BAB II LANDASAN TEORI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II LANDASAN TEORI"

Transkripsi

1 xvi BAB II LANDASAN TEORI 2.1 Matriks Pengertian Matriks Matriks adalah susunan elemen-elemen yang berbentuk persegi panjang yang terdiri dari baris dan kolom dan dibatasi dengan tanda [ ] atau ( ). Bilangan-bilangan dalam susunan tersebut dinamakan entri dalam matriks. Jika adalah sebuah matriks, maka akan menggunakan untuk menyatakan entri yang terdapat di dalam baris dan kolom dari matriks. Secara umum matriks dituliskan sebagai berikut: = Matriks di atas disebut matriks berukuran kali (ditulis ) karena memiliki baris dan kolom Penjumlahan Matriks Jika dan adalah sebarang dua matriks yang ukurannya sama, maka jumlah + adalah matriks yang diperoleh dengan menambahkan bersama-sama entri yang bersesuaian dalam kedua matriks tersebut. Matriks-matriks yang ukurannya berbeda tidak dapat dijumlahkan (Howard Anton, 1988 : 23).

2 xvii Perkalian Matriks Jika adalah matriks dan adalah matriks, maka hasil kali adalah matriks yang entri-entrinya ditentukan sebagai berikut. Untuk mencari entri dalam baris- dan kolom- dari, pilihlah baris- dari matriks dan kolom- dari matriks. Kalikanlah entrientri yang bersesuaian dari baris dan kolom tersebut bersama-sama dan kemudian tambahkanlah hasil kali yang dihasilkan (Anton, 1988 :25). Contoh : Diketahui = , dan = Tinjaulah perkalian matriks dan. Karena adalah matriks berukuran 2 3 dan adalah matriks berukuran 3 2 maka hasil kali untuk hasil kali adalah: (1.2) + (3.3) + (4.1) = 15 (1.4) + (3.6) + (4.3) = 34 (3.2) + (2.3) + (5.1) = 17 (3.4) + (2.6) + (5.3) = Jadi, diperoleh = adalah matriks 2 2. Perhitungan-perhitungan Perkalian Matriks Dengan Bilangan Jika adalah suatu matriks dan adalah suatu bilangan, maka hasil kali (product) adalah matriks yang diperoleh dengan mengalikan masing-masing entri dari oleh. Dalam hal ini ditulis = ( ). Khususnya dengan yang disebut negatif dari, diartikan matriks yang diperoleh dari dengan cara mengalikan setiap elemennya dengan 1 atau cukup dengan mengubah tanda semua elemennya. 2.2 Persoalan Optimasi dan Program Linier

3 xviii Richard Bronson (1996 : 1) menyatakan bahwa masalah optimasi merupakan masalah memaksimumkan atau meminimumkan sebuah besaran tertentu yang disebut tujuan objektif (objective) yang bergantung pada sejumlah berhingga variabel masukan (input variabels). Variabel-variabel ini dapat tidak saling bergantung, atau saling bergantung melalui satu atau lebih kendala (constrains). Persoalan optimasi merupakan persoalan mencari nilai numerik terbesar (maksimasi) atau nilai numerik terkecil (minimasi) yang mungkin dari sebuah fungsi pada sejumlah variabel tertentu. Dalam sebuah persoalan optimasi, dicari nilai untuk variabel- variabel yang tidak melanggar (bertentangan) dengan kendala-kendala yang menyangkut variabel-variabel tersebut dan yang memberikan nilai optimum (maksimum atau minimum) pada fungsi yang hendak dioptimumkan. Dalam tulisan ini akan diperhatikan cara optimasi yang telah dipergunakan dalam memodel persoalan fisik, ekonomi, tehnik, dan segala macam persoalan bisnis yang sesuai. Cara ini disebut Program Linear. Program linear yang diterjemahkan dari Linear Programming (LP) adalah suatu cara untuk menyelesaikan persoalan pengalokasian sumber-sumber yang terbatas di antara beberapa aktivitas yang bersaing, dengan cara yang terbaik yang mungkin dilakukan. Persoalan pengalokasian ini akan muncul manakala seseorang harus memilih tingkat aktivitas-aktivitas tertentu yang bersaing dalam hal penggunaan sumber daya langka yang dibutuhkan untuk melaksanakan aktivitas-aktivitas tersebut. Beberapa contoh situasi dari uraian di atas antara lain adalah pengalokasian fasilitas produksi, persoalan pengalokasian sumber daya nasional untuk kebutuhan domestic, penjadwalan produksi, solusi permainan (game), dan pemilihan pola pengiriman (shipping). Program Linear (PL) atau Linear Programming adalah suatu model dari penelitian operasional untuk memecahkan masalah optimasi. Program linier merupakan salah satu metode Penelitian Operasional yang banyak digunakan di bidang industri, transportasi, perdagangan, perkebunan, perikanan, tehnik, dan lain sebagainya. Program linear merupakan matematika terapan dari aljabar linear dimana dalam memecahkan persoalan dunia nyata melalui tahap-tahap sebagai berikut: 1. Memahami masalah di bidang yang bersangkutan 2. Menyusun model matematika 3. Menyelesaikan model matematika (mencari jawaban model)

4 xix 4. Menafsirkan jawaban model menjadi jawaban atas masalah yang nyata. Masalah optimasi tidak semuanya dapat diselesaikan dengan metode Program Linear. Prinsip-prinsip utama yang mendasari penggunaan metode Program Linear adalah: 1. Adanya sasaran. Sasaran dalam model matematika masalah program linear berupa fungsi tujuan (fungsi objektif) yang akan dicari nilai optimalnya (maksimum / minimum). 2. Ada tindakan alternatif, artinya nilai fungsi tujuan dapat diperoleh dengan berbagai cara dan diantaranya alternatif itu memberikan nilai. 3. Adanya keterbatasan sumber daya. Sumber daya atau input dapat berupa waktu, tenaga, biaya, bahan, dan sebagainya. Pembatasan sumberdaya disebut kendala (constrains ) pembatas. 4. Masalah harus dapat dituangkan dalam bahasa matematika yang disebut model matematika. Model matematika dalam program linear memuat fungsi tujuan dan kendala. Fungsi tujuan harus berupa fungsi linear dan kendala berupa pertidaksamaan atau persamaan linear. 5. Antar variabel yang membentuk fungsi tujuan dan kendala ada keterikatan, artinya perubahan pada satu peubah akan mempengaruhi nilai peubah yang lain. 2.3 Masalah Transportasi Model transportasi merupakan kasus khusus dari persoalan program linear dengan tujuan untuk mengangkut barang tunggal dari berbagai asal ke berbagai tujuan dengan biaya angkut serendah mungkin. Adanya informasi tentang besar kapasitas tiap-tiap asal, permintaan total masingmasing tempat tujuan, dan biaya pengiriman per-unit barang untuk lintasan yang dimungkinkan, maka model transportasi digunakan untuk menentukan program pengiriman optimal yang melibatkan biaya pengiriman total yang minimum. Model transportasi adalah suatu kasus khusus dari persoalan program linear, berarti model transportasi memiliki ciri khas yang dimiliki pula oleh masalah program linear, yaitu : 1. Terdapat sejumlah sumber dan sejumlah tujuan tertentu.

5 xx 2. Kuantitas komoditas atau barang dan yang didistribusikan dari setiap sumber dan yang diminta oleh setiap tujuan, besarnya tertentu. 3. Komoditas yang dikirim atau diangkut dari suatu sumber ke suatu tujuan, besarnya sesuai dengan permintaan dan atau kapasitas sumber. 4. Ongkos pengangkutan komoditas dari suatu sumber ke suatu tujuan, besarnya tertentu. 5. Jumlah variabel dasar m + n - 1, dimana m adalah jumlah baris dan n adalah jumlah kolom. Apabila jumlah variabel dasar kurang dari m + n 1 yang disebut dengan degenerasi, maka harus ditambahkan variabel dasar dengan nilai nol. Dalam menggambarkan masalah transportasi, perlu digunakan istilah istilah yang tidak khusus karena masalah transportasi adalah masalah yang umum, yaitu pendistribusian berbagai komoditi dari berbagai kelompok pusat penerima yang disebut tujuan, sedemikian rupa sehingga meminimalisasi biaya distribusi total. Secara umum, sumber i (i = 1, 2,..., m) mempunyai supply si unit yang akan didistribusikan ke tujuan-tujuan dan tujuan (j = 1, 2,...,n) mempunyai permintaan di unit yang dikirim dari sumber-sumber. Asumsi dasar metode transportasi ini adalah biaya mendistribusikan unit-unit dari sumber i ke tujuan j berbanding langsung dengan jumlah yang akan didistribusikan, dimana cij menyatakan biaya per unit yang didistribusikan. Apabila Z merupakan biaya distribusi total dan adalah jumlah unit yang harus didistribusikan dari sumber i ke tujuan x ij ( i = 1, 2,..., m ; j = 1, 2,..., n) j, maka formulasi pemrograman linier masalah transportasi. Dari penjelasan di atas, maka rumus metode transportasi dapat diformulasikan sebagai berikut : Meminimumkan : = Dengan batasan : = = 1,2,, = = 1,2,, = 0 =1 ialah koefisien variabel struktur. (2.1)

6 xxi Dalam arti sederhana, model transportasi berusaha menentukan rencana transportasi sebuah barang dari sejumlah sumber ke sejumlah tujuan. Data dalam model ini mencakup: a) Tingkat penawaran di setiap sumber dan jumlah permintaan di setiap tujuan. b) Biaya transportasi per unit barang dari setiap sumber ke setiap tujuan. Karena hanya terdapat suatu barang, sebuah tujuan dapat menerima permintaannya dari suatu sumber atau lebih. Tujuan dari model ini adalah menentukan jumlah yang harus dikirim dari setia sumber ke setiap tujuan sedemikian rupa sehingga biaya transportasi total diminimumkan. Asumsi dasar dari model ini adalah bahwa biaya transportasi di sebuah rute tertentu adalah proporsional secara langsung dengan jumlah unit yang dikirimkan. Defenisi unit transportasi akan bervariasi bergantung pada jenis barang yang dikirimkan. Gambar dibawah ini memperlihatkan sebuah model transportasi dari sebuah jaringan dengan sumber dan tujuan. Sebuah sumber dan tujuan diwakili dengan sebuah node. Busur yang menghubungkan sebuah sumber dan sebuah tujuan mewakili rute pengiriman barang tersebut. Jumlah penawaran di sumber adalah dan permintaan di tujuan adalah. Biaya unit transportasi antara sumber dan adalah. Anggap mewakili jumlah barang yang dikirimkan dari sumber ke tujuan, maka model LP yang mewakili masalah transportasi ini diketahui secara umum sebagai berikut: Sumber Tujuan : 1 1 Unit penawaran 2 2 unit permintaan m : n Gambar 1 Model Transportasi Minimumkan:

7 xxii = Dengan batasan: (2.2) = 1,2,, = 1,2,, = 0 =1 Kelompok batasan pertama menetapkan bahwa jumlah pengiriman dari sebuah sumber tidak dapat melebihi penawarannya. Demikian pula kelompok batasan kedua mengharuskan bahwa jumlah pengiriman ke sebuah tujuan harus memenuhi permintaannya. Model yang baru digambarkan diatas menyiratkan bahwa jumlah penawaran harus setidaknya sama dengan jumlah permintaan. Apabila jumlah penawaran sama dengan jumlah permintaan ( = ), formulasi yang dihasilkan disebut Model Transportasi Berimbang (balanced transportation model). Model ini berbeda dengan model di atas hanya dalam fakta bahwa semua batasan adalah persamaan yaitu: =, = 1,2,, (2.3) =, = 1,2,, = 0 =1 2.4 Metode Hungarian Masalah penetapan (assignment problem) adalah suatu masalah mengenai pengaturan pada individu (objek) untuk melaksanakan tugas (kegiatan), sehingga dengan demikian biaya yang dikeluarkan untuk pelaksanaan tugas tersebut dapat diminimalkan (N. Soemartojo, 1994 : 309).

8 xxiii Masalah ini merupakan salah satu kasus khusus dari masalah transportasi yang penyelesaiannya menggunakan metode Hungarian. Metode Hungarian dikembangkan atas dasar pendekatan VAM ( Vogel s Approximation Method), yaitu dengan cara meminimalkan biaya penalti( opportunity cost ) yang tidak memanfaatkan biaya sel termurah. Pendekatan VAM merupakan suatu metode yang menggunakan pendekatan dengan cara meminimalkan biaya penalti akibat gagal memilih pengisian sel yang memiliki alternatif terbaik. Howard Anton (1988 : 59) menyatakan bahwa masalah penetapan tugas mensyaratkan bahwa fasilitas sama banyaknya dengan tugas, katakanlah sama dengan n. Dalam hal ini maka ada n! cara yang berlainan untuk menetapkan tugas kepada fasilitas berdasarkan penetapan satu-satu (one-to-one basic). Banyaknya penetapan ini adalah n! karena terdapat n cara untuk menetapkan tugas pertama, n-1 cara untuk menetapkan tugas kedua, n-2 cara untuk menetapkan tugas ketiga, dan seterusnya yang jumlah seluruhnya adalah: n.(n-1).(n- 2) = n! penetapan yang mungkin.diantara ke n! penetapan-penetapan yang mungkin ini kita harus mencari satu penetapan yang optimal. Untuk mendefinisikan penetapan yang optimal secara tepat, maka kita akan memperkenalkan kuantitas kuantitas berikut ini misalkan : c ij = biaya untuk menetapkan tugas ke j kepada fasilitas ke i, untuk i, j = 1, 2,, n. Satuan dari c ij dapat berbentuk rupiah, dollar, mil, jam, dan lain-lain, satuan apapun yang sesuai dengan masalahnya.kita mendefiinisikan matriks biaya (cost matrix) sebagai matriks n x n : C = Pernyataan bahwa sebuah tugas yang unik harus ditetapkan kepada setiap fasilitas berdasarkan satu satu adalah ekuivalen dengan syarat bahwa tidak ada dua c ij yang bersangkutan berasal dari baris yang sama atau kolom yang sama. Definisi 1 Jika diketahui sebuah matriks biaya C yang berdimensi n x n maka penetapan (assignment) adalah sebuah himpunan dari n entri dimana tidak ada dua diantara

9 xxiv entrinya yang berasal dari baris yang sama atau kolom yang sama (Howard Anton, 1988 : 60) Maka sebuah penetapan optimal akan didefenisikan sebagai berikut: Definisi 2 n entri dari sebuah penetapan dinamakan biaya (cost) penetapan tersebut. Penetapan biaya yang paling kecil dinamakan penetapan optimal (optimal assignment) (Howard Anton, 1988 : 60). Masalah penetapan adalah untuk mencari penetapan optimal dalam sebuah matriks biaya. Misalnya dalam menetapkan n peralatan kepada n tempat konstruksi, maka c ij dapat merupakan jarak diantara peralatan ke-i dan tempat konstruksi ke-j. Sebuah penetapan optimal adalah penetapan untuk mana jarak seluruhnya yang ditempuh untuk memindahkan n peralatan tersebut adalah minimum (Howard Anton, 1988 : 60). Secara mendetail model untuk masalah penetapan dapat ditulis dalam suatu bentuk program linear sebagai berikut: = Dengan batasan: = 1, = 1,2,, (2.4) = 1, = 1,2,, = 0 =1 di mana: Z = fungsi tujuan problema x ij c ij = variabel keputusan = nilai kontribusi objek i terhadap tugas j

10 xxv m n x ij x ij = jumlah objek (individu atau sumber daya) = jumlah tugas yang akan diselesaikan = 1, apabila objek i ditugaskan untuk tugas j = 0, apabila objek i tidak ditugaskan untuk tugas j Andi Trio Sungkowo (2004: 31) mengatakan langkah langkah dalam menjalankan metode Hungariannn adalah sebagai berikut: 1. Menyusun matriks biaya. 2. Mengurangkan elemen-elemen pada setiap baris dengan elemen terkecil pada baris yang sama. 3. Mengurangkan elemen-elemen pada setiap kolom dengan elemen terkecil pada kolom yang sama. Langkah ini akan menghasilkan Total Opportunity Cost (TOC). 4. Tutup elemen-elemen bernilai nol pada TOC dengan garis-garis mendatar atau tegak. Misalkan n adalah banyaknya baris atau kolom dan banyaknya garis penutup elemen nol sekurang-kurangnya k, maka: Jika k = n, berarti sudah diperoleh program optimal. Proses dihentikan dan susun penugasan Jika k < n, maka proses dilanjutkan dengan mengikuti langkah Cari bilangan terkecil dari bilangan-bilangan yang tak tertutup garis, misalkan e. Selanjutnya: a. Semua elemen yang tak tertutup garis dikurangi e. b. Semua elemen yang yang tertutup oleh satu garis tidak diubah. c. Semua elemen yang tertutup oleh dua garis ditambah dengan e. Setelah diperoleh tabel baru kembali ke langkah Analisis Sensitivitas Para analis jarang dapat menentukan parameter model Program Linier seperti (m, n, C j, a ij, b i ) dengan pasti karena nilai parameter ini adalah fungsi dari beberapa uncontrolable variabel. Sementara itu solusi optimal model Program Linier didasarkan pada parameter tersebut. Akibatnya analis perlu mengamati pengaruh perubahan parameter

11 xxvi tersebut terhadap solusi optimal. Analisa perubahan parameter dan pengaruhnya terhadap solusi Program Linier disebut Post Optimality Analisis. Istilah post optimality menunjukkan bahwa analisa ini terjadi setelah diperoleh solusi optimal, dengan mengasumsikan seperangkat nilai parameter yang digunakan dalam model. Atau Analisis Postoptimal (disebut juga analisis pasca optimal atau analisis setelah optimal, atau analisis kepekaan dalam suasana ketidaktahuan) merupakan suatu usaha untuk mempelajari nilai-nilai dari peubah-peubah pengambilan keputusan dalam suatu model matematika jika satu atau beberapa atau semua parameter model tersebut berubah atau menjelaskan pengaruh perubahan data terhadap penyelesaian optimal yang sudah ada. Dapat diketahui bahwa dunia nyata yang diabstraksikan dan disimplifikasikan ke dalam model PL, tidak sederhana seperti rumusan Program Linier. Oleh karena itu dalam dan kehidupan dunia nyata, selalu dihadapkan pada pertanyaan- pertanyaan keragu-raguaan seperti apa yang akan terjadi, jika ini dan itu berubah? Persoalan peluang dan ketidakpastiaan pertanyaan-pertanyaan tersebut harus dapat dijawab dalam rangka meyakinkan pendirian terhadap sesuatu yang akan diputuskan kelak. Dengan demikian hasil yang diharapkan tersebut adalah hasil yang memang paling mungkin dan paling mendekati, atau perkiraan yang paling tepat. Uji kepekaan hasil dan pasca optimal (sebut saja selanjutnya analisis postoptimal) yang dapat memberikan jawaban terhadap persoalan-persoalan tersebut diatas. Analisis postoptimal sangat berhubungan erat dengan atau mendekati apa yang disebut Program Parametrikal atau Analisis Parametrisasi. Perubahan atau variasi dalam suatu persoalan Program Linier yang bisaanya dipelajari melalui Post Optimality analysis dapat dipisahkan ke dalam tiga kelompok umum, yaitu : 1. Analisa yang berkaitan dengan perubahan diskrit parameter untuk melihat berapa besar perubahan dapat ditolerir sebelum solusi optimal mulai kehilangan optimalitasnya, ini dinamakan Analisa Sensitivitas. Jika suatu perubahan kecil dalam parameter menyebabkan perubahan drastis dalam solusi, dikatakan bahwa solusi adalah sangat sensitif terhadap nilai parameter itu. Sebaliknya, jika perubahan parameter tidak mempunyai pengaruh besar terhadap solusi dikatakan solusi relatif insensitif terhadap nilai parameter tersebut.

12 xxvii 2. Analisa yang berkaitan dengan perubahan struktural. Masalah ini muncul bila persoalan Program Linier dirumuskan kembali dengan menambahkan atau menghilangkan kendala dan atau variabel untuk menunjukkan operasi model alternatif. Perubahan struktural ini dapat dimasukkan dalam analisa sensitivitas. 3. Analisa yang berkaitan dengan perubahan kontinu parameter untuk menentukan urutan solusi dasar yang menjadi optimal jika perubahan ditambah lebih jauh, ini dinamakan Parametric-Programming. Diketahui Model Matematika Persoalan Program Linear adalah sebagai berikut: Menentukan nilai dari X 1, X 2, X 3,, X n sedemikian rupa sehingga: Z = C 1 X 1 +C 2 X 2 + +C j X j + +C n X n = ( Optimal [maksimum/minimum] ) Yang kemudian disebut sebagai Fungsi Tujuan ( Objektive Function ) dengan pembatasan ( fungsi kendala/syarat ikatan): + +,=,, + +,=,, (2.5) ,=,, atau,=, = 1, 2, 3,,. dan 0, 0,, 0, 0, = 1, 2, 3,, ( ) Berdasarkan Model Matematika Persoalan Program Linier di atas analisis sensitivitas dapat dikelompokkan berdasarkan perubahan-perubahan parameter: 1) Perubahan koefisien fungsi tujuan untuk variabel non basis. 2) Perubahan koefisien fungsi tujuan untuk variabel basis. 3) Perubahan Koefisien teknologi (koefisien input-output). 4) Perubahan Nilai-Sebelah-Kanan (NSK) fungsi kendala. 5) Adanya tambahan fungsi kendala baru (perubahan nilai m).

13 xxviii 6) Adanya tambahan perubahan (variabel) pengambilan keputusan (Xj) (perubahan nilai n). 2.6 Analisis Sensitivitas pada Metode Hungarian Dalam persoalan assignment problem tidak semua parameter-parameter di atas dapat diterapkan. Seperti yang diketahui bahwa assignment problem memiliki ciri khusus yaitu: 1. Semua fungsi kendala bertanda = 2. Semua nilai a ij bernilai 1 atau 0 3. Semua nilai sebelah kanan (NSK) fungsi kendala adalah 1. Telah dijelaskan sebelumnya bahwa ada 6 jenis analisis sensitivitas pada masalah program linier. Setiap permasalahan yang dapat dibentuk dalam program linier memiliki masalah analisis yang berbeda. Untuk itu, harus diteliti terlebih dahulu jenis analisis sensitivitas yang sesuai dengan Assignment problem. Untuk mengetahui bagian mana pada Assignment problem yang harus dianalisis, harus diteliti dari bentuk umum Assignment problem itu sendiri. Dari bentuk umum Assignment problem dapat dilihat bahwa fungsi kendala diformulasikan dalam bentuk sebagai berikut: = 1, = 1,2,, (2.6) = 1, = 1,2,, = 0 =1 Ini berarti nilai sebelah kanan untuk persamaan kendala telah ditetapkan adalah 1. Ciri ini lah yang membedakan antara masalah transportasi dengan assignment problem. Kalau pada masalah transportasi dikenal adanya permintaan dan persediaan dengan nilai yang berbeda, pada masalah Assignment problem persediaan dan permintaan harus bernilai 1.

14 xxix Jadi, sangat tidak mungkin kalau dianalisis nilai sebelah kanan, yang biasa dianalisis pada masalah transportasi. Pada bagian fungsi objektif, bentuk umumnya adalah: = (2.7) Sebagai contoh 35 X 11 artinya untuk pekerja pertama mengerjakan job pertama dengan biaya 35. Dalam dunia nyata biaya pengerjaan suatu job bisa berubah, baik naik ataupun turun. Selain finansial, biaya dalam hal ini bisa berarti lama waktu pengerjaan dan resiko dalam pengerjaan. Misalnya suatu perusahan dengan 4 jenis job telah memiliki formula tertentu dalam memilih 4 pekerjanya sehingga semua pekerja dapat bekerja dengan optimal dan tentu saja dengan biaya minimal. Namun seiring berjalan nya waktu dan semakin ahlinya suatu pekerja dalam mengerjakan pekerjaannya, bisa saja pekerja meminta kenaikan upah nya. Akibatnya ada kenaikan biaya disini. Tidak efisien apabila harus merubah formula optimal sebelumnya. Tentu saja perusahaan harus menganalisis hal ini, sampai seberapa jauh perusahaan bisa menaikkan upah pekerja agar hasil tetap optimal dan tidak mengubah formula optimal sebelumnya. Jadi yang memungkinkan untuk melakukan analisis sensitivitas adalah pada parameter perubahan koefisien fungsi tujuan. Perubahan kofisien fungsi tujuan dapat terjadi karena perubahan keuntungan atau ongkos suatu kegiatan. Misal, diinginkan untuk menentukan pegaruh perubahan keuntungan per unit produk 1 (C 1 ). Pada suatu kasus dimana produk 1 menguntungkan untuk diproduksi, jika C 1 turun di bawah nilai tertentu, maka dapat menyebabkan produk 1 yang akan diproduksi menjadi berkurang atau bahkan tidak menguntungkan untuk diproduksi. Sebaliknya jika C 1 naik di atas nilai tertentu, dapat menyebabkan kenaikan jumlah produk 1 yang akan diproduksi. Pada kasus lain lain bisa jadi produk 1 tidak menguntungkan untuk diproduksi karena keuntungan per unit (C 1 nya) rendah. Jika C 1 turun dapat dipastikan tidak akan berpengaruh terhadap solusi optimal yang ada, tetapi jika C 1 naik melebihi nilai tertentu maka produk 1

15 xxx menjadi menguntungkan untuk diproduksi. Dari uraian di atas, dapat disimpulkan bahwa terdapat suatu batas atas dan batas bawah (range) perubahan C 1 dimana keputusan optimal tidak berpengaruh. Tabel optimal yang telah didapat dengan metode Hungariannn menunjukkan variabel yang menjadi basis dan variabel non basis. Variabel yang koefisien pada tabel optimal adalah 0 merupakan variabel basis. Sebaliknya variabel yang koefisien pada tabel optimal bukan 0 merupakan variabel non basis Analisis Sensitivitas pada Variabel Non Basis Cara yang lazim digunakan untuk menganalisis sensitivitas adalah dengan metode simpleks. Seiring berkembangnya ilmu pengetahuan ada beberapa cara yang dapat digunakan, salah satunya metode Arsham-Khan. Namun dasarnya masih menggunakan metode simpleks. Sama halnya dengan metode yang akan digunakan oleh penulis dalam menganalisis sensitivitas pada assignment problem ini, penulis akan mencoba dengan metode yang sedikit berbeda dan dengan formulasi yang berbeda pula. Range koefisien dari variabel non basis adalah seberapa besar nilai koefisien variabel non basis dapat diturunkan atau pun dinaikkan sehingga hasil optimal sebelumnya tidak terganggu. Ini berarti ada 2 batasan yang akan dicari yaitu batas bawah dan batas atas range. C ij ^ C ij Ada beberapa notasi yang akan muncul pada pembahasan berikutnya, antara lain: = koefisien/ besar biaya karyawan ke-i untuk job ke-j pada tabel awal, = koefisien/ besar biaya karyawan ke-i untuk job ke-j pada tabel optimal, Batas bawah koefisien variabel non basis adalah hasil pengurangan koefisien variabel non basis pada tabel awal dengan koefisien pada tabel akhir. Artinya setiap koefisien non basis hanya bisa diturunkan sebesar koefisien pada tabel optimalnya. Hal ini dimaksudkan agar tabel optimal tidak terganggu. Apabila nilai koefisien diturunkan lebih besar dari koefisien tabel optimalnya maka kemungkinan variabel basis akan berubah yang berdampak berubah pula nilai optimalnya. Maka batas bawah range koefisien non basis dapat diformulasikan sebagai berikut:

16 xxxi X ij = C ij C ^ij (2.8) Sedangkan yang menjadi batas atas variabel non basis untuk kasus minimasi adalah adalah M atau bilangan yang sangat besar atau. Hal ini terjadi karena untuk kasus meminimasi biaya, variabel yang masuk non basis menunjukkan bahwa koefisiennya terlalu besar sehingga tidak ekonomis untuk dipakai. Sehingga andaikan koefisien dari variabel non basis dinaikkan seberapapun, tetap tidak akan mengganggu hasil optimal sebelumnya Analisis Sensitivitas pada Variabel Basis Dalam mencari range untuk variabel basis ada beberapa langkah yang harus diperhatikan: 1. Perhatikan tabel optimal, cari nilai ambang batas yang menyebabkan tabel optimal tidak terganggu. Nilai ambang batas tersebut adalah nilai koefisien variabel non basis terkecil. Notasikan nilai ambang batas tersebut dengan. 2. Cari range variabel basis. Nilai batas bawah range variabel basis adalah: X ij = C ij X ij Dan nilai batas atas range variabel basis adalah: X ij = C ij X ij + Sehingga didapat range koefisien variabel basis: (C ij X ij ) C ij X ij (C ij X ij + ) (2.9) (2.10) (2.11) 3. Periksa hubungan suatu variabel basis dengan variabel lain yang satu kolom atau satu baris dengan variabel tersebut. Apakah penambahan pada langkah sebelumnya telah layak atau apakah mengganggu tabel optimal yang telah didapat. Ganti range apabila range tersebut tidak layak.

17 xxxii 2.7 Perbedaan Analisis Sensitivitas dengan Metode Simplex dan Metode Hungarian Di dalam metode Simplex, analisis sensitivitas selain digunakan dalam pengecekan/pengujian, analisis ini lebih bermanfaat untuk menghindari pengulangan perhitungan dari awal, apabila terjadi perubahan-perubahan pada masalah Linear Programmning Simplex. Dalam Assignment problem, metode Simplex jarang digunakan dalam mencari nilai optimalitas, karena Assignment problem memiliki keistimewaan dari persoalan-persoalan Linear Programming lainnya. Untuk menemukan perbedaan analisis sensitivitas dengan metode Simplex dan metode Hungarian, akan dibahas sebuah kasus Linear Programming dengan metode Simplex beserta analisis sensitivitasnya, setelah itu akan dibandingkan dengan metode Hungarian. Jadi yang dibahas dalam kasus ini adalah analisis sensitivitas terhadap koefisien fungsi tujuan meliputi penempatan kisaran pada nilai koefisien secara khusus pada koefisien variabel kontinu. Selama nilai aktual koefisien fungsi tujuan berada dalam kisaran optimalitas, solusi dasar layak sekarang akan tetap optimal. Jadi untuk variabel nonbasis, kisaran optimalitas menyatakan nilai koefisien untuk variabel yang akan tetap menjadi variabel nonbasis. Sebaliknya, kisaran optimalitas untuk variabel basis menyatakan nilai koefisen fungsi tujuan untuk variabel yang akan tetap menjadi bagian dari solusi layak dasar optimal saat ini. Contoh kasus: Maksimumkan : Z = 60x x x 3 Kendala : 8 x x 2 + x x x 2 + 1,5 x x 1 + 1,5 x 2 + 0,5 x 3 8 x 1, x 2, x 3 0 Konversikan dalam bentuk standar: Maksimumkan : Z = 60x x x 3 Kendala : 8 x x 2 + x 3 + x x x 2 + 1,5 x 3 +x x 1 + 1,5 x 2 + 0,5 x 3 +x 6 8 x 1, x 2, x 3, x 4, x 5, x 6 0

18 xxxiii Iterasi 0 BV C b x 1 x 2 x 3 x 4 x 5 x 6 x x , x ,5 0, Zj - Cj Memilih kolom kunci Kolom Kunci adalah kolom yang mempunyai nilai pada baris Z yang bernilai negatif dengan angka terbesar. 2. Memilih baris kunci Baris Kunci adalah baris yang mempunyai indeks terkecil. Indeks = Nilai Kanan : Nilai Kolom Kunci. 3. Mengubah nilai-nilai baris kunci Baris Baru Kunci = Baris Kunci : Angka Kunci. 4. Mengubah nilai-nilai selain baris kunci sehingga nilai-nilai kolom kunci Iterasi 1 (selain baris kunci) = 0 Baris baru = baris lama (koefisien angka kolom kunci x nilai baris baru kunci) BV C b x 1 x 2 x 3 x 4 x 5 x 6 x x , x ,75 0, ,5 4 Zj - Cj Iterasi 2 ( Tabel Optimal ) BV C b x 1 x 2 x 3 x 4 x 5 x 6 x x x , ,5 1,5 2 Zj - Cj Dari tabel ini dapat didefinisikan beberapa hal sebagai berikut: BV = { x 4, x 3, x 1 } ; NBV = { x 2, x 5, x 6 }

19 xxxiv = ,5 1, Perubahan Koefisien Fungsi Tujuan Untuk Variabel Nonbasis Kasus ini terjadi karena adanya perubahan, baik pada kontribusi keuntungan maupun pada kontribusi ongkos dari kegiatan yang direpresentasikan oleh variabel nonbasis. Pada contoh kasus di atas, satu-satunya variabel keputusan nonbasis adalah x 2. Saat ini koefisien fungsi tujuan x 2 adalah c 2 = 30. Jika c 2 berubah dari 30 menjadi ( 30 + ) tidak mengubah harga dan b. Karena itu ruas kanan untuk variabel basis (VB), yaitu b, tidak akan berubah sehingga variabel basis tetap fisibel. Karena c 2 adalah variabel nonbasis, maka C BV juga tidak akan berubah. Satusatunya yang koefisien baris ( z j -c j )nya akan berubah karena perubahan c 2 ini adalah x 2. Dengan demikian, BV akan tetap optimal jika 0, dan BV akan menjadi suboptimal jika 0. Dalam hal terakhir ini, harga z mungkin dapat diperbaiki dengan memasukkan x 2 ke dalam basis. Dari contoh kasus diketahui bahwa:. = [ ] ,5 1,5 Sehingga = [ ] 6 2 1,5 (30+ ) = = 5 - Agar 0 dan BV tetap optimal, maka ( 5 - ) harus 0 atau 5. Sebaliknya, akan < 0 jika > 5 sehingga BV tidak lagi optimal. Artinya, jika harga c 2 naik atau turun sebesar 5 atau kurang, maka BV akan tetap optimal, tetapi jika naik atau turunnya lebih besar dari 5, maka BV tidak lagi optimal.misalnya jika c 2 = 40, solusi basis saat ini akan menjadi suboptimal karena = -5 sehingga x 2 akan menjadi entering variable.

20 xxxv Perubahan Koefisien Fungsi Tujuan Untuk Variabel Basis Mengubah koefisien fungsi tujuan variabel basis (BV) artinya mengubah c BV sehingga beberapa koefisien pada baris 0 (baris z j c j ) dari tabel optimal akan berubah. Misalkan c 1 berubah dari 60 menjadi (60 + ). Maka c BV yang baru adalah [ ] sehingga:. = [0 20 (60+ )] ,5 1,5 Koefisien baris 0 (baris z j c j ) menjadi: =[ , ,5 ] =.. =.. =[ , ,5 ] 6 2 1,5-30 = 5 + 1,25 Karena 0, maka 5 + 1, =.. =[ , ,5 ] = 10-0,5 Karena 0, maka 10-0, =.. =[ , ,5 ]

21 xxxvi = ,5 Karena 0, maka ,5 0 Dari hasil di atas menunjukkan bahwa penyelesaian basis saat ini akan tetap optimal sepanjang -4, 20,. Dengan kata lain penyelesaian basis saat ini akan tetap optimal jika Artinya, jika c 1 turun sebesar 4 atau kurang, atau c 1 naik hingga 20, maka penyelesaian basis saat ini akan tetap optimal. Dari contoh kasus diatas dapat kita ambil kesimpulan bahwa: 1. Pengerjaan analisis sensitivitas dengan metode Simplex lebih memakan waktu yang lama dibandingkan dengan analisis sensitivitas dengan metode Hungarian. 2. Analisis sensitivitas dengan metode Hungarian hanya dapat dipakai untuk penyelesaian kasus penugasan saja dan hanya terbatas pada analisis koefisien fungsi tujuan, sedangkan metode simplex dapat digunakan untuk masalah program linier selain assignment problem dan dapat menganalisis parameter parameter dalam program linier tersebut.

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Matriks 2.1.1 Pengertian Matriks Matriks adalah susunan segi empat siku-siku dari bilangan bilangan. Bilanganbilangan dalam susunan tersebut dinamakan entri dalam matriks (Anton,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Matriks 2.1.1 Pengertian Matriks Matriks adalah susunan segi empat siku-siku dari bilangan bilangan. Bilangan-bilangan dalalm susunan tersebut dinamakan entri dalam matriks (Anton,

Lebih terperinci

BAB II KAJIAN TEORI. yang diapit oleh dua kurung siku sehingga berbentuk empat persegi panjang atau

BAB II KAJIAN TEORI. yang diapit oleh dua kurung siku sehingga berbentuk empat persegi panjang atau BAB II KAJIAN TEORI Pada bab ini akan diberikan kajian teori mengenai matriks dan operasi matriks, program linear, penyelesaian program linear dengan metode simpleks, masalah transportasi, hubungan masalah

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Pengertian Program Linier (Linear Programming)

BAB 2 LANDASAN TEORI. 2.1 Pengertian Program Linier (Linear Programming) BAB 2 LANDASAN TEORI 2.1 Pengertian Program Linier (Linear Programming) Menurut Sri Mulyono (1999), Program Linier (LP) merupakan metode matematik dalam mengalokasikan sumber daya yang langka untuk mencapai

Lebih terperinci

BAB III MODEL TRANSPORTASI. memperkecil total biaya distribusi (Hillier dan Lieberman, 2001, hlm. 354).

BAB III MODEL TRANSPORTASI. memperkecil total biaya distribusi (Hillier dan Lieberman, 2001, hlm. 354). BAB III MODEL TRANSPORTASI. Pendahuluan Permasalahan transportasi berkaitan dengan pendistribusian beberapa komoditas dari beberapa pusat penyediaan, yang disebut dengan sumber menuju ke beberapa pusat

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Permasalahan Transportasi 2.1.1 Sejarah Permasalahan Transportasi Masalah transportasi ini sebenarnya telah lama dipelajari dan dikembangkan sebelum lahir model program linear.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Sistem Distribusi Distribusi merupakan proses pemindahan barang-barang dari tempat produksi ke berbagai tempat atau daerah yang membutuhkan. Kotler (2005) mendefinisikan bahwa

Lebih terperinci

MODEL TRANSPORTASI MATAKULIAH RISET OPERASIONAL Pertemuan Ke-12 & 13. Riani Lubis Jurusan Teknik Informatika Universitas Komputer Indonesia

MODEL TRANSPORTASI MATAKULIAH RISET OPERASIONAL Pertemuan Ke-12 & 13. Riani Lubis Jurusan Teknik Informatika Universitas Komputer Indonesia MODEL TRANSPORTASI MATAKULIAH RISET OPERASIONAL Pertemuan Ke-12 & 13 Riani Lubis Jurusan Teknik Informatika Universitas Komputer Indonesia 1 2 PENGANTAR Terdapat bermacam-macam network model. Network :

Lebih terperinci

BAB 2 KAJIAN PUSTAKA

BAB 2 KAJIAN PUSTAKA BAB 2 KAJIAN PUSTAKA 2.1 Konsep Program Linear Program linear merupakan model matematik untuk mendapatkan alternatif penggunaan terbaik atas sumber-sumber organisasi. Kata sifat linear digunakan untuk

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 PENGERTIAN MODEL DAN METODE TRANSPORTASI

BAB 2 LANDASAN TEORI. 2.1 PENGERTIAN MODEL DAN METODE TRANSPORTASI BAB 2 LANDASAN TEORI. 2.1 PENGERTIAN MODEL DAN METODE TRANSPORTASI 34 BAB 2 LANDASAN TEORI 2.1 Pengertian Model dan Metode Transportasi Hamdy A Taha (1996) mengemukakan bahwa dalam arti sederhana, model

Lebih terperinci

MODEL TRANSPORTASI - I MATAKULIAH RISET OPERASIONAL Pertemuan Ke-6

MODEL TRANSPORTASI - I MATAKULIAH RISET OPERASIONAL Pertemuan Ke-6 MODEL TRANSPORTASI - I MATAKULIAH RISET OPERASIONAL Pertemuan Ke-6 Riani Lubis Jurusan Teknik Informatika Universitas Komputer Indonesia 1 2 PENGANTAR Terdapat bermacam-macam network model. Network : Suatu

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Pengertian Model dan Metode Transportasi

BAB 2 LANDASAN TEORI. 2.1 Pengertian Model dan Metode Transportasi 34 BAB 2 LANDASAN TEORI 2.1 Pengertian Model dan Metode Transportasi Hamdy A Taha (1996) mengemukakan bahwa dalam arti sederhana, model transportasi berusaha menentukan sebuah rencana transportasi sebuah

Lebih terperinci

Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia

Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia 1 Terdapat bermacam-macam network model. Network : Suatu sistem saluran-saluran yang menghubungkan titiktitik

Lebih terperinci

BAB VI PROGRAMA LINIER : DUALITAS DAN ANALISIS SENSITIVITAS

BAB VI PROGRAMA LINIER : DUALITAS DAN ANALISIS SENSITIVITAS BAB VI PROGRAMA LINIER : DUALITAS DAN ANALISIS SENSITIVITAS 6.1 Teori Dualitas Teori dualitas merupakan salah satu konsep programa linier yang penting dan menarik ditinjau dari segi teori dan praktisnya.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2. Tinjauan Teori dan Konsep 2.. Pengertian Manajemen Produksi/Operasi Sebelum membahas lebih jauh mengenai metode transportasi, perlu diuraikan terlebih dahulu mengenai pengertian

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar belakang

BAB 1 PENDAHULUAN. 1.1 Latar belakang xi BAB 1 PENDAHULUAN 1.1 Latar belakang Assignment problem yang biasa dibentuk dengan matriks berbobot merupakan salah satu masalah dalam dunia teknik informatika, di mana masalah ini merupakan masalah

Lebih terperinci

MODEL TRANSPORTASI - I MATAKULIAH RISET OPERASIONAL Pertemuan Ke-7. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia

MODEL TRANSPORTASI - I MATAKULIAH RISET OPERASIONAL Pertemuan Ke-7. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia MODEL TRANSPORTASI - I MATAKULIAH RISET OPERASIONAL Pertemuan Ke-7 Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia 1 2 PENGANTAR Terdapat bermacam-macam network model. Network

Lebih terperinci

Metode Simpleks dalam Bentuk Tabel (Simplex Method in Tabular Form) Materi Bahasan

Metode Simpleks dalam Bentuk Tabel (Simplex Method in Tabular Form) Materi Bahasan Metode Simpleks dalam Bentuk Tabel (Simplex Method in Tabular Form) Kuliah 04 TI2231 Penelitian Operasional I 1 Materi Bahasan 1 Metode simpleks dalam bentuk tabel 2 Pemecahan untuk masalah minimisasi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Riset Operasi Masalah Riset Operasi (Operation Research) pertama kali muncul di Inggris selama Perang Dunia II. Inggris mula-mula tertarik menggunakan metode kuantitatif dalam

Lebih terperinci

BEBERAPA FORMULA PENTING DALAM solusi PROGRAM LINEAR FITRIANI AGUSTINA, MATH, UPI

BEBERAPA FORMULA PENTING DALAM solusi PROGRAM LINEAR FITRIANI AGUSTINA, MATH, UPI BEBERAPA FORMULA PENTING DALAM solusi PROGRAM LINEAR Bentuk Standar Masalah PL Maksimasi : dengan pembatas linear () dan pembatas tanda c n n c c z m n mn m m n n n n b a a a b a a a b a a a n j j,,,,

Lebih terperinci

PROGRAM MAGISTER TEKNIK SIPIL UNLAM

PROGRAM MAGISTER TEKNIK SIPIL UNLAM Bahan kuliah Riset Operasional ASSIGNMENT MODELING Oleh: Darmansyah Tjitradi, MT. PROGRAM MAGISTER TEKNIK SIPIL UNLAM 2005 1 Background Assignment Modeling Metode ini dikembangkan oleh seorang berkebangsaan

Lebih terperinci

Prof. Dr. Ir. ZULKIFLI ALAMSYAH, M.Sc. Program Studi Agribisnis Fakultas Pertanian Universitas Jambi

Prof. Dr. Ir. ZULKIFLI ALAMSYAH, M.Sc. Program Studi Agribisnis Fakultas Pertanian Universitas Jambi Prof. Dr. Ir. ZULKIFLI ALAMSYAH, M.Sc. Program Studi Agribisnis Fakultas Pertanian Universitas Jambi Merupakan salah satu bentuk dari model jaringan kerja (network). Suatu model yang berhubungan dengan

Lebih terperinci

Bab 2 LANDASAN TEORI. 2.1 Pengantar Proses Stokastik

Bab 2 LANDASAN TEORI. 2.1 Pengantar Proses Stokastik Bab 2 LANDASAN TEORI Pada bab ini akan diberikan penjelasan singkat mengenai pengantar proses stokastik dan rantai Markov, yang akan digunakan untuk analisis pada bab-bab selanjutnya. 2.1 Pengantar Proses

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN III. METODE PENELITIAN 3.1. Kerangka Penelitian Dalam setiap perusahaan berusaha untuk menghasilkan nilai yang optimal dengan biaya tertentu yang dikeluarkannya. Proses penciptaan nilai yang optimal dapat

Lebih terperinci

KERANGKA PEMIKIRAN Kerangka Pemikiran Teoritis

KERANGKA PEMIKIRAN Kerangka Pemikiran Teoritis III. KERANGKA PEMIKIRAN 3.1. Kerangka Pemikiran Teoritis 3.1.1. Konsep Optimalisasi Distribusi Sistem distribusi adalah cara yang ditempuh atau digunakan untuk menyalurkan barang dan jasa dari produsen

Lebih terperinci

Modul 10. PENELITIAN OPERASIONAL MODEL TRANSPORTASI. Oleh : Eliyani PROGRAM KELAS KARYAWAN PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI

Modul 10. PENELITIAN OPERASIONAL MODEL TRANSPORTASI. Oleh : Eliyani PROGRAM KELAS KARYAWAN PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI Modul 0 PENELITIAN OPERASIONAL Oleh : Eliyani PROGRAM KELAS KARYAWAN PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS MERCU BUANA http://wwwmercubuanaacid JAKARTA 007 PENDAHULUAN Suatu

Lebih terperinci

TRANSPORTATION PROBLEM

TRANSPORTATION PROBLEM Media Informatika Vol. No. (27) TRANSPORTATION PROBLEM Dahlia Br Ginting Sekolah Tinggi Manajemen Informatika dan Komputer LIKMI Jl. Ir. Juanda 9 Bandung 2 E-mail : [email protected] Abstrak Di sini akan

Lebih terperinci

BAB 2 LANDASAN TEORI 2.1 Sistem dan Model Pengertian sistem Pengertian model

BAB 2 LANDASAN TEORI 2.1 Sistem dan Model Pengertian sistem Pengertian model BAB 2 LANDASAN TEORI 2.1 Sistem dan Model 2.1.1 Pengertian sistem Pengertian sistem dapat diketahui dari definisi yang diambil dari beberapa pendapat pengarang antara lain : Menurut Romney (2003, p2) sistem

Lebih terperinci

R PROGRAM APLIKASI PENYELESAIAN MASALAH FUZZY TRANSSHIPMENT MENGGUNAKAN METODE MEHAR

R PROGRAM APLIKASI PENYELESAIAN MASALAH FUZZY TRANSSHIPMENT MENGGUNAKAN METODE MEHAR BAB I PENDAHULUAN 1.1 LATAR BELAKANG Pada dunia bisnis, manajemen rantai suplai merupakan strategi klasik yang banyak digunakan oleh industri atau perusahaan dalam mengembangkan usahanya. Salah satu tingkat

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bagian ini diberikan beberapa konsep dasar yang menjadi landasan berpikir dalam penelitian ini, seperti pengertian persediaan, metode program linier. 2.1. Persediaan 2.1.1. Pengertian

Lebih terperinci

FUZZY LINIER PROGRAMMING UNTUK PEMILIHAN JENIS KENDARAAN DALAM MENGANTISIPASI KEMACETAN LALU LINTAS DI KOTA MEDAN

FUZZY LINIER PROGRAMMING UNTUK PEMILIHAN JENIS KENDARAAN DALAM MENGANTISIPASI KEMACETAN LALU LINTAS DI KOTA MEDAN FUZZY LINIER PROGRAMMING UNTUK PEMILIHAN JENIS KENDARAAN DALAM MENGANTISIPASI KEMACETAN LALU LINTAS DI KOTA MEDAN Zulfikar Sembiring 1* 1 Fakultas Teknik, Universitas Medan Area * Email : [email protected]

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Program Linier Program linier merupakan suatu model matematika untuk mendapatkan alternatif penggunaan terbaik atas sumber-sumber yang tersedia. Kata linier digunakan untuk menunjukkan

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN Pada bab ini, akan dijelaskan metode-metode yang penulis gunakan dalam penelitian ini. Adapun metode yang akan digunakan dalam penelitian ini adalah Metode Simpleks dan Metode Branch

Lebih terperinci

kita menggunakan variabel semu untuk memulai pemecahan, dan meninggalkannya setelah misi terpenuhi

kita menggunakan variabel semu untuk memulai pemecahan, dan meninggalkannya setelah misi terpenuhi Lecture 4: (B) Supaya terdapat penyelesaian basis awal yang fisibel, pada kendala berbentuk = dan perlu ditambahkan variabel semu (artificial variable) pada ruas kiri bentuk standarnya, untuk siap ke tabel

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2. Program linier (Linier Programming) Pemrograman linier merupakan metode matematik dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan seperti memaksimumkan

Lebih terperinci

III KERANGKA PEMIKIRAN

III KERANGKA PEMIKIRAN III KERANGKA PEMIKIRAN 3.1 Kerangka Pemikiran Teoritis 3.1.1 Sistem Produksi Secara umum produksi dapat diartikan sebagai suatu kegiatan atau proses yang mentransformasikan masukan (input) menjadi hasil

Lebih terperinci

METODE SIMPLEKS DALAM PROGRAM LINIER

METODE SIMPLEKS DALAM PROGRAM LINIER METODE SIMPLEKS DALAM PROGRAM LINIER Dian Wirdasari Abstrak Metode simpleks merupakan salah satu teknik penyelesaian dalam program linier yang digunakan sebagai teknik pengambilan keputusan dalam permasalahan

Lebih terperinci

PENERAPAN LOGIKA FUZZY PADA PROGRAM LINEAR

PENERAPAN LOGIKA FUZZY PADA PROGRAM LINEAR PENERAPAN LOGIKA FUZZY PADA PROGRAM LINEAR T-11 RIVELSON PURBA 1 1 FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUSAMUS MERAUKE [email protected] ABSTRAK Purba, Rivelson. 01. Penerapan Logika

Lebih terperinci

Pemodelan dalam RO. Sesi XIV PEMODELAN. (Modeling)

Pemodelan dalam RO. Sesi XIV PEMODELAN. (Modeling) Mata Kuliah :: Riset Operasi Kode MK : TKS 4019 Pengampu : Achfas Zacoeb Sesi XIV PEMODELAN (Modeling) e-mail : [email protected] www.zacoeb.lecture.ub.ac.id Hp. 081233978339 Pemodelan dalam RO Outline:

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Program Linier Menurut Aminudin (2005), program linier merupakan suatu model matematika untuk mendapatkan alternatif penggunaan terbaik atas sumber-sumber yang tersedia. Kata linier

Lebih terperinci

METODE SIMPLEKS MATAKULIAH RISET OPERASIONAL Pertemuan Ke-3. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia

METODE SIMPLEKS MATAKULIAH RISET OPERASIONAL Pertemuan Ke-3. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia METODE SIMPLEKS MATAKULIAH RISET OPERASIONAL Pertemuan Ke-3 Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Metode simpleks merupakan sebuah prosedur matematis

Lebih terperinci

BAB II TINJAUAN PUSTAKA. berhubungan dengan pendistribusian barang dari sumber (misalnya, pabrik) ke

BAB II TINJAUAN PUSTAKA. berhubungan dengan pendistribusian barang dari sumber (misalnya, pabrik) ke BAB II TINJAUAN PUSTAKA 2.1 Masalah Transportasi Masalah transportasi merupakan pemrograman linear jenis khusus yang berhubungan dengan pendistribusian barang dari sumber (misalnya, pabrik) ke tujuan (misalnya,

Lebih terperinci

BAB II KAJIAN PUSTAKA. Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan,

BAB II KAJIAN PUSTAKA. Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan, BAB II KAJIAN PUSTAKA Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan, pemrograman linear, metode simpleks, teorema dualitas, pemrograman nonlinear, persyaratan karush kuhn

Lebih terperinci

Metode Transportasi. Muhlis Tahir

Metode Transportasi. Muhlis Tahir Metode Transportasi Muhlis Tahir Pendahuluan Metode Transportasi digunakan untuk mengoptimalkan biaya pengangkutan (transportasi) komoditas tunggal dari berbagai daerah sumber menuju berbagai daerah tujuan.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 5 BAB LANDASAN TEORI Efisiensi Menurut Vincent Gaspersz (998, hal 4), efisiensi adalah ukuran yang menunjukan bagaimana baiknya sumber daya digunakan dalam proses produksi untuk menghasilkan output Efisiensi

Lebih terperinci

MENYELESAIKAN PERSOALAN TRANSPORTASI DENGAN KENDALA CAMPURAN

MENYELESAIKAN PERSOALAN TRANSPORTASI DENGAN KENDALA CAMPURAN MENYELESAIKAN PERSOALAN TRANSPORTASI DENGAN KENDALA CAMPURAN J. K. Sari, A. Karma, M. D. H. Gamal [email protected] Mahasiswa Program Studi S Matematika Laboratorium Matematika Terapan Jurusan

Lebih terperinci

MODEL TRANSPORTASI MATAKULIAH RISET OPERASIONAL Pertemuan Ke-11

MODEL TRANSPORTASI MATAKULIAH RISET OPERASIONAL Pertemuan Ke-11 MODEL TRANSPORTASI MATAKULIAH RISET OPERASIONAL Pertemuan Ke-11 Riani Lubis JurusanTeknik Informatika Universitas Komputer Indonesia 1 2 PENGANTAR Terdapat bermacam-macam network model. Network : Suatu

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Optimasi Menurut Nash dan Sofer (1996), optimasi adalah sarana untuk mengekspresikan model matematika yang bertujuan memecahkan masalah dengan cara terbaik. Untuk tujuan bisnis,

Lebih terperinci

MASALAH TRANSPORTASI

MASALAH TRANSPORTASI MASALAH TRANSPORTASI Transportasi pada umumnya berhubungan dengan distribusi suatu produk, menuju ke beberapa tujuan, dengan permintaan tertentu, dan biaya transportasi minimum. Transportasi mempunyai

Lebih terperinci

Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia

Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia 1 Metode simpleks merupakan sebuah prosedur matematis berulang untuk menemukan penyelesaian optimal soal programa

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Assignment problem yang biasa dibentuk dengan matriks berbobot merupakan salah satu masalah dalam dunia teknik informatika, dimana masalah ini merupakan masalah yang

Lebih terperinci

TRANSPORTATION PROBLEM. D0104 Riset Operasi I Kuliah XXIII - XXV

TRANSPORTATION PROBLEM. D0104 Riset Operasi I Kuliah XXIII - XXV TRANSPORTATION PROBLEM D4 Riset Operasi I Kuliah XXIII - XXV Pendahuluan Transportation Problem merupakan aplikasi dari programa linier untuk menentukan bagaimana mendistribusikan bahan, produk dari suatu

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Riset Operasi (Operation Research) Istilah riset operasi pertama kali digunakan pada tahun 1940 oleh Mc Closky dan Trefthen di suatu kota kecil di Inggris bernama Bowdsey.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Program Linier Program linier adalah suatu cara untuk menyelesaikan persoalan pengalokasian sumber-sumber yang terbatas di antara beberapa aktivitas yang bersaing, dengan cara

Lebih terperinci

Manajemen Sains. Eko Prasetyo. Teknik Informatika UMG Modul 5 MODEL TRANSPORTASI. 5.1 Pengertian Model Transportasi

Manajemen Sains. Eko Prasetyo. Teknik Informatika UMG Modul 5 MODEL TRANSPORTASI. 5.1 Pengertian Model Transportasi Modul 5 MODEL TRANSPORTASI 5.1 Pengertian Model Transportasi Model transportasi adalah kelompok khusus program linear yang menyelesaikan masalah pengiriman komoditas dari sumber (misalnya pabrik) ke tujuan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 21 Teori Himpunan Fuzzy Pada himpunan tegas (crisp), nilai keanggotaan suatu item x dalam himpunan A, yang sering ditulis dengan memiliki dua kemungkinan, yaitu: 1 Nol (0), yang berarti

Lebih terperinci

Model Transportasi /ZA 1

Model Transportasi /ZA 1 Model Transportasi 1 Model Transportasi: Merupakan salah satu bentuk dari model jaringan kerja (network). Suatu model yang berhubungan dengan distribusi suatu barang tertentu dari sejumlah sumber (sources)

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN BAB 3 METODOLOGI PENELITIAN 3.1 Desain Penelitian Penelitian ini bersifat literatur dan melakukan studi kepustakaan untuk mengkaji dan menelaah berbagai buku, jurnal, karyai lmiah, laporan dan berbagai

Lebih terperinci

ASSIGNMENT MODEL. Pertemuan Ke-10. Riani Lubis. Universitas Komputer Indonesia

ASSIGNMENT MODEL. Pertemuan Ke-10. Riani Lubis. Universitas Komputer Indonesia ASSIGNMENT MODEL MATAKULIAH RISET OPERASIONAL Pertemuan Ke-10 Riani Lubis Jurusan Teknik Informatika Universitas Komputer Indonesia 1 Masalah Penugasan (1) Salah satu metode yang digunakan untuk Penugasan

Lebih terperinci

BAB II KAJIAN PUSTAKA. pemrograman nonlinear, fungsi konveks dan konkaf, pengali lagrange, dan

BAB II KAJIAN PUSTAKA. pemrograman nonlinear, fungsi konveks dan konkaf, pengali lagrange, dan BAB II KAJIAN PUSTAKA Kajian pustaka pada bab ini akan membahas tentang pengertian dan penjelasan yang berkaitan dengan fungsi, turunan parsial, pemrograman linear, pemrograman nonlinear, fungsi konveks

Lebih terperinci

Bentuk Standar dari Linear Programming pada umumnya adalah sebagai berikut: Sumber daya 1 2. n yang ada

Bentuk Standar dari Linear Programming pada umumnya adalah sebagai berikut: Sumber daya 1 2. n yang ada Permasalahan dalam linear programming pada umumnya adalah sebagai berikut: Terdapat dua atau lebih produk yang dibentuk dari campuran dua atau lebih bahan. Terdapat mesin atau fasilitas lain yang digunakan

Lebih terperinci

Ardaneswari D.P.C., STP, MP.

Ardaneswari D.P.C., STP, MP. Ardaneswari D.P.C., STP, MP. Materi Bahasan Pengantar pemrograman linier Pemecahan pemrograman linier dengan metode grafis PENGANTAR Pemrograman (programming) secara umum berkaitan dengan penggunaan atau

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Konsep program linier ditemukan dan diperkenalkan pertamakali oleh George Dantzig yang berupa metode mencari solusi masalah program linier dengan banyak variabel keputusan.

Lebih terperinci

BAB III SOLUSI OPTIMAL MASALAH FUZZY TRANSSHIPMENT

BAB III SOLUSI OPTIMAL MASALAH FUZZY TRANSSHIPMENT BAB III SOLUSI OPTIAL ASALAH FUZZY TRANSSHIPENT. ETODE EHAR Pada tahun 0, Kumar, et al. dalam jurnalnya yang berjudul Fuzzy Linear Programming Approach for Solving Fuzzy Transportation Problems with Transshipment

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 11 Latar Belakang Pendistribusian barang atau jasa merupakan salah satu bagian penting dari kegiatan sebuah instansi pemerintah ataupun perusahaan tertentu Masalah transportasi merupakan

Lebih terperinci

OPTIMALISASI PRODUKSI MENGGUNAKAN MODEL LINEAR PROGRAMMING (Studi Kasus : Usaha Kecil Menengah Kue Semprong)

OPTIMALISASI PRODUKSI MENGGUNAKAN MODEL LINEAR PROGRAMMING (Studi Kasus : Usaha Kecil Menengah Kue Semprong) OPTIMALISASI PRODUKSI MENGGUNAKAN MODEL LINEAR PROGRAMMING (Studi Kasus : Usaha Kecil Menengah Kue Semprong) Ai Nurhayati 1, Sri Setyaningsih 2,dan Embay Rohaeti 2. Program Studi Matematika Fakultas Matematika

Lebih terperinci

TRANSPORTASI & PENUGASAN

TRANSPORTASI & PENUGASAN TRANSPORTASI & PENUGASAN 66 - Taufiqurrahman Metode Transportasi Suatu metode yang digunakan untuk mengatur distribusi dari sumbersumber yang menyediakan produk yang sama, ke tempat-tempat yang membutuhkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Manajemen Produksi dan Operasi Manajeman (management) merupakan proses kerja dengan menggunakan orang dan sumber daya yang ada untuk mencapai tujuan (Bateman, Thomas S. : 2014)

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 21 Perencanaan Produksi 211 Arti dan Pentingnya Perencanaan Produksi Perencanaan produksi merupakan aktifitas untuk menetapkan produk yang akan diprodksi untuk periode selanjutnyatujuan

Lebih terperinci

Model umum metode simpleks

Model umum metode simpleks Model umum metode simpleks Fungsi Tujuan: Z C X C 2 X 2 C n X n S S 2 S n = NK FungsiPembatas: a X + a 2 X 2 + + a n X n + S + S 2 + + S n = b a 2 X + a 22 X 2 + + a 2n X n + S + S 2 + + S n = b 2 a m

Lebih terperinci

PENDISTRIBUSIAN BBA DENGAN METODE PROGRAMA LINIER (PERSOALAN TRANSPORTASI) Oleh : Ratna Imanira Sofiani, S.Si Dosen Universitas Komputer Indonesia

PENDISTRIBUSIAN BBA DENGAN METODE PROGRAMA LINIER (PERSOALAN TRANSPORTASI) Oleh : Ratna Imanira Sofiani, S.Si Dosen Universitas Komputer Indonesia PENDISTRIBUSIAN BBA DENGAN METODE PROGRAMA LINIER (PERSOALAN TRANSPORTASI) Oleh : Ratna Imanira Sofiani, S.Si Dosen Universitas Komputer Indonesia ABSTRAK Tulisan ini memaparkan tentang penerapan Metode

Lebih terperinci

BAB VII METODE TRANSPORTASI

BAB VII METODE TRANSPORTASI BAB VII METODE TRANSPORTASI Pada umumnya masalah transportasi berhubungan dengan distribusi suatu produk tunggal dari beberapa sumber, dengan penawaran terbatas, menuju beberapa tujuan, dengan permintaan

Lebih terperinci

BAB I PENDAHULUAN. Pada era modern sekarang ini dengan biaya hidup yang semakin meningkat,

BAB I PENDAHULUAN. Pada era modern sekarang ini dengan biaya hidup yang semakin meningkat, BAB I PENDAHULUAN A. Latar Belakang Pada era modern sekarang ini dengan biaya hidup yang semakin meningkat, berakibat beberapa perusahaan mengalami peningkatan biaya pendistribusian produk. Pendistribusian

Lebih terperinci

TRANSPORTASI, PENUGASAN, PEMINDAHAN

TRANSPORTASI, PENUGASAN, PEMINDAHAN LECTURE NOTES TRANSPORTASI, PENUGASAN, PEMINDAHAN Rojali, S.Si., M.Si [email protected] LEARNING OUTCOMES 1. Mahasiswa diharapkan dapat menafsirkan masalah nyata untuk analisis kuantitatif (LO2). 2. Mahasiswa

Lebih terperinci

Ada beberapa kasus khusus dalam simpleks. Kadangkala kita akan menemukan bahwa iterasi tidak berhenti, karena syarat optimalitas atau syarat

Ada beberapa kasus khusus dalam simpleks. Kadangkala kita akan menemukan bahwa iterasi tidak berhenti, karena syarat optimalitas atau syarat Muhlis Tahir Ada beberapa kasus khusus dalam simpleks. Kadangkala kita akan menemukan bahwa iterasi tidak berhenti, karena syarat optimalitas atau syarat kelayakan tidak pernah dapat terpenuhi. Adakalanya

Lebih terperinci

Metode Simpleks Minimum

Metode Simpleks Minimum Metode Simpleks Minimum Perhatian Untuk menyelesaikan Persoalan Program Linier dengan Metode Simpleks untuk fungsi tujuan memaksimumkan dan meminimumkan caranya BERBEDA. Perhatian Model matematika dari

Lebih terperinci

mempunyai tak berhingga banyak solusi.

mempunyai tak berhingga banyak solusi. Lecture 4: A. Introduction Jika suatu masalah LP hanya melibatkan 2 kegiatan (variabel keputu-san) saja, maka dapat diselesaikan dengan metode grafik. Tetapi, jika melibatkan lebih dari 2 kegiatan, maka

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Riset Operasi Istilah Riset Operasi (Operation Research) pertama kali digunakan pada tahun 1940 oleh Mc Closky dan Trefthen di suatu kota kecil Bowdsey Inggris. Riset Operasi adalah

Lebih terperinci

ALGORITMA METODE SIMPLEKS (PRIMAL)

ALGORITMA METODE SIMPLEKS (PRIMAL) ALGORITMA METODE SIMPLEKS (PRIMAL) Artificial Variable Algoritma Simpleks Metode M (Method of penalty) Metode dua fase Tabel Simpleks dalam bentuk matriks Artificial Variable (AV) Apabila terdapat satu

Lebih terperinci

BAB 3 LINEAR PROGRAMMING

BAB 3 LINEAR PROGRAMMING BAB 3 LINEAR PROGRAMMING Teori-teori yang dijelaskan pada bab ini sebagai landasan berpikir untuk melakukan penelitian ini dan mempermudah pembahasan hasil utama pada bab selanjutnya. 3.1 Linear Programming

Lebih terperinci

Metode Simpleks M U H L I S T A H I R

Metode Simpleks M U H L I S T A H I R Metode Simpleks M U H L I S T A H I R PENDAHULUAN Metode Simpleks adalah metode penentuan solusi optimal menggunakan simpleks didasarkan pada teknik eliminasi Gauss Jordan. Penentuan solusi optimal dilakukan

Lebih terperinci

MODEL TRANSPORTASI. Sesi XI : Model Transportasi

MODEL TRANSPORTASI. Sesi XI : Model Transportasi Mata Kuliah :: Riset Operasi Kode MK : TKS 4019 Pengampu : Achfas Zacoeb Sesi XI : MODEL TRANSPORTASI e-mail : [email protected] www.zacoeb.lecture.ub.ac.id Hp. 081233978339 Model Transportasi Merupakan

Lebih terperinci

METODE dan TABEL SIMPLEX

METODE dan TABEL SIMPLEX METODE dan TABEL SIMPLEX Mengubah bentuk baku model LP ke dalam bentuk tabel akan memudahkan proses perhitungan simplex. Langkah-langkah perhitungan dalam algoritma simplex adalah :. Berdasarkan bentuk

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Program Linier Program linier adalah suatu teknik penyelesaian optimal atas suatu problema keputusan dengan cara menentukan terlebih dahulu fungsi tujuan (memaksimalkan atau meminimalkan)

Lebih terperinci

18/09/2013. Ekonomi Teknik / Sigit Prabawa / 1. Ekonomi Teknik / Sigit Prabawa / 2

18/09/2013. Ekonomi Teknik / Sigit Prabawa / 1. Ekonomi Teknik / Sigit Prabawa / 2 PENERAPAN PROGRAM LINIER dalam OPTIMASI PRODUKSI Ekonomi Teknik / Sigit Prabawa / 1 MASALAH yg banyak dihadapi oleh INDUSTRI adalah BAGAIMANA MENGGUNAKAN atau MENENTUKAN ALOKASI PENGGUNAAN SUMBER DAYAYG

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pemrograman Non Linier Pemrograman Non linier merupakan pemrograman dengan fungsi tujuannya saja atau bersama dengan fungsi kendala berbentuk non linier yaitu pangkat dari variabelnya

Lebih terperinci

Analisis Sensitivitas (2)

Analisis Sensitivitas (2) (2) Metode Kuantitatif Untuk Bisnis Materi Keempat 1 Perubahan Pada Resources atau Right Hand Side (RHS) Range perubahan RHS ditentukan dengan menghitung rasio antara RHS dan kolom initial basic variable

Lebih terperinci

Pertemuan ke-1 PENDAHULUAN

Pertemuan ke-1 PENDAHULUAN Pertemuan ke-1 PENDAHULUAN UDINUS 1.1. PENGANTAR RISET OPERASI Sejak revolusi industri, dunia usaha mengalami perubahan dalam hal ukuran (besarnya) dan kompleksitas organisasi-organisasi perusahaan. Bagian

Lebih terperinci

ASSIGNMENT MODEL MATAKULIAH RISET OPERASIONAL Pertemuan Ke-10. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia

ASSIGNMENT MODEL MATAKULIAH RISET OPERASIONAL Pertemuan Ke-10. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia ASSIGNMENT MODEL MATAKULIAH RISET OPERASIONAL Pertemuan Ke-10 Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia 1 Masalah Penugasan (1) Salah satu metode yang digunakan untuk

Lebih terperinci

TRANSPORTASI, PENUGASAN, PEMINDAHAN

TRANSPORTASI, PENUGASAN, PEMINDAHAN TRANSPORTASI, PENUGASAN, PEMINDAHAN LECTURE NOTES TRANSPORTASI, PENUGASAN, PEMINDAHAN Rojali, S.Si., M.Si [email protected] LEARNING OUTCOMES 1. Mahasiswa diharapkan dapat menafsirkan masalah nyata untuk

Lebih terperinci

BAB II KAJIAN TEORI. masalah fuzzy linear programming untuk optimasi hasil produksi pada bab

BAB II KAJIAN TEORI. masalah fuzzy linear programming untuk optimasi hasil produksi pada bab BAB II KAJIAN TEORI Berikut diberikan landasan teori mengenai program linear, konsep himpunan fuzzy, program linear fuzzy dan metode Mehar untuk membahas penyelesaian masalah fuzzy linear programming untuk

Lebih terperinci

OPTIMALISASI MASALAH PENUGASAN MENGGUNAKAN METODE HUNGARIAN (Studi kasus pada PT Pos Indonesia (Persero) Pontianak)

OPTIMALISASI MASALAH PENUGASAN MENGGUNAKAN METODE HUNGARIAN (Studi kasus pada PT Pos Indonesia (Persero) Pontianak) Buletin Ilmiah Mat. Stat. danterapannya (Bimaster) Volume 04, No. 3 (2015), hal 363-370 OPTIMALISASI MASALAH PENUGASAN MENGGUNAKAN METODE HUNGARIAN (Studi kasus pada PT Pos Indonesia (Persero) Pontianak)

Lebih terperinci

Teori permainan mula-mula dikembangkan oleh ilmuan Prancis bernama Emile Borel, secara umum digunakan untuk menyelesaikan masalah yang

Teori permainan mula-mula dikembangkan oleh ilmuan Prancis bernama Emile Borel, secara umum digunakan untuk menyelesaikan masalah yang BAB 2 LANDASAN TEORI 2.1 Strategi Pemasaran Strategi pemasaran adalah pola pikir pemasaran yang akan digunakan untuk mencapai tujuan pemasarannya. Strategi pemasaran berisi strategi spesifik untuk pasar

Lebih terperinci

BAB II METODE SIMPLEKS

BAB II METODE SIMPLEKS BAB II METODE SIMPLEKS 2.1 Pengantar Salah satu teknik penentuan solusi optimal yang digunakan dalam pemrograman linier adalah metode simpleks. Penentuan solusi optimal menggunakan metode simpleks didasarkan

Lebih terperinci

Model Transportasi 1

Model Transportasi 1 Model Transportasi 1 Model ini berawal dari tahun 1941 ketika F.L. Hitchkok mengetengahkan studi yang berjudul The Distribution of a Product from Several Sources to Numerous Localities Tahun 1947, T.C.Koopmans

Lebih terperinci

PENELITIAN OPERASIONAL PERTEMUAN #9 TKT TAUFIQUR RACHMAN PENGANTAR TEKNIK INDUSTRI

PENELITIAN OPERASIONAL PERTEMUAN #9 TKT TAUFIQUR RACHMAN PENGANTAR TEKNIK INDUSTRI PENELITIAN OPERASIONAL PERTEMUAN #9 TKT101 PENGANTAR TEKNIK INDUSTRI 6623 TAUFIQUR RACHMAN PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNIK UNIVERSITAS ESA UNGGUL KEMAMPUAN AKHIR YANG DIHARAPKAN Mampu membandingkan

Lebih terperinci

OPTIMALISALI KASUS PEMROGRAMAN LINEAR DENGAN METODE GRAFIK DAN SIMPLEKS

OPTIMALISALI KASUS PEMROGRAMAN LINEAR DENGAN METODE GRAFIK DAN SIMPLEKS OPTIMALISALI KASUS PEMROGRAMAN LINEAR DENGAN METODE GRAFIK DAN SIMPLEKS RISNAWATI IBNAS Jurusan Matematika, Fakultas Sains dan Teknologi, UINAM [email protected] Info: Jurnal MSA Vol. 2 No. 1 Edisi:

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1. Lokasi dan Waktu Penelitian ini dilaksanakan di Sub Terminal Agribisnis (STA) Rancamaya yang berlokasi di Jl. Raya Rancamaya Rt 01/01, Kampung Rancamaya Kidul, Desa Rancamaya,

Lebih terperinci

OPERATIONS RESEARCH. Industrial Engineering

OPERATIONS RESEARCH. Industrial Engineering OPERATIONS RESEARCH Industrial Engineering TRANSPORTASI METODE ANALISA TRANSPORTASI PROGRAMA LINEAR Metode transportasi programa linear merupakan metode yang cukup sederhana dalam memecahkan permasalahan

Lebih terperinci