BAB III METODOLOGI PENELITIAN

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB III METODOLOGI PENELITIAN"

Transkripsi

1 0 BAB III METODOLOGI PENELITIAN Loks d Wktu Peelt Loks Peelt Peelt dlksk d MA Neger 3 Kot Gorotlo pd ssw kels. ekolh merupk slh stu sekolh meegh ts yg terletk d Jl KH. Dewtoro Kelurh Lmb U1 Kecmt Kot elt Kot Gorotlo. Jumlh guru yg megjr mt peljr fsk dlh 5 org, org Mster Peddk d 3 org rj Peddk sert semuy merupk guru yg bersl dr dlm derh Wktu Peelt Peelt dlksk selm 3 bul dr Aprl smp ju pd mter lstrk dms semester gep thu jr 01/013. Deg rc kegt sebg berkut. ) Kegt persp b) Kegt pegumpul dt c) Kegt lss dt d) Peuls lpor 3.. Des Peelt Peelt merupk peelt kutttf deg metode peelt surve deg tekk korelsol. Tekk korelsol dlh tekk peelt yg meghubugk stu vrbel deg vrbel l. Meurut Arets (008:181) tekk korelsol dguk bl peelt megeksplors hubug 0

2 1 lmh dtr du vrbel tu lebh. Metode korelsol bertuju utuk meetuk d tdky hubug tr stu vrbel deg vrbel l d pbl d hubug berp erty hubug sert berrt tu tdky hubug tersebut. Peelt bertuju utuk megethu dy hubug yg sgfk tr kults ctt deg hsl beljr ssw fsk ssw Kels Vrbel Peelt d Defs Vrbel Bebs () Vrbel bebs dlm peelt dlh kults ctt ssw kels d MA Neger 3 Kot Gorotlo. ecr opersol kults ctt ssw ddefsk sebg skor cp kults ctt ssw yg dmt/dl. edgk secr kosttutf kults ctt ddefsk sebg ctt yg megdug dktor sebg berkut. 1. Kelegkp ctt Po-po petg yg dctumk dlm ctt bk berup pegert kut rus, dy lstrk, hukum krchoff I, hukum krchoff II, persmpersm d keterg sert cotoh-cotoh dlm kehdup sehrhr.. Peyj forms yg ber Iforms yg ber berup forms yg relev (kote yg dctumk sesu deg topk), kurt (tept,tdk d keslh d mempuy mksud d tuju yg jels) d logs.

3 3. Peyj lustrs/gmbr Ilustrs yg dctumk medukug d mempermudh memhm kosep-kosep dr kut rus lstrk, dy lstrk, hukum krchoff I, hukum krchoff II d lt ukur lstrk. 4. Kesesu bhs Iforms yg dctumk hrus megguk bhs bku, smbolsmbol yg dguk sesu deg smbol fsk d forms yg dctumk tdk rcu. 5. Terorgsr Ctt yg terorgsr msly mul dr judul mter jels, sub-subsub mter, ur mter, persm d ketergy sert cotohcotoh. 6. Orglts Iforms yg tuls ddlm ctt megguk klmt sedr sesu deg bhs bku d stlh fsk sert dpt dkethu mksud d tujuy. 7. Rp Ctt yg rp dpt merk mt ssw utuk mempeljr kembl mter yg telh dctt Vrbel Terkt () Vrbel terkt dlm peelt dlh hsl beljr ssw pd mter lstrk dms. ecr opersol hsl beljr dpt ddefsk sebg skor yg dperoleh mellu tes ulg hr. edgk defs kosttutf dlh

4 3 tes hsl beljr yg terfokus pd mter lstrk dms. Utuk memperoleh dt hsl beljr ssw ytu deg megmbl rsp l hsl tes ulg hr mter lstrk dms pd guru mt peljr fsk Populs d mpel Populs Meurut Arkuto (006:130) bhw, populs dlh keseluruh subjek peelt. Populs pd peelt dlh seluruh ssw kels MA Neger 3 Gorotlo thu jr 01/013, yg terdftr pd thu 01/013 yg terdstrbus dlm 8 kels deg jumlh keseluruh 07 org. Dstrbus jumlh perkels utuk kels MA Neger 3 Gorotlo dpt dlht pd tbel 1 berkut. Tbel 1. Dstrbus Peyebr sw dsetp Kels Kels Lk-lk Jumlh sw Perempu Totl Jumlh (umber: Buku dftr ssw MA Neger 3 Gorotlo thu jr 01/013) 3.4. mpel Meuurut Arkuto (006: 131) bhw, smpel dlh sebg tu wkl yg dmlk oleh populs yg k dtelt. Cr pegmbl smpel yg

5 4 dguk dlm peelt dlh tekk Cluster rdom smplg (smpel ck berkelompok). Dr delp kels k dmbl tg kels sebg smpel yg dggp dpt mewkl keseluruh populs kels yg homoge. Dktk homoge dlht dr mter yg djrk, bh jr, guru yg megjr. Pegmbl smpel secr ck berkelompok dr delp kels d yg terplh dlh kels 6, 7, d 8 deg cr ud-ud Tekk d Istrume Pegumpul Dt Tekk Pegumpul Dt Tekk pegumpul dt dlm peelt dlkuk sesu deg kebutuh dt peelt. Tekk pegumpul dt yg dguk pd peelt dlh tekk dokumets. Meurut Arkuto (010: 74) metode dokumets, ytu mecr dt mege hl-hl tu vrbel yg berup ctt, trskrp, buku, surt kbr, prsst, otule rpt d l sebgy. Pd peelt dt yg ddokumets, ytu:. Megumpulk ctt fsk yg djdk sebg vrbel dr setp ssw yg djdk smpel, utuk dl deg megguk strume pel. b. Megmbl rsp l hsl beljr ssw pd st tes ulg hr sebg vrbel yg skory telh dberk oleh guru mt peljr fsk.

6 Istrume Pegumpul Dt Istrume Pegumpul Dt Istrume yg dguk utuk megumpulk dt pd peelt dlh lembr pel kults ctt fsk. Istrume termsuk tes otetk yg betuju utuk mel kults ctt ssw setelh meerm mter lstrk dms. Meurut Rustm (007: 4) bhw pel otetk merupk pel yg melbtk sutu tugs (tsk) bg ssw utuk memplk d sebuh krter pel tu rubrk yg k dguk utuk mel pempl berdsrk tugs yg dberk Tekk Peguj Istrume Tekk uj vldts yg dguk utuk megukur vldts lembr pel dlh vldts s. Meurut Purwto (013: 11) vldts s dpt dlkuk deg cr memt pedpt hl (Epert judgemet) ytu org yg memlk kompetes dlm sutu bdg dpt d mtk pedpty utuk mel ketept s strume peelt (lembr pel). utu dktor dktk vld pbl dktor tersebut dpt megukur p yg hedk dukur. Uj vldts ds dguk utuk megukur sutu dktor vld d cocok utuk dguk dlm pegumpul dt pd peelt.

7 6 Tbel. Dt hsl vlds Lembr Pel Kults ctt Aspek yg dl kl Krter ttus Rt-rt Pel Vldts Kesmpul Kelegkp Ctt B Vld Tp Revs Peyj Iforms yg ber B Vld Tp Revs Peyj Ilustrs/gmbr B Vld Tp Revs Peggu Kos kt/ kesesu bhs B Vld Tp Revs Terorgsr B Vld Tp Revs Orglts 3 75 B Vld Revs Kecl Rp B Vld Tp Revs Berdsrk tbel, meujukk bhw lembr pel yg dsusu peelt membutuhk revs kecl pd spek pel orglts deg krter bk, d meurut pedpt vldtor kt orgl dperbk mejd orglts Tekk Alss Dt Alss dt dlm peelt dlh lss deskrptf d lss sttstk. Alss deskrptf dlkuk utuk meyjk dt setp vrbel dlm besr-besr sttstk sepert rt-rt (me), frekues terbyk (modus), smpg bku (stdr devs), d meggmbrky ke dlm d hstogrm, sedgk lss feresl dguk utuk meguj hpotess peelt. Alss yg dguk utuk meguj hpotess dlh lss regres d korels sederh Uj Normlts Dt Uj ormlts dguk utuk megethu pkh dt dlm peelt berdstrbus orml tu tdk. Peguj ormlts dlm peelt dlh tekk uj ch-kudrt (udj, 005: 47) yg dguk utuk meguj

8 7 hpotess bl populs terdr ts du tu lebh kls dm dt berbetuk oml d smpely besr. Deg lgkh-lgkh sebg berkut. 1. Meetuk retg kels Retg = Dt Besr Dt Kecl. Meetuk byk kels tervl K = 1 + 3,3 log 3. Meetuk pjg kels tervl (P) re t g P byk kels 4. Membut dftr dt dtrbus frekues 5. Meetuk l rt-rt deg rumus (udj, 005: 67): Dm: = Rt-rt f f f = frekues utuk l yg bersesu = meytk l 6. Meetuk smpg bku mellu vrs ( ) deg rumus (udj, 005: 95): Dm: s f s = smpg bku mellu vrs = td kels f = frekues yg sesu deg td kels = 7. Meghtug Ch-Qudrt ( ) f 1 f k 1 O E E

9 8 Dm: = Ch Kudrt O = Frekues Pegmt E = Frekues hsl yg dhrpk Krter peguj: Term hpotess populs berdstrbus orml, jk deg trf yt = 0,05. < (1- ) (k - 1) Berdsrk hsl perhtug pd lmpr 4, dperoleh uj ormlts dt pd vrbel (kults ctt fsk) d vrbel (hsl beljr ssw) bersl dr populs yg berdstrbus orml. Hsl peguj ormlts chkudrt ( ) dsjk pd tbel berkut. Tbel 3. Hsl Uj Normlts Ch-Kudrt ( ) Hsl Beljr ssw () ts Kults Ctt () Vrbel htug dftr α = 0,05 Kesmpul 3,4873 1,6 Norml 11, 973 1,6 Norml 1.6. Peguj Hpotess Mecr Persm Regres Persm yg dguk utuk meetuk persm regres dlh ˆ b, dm hrg d b dpt dcr deg megguk rumus sebg berkut. (ugoo 011: 6). b (ugoo 011: 6)

10 9 Dm: b = Hrg bl = 0 (hrg kost) = Nl rh sebg peetu rml (predks) yg meujukk l pegkt (+) tu peuru(-) vrbel Σ Σ Σ Σ = Jumlh l kults ctt = Jumlh l hsl beljr = Jumlh kudrt l kults ctt = Hsl kl tr l kults ctt d hsl beljr Meguj Lerts d keberrt Persm Regres Utuk meguj lerts d keberrt persm regres dguk rumus sebg berkut. T b b T b TC G TC Dm: (T) = Jumlh kudrt totl (ugoo, 011: 64) () = Jumlh kudrt koefse (b ) = Jumlh kudrt regres () = Jumlh kudrt ss

11 30 (TC) = Jumlh kudrt tu cocok (G) = Jumlh kudrt Glt 1. Meguj Lerts Regres Utuk meguj lerts regres ˆ b megguk uj Fsher (ugoo, 011: 73) deg rumus berkut. F htug TC G Dm: TC k ( TC ) ( G ) TC k umber-sumber vrs (TC) d (G) dhtug megguk persm-persm berkut. TC G TC Deg krter peguj: Utuk trf α = 0,05 term hpotess yg meytk bhw persm regres ler: Jk F (htug) < F (k-), (-k) d tolk hpotess jk F (htug) > F (k-), (-k).. Meguj Keberrt Regres Utuk meguj keberrt rh regres ˆ b megguk uj Fsher (ugoo, 011: 73) deg rumus berkut. F htug reg res Dm:

12 31 umber-sumber vrs (bǀ ) d () dhtug megguk persm-persm berkut. b b T b Utuk trf α = 0,05 term hpotess yg meytk bhw koefse rh regres berrt jk F (htug) > F (1,-) d tolk hpotess jk F (htug) < F (1,-). emu perhtug yg dperoleh dmsukk ke dlm dftr lss vrs pd tbel 4. Tbel 4: Dftr ANAVA utuk regres ler ˆ b umber vrs Dk KT F Totl N Regres () Regres (b ) s Tu cocok Glt k - k () (b ) () (TC) (G) () reg ss TC G b () - (TC) k - (TC) - k reg ss TC G (ugoo, 011: 57) Alss Korels 1. Meghtug Koefse Korels Utuk meetuk pkh d hubug tr kults ctt deg hsl beljr fsk ssw dguk rumus Perso Product Momet (ugoo, 011: 74) sebg berkut.

13 3 r y y y y Dm: r = Koefse korels tr vrbel d vrbel = Jumlh respode = Jumlh skor = Vrbel bebs = Vrbel terkt Pember pefsr terhdp koefse korels yg dperoleh besr tu kecl, mk dpt berpedom pd ketetu tbel 5. Tbel 5: Pedom utuk memberk terprets terhdp koefse korels Itervl koefse 0,00 0,199 0,0 0,399 0,40 0,599 0,60 0,799 0,80 1,000 Tgkt hubug gt redh Redh edg Kut gt kut (ugoo, 011: 74). Meghtug Koefs Determs Meghtug koefse dterms (r ) dmksudk utuk melht tgkt keert hubug tr vrbel deg vrbel dhtug deg megguk rumus koefse koefse dterms (Rdw d urto, 011 :8) sebg berkut. KP = r 100 % Dm: KP = Nl Koefse Determs r = Nl Koefse Korels

14 33 3. Meguj gfk Koefs Korels (Meguj Keberrt Hubug) Uj keberrt tu sgfks koefse korels dmksudk utuk megethu d tdky hubug yg sgfk tr kults ctt deg hsl beljr ssw. Rumus yg dguk utuk uj ytu, megguk tehk sttstk Uj t (ugoo, 011: 74). t r 1 r Dm: t = Nl ttstk r = Nl Koefse korels = Jumlh mpel Peguj dlkuk mellu psg hpotess (ugyoo, 011:96) sebg berkut. H : 0 tu H 0 : 0 Dm: H o : ρ 0: Tdk terdpt hubug postf yg sgfk tr kults ctt deg hsl beljr ssw pd Mt Peljr Fsk. H : ρ 0 : Terdpt hubug postf yg sgfk tr kults ctt ssw deg hsl beljr ssw pd Mt Peljr Fsk. Keterg: ρ = smbol yg meujukk kuty hubug Deg krter peguj: Term Ho, jk t (1 -½ά) < t htug < t (1 -½ά) deg trf kepercy ά = 0.05 d sert dk =

Analisis Variansi satu faktor (Analysis Of Variance / ANOVA)

Analisis Variansi satu faktor (Analysis Of Variance / ANOVA) Alss Vrs stu fktor (Alss Of Vrce / ANOVA) 1. Megethu rcg d eses. Megethu model ler 3. Meuruk Jumlh Kudrt (JK) 4. Melkuk uj lss vrs 5. Melkuk uj perbdg gd Apkh ber kot dlm rokok dpt megkbtk Kker? Sel kker

Lebih terperinci

Analisis Variansi satu faktor Single Factor Analysis Of Variance (ANOVA)

Analisis Variansi satu faktor Single Factor Analysis Of Variance (ANOVA) BAB 1 Alss Vrs stu fktor Sgle Fctor Alss Of Vrce (ANOVA) ANALISIS VARIANSI SATU FAKTOR D MetStt 1 sudh dkel uj hpotess rt-rt du populs A d B g berdstrbus Norml Bgm jk terdpt lebh dr du populs? Alss vrs

Lebih terperinci

( X ) 2 ANALISIS REGRESI

( X ) 2 ANALISIS REGRESI ANALII REGREI A. PENGERTIAN REGREI ecr umum d du mcm huug tr du vrel tu leh, tu etuk huug d keert huug. Utuk megethu etuk huug dguk lss regres. Utuk keert huug dpt dkethu deg lss korels. Alss regres dperguk

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Ltr Belkg Smp st, model Regres d model Alss Vrs telh dpdg sebg du hl g tdk berkt. Meskpu merupk pedekt g umum dlm meergk kedu cr pd trf permul, model Alss Vrs dpt dpdg sebg hl khusus model

Lebih terperinci

BAB VI ANALISIS REGRESI

BAB VI ANALISIS REGRESI BAB VI ANALISIS REGRESI A. Pedhulu Alss regres merupk slh stu lss yg ertuju utuk megethu pegruh sutu vrel terhdp vrel l. Vrel yg mempegruh dseut depedet vrle/vrel es () d vrel yg dpegruh dseut depedet

Lebih terperinci

REGRESI. Curve Fitting Regresi Linier Regresi Eksponensial Regresi Polynomial. Regresi 1

REGRESI. Curve Fitting Regresi Linier Regresi Eksponensial Regresi Polynomial. Regresi 1 REGRESI Curve Fttg Regres Ler Regres Ekspoesl Regres Poloml Regres Curve Fttg: Ksus Dberk dt berup kumpul ttk-ttk dskrt. Dperluk estms / perkr utuk medptk l dr ttk-ttk g berd d tr ttk-ttk dskrt tersebut

Lebih terperinci

REGRESI. Curve Fitting. Regresi Eksponensial. Regresi 1

REGRESI. Curve Fitting. Regresi Eksponensial. Regresi 1 REGRESI Curve Fttg Regres Ler Regres Ekspoesl Regres Poloml Regres Curve Fttg: Ksus Dberk dt berup kumpul ttk-ttk dskrt. Dperluk estms / perkr utuk medptk l dr ttk-ttk g berd d tr ttk-ttk dskrt t tersebut

Lebih terperinci

BAB 1 PENDAHULUAN. perkebunan karet. Karet merupakan Polimer hidrokarbon yang terkandung pada

BAB 1 PENDAHULUAN. perkebunan karet. Karet merupakan Polimer hidrokarbon yang terkandung pada BAB PENDAHULUAN. Ltr Belkg Sektor perkebu merupk sub sektor pert yg mejd slh stu fktor yg dpt medukug kegt perekoom d Idoes. Slh stu sub sektor perkebu yg cukup besr potesy dlm perekoom Idoes dlh perkebu

Lebih terperinci

BAB 2 ANAVA 2 JALAN. Merupakan pengembangan dari ANAVA 1 Jalan Jika pada ANAVA 1 jalan 1 Faktor Jika pada ANAVA 2 jalan 2 Faktor

BAB 2 ANAVA 2 JALAN. Merupakan pengembangan dari ANAVA 1 Jalan Jika pada ANAVA 1 jalan 1 Faktor Jika pada ANAVA 2 jalan 2 Faktor BAB ANAVA JALAN Merupk pegembg dr ANAVA 1 Jl Jk pd ANAVA 1 l 1 Fktor Jk pd ANAVA l Fktor Model Ler Asums: Model efek Tetp! 1,..., 1,..., Stu fktor g dtelt Av 1 l k k 1,,..., 1,,..., b k 1,,..., Du fktor

Lebih terperinci

CNH2B4 / KOMPUTASI NUMERIK

CNH2B4 / KOMPUTASI NUMERIK CNHB4 / KOMPUTASI NUMERIK TIM DOSEN KK MODELING AND COMPUTATIONAL EXPERIMENT PENCOCOKAN KURVA Pedhulu Dt g bersl dr hsl pegmt lpg pegukur tu tbel g dmbl dr buku-buku cu. Nl tr turu tegrl mudh dcr utuk

Lebih terperinci

Dr.Eng. Agus S. Muntohar Department of Civil Engineering

Dr.Eng. Agus S. Muntohar Department of Civil Engineering Pertemu ke-7 Persm Ler Smult Oktober 0 Metode Iters Guss-Sedel Dr.Eg. Agus S. Mutohr Deprtmet of Cvl Egeerg Metode Guss-Sedel Merupk metode ters. Prosedur umum: - Selesk ser lbr vrbel tdk dkethu msg-msg

Lebih terperinci

Bab 4 ANALISIS REGRESI dan INTERPOLASI

Bab 4 ANALISIS REGRESI dan INTERPOLASI Als Numerk Bh Mtrkuls B 4 ANALISIS RGRSI d INTRPOLASI 4 Pedhulu Pd kulh k dpeljr eerp metde utuk mempredks d megestms dt dskret Dr sutu peelt serg dlkuk peglh dt utuk megethu pl dt tu etuk kurv g dggp

Lebih terperinci

Bab 1. Anava satu. Analisis Variansi (Analysis Of Variance / ANOVA) satu faktor

Bab 1. Anava satu. Analisis Variansi (Analysis Of Variance / ANOVA) satu faktor Bb 1 Av stu Alss Vrs (Alss Of Vrce / ANOVA) stu fktor Lerg Objectves 1. Desg d coduct expermets volvg sgle d two fctors. Uderstd how the ov s used to lze the dt from these expermets 3. Assess model dequc

Lebih terperinci

PRAKTIKUM 22 Interpolasi Linier, Kuadratik, Polinomial, dan Lagrange

PRAKTIKUM 22 Interpolasi Linier, Kuadratik, Polinomial, dan Lagrange Prktkum. Iterpols Ler, Kudrtk, Poloml d Lgrge PRAKTIKUM Iterpols Ler, Kudrtk, Poloml, d Lgrge Tuju : Mempeljr berbg metode Iterpols g d utuk meetuk ttkttk tr dr buh ttk deg megguk sutu fugs pedekt tertetu.

Lebih terperinci

PRAKTIKUM 8 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss

PRAKTIKUM 8 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Prktkum 8 Peyeles Persm Ler Smult Metode Elms Guss PRAKTIKUM 8 Peyeles Persm Ler Smult Metode Elms Guss Tuju : Mempeljr metode Elms Guss utuk peyeles persm ler smult Dsr Teor : Metode Elms Guss merupk

Lebih terperinci

CATATAN KULIAH Pertemuan XIII: Analisis Dinamik dan Integral (1)

CATATAN KULIAH Pertemuan XIII: Analisis Dinamik dan Integral (1) CATATAN KULIAH Pertemu XIII: Alss Dmk d Itegrl () A. Dmk d Itegrs Model Stts : mecr l vrel edoge yg memeuh kods ekulrum tertetu. Model Optms : mecr l vrel plh yg megoptms fugs tuju tertetu. Model Dmk :

Lebih terperinci

PENCOCOKAN KURVA (CURVE FITTING) INTERPOLASI

PENCOCOKAN KURVA (CURVE FITTING) INTERPOLASI PENCOCOKAN KURVA (CURVE FITTING) Iterpols : Iterpols er Iterpols Kudrtk Iterpols Poloml Iterpols grge Regres : Regres er Regres Ekspoesl Regres Poloml INTERPOASI Iterpols dguk utuk meksr l tr (termedte

Lebih terperinci

PRAKTIKUM 12 Regresi Linier, Regresi Eksponensial dan Regresi Polinomial

PRAKTIKUM 12 Regresi Linier, Regresi Eksponensial dan Regresi Polinomial Prktkum. Regres Regres Ler, Regres Ekspoesl, d Regres Poloml Poltekk Elektrok eger Surb ITS 47 PRAKTIKUM Regres Ler, Regres Ekspoesl d Regres Poloml. Tuju : Mempeljr metode peeles regres ler, ekspoesl

Lebih terperinci

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Integral Pertemuan - 6

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Integral Pertemuan - 6 home se to ecellece Mt Kulh : Klkulus Kode : TSP 0 SKS : SKS Itegrl Pertemu - 6 home se to ecellece TIU : Mhssw dpt memhm tegrl fugs d plksy TIK : Mhssw mmpu mecr tegrl fugs Mhssw mmpu megguk tegrl utuk

Lebih terperinci

DIGRAF EKSENTRIS PADA DIGRAF SIKEL, DIGRAF KOMPLIT DAN DIGRAF KOMPLIT MULTIPARTIT. Jl. Prof. H. Soedarto SH Semarang 50275

DIGRAF EKSENTRIS PADA DIGRAF SIKEL, DIGRAF KOMPLIT DAN DIGRAF KOMPLIT MULTIPARTIT. Jl. Prof. H. Soedarto SH Semarang 50275 DIGRAF ESENTRIS PADA DIGRAF SIEL DIGRAF OMPLIT DAN DIGRAF OMPLIT MULTIPARTIT Reto tur umlsr d Luc Rtsr Jurus Mtemtk FMIPA UNDIP Jl Prof H Soedrto SH Semrg 5075 Abstrct The eccetrc dgrph of dgrph ED ( D)

Lebih terperinci

KAJIAN BATAS KESALAHAN MINIMUM METODE RUNGE-KUTTA ORDE KEDUA, KETIGA, DAN KEEMPAT

KAJIAN BATAS KESALAHAN MINIMUM METODE RUNGE-KUTTA ORDE KEDUA, KETIGA, DAN KEEMPAT Prosdg Semr Nsol Mtemtk d Terpy 06 p-issn : 550-084; e-issn : 550-09 KAJIAN BATAS KESALAHAN MINIMUM METODE RUNGE-KUTTA ORDE KEDUA, KETIGA, DAN KEEMPAT St Muhwh Uversts Jederl Soedrm [email protected]

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. mempengaruhi sering disebut variabel bebas, variabel independen atau variabel

BAB 2 TINJAUAN TEORITIS. mempengaruhi sering disebut variabel bebas, variabel independen atau variabel BAB TINJAUAN TEORITIS.. Regres Ler Sederh Regres ler dlh lt sttst yg dpergu utu megethu pegruh tr stu tu beberp vrbel terhdp stu buh vrbel. Vrbel yg mempegruh serg dsebut vrbel bebs, vrbel depede tu vrbel

Lebih terperinci

1 yang akan menghasilkan

1 yang akan menghasilkan Rset Opers Probblstk Teor Per (Ge Theor) Nughthoh Arfw Kurdh, M.Sc Deprteet of Mthetcs FMIPA UNS Lecture 6: Med Strteg: Ler Progrg Method A. Metode Cpur deg Progr Ler Terdpt hubug g ert tr teor per d progr

Lebih terperinci

Model Tak Penuh. Definisi dapat di-uji (testable): nxp

Model Tak Penuh. Definisi dapat di-uji (testable): nxp Model T Peuh Defs dpt d-u (testle): Sutu c c 'c 'c H 'c 'c dpt du l d stu set fugs g dpt - ddug m m ' sehgg H er c ' ' slg es ler tu C c ' c m ' Perht : Kre r X p r p m m r c' (X' X) c X' X c' C(X' X)

Lebih terperinci

Anuitas. Anuitas Akhir

Anuitas. Anuitas Akhir Auts Auts bersl r kt bhs Iggrs uty yg pt efsk sebg rgk pembyr tu peerm tetp lm jumlh tertetu yg lkuk secr berkl p jgk wktu tertetu. Kt uty sly berrt pembyr ul (thu), k tetp serg eg berjly wktu kt uts jug

Lebih terperinci

PRAKTIKUM 10 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Seidel

PRAKTIKUM 10 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Seidel Prktkum 0 Peyeles Persm Ler Smult - Metode Elms Guss Sedel PRAKTIKUM 0 Peyeles Persm Ler Smult Metode Elms Guss Sedel Tuu : ler smult Mempelr metode Elms Guss Sedel utuk peyeles persm Dsr Teor : Metode

Lebih terperinci

MAKALAH STATISTIK DAN STOKASTIK

MAKALAH STATISTIK DAN STOKASTIK MAKALAH STATISTIK DAN STOKASTIK DISUSUN OLEH : Yop Mrss Shte 6567 ROGRAM STUDI TEKNIK ELEKTRO DEARTEMEN TEKNOLOGI INDUSTRI SEKOLAH VOKASI UNIVERSITAS DIONEGORO SEMARANG 7 KATA ENGANTAR u syukur kehdrt

Lebih terperinci

INTEGRASI NUMERIK. n ax. ax e. n 1. x x. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal :

INTEGRASI NUMERIK. n ax. ax e. n 1. x x. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal : INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser ltk. INTEGRASI

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN Ltr Belg Istlh Pemrogrm Geometr (PG) dperel oleh Duff, Peterso, d Zeer pd thu 967 Istlh dmbl dr mslh-mslh geometr g dpt dformuls sebg PG Pemrogrm Geometr dlh sutu tpe mslh optmlss mtemt g

Lebih terperinci

Bab 4 Penyelesaian Persamaan Linier Simultan

Bab 4 Penyelesaian Persamaan Linier Simultan Bb Peyeles Persm Ler Smult.. Persm Ler Smult Persm ler smult dlh sutu betuk persm-persm yg ser bersm-sm meyjk byk vrbel bebs. Betuk persm ler smult deg m persm d vrbel bebs dpt dtulsk sebg berkut: b b

Lebih terperinci

PRAKTIKUM 8 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss

PRAKTIKUM 8 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Prktkum 8 Peyeles Persm Ler Smult Metoe Elms Guss PRAKTIKUM 8 Peyeles Persm Ler Smult Metoe Elms Guss Tuju : smult Mempeljr metoe Elms Guss utuk peyeles persm ler Dsr Teor : Metoe Elms Guss merupk metoe

Lebih terperinci

ANOVA ANALISIS VARIANSI/ ANALYSIS OF VARIANCE ( ANOVA ) 8/29/2012

ANOVA ANALISIS VARIANSI/ ANALYSIS OF VARIANCE ( ANOVA ) 8/29/2012 8/9/0 ANALISIS VARIANSI/ ANALYSIS OF VARIANCE ( ANOVA ) Elty Srv, S., M. Fkults ekk Jurus ekk Idustr Uversts Krste Mrth Bdug ANOVA Dsr perhtug ANOVA dtetpk oleh Rold A. Fsher. Dstrus teorts yg dguk dlh

Lebih terperinci

x 1 M = x 1 m 1 + x 2 m x n m n = x i

x 1 M = x 1 m 1 + x 2 m x n m n = x i Iterl Tertetu..6 oe d ust ss Ttk Bert slk d du ed s-s elk ss sesr d y dletkk pd pp er de jrk erturut-turut d d d dr ttk pey pd - y ered. Ked terseut k se jk dpeuh d d. d d Sutu odel tets y k dperoleh pl

Lebih terperinci

bila nilai parameter sesungguhnya adalah. Jadi, K( ) P( SU jatuh ke dalam WP bila nilai parameter sama dengan )

bila nilai parameter sesungguhnya adalah. Jadi, K( ) P( SU jatuh ke dalam WP bila nilai parameter sama dengan ) Kus Uji d Lem Neym-Perso Kebik sutu uji serig diukur oleh d. Di dlm prktek, bisy ditetpk, d kibty wilyh peolk (WP) mejdi tertetu pul. Kierj sutu uji jug serig diukur oleh p yg disebut kus uji (power of

Lebih terperinci

III PEMBAHASAN. x x. 3.1 Analisis Metode Perhatikan persamaan integral Volterra berikut. x. atau (11)

III PEMBAHASAN. x x. 3.1 Analisis Metode Perhatikan persamaan integral Volterra berikut. x. atau (11) III PEMBAHASAN 3 Alisis Metode Perhtik persm itegrl Volterr berikut y ( f( λ Ktyt ( ( (8 deg y( merupk fugsi yg k ditetuk sutu kostt f( fugsi sembrg yg dikethui d terdefiisi pd R d K(ty(t sutu fugsi yg

Lebih terperinci

SOAL UJIAN AKHIR MATEMATIKA INFORMATIKA 4 (A & B) Dosen: Dr. Asep Juarna Jumlah Soal: 3 Uraian Tanggal Ujian: 02/03/12 Waktu Ujian: 2 jam

SOAL UJIAN AKHIR MATEMATIKA INFORMATIKA 4 (A & B) Dosen: Dr. Asep Juarna Jumlah Soal: 3 Uraian Tanggal Ujian: 02/03/12 Waktu Ujian: 2 jam SOAL UJIAN AKHIR MATEMATIKA INFORMATIKA 4 A & B Dose: Dr. Asep Jur Jumlh Sol: Uri Tggl Uji: // Wktu Uji: jm jik. Solusi t dlh: t + log, yg dpt dibuktik sbb: t jik t t + [t/ + ] + t/ + t/4 + t/8 + 4 t/

Lebih terperinci

PENINGKATAN KEMAMPUAN BERPIKIR KREATIF SISWA MELALUI MODEL PEMBELAJARAN INKUIRI PADA MATA PELAJARAN ILMU PENGETAHUAN ALAM

PENINGKATAN KEMAMPUAN BERPIKIR KREATIF SISWA MELALUI MODEL PEMBELAJARAN INKUIRI PADA MATA PELAJARAN ILMU PENGETAHUAN ALAM Berpkr Kretf Mellu Model Ikur PENINGKATAN KEMAMPUAN BERPIKIR KREATIF SISWA MELALUI MODEL PEMBELAJARAN INKUIRI PADA MATA PELAJARAN ILMU PENGETAHUAN ALAM Softu Ns Dw Ist, PGSD FIP Uversts Neger Surby (e-ml:

Lebih terperinci

VARIASI PEMBAYARAN ANUITAS DENGAN POLA DERET ARITMATIKA

VARIASI PEMBAYARAN ANUITAS DENGAN POLA DERET ARITMATIKA VARIASI PEMBAYARAN ANUITAS DENGAN POLA DERET ARITMATIKA De Prm Sr Jurus Mtemtk Uersts Neger Pg, Ioes eml: [email protected] Abstrk. Auts lh rgk pembyr tu peerm lm jumlh tertetu yg lkuk secr berkl p jgk wktu

Lebih terperinci

PENERAPAN CLUSTERING K-MEANS PADA CUSTOMER SEGMENTATION BERBASIS RECENCY FREQUENCY MONETARY (RFM) (STUDI KASUS : PT. SINAR KENCANA INTERMODA SURABAYA)

PENERAPAN CLUSTERING K-MEANS PADA CUSTOMER SEGMENTATION BERBASIS RECENCY FREQUENCY MONETARY (RFM) (STUDI KASUS : PT. SINAR KENCANA INTERMODA SURABAYA) Semr Nsol Mtemtk d Aplksy, 21 Oktober 2017 Surby, Uversts Arlgg PENERAPAN CLUSTERING K-MEANS PADA CUSTOMER SEGMENTATION BERBASIS RECENCY FREQUENCY MONETARY (RFM) (STUDI KASUS : SINAR KENCANA INTERMODA

Lebih terperinci

BAB IV METODA ANALISIS RANGKAIAN

BAB IV METODA ANALISIS RANGKAIAN 6 BAB METODA ANALSS RANGKAAN Metod nlss rngkn sebenrny merupkn slh stu lt bntu untuk menyeleskn sutu permslhn yng muncul dlm mengnlss sutu rngkn, blmn konsep dsr tu hukum-hukum dsr sepert Hukum Ohm dn

Lebih terperinci

A. Pusat Massa Suatu Batang

A. Pusat Massa Suatu Batang Perteu 7 Pust ss sutu Kepg, Setrod, d Teore Pppus A. Pust ss Sutu Btg Dskusk!. slk ss,,..., terletk pd tg pdt sgsg d ttk,...,,, d = jrk errh tr ss ke sutu ttk tetp 0 pd tg,,,...,. ss prtkel, oe prtkel

Lebih terperinci

INTEGRASI NUMERIK C 1. n ax. ax e. cos( 1 1. n 1. x x. 0 Fungsi yang dapat dihitung integralnya : 0 Fungsi yang rumit misal :

INTEGRASI NUMERIK C 1. n ax. ax e. cos( 1 1. n 1. x x. 0 Fungsi yang dapat dihitung integralnya : 0 Fungsi yang rumit misal : INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser ltk. INTEGRASI

Lebih terperinci

INTEGRASI NUMERIK. n ax. ax e. a 1. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal :

INTEGRASI NUMERIK. n ax. ax e. a 1. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal : INTEGRASI NUMERIK INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser

Lebih terperinci

Bab 2 LANDASAN TEORI

Bab 2 LANDASAN TEORI b LNDSN TEORI. Hmpu Fuzzy Tdk semu hmpu yg dump dlm kehdup sehr-hr terdefs secr els, msly hmpu org msk, hmpu org pd, hmpu org tgg, d sebgy. Msly, pd hmpu org tgg, tdk dpt dtetuk secr tegs pkh seseorg dlh

Lebih terperinci

PENAKSIRAN PARAMETER MODEL REGRESI BINOMIAL NEGATIF PADA KASUS OVERDISPERSI SKRIPSI WIDYA WAHYUNI

PENAKSIRAN PARAMETER MODEL REGRESI BINOMIAL NEGATIF PADA KASUS OVERDISPERSI SKRIPSI WIDYA WAHYUNI UNIVERSITAS INDONESIA PENAKSIRAN PARAMETER MODEL REGRESI BINOMIAL NEGATIF PADA KASUS OVERDISPERSI SKRIPSI WIDYA WAHYUNI 07066003 FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI MATEMATIKA DEPOK

Lebih terperinci

Metode Numerik. Regresi. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2008 PENS-ITS

Metode Numerik. Regresi. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2008 PENS-ITS Metode Numerk Regres Um S dh Polteknk Elektronk Neger Surb 008 PENS-ITS 1 Metode Numerk Topk Regres Lner Regres Non Lner PENS-ITS Metode Numerk Metode Numerk Regres vs Interpols REGRESI KUADRAT TERKECIL

Lebih terperinci

PENAKSIRAN PARAMETER DISTRIBUSI BINOMIAL NEGATIF PADA KASUS OVERDISPERSI SKRIPSI SHAFIRA

PENAKSIRAN PARAMETER DISTRIBUSI BINOMIAL NEGATIF PADA KASUS OVERDISPERSI SKRIPSI SHAFIRA UNIVERSITAS INDONESIA PENAKSIRAN PARAMETER DISTRIBUSI BINOMIAL NEGATIF PADA KASUS OVERDISPERSI SKRIPSI SHAFIRA 0706695 FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI MATEMATIKA DEPOK JULI

Lebih terperinci

Nuryanto,ST.,MT. Integral merupakan operasi invers dari turunan. Jika turunan dari F(x) adalah F (x) = f(x), maka F(x) = f(x) dx.

Nuryanto,ST.,MT. Integral merupakan operasi invers dari turunan. Jika turunan dari F(x) adalah F (x) = f(x), maka F(x) = f(x) dx. Nuryto,ST.,MT d c. INTEGRAL TAK TENTU KONSEP DASAR INTGRAL f. ALJABAR INTEGRAL f. TRIGONO CONTOH SOAL SOAL LATIHAN UJI KOMPETENSI Itegrl merupk opersi ivers dri turu. Jik turu dri F dlh F = f, mk F = f

Lebih terperinci

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN REGRESI ROBUST PADA SAMPING ACAK SEDERHANA.

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN REGRESI ROBUST PADA SAMPING ACAK SEDERHANA. PENAKI AIO ANG EFIIEN UNTUK ATA-ATA POPULAI MENGGUNAKAN KOEFIIEN EGEI OUT PADA AMPING ACAK EDEHANA M Okto Mork Arsm Ad Hpos rt [email protected] Mhssw Progrm Mtemtk Dose Jurus Mtemtk Fkults Mtemtk d Ilmu

Lebih terperinci

Pemain P 1. Teorema 4.1 (Teorema minimax). Untuk setiap matriks pembayaran (pay off matrix), terdapat strategi optimal x* dan y* sedemikian sehingga

Pemain P 1. Teorema 4.1 (Teorema minimax). Untuk setiap matriks pembayaran (pay off matrix), terdapat strategi optimal x* dan y* sedemikian sehingga Rset Opers Probblstk Teor Permnn (Gme Theor) Deprtement of Mthemtcs FMIPA UNS Lecture 4: Med Strteg A. Metode Cmpurn (Med Strteg) D dlm permnn d mn permnn tersebut tdk mempun ttk peln, mk pr pemn kn bersndr

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BB LNDSN TEORI. lytcl Herrchy Process (HP) lytc Herrchy Process (HP) dlh slh stu metode khusus dr Mult Crter Decso Mkg (MCDM) yg dperkelk oleh Thoms Lore Sty. HP dpt dguk utuk memechk mslh pd stus yg kompleks.

Lebih terperinci

RENCANA PELAKSANAAN PERKULIAHAN

RENCANA PELAKSANAAN PERKULIAHAN Lesso Study FMIPA UNY RENCANA PELAKSANAAN PERKULIAHAN MATA KULIAH : ALJABAR LINEAR II SEMESTER : III TOPIK : NILAI EIGEN DAN VEKTOR EIGEN SUB TOPIK : NILAI EIGEN DAN VEKTOR EIGEN WAKTU : X 5 A. Stdr Kompetesi:

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Alss Regres Alss regres dlh tekk sttstk yg ergu utuk memerks d memodelk huug dtr vrel-vrel. Peerpy dpt djump secr lus d yk dg sepert tekk, ekoom, mjeme, lmu-lmu olog, lmu-lmu sosl,

Lebih terperinci

ESTIMASI DAN RELIABILITAS PADA DISTRIBUSI WEIBULL DENGAN METODE BAYES

ESTIMASI DAN RELIABILITAS PADA DISTRIBUSI WEIBULL DENGAN METODE BAYES LEMMA VOL I NO., NOV 24 ESTIMASI DAN RELIABILITAS PADA DISTRIBUSI WEIBULL DENGAN METODE BAYES Adev Mur Adel Progrm Stud Peddk Mtemtk, Uversts Mhutr Muhmmd Ym, Solok [email protected] Abstrk. Peelt bertuju

Lebih terperinci

MENENTUKAN KOEFISIEN REGRESI EKSPONENSIAL DENGAN METODE KUADRAT TERKECIL SEDERHANA DAN METODE KUADRAT TERKECIL BERBOBOT

MENENTUKAN KOEFISIEN REGRESI EKSPONENSIAL DENGAN METODE KUADRAT TERKECIL SEDERHANA DAN METODE KUADRAT TERKECIL BERBOBOT MENENTUKAN KOEFISIEN REGRESI EKSPONENSIAL DENGAN METODE KUADRAT TERKECIL SEDERHANA DAN METODE KUADRAT TERKECIL BERBOBOT Rz Phlev, Arsm Ad, Sgt Sugrto Mhssw Progrm Stud S Mtemtk Dose Jurus Mtemtk Fkults

Lebih terperinci

Bentuk Umum Perluasan Teorema Pythagoras

Bentuk Umum Perluasan Teorema Pythagoras Jrl Grde Vol No Jr 6 : 9-4 Betk Umm Perls Teorem Pythors Ml stt By Kerm Ulsr les Jrs Mtemtk Fklts Mtemtk d Ilm Peeth lm Uversts Bekl Idoes Dterm Septemer 5; dset Desemer 5 strk - Peelt memhs perls teorem

Lebih terperinci

BASIS ORTOGONAL. Bila V ruang Euclides, S V disebut Himpunan Ortogonal bila tiap dua unsur S ortogonal.

BASIS ORTOGONAL. Bila V ruang Euclides, S V disebut Himpunan Ortogonal bila tiap dua unsur S ortogonal. BASIS ORTOGONA Bts Bl V rg Ecldes S V dsebt Hmp Ortogol bl tp d sr S ortogol DAI J S hmp ortogol yg terdr dr K bh etor t ol dlm rg Ecldes V m S bebs ler V hssy bl dmes V S bss t V dsebt Bss ortogol DAI

Lebih terperinci

Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS

Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS Itegrs Numerk Um S d Poltekk Elektrok Neger Sury Topk Itegrl Rem Trpezod Smpso / Smpso /8 Kudrtur Guss ttk Kudrtur Guss ttk INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl

Lebih terperinci

DIKTAT. Mata Kuliah METODE NUMERIK. Oleh: I Ketut Adi Atmika

DIKTAT. Mata Kuliah METODE NUMERIK. Oleh: I Ketut Adi Atmika DIKTAT Mt Kulh METODE NUMERIK Oleh: I Ketut Ad Atmk JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS UDAYANA 6 KATA PENGANTAR Dktt dsusu utuk memudhk mhssw dlm memhm beberp metode umerk utuk meyelesk persm-persm

Lebih terperinci

III PEMBAHASAN. peubah. Sistem persamaan (6) dapat diringkas menjadi Bentuk Umum dari Magic Square, Bilangan Magic, dan Matriks SPL

III PEMBAHASAN. peubah. Sistem persamaan (6) dapat diringkas menjadi Bentuk Umum dari Magic Square, Bilangan Magic, dan Matriks SPL III PEMBAHASAN 3.1. Betuk Umum dri Mgic Squre, Bilg Mgic, d Mtriks SPL Mislk eleme dri bris ke-i d kolom ke-j dlh i,j mk mgic squrey secr umum dlh 1,1 1, 1,,1,,,1,, Gmbr 1. Betuk umum mgic squre deg: i,j

Lebih terperinci

SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI. Prasetyo Budi Darmono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo

SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI. Prasetyo Budi Darmono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI Prsetyo Budi Drmoo Jurus Pedidik Mtemtik FKIP Uiversits Muhmmdiyh Purworejo Abstrk Persm lier dlm vribel 1, 2, 3,.. sebgi sebuh persm yg dpt diytk dlm

Lebih terperinci

mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x

mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x B 4. Peerp Itegrl BAB 4. PENGGUNAAN INTEGRAL 4.. Lus re dtr Perhtik derh di wh kurv y = f () di tr du gris tegk = d = di ts sumu, deg f fugsi kotiu. Seperti pd s medefiisik itegrl tertetu, kit gi itervl

Lebih terperinci

Bab 2 Landasan Teori

Bab 2 Landasan Teori Bb 2 Lds Teor 2.1. Ler Progrmmg Model pemrogrm ler tdk mmpu meyelesk ksus-ksus mjeme yg meghedk ssr-ssr tertetu dcp secr smult. Kelemh dlht oleh A. Chres d W.M. Cooper. Merek berdu kemud megembgk model

Lebih terperinci

SOLUSI DERET PANGKAT TETAP DENGAN FUNGSI PEMBANGKIT

SOLUSI DERET PANGKAT TETAP DENGAN FUNGSI PEMBANGKIT OLUI DERET PANGKAT TETAP DENGAN FUNGI PEMBANGKIT Aleder A Guw Jurus Mtemt d ttst Fults s d Teolog, Uversts B Nustr Jl. K. H. yhd No. 9, Kemggs/Plmerh, Jrt Brt 8 [email protected] ABTRACT Ths rtcle dscusses bout

Lebih terperinci

Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS

Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS Itegrs Numerk Um S d Poltekk Elektrok Neger Sury Topk Itegrl Rem Trpezod Smpso / Smpso /8 Kudrtur Guss ttk Kudrtur Guss ttk INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl

Lebih terperinci

Dia yang menjadikan matahari dan bulan bercahaya, serta mengaturnya pada beberapa tempat, supaya kamu mengetahui bilangan tahun dan perhitunganya

Dia yang menjadikan matahari dan bulan bercahaya, serta mengaturnya pada beberapa tempat, supaya kamu mengetahui bilangan tahun dan perhitunganya Pemeljr M t e m t i k... Di g mejdik mthri d ul erch, sert megtur pd eerp tempt, sup kmu megethui ilg thu d perhitug (QS Yuus:5 ) Pedhulu us Sift : - us derh rt dlh ilg riil tk egtif - persegipjg=pjg ler

Lebih terperinci

BARISAN DAN DERET. Jawaban : D a = 3, b = 2, U 10 = (a + 9b) U 10 = = 21. Jawaban : E a = 2,5 S ~ =

BARISAN DAN DERET. Jawaban : D a = 3, b = 2, U 10 = (a + 9b) U 10 = = 21. Jawaban : E a = 2,5 S ~ = pge of SOAL Jumlh ke-0 dri bris :,, 7, 9,.dlh.. d. e. 7 9 Ebts 99 Sebuh bol jtuh dri ketiggi, meter d memtul deg ketiggi kli tiggi semul. D setip kli memtul berikuty, mecpi ketiggi kli tiggi ptul sebelumy.

Lebih terperinci

Hendra Gunawan. 21 Februari 2014

Hendra Gunawan. 21 Februari 2014 MA0 MATEMATIKA A Hedr Guw Semester II, 03/04 Februri 04 Kulih Sebelumy 9.4 Deret Positif: Uji Liy Memeriks kekoverge deret positif deg ujiperbdigd ujirsio 9.5 Deret Gti Td: Kekoverge Mutlk d Kekoverge

Lebih terperinci

PEMECAHAN SISTEM PERSAMAAN LINIER NON HOMOGEN DENGAN METODE SAPUAN GANDA CHOLESKY. Oleh : Yusup Fakultas Ilmu Komputer, Universitas AKI Semarang

PEMECAHAN SISTEM PERSAMAAN LINIER NON HOMOGEN DENGAN METODE SAPUAN GANDA CHOLESKY. Oleh : Yusup Fakultas Ilmu Komputer, Universitas AKI Semarang PEMECAHAN SISTEM PERSAMAAN LINIER NON HOMOGEN DENGAN METODE SAPUAN GANDA CHOLESKY Oleh : Yusup Fkults Ilmu Komputer, Uversts AKI Semrg Astrt The frto of No Homoge Lerty Ajustmet System towr Cholesky Doule

Lebih terperinci

Kalkulus 2. Deret Pangkat dan Uji Konvergensi. Department of Chemical Engineering Semarang State University. Dhoni Hartanto S.T., M.T., M.Sc.

Kalkulus 2. Deret Pangkat dan Uji Konvergensi. Department of Chemical Engineering Semarang State University. Dhoni Hartanto S.T., M.T., M.Sc. Klkulus Deret Pgkt d Uji Kovergesi Dhoi Hrtto S.T., M.T., M.S. Deprtmet o Chemil Egieerig Semrg Stte Uiversity Eperimetl Deret Pgkt Urut d deret sequees d series). Urut gk merupk rgki gk tk terbts jumlh

Lebih terperinci

BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ. Definisi 3.1 Matriks Toeplitz adalah suatu matriks., dengan nilai,, dan indeks yang

BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ. Definisi 3.1 Matriks Toeplitz adalah suatu matriks., dengan nilai,, dan indeks yang BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ 3. Mtriks Toeplitz Defiisi 3. Mtriks Toeplitz dlh sutu mtriks [ t ; k, j = 0,,..., ] : T =, k j, deg ili,, d ideks yg diguk setip etriy

Lebih terperinci

PROGRAM LINEAR BILANGAN BULAT DUAL SKRIPSI

PROGRAM LINEAR BILANGAN BULAT DUAL SKRIPSI PROGRA LINEAR BILANGAN BULAT DUAL SKRIPSI Duk Utuk emeuh Slh Stu Syrt emperoleh Gelr Sr Ss (S.S) Progrm Stud temtk Oleh: Berdet Wdsh NI : 7 PROGRA STUDI ATEATIKA JURUSAN ATEATIKA FAKULTAS ATEATIKA DAN

Lebih terperinci

Koefisien Regresi / persamaan regresi linier digunakan untuk meramalkan / mengetahui besarnya pengaruh variabel X terhadap variabel Y

Koefisien Regresi / persamaan regresi linier digunakan untuk meramalkan / mengetahui besarnya pengaruh variabel X terhadap variabel Y REGRESI Koefsen Regres / persmn regres lner dgunkn untuk mermlkn / mengethu esrny pengruh vrel terhdp vrel Vrel yng mempengruh ddlm nlss regres dseut vrel predktor ( ) Vrel yng dpengruh dseut vrel krterum

Lebih terperinci

dan mempunyai vektor normal n =(a b c). Misal P(x,y,z) suatu titik berada pada bidang. 1. Persamaan bidangnya adalah n P P

dan mempunyai vektor normal n =(a b c). Misal P(x,y,z) suatu titik berada pada bidang. 1. Persamaan bidangnya adalah n P P Rug Vektor Tuju:. Megigt kembli persm gris d bidg di rug.. Memhmi ksiom rug vektor, kombisi liier d rug bgi.. Megigt kembli pegerti bebs d bergtug liier, bsis d dimesi. Arti geometris dri determi Jik A

Lebih terperinci

Menaksir Matriks Teknologi Kota Cimahi Berdasarkan Tabel Input Output Provinsi Jawa Barat Menggunakan Metode Location Quontient

Menaksir Matriks Teknologi Kota Cimahi Berdasarkan Tabel Input Output Provinsi Jawa Barat Menggunakan Metode Location Quontient Sttstk, Vol. 9 No., 75 8 Nopemer 9 eksr trks Tekolog Kot Cmh Berdsrk Tel Iput utput Provs Jw Brt egguk etode octo Quotet TETI SFIA ANTI Jurus Sttstk Uversts Islm Bdug Eml: [email protected] ABSTRAK Tel Iput

Lebih terperinci

HUBUNGAN DERET BERTINGKAT BERDASAR BILANGAN EULERIAN DENGAN OPERATOR BEDA

HUBUNGAN DERET BERTINGKAT BERDASAR BILANGAN EULERIAN DENGAN OPERATOR BEDA HUBUNAN DERET BERTINKAT BERDAAR BILANAN EULERIAN DENAN OPERATOR BEDA Aleder A uw Jurus Mtetk, Fkults s d Tekolog, Uversts B Nustr Jl. K.H. yhd No. 9, Plerh, Jkrt Brt 48 [email protected] ABTRACT Cscde seres

Lebih terperinci

JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER 1

JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER 1 FITRIANA RICHA HIDAYATI 7 46 Dose Pembimbig M. ARIEF BUSTOMI, M.Si Surby, Jui JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER Alis disesuik deg geometri

Lebih terperinci

BAB III STUDI PUSTAKA

BAB III STUDI PUSTAKA BAB III STUDI PUSTAA III.. Btubr Dlm Peggu Eerg d Pembgu Ekoom Idustr btubr memberk kotrbus pd pembgu ekoom dlm betuk, yg berkt deg tmbg btubr d peggu btubr. Hl yg terkt deg peggu btubr dlh pembgkt teg

Lebih terperinci

PENERAPAN METODE ANALYTIC HIERARCHY PROCESS DALAM SISTEM PENUNJANG KEPUTUSAN UNTUK PEMILIHAN ASURANSI. Fitria Rahma Sari dan Dana Indra Sensuse

PENERAPAN METODE ANALYTIC HIERARCHY PROCESS DALAM SISTEM PENUNJANG KEPUTUSAN UNTUK PEMILIHAN ASURANSI. Fitria Rahma Sari dan Dana Indra Sensuse PENERAPAN METODE ANALYTIC HIERARCHY PROCESS DALAM SISTEM PENUNJANG KEPUTUSAN UNTUK PEMILIHAN ASURANSI Ftr Rhm Sr d D Idr Sesuse Fkults Ilmu Komputer, Uversts Idoes, Depok, Idoes [email protected] Astrk Memlh

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN TAK LINIER DENGAN METODE NEWTON-RAPHSON

PENYELESAIAN SISTEM PERSAMAAN TAK LINIER DENGAN METODE NEWTON-RAPHSON PENYELESAIAN SISTEM PERSAMAAN TAK LINIER DENGAN METODE NEWTON-RAPHSON SKRIPSI oleh: KHUTWATUN NASIHA NIM: 4 JURUSAN MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI (UIN) MALANG MALANG

Lebih terperinci

1. Aturan Pangkat 3. Logartima

1. Aturan Pangkat 3. Logartima KL UN Mtetk MA IPA 9/ No. KL Ruus. Meetuk egs pert g dperoleh dr perk kespul.. p q. p q. p q ~ (p q) = ~p ~q ~ (eu/etp p) = Ad/Beerp ~p p. ~q q r ~ (p q) = ~p ~q ~ (Ad/Beerp p) = eu/etp ~p q ~p p r p q

Lebih terperinci

HASIL ANALISIS EVALUASI KURIKULUM

HASIL ANALISIS EVALUASI KURIKULUM HAIL ANALII EVALUAI KURIKULUM 27-21 PROGRAM ARJANA JURUAN BIOLOGI FAKULTA MIPA UNIVERITA BRAWIJAYA MALANG 21 Julh respode (org) 7 6 5 4 3 2 1 gkt 25 gkt 26 gkt 27 gkt 28 Gbr 1. Julh Respode gkt 29 Julh

Lebih terperinci

INTERPOLASI PERTEMUAN : S K S - T E K N I K I N F O R M A T I K A - S1 M O H A M A D S I D I Q

INTERPOLASI PERTEMUAN : S K S - T E K N I K I N F O R M A T I K A - S1 M O H A M A D S I D I Q INTERPOLASI 3 S K S - T E K N I K I N F O R M A T I K A - S M O H A M A D S I D I Q PERTEMUAN : - SEBELUM-UTS Pegtr Metode Numerik Sistem Bilg d Keslh Peyji Bilg Bult & Pech Nili Sigiik Akursi d Presisi

Lebih terperinci

1. Kepekatan bakteria pencemar p(t), di dalam secawan teh tarik yang dibiarkan selama beberapa jam diberikan oleh: p(t) = 50e -1.5t + 15e -0.

1. Kepekatan bakteria pencemar p(t), di dalam secawan teh tarik yang dibiarkan selama beberapa jam diberikan oleh: p(t) = 50e -1.5t + 15e -0. KKKF BAHAGAN A 6 MARKAH Arh : Jw SEMUA sol. Kepekt kter pecemr pt, d dlm secw teh trk yg drk selm eerp jm derk oleh: pt = 5e -.5t + 5e -.75t Crk ms, t, dlm ut jm yg dperluk utuk kter jk kepekt yg dkehedk

Lebih terperinci

Batas Nilai Eigen Maksimal Dari Matriks Tak Negatif

Batas Nilai Eigen Maksimal Dari Matriks Tak Negatif Vol. 3 No. 80-85 Ju 007 Bts Nl Ege Mksl D Mtks Tk Negtf A. Kes Jy Abstk Ide ut skps dlh utuk edptk etode dl eetuk bts d l ege ksl d tks tk egtf deg bedsk bts Fobeus. Ytu R d dlh ulh bs tu kolo u d R dlh

Lebih terperinci

BAB 1 PENDAHULUAN. Gambar 1.1. Kurva y=sinc(x)

BAB 1 PENDAHULUAN. Gambar 1.1. Kurva y=sinc(x) BAB PENDAHULUAN.. Megp Megguk Metode Numerk Tdk semu permslh mtemts tu perhtug dpt dselesk deg mudh. Bhk dlm prsp mtemtk, dlm memdg permslh g terlebh dhulu dperhtk pkh permslh tersebut mempu peeles tu

Lebih terperinci

INTEGRASI NUMERIK. n ax. ax e. n 1. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal :

INTEGRASI NUMERIK. n ax. ax e. n 1. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal : INTEGRASI NUMERIK Pegtr Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser ltk. Msly dlm termodmk, model Deye utuk megtug kpsts ps dr ed pdt.

Lebih terperinci

GEOMETRI EUCLID EG(2, p n ) UNTUK MEMBENTUK RANCANGAN BLOK TIDAK LENGKAP SEIMBANG

GEOMETRI EUCLID EG(2, p n ) UNTUK MEMBENTUK RANCANGAN BLOK TIDAK LENGKAP SEIMBANG GEOMETRI EUCLID EG(, p ) UNTUK MEMBENTUK RANCANGAN BLOK TIDAK LENGKAP SEIMBANG Bmg Irwto d Yu Hdyt Jurus Mtemtk FMIPA UNDIP Jl. Prof. H. Soedrto, S.H, Semrg 5075 Astrt. A Bled Iomplete Blok (BIB) desg

Lebih terperinci

OVERDISPERSI KARENA KESALAHAN SPESIFIKASI MODEL DAN CARA MENGATASINYA

OVERDISPERSI KARENA KESALAHAN SPESIFIKASI MODEL DAN CARA MENGATASINYA Prosdg Semr Nsol Ss d Peddk Ss IX Fkults Ss d Mtemtk UKSW Sltg Ju 04 Vol 5 No. ISSN :087-09 OVERDISPERSI KARENA KESALAHAN SPESIFIKASI MODEL DAN CARA MENGAASINYA mbg Srt Derteme Sttstk FMIPA-IPB Eml: [email protected]

Lebih terperinci

Pertemuan ke-5 Persamaan Linier Simultan. 11 Oktober Dr.Eng. Agus S. Muntohar Department of Civil Engineering

Pertemuan ke-5 Persamaan Linier Simultan. 11 Oktober Dr.Eng. Agus S. Muntohar Department of Civil Engineering Pertemu ke-5 Persm Liier Simult Oktober Metode Elimisi Guss (Gussi Elimitio) Metode Elimisi Gus Sutu metode utuk meyelesik persm liier simult dri [A][X][C] Du lgkh peyelesi peyelesi:: Elimisi mju (Forwrd

Lebih terperinci