadwalan perkuliahan merupakan suatu masalah yang sangat kompleks yang sering disebut Univesitas Timetabling Problems (UTP). Permasalahan ini dilihat dari sisi
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Pengertian jadwal menurut kamus besar bahasa Indonesia adalah pembagian waktu berdasarkan rencana pengaturan urutan kerja; daftar atau tabel kegiatan atau rencana kegiatan
HASIL DAN PEMBAHASAN. Gambar 7 Diagram alur proses mutasi.
5 Mulai HASIL DAN PEMBAHASAN Kromosom P = rand [0,1] Ya P < Pm R = random Gen(r) dimutasi Selesai Tidak Gambar 7 Diagram alur proses mutasi. Hasil populasi baru yang terbentuk akan dievaluasi kembali dan
Implementasi Sistem Penjadwalan Akademik Fakultas Teknik Universitas Tanjungpura Menggunakan Metode Algoritma Genetika
Jurnal Sistem dan Teknologi Informasi (JUSTIN) Vol. 1, No. 2, (2017) 28 Implementasi Sistem Penjadwalan Akademik Fakultas Teknik Universitas Tanjungpura Menggunakan Metode Algoritma Genetika Andreas Christian
Penjadwalan Mata Kuliah Menggunakan Algoritma Genetika di Jurusan Sistem Informasi ITS
JURNAL TEKNIK POMITS Vol. 2, No. 1, (2013) ISSN: 2337-3539 (2301-9271 Print) A-127 Mata Kuliah Menggunakan Algoritma Genetika di Jurusan Sistem Informasi ITS Wiga Ayu Puspaningrum, Arif Djunaidy, dan Retno
BAB II KAJIAN TEORI. genetika, dan algoritma memetika yang akan digunakan sebagai landasan dalam
BAB II KAJIAN TEORI Pada bab II ini dijelaskan mengenai beberapa teori tentang penjadwalan, penjadwalan kuliah, metode penyelesaian penyusunan jadwal kuliah, algoritma genetika, dan algoritma memetika
8. Evaluasi Solusi dan Kriteria Berhenti Perumusan Masalah METODE PENELITIAN Studi Pustaka Pembentukan Data
Gambar 4 Proses Swap Mutation. 8. Evaluasi Solusi dan Kriteria Berhenti Proses evaluasi solusi ini akan mengevaluasi setiap populasi dengan menghitung nilai fitness setiap kromosom sampai terpenuhi kriteria
APLIKASI UNTUK PREDIKSI JUMLAH MAHASISWA PENGAMBIL MATAKULIAH DENGAN MENGGUNAKAN ALGORITMA GENETIKA, STUDI KASUS DI JURUSAN TEKNIK INFORMATIKA ITS
APLIKASI UNTUK PREDIKSI JUMLAH MAHASISWA PENGAMBIL MATAKULIAH DENGAN MENGGUNAKAN ALGORITMA GENETIKA, STUDI KASUS DI JURUSAN TEKNIK INFORMATIKA ITS Hafid Hazaki 1, Joko Lianto Buliali 2, Anny Yuniarti 2
BAB III PENJADWALAN KULIAH DI DEPARTEMEN MATEMATIKA DENGAN ALGORITMA MEMETIKA. Penjadwalan kuliah di departemen Matematika UI melibatkan
BAB III PENJADWALAN KULIAH DI DEPARTEMEN MATEMATIKA DENGAN ALGORITMA MEMETIKA Penjadwalan kuliah di departemen Matematika UI melibatkan beberapa komponen yakni ruang kuliah, dosen serta mahasiswa. Seorang
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi yang pesat memberikan banyak kemudahan dalam penyelesaian masalah dan pencapaian hasil kerja yang memuaskan bagi kehidupan manusia. Salah satu
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Travelling Salesman Problem (TSP) Travelling Salesmen Problem (TSP) termasuk ke dalam kelas NP hard yang pada umumnya menggunakan pendekatan heuristik untuk mencari solusinya.
BAB 3 ANALISIS DAN PERANCANGAN
BAB 3 ANALISIS DAN PERANCANGAN 3.1. Analisis Sistem Berjalan 3.1.1. Penyusunan Menu Makanan Dalam penyusunan menu makanan banyak hal yang perlu diperhatikan, terutama jika menu makanan yang disusun untuk
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka (Samuel, Toni & Willi 2005) dalam penelitian yang berjudul Penerapan Algoritma Genetika untuk Traveling Salesman Problem Dengan Menggunakan Metode Order Crossover
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2.1 Penjadwalan Penjadwalan kegiatan belajar mengajar pada suatu lembaga pendidikan biasanya merupakan salah satu pekerjaan yang tidak mudah dan menyita waktu. Pada lembaga pendidikan
Arif Munandar 1, Achmad Lukman 2 1 Teknik Informatika STMIK El Rahma Yogyakarta, Teknik Informatika STMIK El Rahma Yogyakarta
PENJADWALAN MATAKULIAH DENGAN ALGORITMA GENETIKA MENGGUNAKAN FRAMEWORK CODEIGNITER (STUDI KAUS PROGRAM STUDI S PENDIDIKAN AGAMA ISLAM UNIVERSITAS ALMA ATA YOGYAKARTA) Arif Munandar, Achmad Lukman 2 Teknik
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1 Konsep Umum Optimasi Optimasi merupakan suatu cara untuk menghasilkan suatu bentuk struktur yang aman dalam segi perencanaan dan menghasilkan struktur yang
OTOMASI PENJADWALAN KEGIATAN PRKULIAHAN DI PERGURUAN TINGGI MENGGUNAKAN METODE ALGORITMA GENETIKA ( STUDI KASUS STIKI )
OTOMASI PENJADWALAN KEGIATAN PRKULIAHAN DI PERGURUAN TINGGI MENGGUNAKAN METODE ALGORITMA GENETIKA ( STUDI KASUS STIKI ) Siska Diatinari Andarawarih 1) 1) Program Studi Teknik Informatika, Sekolah Tinggi
ABSTRAK. Kata kunci : Aplikasi, Penjadwalan, Algoritma Genetika. viii
ABSTRAK Di program studi Teknik Informatika UPN Veteran Yogyakarta, mahasiswa yang akan melakukan pendadaran tidak bisa menentukan jadwal pendadarannya sendiri. Mahasiswa hanya menunggu jadwal pendadaran
PENERAPAN ALGORITMA GENETIKA PADA PERENCANAAN LINTASAN KENDARAAN Achmad Hidayatno Darjat Hendry H L T
PENERAPAN ALGORITMA GENETIKA PADA PERENCANAAN LINTASAN KENDARAAN Achmad Hidayatno Darjat Hendry H L T Abstrak : Algoritma genetika adalah algoritma pencarian heuristik yang didasarkan atas mekanisme evolusi
CODING VOL.2 NO. 1 (2014), Hal ISSN: X
APLIKASI JADWAL PERKULIAHAN DENGAN METODE ALGORITMA GENETIKA MENGGUNAKAN VISUAL BASIC.NET (Studi Kasus: Fakultas Matematika dan Ilmu Pengetahuan Alam) Sella Erary [1],Beni Irawan [2], Ilhamsyah [3] [1][2][3]
Keywords Algoritma, Genetika, Penjadwalan I. PENDAHULUAN
Optimasi Penjadwalan Mata Kuliah Dengan Algoritma Genetika Andysah Putera Utama Siahaan Universitas Pembangunan Pancabudi Jl. Gatot Subroto Km. 4,5, Medan, Sumatra Utara, Indonesia [email protected]
PENERAPAN ALGORITMA GENETIKA PADA PENYELESAIAN TRAVELLING SALESMAN PROBLEM (TSP)
PENERAPAN ALGORITMA GENETIKA PADA PENYELESAIAN TRAVELLING SALESMAN PROBLEM (TSP) Mohamad Subchan STMIK Muhammadiyah Banten e-mail: [email protected] ABSTRAK: Permasalahan pencarian rute terpendek dapat
Bab IV Implementasi Sistem
37 Bab IV Implementasi Sistem Implementasi aplikasi penjadwalan kereta api dengan menggunakan algoritma genetik didalam penelitian ini menggunakan bahasa pemrogramman C# dan database MySQL 5. Adapun perancangan
ABSTRAK. Universitas Kristen Maranatha
ABSTRAK Perusahaan X merupakan salah satu perusahaan manufaktur yang memproduksi berbagai macam produk berbahan baku besi dan stainless steel. Produk yang dihasilkan seperti cabinet, trolley, pagar, tangki
RANCANG BANGUN PERANGKAT LUNAK PENJADWALAN PERKULIAHAN MENGGUNAKAN METODE META- HEURISTIK (PENGGABUNGAN METODE ALGORITMA GENETIK DAN TABU SEARCH)
RANCANG BANGUN PERANGKAT LUNAK PENJADWALAN PERKULIAHAN MENGGUNAKAN METODE META- HEURISTIK (PENGGABUNGAN METODE ALGORITMA GENETIK DAN TABU SEARCH) TUGAS AKHIR Disusun Oleh : RIO PRAYOGA SUPRAYANA NPM. 06
SISTEM PENJADWALAN PERKULIAHAN MENGGUNAKAN ALGORITMA GENETIKA (STUDI KASUS PADA JURUSAN TEKNOLOGI INFORMASI FAKULTAS TEKNIK UNIVERSITAS TADULAKO)
JIMT Vol. 14 No. 2 Desember 2017 (Hal 242-255) ISSN : 2450 766X SISTEM PENJADWALAN PERKULIAHAN MENGGUNAKAN ALGORITMA GENETIKA (STUDI KASUS PADA JURUSAN TEKNOLOGI INFORMASI FAKULTAS TEKNIK UNIVERSITAS TADULAKO)
Tugas Mata Kuliah E-Bisnis REVIEW TESIS
Tugas Mata Kuliah E-Bisnis REVIEW TESIS Desain Algoritma Genetika Untuk Optimasi Penjadwalan Produksi Meuble Kayu Studi Kasus Pada PT. Sinar Bakti Utama (oleh Fransiska Sidharta dibawah bimbingan Prof.Kudang
BAB IV HASIL DAN PEMBAHASAN
BAB IV HASIL DAN PEMBAHASAN.. Pengumpulan data dan informasi Pengumpulan data digunakan untuk mengumpulkan informasi dan data yang digunakan untuk melakukan analisis dan perancangan sistem informasi penjadwalan
BAB 3 ANALISIS DAN PERANCANGAN PROGRAM
BAB 3 ANALISIS DAN PERANCANGAN PROGRAM 3.1 Analisis Permasalahan TSP merupakan suatu masalah klasik yang telah ada sejak tahun 1800-an, sejauh ini telah cukup banyak metode yang diciptakan untuk menyelesaikan
PENERAPAN ALGORITMA GENETIKA UNTUK PENJADWALAN UJIAN TUGAS AKHIR PADA JURUSAN TEKNIK INFORMATIKA UNIVERSITAS MUHAMMADIYAH MALANG
PENERAPAN ALGORITMA GENETIKA UNTUK PENJADWALAN UJIAN TUGAS AKHIR PADA JURUSAN TEKNIK INFORMATIKA UNIVERSITAS MUHAMMADIYAH MALANG TUGAS AKHIR Sebagai Persyaratan Guna Meraih Sarjana Strata 1 Teknik Informatika
BAB 3 METODOLOGI Metode Penelitian. Dalam melakukan penelitian akan permasalahan ini, penulis menggunakan metode
BAB 3 METODOLOGI 3.1. Metode Penelitian Dalam melakukan penelitian akan permasalahan ini, penulis menggunakan metode rapid application development (RAD), dengan alur pengerjaan sebagai berikut: Gambar
Optimasi Multi Travelling Salesman Problem (M-TSP) Menggunakan Algoritma Genetika
Optimasi Multi Travelling Salesman Problem (M-TSP) Menggunakan Algoritma Genetika Wayan Firdaus Mahmudy ([email protected]) Program Studi Ilmu Komputer, Universitas Brawijaya, Malang, Indonesia Abstrak.
PENEMPATAN MAHASISWA PESERTA MATA KULIAH UMUM DENGAN ALGORITMA GENETIK DI UNIVERSITAS KATOLIK PARAHYANGAN
PENEMPATAN MAHASISWA PESERTA MATA KULIAH UMUM DENGAN ALGORITMA GENETIK DI UNIVERSITAS KATOLIK PARAHYANGAN Nico Saputro dan Guntur Setia Negara Jurusan Ilmu Komputer Universitas Katolik Parahyangan [email protected]
APLIKASI ALGORITMA GENETIKA DALAM MENENTUKAN SPESIFIKASI PC BERDASARKAN KEMAMPUAN FINANSIAL KONSUMEN
APLIKASI ALGORITMA GENETIKA DALAM MENENTUKAN SPESIFIKASI PC BERDASARKAN KEMAMPUAN FINANSIAL KONSUMEN Eva Haryanty, S.Kom. ABSTRAK Komputer adalah salah satu peralatan yang pada saat ini banyak pula digunakan
BAB 1 PENDAHULUAN 1.1. Latar Belakang Masalah 1.2. Rumusan Masalah
BAB 1 PENDAHULUAN 1.1. Latar Belakang Masalah Seorang investor tentu akan kesulitan dalam menanamkan modalnya apabila perusahaan yang ditawarkan cukup banyak jumlahnya, dengan biaya investasi, risiko kegagalan,
BAB 3 PERANCANGAN PROGRAM. dari OOP (Object Oriented Programming) di mana dalam prosesnya, hal-hal
BAB 3 PERANCANGAN PROGRAM 3.1 Spesifikasi Rumusan Rancangan Program Algoritma Genetika dirancang dengan mengikuti prinsip-prinsip dan sifatsifat dari OOP (Object Oriented Programming) di mana dalam prosesnya,
Oleh : SUPRIYONO
1 Oleh : SUPRIYONO 5110201024 LATAR BELAKANG Teknologi Informasi merupakan perihal yang sangat penting bagi perusahaan karena dapat digunakan dalam pengambilan suatu keputusan Menurut (Boehm,1991) mengidentifikasi
PERANCANGAN DAN PEMBUATAN APLIKASI OPTIMASI PENYUSUNAN IKLAN GAMBAR DENGAN ALGORITMA GENETIKA ABSTRAK
PERANCANGAN DAN PEMBUATAN APLIKASI OPTIMASI PENYUSUNAN IKLAN GAMBAR DENGAN ALGORITMA GENETIKA Leo Willyanto Santoso*, Johan Saputra**, dan Rolly Intan*** *, **, ***Jurusan Teknik Informatika FTI Universitas
Contoh Penggunaan Algoritma Genetika dan NEH
Contoh Penggunaan Algoritma Genetika dan NEH Mata Kuliah Tawar Program Studi Teknik Informatika Kode_mk Mata Kuliah SKS Semester Kelas Dosen Pengampu TKC108 Aljabar Linear 3 2 A Mula'ab, S.Si., M.Kom TKC108
BAB III ANALISIS SISTEM DAN PERANCANGAN. Bisnis dan Informatika Stikom Surabaya dengan Menggunakan Algoritma
BAB III ANALISIS SISTEM DAN PERANCANGAN Pada bab ini dijelaskan tentang analisis dan perancangan dari aplikasi yang akan dibuat, yaitu Rancang Bangun Aplikasi Penjadwalan Kuliah di Institut Bisnis dan
BAB III ANALISA MASALAH DAN RANCANGAN PROGRAM
BAB III ANALISA MASALAH DAN RANCANGAN PROGRAM III.1. Analisa Masalah Perkembangan game dari skala kecil maupun besar sangat bervariasi yang dapat dimainkan oleh siapa saja tanpa memandang umur, dari anak
PENERAPAN ALGORITMA GENETIKA UNTUK MENYELESAIKAN PERMASALAHAN PENJADWALAN DOSEN DENGAN FUZZY
PENERAPAN ALGORITMA GENETIKA UNTUK MENYELESAIKAN PERMASALAHAN PENJADWALAN DOSEN DENGAN FUZZY Arief Kelik Nugroho Fakultas Teknik, Universitas PGR Yogyakarta e-mail : [email protected] Abstrak
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah 1.2 Perumusan Masalah
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Masalah pemilihan lokasi usaha yang tepat merupakan salah satu faktor penunjang suksesnya suatu usaha. Dalam pemilihan lokasi usaha yang tepat diperlukan pertimbangan
BAB 3 ANALISIS DAN PERANCANGAN SISTEM
BAB 3 ANALISIS DAN PERANCANGAN SISTEM 3.1 Gambaran Umum Perusahaan 3.1.1 Sejarah Umum Perusahaan NIKO FURNITURE adalah perusahaan swasta, yang didirikan pada tahun 2000. Perusahaan ini bergerak dalam bidang
PERFORMANCE ALGORITMA GENETIKA (GA) PADA PENJADWALAN MATA PELAJARAN
PERFORMANCE ALGORITMA GENETIKA (GA) PADA PENJADWALAN MATA PELAJARAN Eva Desiana, M.Kom Pascasarjana Teknik Informatika Universitas Sumatera Utara, SMP Negeri 5 Pematangsianta Jl. Universitas Medan, Jl.
Lingkup Metode Optimasi
Algoritma Genetika Lingkup Metode Optimasi Analitik Linier Non Linier Single Variabel Multi Variabel Dgn Kendala Tanpa Kendala Numerik Fibonacci Evolusi Complex Combinasi Intelijen/ Evolusi Fuzzy Logic
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Penjadwalan Penjadwalan adalah penempatan sumber daya (resource) dalam satu waktu. Penjadwalan mata kuliah merupakan persoalan penjadwalan yang umum dan sulit dimana tujuannya
ALGORITMA GENETIKA Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning
ALGORITMA GENETIKA Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning Achmad Basuki Politeknik Elektronika Negeri Surabaya PENS-ITS Surabaya 2003 Algoritma Genetika Algoritma
PERANCANGAN ALGORITMA GENETIKA DALAM PENYUSUNAN TEKA-TEKI SILANG
PERANCANGAN ALGORITMA GENETIKA DALAM PENYUSUNAN TEKA-TEKI SILANG Afen Prana Utama 1, Edison Sinaga 1 D-3 Manajemen Informatika - STMIK Mikroskil Medan [email protected] Abstrak Teka-teki silang merupakan
OPTIMASI QUERY DATABASE MENGGUNAKAN ALGORITMA GENETIK
Seminar Nasional Aplikasi Teknologi Informasi 2008 (SNATI 2008) ISSN 1907-5022 OPTIMASI QUERY DATABASE MENGGUNAKAN ALGORITMA GENETIK Manahan Siallagan, Mira Kania Sabariah, Malanita Sontya Jurusan Teknik
BAB I PENDAHULUAN. hampir di seluruh dunia, termasuk Indonesia. Alat transportasi ini memiliki
BAB I PENDAHULUAN 1.1 Latar Belakang Kereta api merupakan alat transportasi darat utama yang digunakan hampir di seluruh dunia, termasuk Indonesia. Alat transportasi ini memiliki multi keunggulan komparatif,
Perancangan Dan Pembuatan Aplikasi Rekomendasi Jadwal Perkuliahan Pada Institut Informatika Indonesia Memanfaatkan Algoritma Genetika
Perancangan Dan Pembuatan Aplikasi Rekomendasi Jadwal Perkuliahan Pada Institut Informatika Indonesia Memanfaatkan Algoritma Genetika Hermawan Andika, S.Kom., M.Kom. Jurusan Teknik Informatika Institut
R.Fitri 1, S.Novani 1, M.Siallagan 1
Abstract Penjadwalan Perkuliahan Dengan Pengujian Tabel Waktu (Time-Table) Menggunakan Algoritma Genetika Studi Kasus Sistem Perkuliahan Jurusan Teknik Infomatika Universitas Komputer Indonesia R.Fitri
SISTEM PENJADWALAN KULIAH DENGAN ALGORITMA GENETIKA
SISTEM PENJADWALAN KULIAH DENGAN ALGORITMA GENETIKA Created by : Eko Prasetyo Website : Email : [email protected] FB : http://www.facebook.com/ekoxprasetyo Masalah penjadwalan kuliah adalah salah satu
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN Pada bab ini akan membahas mengenai hal-hal yang menjadi latar belakang pembuatan tugas akhir, rumusan masalah, batasan masalah, tujuan penelitian, manfaat penelitian, metodologi penelitian
Penyelesaian Puzzle Sudoku menggunakan Algoritma Genetik
Penyelesaian Puzzle Sudoku menggunakan Algoritma Genetik Afriyudi 1,Anggoro Suryo Pramudyo 2, M.Akbar 3 1,2 Program Studi Sistem Informasi Fakultas Ilmu Komputer. Universitas Bina Darma Palembang. email
