BAB IX PRAKTEK KIMIA KOMPUTASI
|
|
|
- Hamdani Darmali
- 9 tahun lalu
- Tontonan:
Transkripsi
1 171 BAB IX PRAKTEK KIMIA KOMPUTASI Bab IX memberikan contoh beberapa praktikum kimia komputasi yang dapat dilakukan oleh mahasiswa di laboratorium komputasi. al ini sangat diperlukan agar mahasiswa dapat memahami sekaligus dapat menjalankan program kimia komputasi yperchem untuk penyelesaian masalah-masalah kimia. Teknik lain adalah dengan demonstrasi di kelas dengan perangkat LCD projector. Langkah ini dilakukan setelah mahasiswa pernah menjalankan program tersebut secara langsung di laboratorium. Tujuan Instruksional Khusus: Setelah mengikuti matakuliah ini, mahasiswa akan dapat menjalankan perangkat lunak yperchem sebagai salah satu perangkat lunak kimia komputasi dalam menyelesaikan masalah kimia PERCOBAAN I ANALISIS SIKLOEKSANA Tujuan : Menentukan konformasi yang paling stabil dari sikloheksana dengan menggunakan perhitungan medan gaya AMBER
2 172 Latar belakang: Pada temperatur ruang sikloheksana secara cepat mengalami perubahan konformasi dengan rotasi sepanjang ikatan C-C. Ketika konformasi sikloalkana berubah, hidrogen yang terikat pada setiap atom karbon juga berganti posisi, dan molekul diasumsikan berada pada ruang tiga dimensi. Perubahan dari konformasi kursi ke bentuk yang lain (perubahan hidrogen aksial menjadi ekuatorial atau sebaliknya) dinamakan interkonversi kursikursi. Dengan menentukan panas pembentukan dari konformasi kursi dan bentuk antara dari interkonversi kursi, kita dapat menentukan stabilitas relatif dari setiap konformasi. Prosedur a. Pemilihan medan gaya Pilihlah Molecular Mechanics pada menu Setup. Jika kotak dialog muncul, pilihlah AMBER. b. Mengambar sikloheksana bentuk kursi 1. Atur Default Element pada karbon dan masuk pada mode Draw. 2. Atur level pemilihan pada tingkat Atoms. 3. Pilih Labels pada menu Display dan label atom dengan nomor. 4. Yakinkan bahwa Explicit ydrogen dalam keadaan tidak aktif pada menu Build.
3 Gambarkan dengan struktur 2D dengan mengklik dan menggeser. 6. Pilih Add & Model Build pada menu Build. 7. Matikan fungsi Show ydrogens pada menu Display. 8. Putar dan pindahkan struktur sampai kelihatan seperti gambar berikut : Model Builder akan menggambarkan bentuk kursi dari sikloheksana sesuai dengan struktur default. Struktur ini tidak teroptimasi, tetapi mengandung besaran yang standar untuk panjang ikatan, sudut dan sudut torsi. Cetak struktur dan lampirkan pada lembar laporan. c. Mengukur sifat struktur dari sikloheksana bentuk kursi Langkah ini dimaksudkan untuk mengukur sifat struktur molekul hasil dari Model Build dan pada akhirnya nanti dibandingkan dengan struktur hasil optimasi. Untuk mengukur geometri molekul lakukan langkah berikut: 1. Masuk pada mode Selection 2. Atur level pemilihan pada Atoms dan hidupkan fungsi Multiple Selection. 3. Pilih beberapa ikatan, sudut dan sudut torsi untuk mempelajari geometri dari struktur. Catat nilainya pada lembar laporan.
4 R-klik pada daerah kosong pada ruang kerja untuk meyakinkan tidak ada atom yang dipilih. d. Optimasi struktur Langkah selanjutnya adalah meminimisasi struktur kursi dengan melakukan perhitungan optimisasi mekanika molekul dengan melakukan langkah berikut: 1. Pilih Compute. 2. Pilih Geometry Optimization. 3. L-clik pada OK untuk menutup kotak dialog dan memulai perhitungan. Perhitungan dimulai dan informasi tentang jalannya program akan muncul di baris status. Setelah beberapa menit, program akan selesai. Catat energi dari struktur teroptimasi pada lembar laporan. e. Mengukur sifat pada sistem teroptimasi 1. Pilih beberapa variasi ikatan, sudut dan sudut torsi. Catatlah harga yang muncul di baris status jika Anda membuat pilihan. 2. Bandingkan harga ini dengan harga sebelumnya yang diperoleh dari struktur tak teroptimisasi. 3. Cetak struktur dan lampirkan pada lembar lampiran. f. Mengubah dari bentuk kursi ke bentuk perahu Pada langkah ini kita akan mencerminkan separuh bagian molekul untuk menghasilkan bentuk perahu dari sikloheksana. Untuk melakukan refleksi pada bidang, lakukan langkah berikut: 1. idupkan fungsi Multiple Selections.
5 Jika kamu tidak berada pada mode pilihan, L-clik pada menu Selection. 3. Klik ganda pada menu Selection untuk kembali pada struktur Model Build. 4. L-clik pada ikatan 1-2 dan 4-5 untuk memilih bidang refleksi. 5. Pilih Name Selection pada menu Select. 6. Pilih PLANE, dan kemudian pilih OK. Untuk mencerminkan separuh dari molekul lakukan langkah berikut: 1. Jika perlu, pilih Show ydrogen dan gunakan menu Zoom untuk mendapatkan skala molekul yang jelas. 2. LR-drag pada satu sisi yang memungkinkan untuk melakukan pemilihan semua atom termasuk hidrogen. 3. Pilih Reflect pada menu Edit Atom yang dipilih dicerminkan pada PLANE, menghasilkan transformasi perahu dari sikloheksana. Struktur akan terlihat sebagai berikut : R-klik pada daerah kosong pada ruang kerja untuk menghilangkan fungsi pilihan atom.
6 176 g. Mengukur hidrogen aksial Dua hidrogen aksial berada pada jarak relatif dekat pada bentuk perahu sikloheksana. Posisi ini sering dikenal dengan hidrogen flagpole. Untuk mengukur jarak antar dua hidrogen : 1. L-klik pada dua atom hidrogen tersebut. 2. Catat jarak antar dua atom tersebut dan masukkan dalam lembar laporan. arga ini sangat berdekatan dengan harga atom yang tidak berikatan. Optimasi akan mengubah jarak antar dua atom hidrogen tersebut menjadi sedikit berjauhan sampai didapatkan energi yang lebih rendah. h. Mengoptimasi sikloheksana bentuk perahu Untuk mengoptimasi struktur perahu lakukan langkah sebagai berikut : 1. R-klik pada bagian kosong pada daerah kerja untuk menghilangkan fungsi pilihan atom. 2. Pilih Geometry Optimization ada menu Compute. Setelah minimisasi selesai, catat energi dan ukur kembali panjang ikatan, sudut dan sudut torsinya. i. Mengukur ulang hidrogen aksial: 1. L-clik pada dua hidrogen aksial. Catat jarak - yang baru. Bentuk teroptimasi dari struktur perahu adalah saddle point. Bidang simetri pada struktur awal seimbang pada semua gaya yang tegak lurus pada bidang tersebut. Arah pencarian keadaan optimum berdasar atas gaya ini sehingga semua arah pencarian
7 177 mempunyai bidang simetri yang sama. yperchem mencari saddle point yang merupakan minimum yang sesuai untuk semua dimensi, kecuali bidang simetri. 2. Cetak struktur dan lampirkan pada lembar laporan. j. Membuat sikloheksana bentuk perahu Twist (terpilin) Bentuk ketiga dari sikloheksana adalah bentuk perahu terpilin merupakan bentuk lokal minimum. Cara termudah untuk mendapatkannya adalah memodifikasi bentuk perahu dengan mengubah ikatan torsi, menggambarkan ulang dan mengoptimasi strukturnya. Untuk mengatur batasan ikatan torsi dilakukan langkah berikut: 1. R-clik pada daerah kosong dari bidang kerja untuk menghilangkang fungsi pilihan. 2. Matikan fungsi Show ydrogens. 3. Pilih sudut torsi 4-atom karbon dengan memilih ikatan 6-1, 1-2, dan 2-3. Kita harus memilih atom karbon dengan urutan tersebut sehingga akan didapatkan batasan ikatan torsi yang benar. Model Builder akan menghitung geometri sesuai dengan urutan pilihan, batasan yang telah ditentukan akan hanya mengubah posisi atom karbon Pilih batasan Bond Torsion pada menu Build, dan atur batasan pada 30 derajat, dan kemudian pilih OK. 5. R-clik pada daerah kosong pada bidang kerja. Untuk mengambarkan ulang molekul dengan batasan torsi ikatan lakukan klik ganda pada menu Selection
8 178 untuk mengaktifkan Model Builder. yperchem menggambarkan ulang struktur dengan batasan torsi untuk bentuk perahu terpilin dari sikloheksana. Untuk melakukan optimasi sikloheksana perahu terpilin dapat dilakukan langkah berikut : 1. Pilih Geometry Optimization pada menu Compute. 2. Pilih OK untuk memulai proses optimisasi meggunakan pilihan seperti yang telah dilakukan pada konformasi sebelumnya. Setelah optimisasi selesai, lakukan pencatatan energi dan ukur panjang ikatan, sudut dan sudut torsi. 3. Cetak struktur dan lampirkan pada lembar laporan. asil: Konformasi Kursi Kursi (teroptimisasi) Perahu Perahu (teroptimisasi) Perahu terpilin Perahu terpilin (teroptimisasi) LAPORAN PRAKTIKUM PERCOBAAN I ANALISIS SIKLOEKSANA Jarak CC (Å) Sudut CCC ( o ) Sudut torsi CCCC ( o ) Energi (kkal/mol) Analisis: 1. Bandingkan jarak aksial- aksial pada struktur awal dan struktur teroptimisasi dari struktur sikloheksana. Apa
9 179 yang terjadi pada jarak atom tersebut pada struktur teroptimisasi? Apakah itu yang diharapkan? Jelaskan. 2. Tentukan energi relatif dari setiap konformasi. Energi AMBER mutlak (kkal/mol) Energi AMBER relatif (kkal/mol) Kursi Perahu Perahu terpilin 0,0 3. Gambarkan diagram energi untuk interkonversi dari sikloheksana kursi ke bentuk sikloheksana kursi yang lain. Gunakan harga energi AMBER. Gunakan harga 10 kkal/mol untuk energi pada separuh-kursi. PERCOBAAN II STABILITAS KARBOKATION DAN IPERKONJUGASI Tujuan : Mengkaji stabilitas beberapa karbokation dan pengaruh hiperkonjugasi terhadap panjang ikatan dan kerapatan muatan menggunakan perhitungan semiempiris AM1. Latar belakang Karbokation menunjukkan satu dari sangat penting dan sering dijumpai dari jenis zat antara yang terlibat dalam reaksi senyawa organik. Stabilitas relatif karbokation dapat dijadikan indikasi untuk keberadaannya dalam reaksi yang sedang berlangsung. Banyak cara untuk
10 180 menjelaskan kestabilan karbokation, salah satunya adalah hiperkonjugasi. iperkonjugasi melibatkan tumpang tindih antara suatu ikatan (orbital ikatan) dengan orbital p yang kosong yang terdapat pada atom karbon bermuatan positif (lihat gambar di bawah). Walaupun gugus alkil yang terikat pada atom karbon positif tersebut dapat berputar, satu dari ikatan sigma selalu sebidang dengan orbital p kosong pada karbokation. Pasangan elektron pada ikatan sigma ini disebarkan ke orbital p kosong sehingga menstabilkan atom karbon yag kekurangan elektron. orbital p kosong tumpang tindih C C karbokation gugus alkil Kita dapat memikirkan fenomena hiperkonjugasi seperti yang kita jumpai dalam bentuk klasik. Sebagai contoh bahwa isopropil kation distabilkan oleh hiperkonjugasi menghasilkan beberapa bentuk resonansi seperti dinyatakan dalam bentuk berikut :
11 181 iperkonjugasi akan meningkatkan order ikatan dari ikatan CC (lebih bersifat ikatan rangkap) dan akan berakibat memendekkan ikatan CC. Perlu ditekankan juga bahwa akan terjadi fenomena melemahnya dan memanjangnya ikatan C yang dinyatakan dengan kerapatan elektron pada orbital p kosong. Akhirnya muatan positif yang signifikan akan dipindahkan kepada atom yang terlibat dalam hiperkonjugasi. Prosedur Langkah awal adalah menggambarkan dan mengoptimasi beberapa karbokation yaitu t-butil, sek-butil dan n-butil. Anda dapat memulai menggambarkan hidrokarbon dan menghilangkan 1 atom yang terikat pada atom karbon untuk menghasilkan karbokation. 1. Gunakan menu Draw untuk menggambarkan isobutana. 2. Klik pada Build dan kemudian Add & Model Build. 3. Gunakan menu Selection dan hapus atom sesuai dengan karbokation yang akan digambar. 4. Klik Setup dan kemudian semi empiris. 5. Klik AM1 dan kemudian Options. 6. Atur Total Charge pada 1 dan Spin Multiplicity pada 1 (semua spin terpasangkan). 7. Lakukan optimisasi dengan memilih Compute dan kemudian Geometry Optimization.
12 Setelah perhitungan selesai, catat panas pembentukannya. Pencatatan data 1. Catat panjang ikatan CC, semua panjang ikatan C sp3- (karbon C sp3 terikat pada karbon C sp2) dan semua sudut antara pusat karbon C sp2. 2. Klik pada Display dilanjutkan dengan Labels. 3. Klik pada Charge dilanjutkan dengan OK. Muatan atom akan dimunculkan. Catat muatan pada atom yang ikut terlibat dalam hiperkonjugasi (pada C sp3 yang terikat pada C sp2). Catat jika terjadi perbedaan. Atom dengan muatan terbesar akan lebih banyak terlibat dalam hiperkonjugasi. Cetak struktur dengan muatan atomnya dan lampirkan pada lembar laporan. LAPORAN PRAKTIKUM PERCOBAAN II STABILITAS KARBOKATION DAN IPERKONJUGASI asil: 1. Catat panjang ikatan CC, semua panjang ikatan C sp3- (karbon C sp3 terikat pada karbon C sp2) dan semua sudut antara pusat karbon C sp2.
13 183 Karbokation Panjang ikatan C-C (Å) Panjang ikatan C sp3- (Å) Sudut terhadap C sp2 t-butil C2-C1 = C1- = CCC = C2-C3 = C1- = C2-C4 = C1- = Sek-butil C1-C2 = C1- = CCC = C2-C3 = C1- = CC = C3-C4 = C1- = n-butil C1-C2 = C2- = CC = C2-C3 = C2- = C = C3-C4 = 2. Catat kerapatan muatan setiap karbokation t-butil Sek-butil n-butil C1- = C1- = C2- = C1- = C1- = C2- = C1- = C1- = C3- = C3- = 3. Catat panas pembentukan untuk setiap karbokation berikut : Karbokation t-butil Sek-butil n-butil Panas pembentukan
14 184 Analisis: 1. Uji panjang ikatan C- untuk setiap karbokation. Apakah Anda dapat melihat perbedaan dalam panjang ikatan untuk karbokation yang di uji? Bagaimana panjang ikatan dapat menunjukkan adanya pengaruh hiperkonjugasi? 2. Uji panjang ikatan C-C. Jenis ikatan C-C yang mana yang mempunyai panjang ikatan paling kecil? Apakah panjang ikatan C-C menunjukkan tentang derajat hiperkonjugasi? 3. Uji sudut ikat dalam setiap karbokation. Bagaimana sudut ikat yang diharapkan pada karbokation (yaitu berdasarkan hibridisasi)? Adakah terjadi deviasi dari sudut ikat tersebut dalam setiap karbokation? Berikan penjelasan yang mungkin untuk terjadinya deviasi tersebut. 4. Uji muatan pada atom. Apakah setiap atom mempunyai muatan tinggi? Apakah nilai positif dari atom menunjukkan derajat partisipasi dalam hiperkonjugasi pada ikatan C-? 5. Uji panas pembentukan dari karbokation. Apakah hasil yang Anda harapkan berdasarkan pengetahuan Anda tentang stabilitas karbokation? Jelaskan.
15 185 PERCOBAAN III KONFORMASI 1,3-BUTADIENA Tujuan : Untuk mendapatkan geometri yang stabil untuk setiap energi minimum dari konformer 1,3-butadiena menggunakan perhitungan semi empiris AM1. Latar belakang : Konformasi dari diena terkonjugasi merupakan kondisi yang dipengaruhi oleh kombinasi interaksi elektronik dan sterik. Konformasi yang lebih disukai adalah s-trans yang meminimalkan interaksi sterik dan memaksimalkan konjugasi dengan dimungkinkannya dua ikatan pi berada pada posisi koplanar. Geometri dari energi-tinggi dari konformer s-cis tidak begitu jelas. Apakah karbon berbentuk planar dalam upaya memaksimalkan konjugasi, atau akan terjadi sedikit pilinan dalam upaya menghilangkan interaksi sterik. trans-1,3-butadiena cis-1,3-butadiena Prosedur: 1. Pilih menu Draw dan yakinkan bahwa C merupakan default dari atom yang akan digambar.
16 Pilih Select dan selanjutnya Atoms. 3. Yakinkan bahwa Explicit ydrogen dalam menu Build pada keadaan tidak aktif. 4. Gambarkan rantai karbon beranggota 4 dan klik ganda pada ikatan C1-C2 dan C3-C4. Langkah ini akan menyebabkan terjadinya ikatan rangkap dua. 5. Pilih menu Build dan selanjutnya Add & Model Build. Anda akan mempunyai konformasi s-trans dari 1,3-butadiena 6. Anda memerlukan pengaturan sudut ikat di dalam molekul sebelum menghitung, sehingga Anda mendapatkan panas pembentukan sebagai fungsi sudut dihedral/torsi. Untuk melakukan ini, klik pada menu Select, klik dan geser dari C1 ke C4. 7. Pilih menu Build dan selanjutnya pilih Constrain Bond Torsion. Pilih Other dan selanjutnya ketik pada sudut ikat (180, untuk kasus pertama). Pilih OK. 8. Pilih menu Select dan Name Selection. Pilih Other dan ketikkan besarnya sudut pada pilihan Angle. Pilih OK. 9. Pilih menu Setup dan pilih Restraint, dan klik pada Add. Klik pada Other di bawah Restrained Value dan selanjutnya ketik besarnya sudut (180 untuk kasus pertama). Pilih OK. 10. Matikan fungsi pilihan dengan R-klik. Klik ganda pada menu Select. Molekul akan digambarkan dengan sudut yang seseuai, dan siap untuk dilakukan pengukuran panas pembentukan.
17 Masuk ke menu Setup, pilih Semiempiris dan selanjutnya AM1. Lakukan hal yang sama untuk ab initio dengan himpunan basis 6-31G. 12. Masuk ke menu Compute dan selanjutnya pilih Geometry Optimization. 13. Catat panas pembentukan jika perhitungan telah selesai. 14. Ukur sudut torsi akhir pada struktur teroptimasi dan catat. Akan terlihat sedikit perubahan dari sudut awal yang telah diatur. 15. Gambarkan molekul dengan sudut torsi yang berbeda dan hitung panas pembentukannya. Kembali dan ulangi langkah asil: Sudut dihedral awal ( o ) 180 o 150 o 120 o 90 o 60 o 45 o 30 o 15 o 0 o LAPORAN PRAKTIKUM PERCOBAAN III KONFORMASI 1,3-BUTADIENA Sudut dihedral teroptimasi ( o ) Panas pembentukan (kkal/mol) Gambarkan grafik panas pembentukan (sumbu y) sebagai fungsi sudut dihedral menggunakan perangkat lunak seperti
18 188 Microsoft Excel. Gambarkan kurva melalui titik-titik tersebut. Berikan tanda pada grafik, posisi dari konformasi s-trans dan s-cis. Berikan tanda juga untuk keadaan transisi pada interkonversi dari dua bentuk tersebut. Analisis: 1. Konformer mana yang lebih stabil, s-trans atau s-cis? Konformer mana yang kurang stabil? Jelaskan 2. Dari grafik anda, tentukan perkiraan energi aktivasi dari perubahan s-cis menjadi s-trans. 3. Berdasarkan data Anda, apakah ada konformasi lain yang mempunyai harga energi yang berdekatan dengan konformasi s-cis? Yang mana? Berikan penjelasan yang mungkin untuk menjelaskan mengapa konformasi nonplanar yang lain dapat mempunyai kestabilan seperti yang dimiliki oleh konformasi s-cis. PERCOBAAN IV SUBSTITUSI AROMATIK ELEKTROFILIK Tujuan : Untuk membandingkan kestabilan kompleks sigma hasil dari nitrasi pada benzena tersubstitusi, dan membandingkan arah dan pengarah pengaktifan gugus menggunakan perhitungan semi empiris AM1.
19 189 Latar belakang : Substitusi aromatik elektrofilik merupakan reaksi kimia penting dari senyawa aromatis. Reaksi terjadi pada dua tahap: adisi elektrofilik menghasilkan kompleks sigma, E E dilanjutkan dengan deprotonasi dan pembentukan benzena tersubstitusi. Langkah pertama pada umumnya merupakan tahap penentu laju reaksi. Substituen dapat berpengaruh baik pada orientasi reaksi (orto, para dan meta) maupun laju reaksi. Pada percobaan ini, perhitungan semi empiris AM1 digunakan untuk menentukan sisi yang dipilih dari reaksi nitrasi pada anilin dan nitrobenzena dan membandingkan laju relatif dari reaksinya. O N 2 N + O - nitrobenzena anilin Prosedur: 1. Gambarkan benzena dan lakukan optimasi struktur dengan menggunakan metode semiempiris AM1. Yakinkan
20 190 untuk membuat cincin aromatis dengan melakukan klik ganda pada cincin ketika Anda berada pada mode Drawing. 2. Gambarkan kompleks sigma sebagai hasil dari nitrasi benzena. Untuk melakukan ini, modifikasi cincin benzena dengan mengganti satu atom hidrogen dengan gugus NO 2 pada salah satu atom karbon. Yakinkan untuk L-klik pada ikatan N=O untruk mengubahnya menjadi ikatan rangkap. Ubah karbon tersubstitusi menjadi hibridisasi sp 3 dengan R-klik pada dua ikatan CC yang terikat pada karbon tersubstitusi. Akhirnya, pilih Add & Model Build untuk menghasilkan kompleks sigma. Akan terlihat seperti gambar berikut. 3. Lakukan optimasi dan catat panas pembentukannya. Untuk melakukan hal ini, masuk ke menu Setup, pilih Semiempiris dan selanjutnya AM1 dan kemudian Options. Masukkan harga 1 untuk Charge dan Spin Multiplicity. Pilih OK dan OK. Masuk ke menu Compute dan selanjutnya pilih Geometry Optimization. Catat panas pembentukan jika perhitungan telah selesai. 4. Ulangi hal yang sama untuk anilin. Lakukan optimasi dan catat panas pembentukannya.
21 Gambarkan kompleks sigma hasil nitrasi anilin pada posisi meta dan posisi para. Optimasi dan catat panas pembentukan dari setiap spesies tersebut. 6. Gambarkan kompleks sigma hasil nitrasi nitrobenzena pada posisi meta dan posisi para. Optimasi dan catat panas pembentukan dari setiap spesies tersebut. 7. Gambarkan NO 2 + dan hitung panas pembentukannya, hal ini diperlukan untuk semua reaksi pada langkah awal nitrasi dari beberapa spesies di atas. Lakukan optimasi dan catat panas pembentukan dari spesies ini. Yakinkan untuk membuat ikatan rangkap dua pada kedua atom oksigen. asil: Molekul Abenzena Anilin Nitrobenzena Ion Nitronium LAPORAN PRAKTIKUM PERCOBAAN IV SUBSTITUSI AROMATIK ELEKTROFILIK Molekul parent (kkal/mol) Kompleks sigma meta (kkal/mol) Kompleks sigma para (kkal/mol Analisis: 1. Kompleks sigma mana yang paling stabil untuk anilin? Apakah hasil ini sesuai dengan pengaruh pengarah oleh gugus amino? Jelaskan.
22 Kompleks sigma mana yang lebih stabil untuk nitrobenzena? Apakah hasil ini konsisten dengan pengaruh pengarah dari gugus nitro? Jelaskan. 3. Dengan hanya menggunakan kompleks sigma yang paling stabil, hitunglah panas reaksi untuk pembentukan setiap molekul. Tulis setiap reaksi tersebut dan berikan panas reaksinya. 4. Asumsikan bahwa panas reaksi relatif mencerminkan energi aktivasi relatif untuk pembentukan kompleks sigma. al ini sesuai dengan sifat molekul aromatis berkaitan dengan reaktivitasnya terhadap reaksi dengan ion nitronium. Apakah hasil perhitungan Anda konsisten dengan pengaruh pengaktif dan pendeaktif dari gugus amino dan nitro dalam reaksi substitusi aromatik elektrofilik? PERCOBAAN V KESETIMBANGAN KETO-ENOL Tujuan : Mengetahui tetapan keseimbangan keto-enol dari dua senyawa karbonil menggunakan perhitungan semi empiris AM1 dan untuk menyelidiki pengaruh ikatan hidrogen intramolekular pada kesetimbangan ini. Latar belakang : Keton dan aldehida selalu dalam keseimbangan dengan bentuk enolnya.
23 193 Jumlah enol yang ada dalam keseimbangan bergantung pada struktur dari keton dan aldehida, pelarut, suhu dan faktor lain seperti konjugasi dan ikatan hidrogen. Pada percobaan ini akan dievaluasi tetapan keseimbangan dari tiga senyawa karbonil. O O 3 C C 3 3 C C 2 keto enol Prosedur: 1. Gambarkan senyawa karbonil aseton dan bentuk enolnya. itung panas pembentukannya menggunakan metode semiempiris AM1 dan catat hasilnya pada lembar laporan. Langkah yang dilakukan adalah sebagai berikut: Gambarkan bentuk keto dan minimisasi strukturnya. ilangkan atom hidrogen pada karbon alfa (gunakan menu Select) dan dengan menggunakan menu Draw. Gambarkan bentuk enol dengan mengubah ikatan C=O menjadi ikatan tunggal dan C-C menjadi ikatan ganda. Pilih menu Build dan Add & Model Build. Anda akan mendapatkan bentuk enol. Lakukan minimisasi dan catat panas pembentukannya. 2. Gambarkan diketon 2,4-pentadion, minimisasi strukturnya dan catat panas pembentukannya. Untuk bentuk enol, Anda dapat membuat dua bentuk seperti yang tergambar berikut.
24 194 O O O O ikatan hidrogen C C C C Pada bentuk sebelah kiri, O digambarkan menjauh dari C=O sehingga tidak dapat mengadakan ikatan hidrogen dengan gugus karbonil. Jika senyawa tidak nampak seperti itu, pilih mode Select dan klik dan geser dari atom dari O ke atom sp 2 yang mengikat (4 atom terlipih). Pilih Build dan atur Constrain Bond Torsion pada Trans. Lakukan Model Build. Lakukan optimasi struktur dan catat panas pembentukannya. 3. Gambarkan bentuk enol yang lain dengan mengatur Constrain Bond Torsion pada cis. Optimasi struktur dan catat panas pembentukannya. LAPORAN PRAKTIKUM PERCOBAAN V KESETIMBANGAN KETO-ENOL asil: Catat panas pembentuk setiap bentuk berikut. itung tetapan keseimbangan dari setiap pasangan keto-enol. Dari tetapan keseimbangan, hitung persentase setiap bentuk dalam keseimbangan.
25 195 Analisis: 1. Bentuk yang mana, keto atau emol yang lebih disukai dari molekul dikarbonil non-ikatan hidrogen? Bagaimana besarnya tetapan keseimbangan dibandingkan dengan aseton. Berikan alasan untuk perbedaan yang didapatkan dalam K eq dari dua molekul tersebut. 2. Bentuk yang mana, keto atau enol yang lebih disukai dari molekul dikarbonil berikatan hidrogen? Bagaimana hal ini jika dibandingkan dengan non-ikatan hidrogen? Berdasarkan hasil perhitungan, faktor apakah yang bertanggungjawab terhadap stabilisasi bentuk enol pada 2,4-pentadion? Jelaskan secara rinci. Seperti telah didiskusikan pada Pendahuluan, kita dapat menghitung tetapan keseimbangan jika kita mengasumsikan bahwa G. al ini merupakan asumsi yang dapat dipertanggungjawabkan untuk keseimbangan keto-enol dari aseton dan diketon non-ikatan hidrogen, tetapi tidak berlaku untuk diketon berikatan hidrogen. Kenapa demikian? Molekul Aseton 2,4-pentadion non ikatan hidrogen 2,4-pentadion dengan ikatan hidrogen f bentuk keto (kkal/mol) f bentuk enol (kkal/mol) Tetapan keseimbangan K eq
26 196 PERCOBAAN VI DEIDRASI 1-BUTANOL DAN STABILITAS RELATIF DARI ALKENA Tujuan Menentukan kestabilan relatif dari isomer Latar Belakang Dehidrasi alkohol seperti 1-butanol akan menghasilkan campuran butena yaitu 1-butena, cis- dan trans 2- butena. Rendemen relatif dari produk dapat ditentukan secara eksperimental. Dengan menghitung energi dari setiap isomer, kita dapat mengperkirakan kestabilan relatif dari isomer tersebut. Jika kestabilan termodinamik dari isomer sesuai dengan hasil eksperimen maka dikatakan reaksi dikontrol secara termodinamik, dan jika tidak demikian, maka reaksi dikatakan dikontrol secara kinetik. 1-butena trans-2-butena cis-2-butena Prosedur Gambarkan struktur 1-butena kemudian di model build dan lakukan optimasi geometri menggunakan ab initio dengan himpunan basis 6-31G. Catat energi dari struktur tersebut. Lakukan hal yang sama untuk senyawa cis- dan trans-2- butena. 1-butena mempunyai dua buah ikatan tunggal C-C. Program yperchem tidak perlu menjalankan optimasi
27 197 geometri pada sudut torsi. Pada kenyataannya model builder seringkali menandai harga yang tidak layak secara energi. Dengan alasan tersebut, sebaiknya dilakukan pengaturan beberapa sudut sebelum menyimpulkan bahwa struktur tersebut adalah struktur yang stabil. Lihatlah molekul sepanjang ikatan tunggal C-C dan perhatikan konformer eklips. Untuk mengubah harga sudut torsi, pilih 4 atom yang menunjukkan sudut torsi. Dari menu Edit, pilih Set bond torsion dan masukkan besaran sudut yang diinginkan. Dengan tool Select, double-click pada ikatan rotasi. Pemilihan ikatan ini dan segala sesuatu pada satu sisi saja. Lakukan reoptimasi geometri dan catat energi yang dihasilkan dari setiap konformer yang stabil dari isomer-isomer tersebut. Baik dari energi MM+ maupun panas pembentukan dari perhitungan semiempiris dapat digunakan untuk menentukan stabilitas relatif dari isomer. Panas pembentukan juga dapat dibandingkan secara langsung dengan harga eksperimental. Isomer Energi MM+ f hitung f eksp. 1-butena 0,02 Cis-2-butena -1,7 Trans-2-butena -2,72 Dari hasil yang diperoleh, perkirakan isomer mana yang dominan dalam campuran produk tersebut. Jika hasilnya demikian, tentukan reaksi tersebut dikontrol oleh kinetik atau termodinamik.
28 198
PERCOBAAN I ANALISIS BUTANA
PERCOBAAN I ANALISIS BUTANA Tujuan : Minimisasi energi konformasi butana dengan menggunakan medan gaya (Force Field) MM+. Latar Belakang : Minimisasi energi mengubah geometri dari molekul ke energi yang
PERCOBAAN III KONFORMASI 1,3-BUTADIENA
PERCOBAAN III KONFORMASI 1,3-BUTADIENA Tujuan : Untuk mendapatkan geometri yang stabil untuk setiap energi minimum dari konformer 1,3-butadiena menggu-nakan perhitungan semi empiris AM1. Latar belakang
TEKNIK MENGGAMBAR DAN MENYUNTING
TEKNIK MENGGAMBAR DAN MENYUNTING Menggambar Atom dan Ikatan Dalam HyperChem, penggambaran suatu molekul secara dwimatra diawali dengan menggambar salah satu atom penyusunnya sebagai berikut: 1. Klik-kiri
Konformasi dan Keisomeran
Konformasi dan Keisomeran Tujuan Umum: memahami fakta bahwa adanya berbagai struktur yang BERBEDA, walaupun rumus molekulnya SAMA Tujuan khusus: memahami adanya berbagai jenis keisomeran mampu membedakan
BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN
BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN Falerin (4,5-dihidroksi-5 -metoksibenzofenon-3-o-glukosida) adalah isolat dari buah mahkota dewa berkerangka benzofenon yang mempunyai aktivitas antiinflamasi. Penelitian
TUTORIAL KE-I KIMIA KOMPUTASI. Oleh: Dra. M. Setyorini, M.Si Andrian Saputra, S.Pd., M.Sc
TUTORIAL KE-I KIMIA KOMPUTASI Oleh: Dra. M. Setyorini, M.Si Andrian Saputra, S.Pd., M.Sc I. Pendahuluan NWChem (Northwest Computational Chemistry Package) merupakan salah satu perangkat lunak (software)
BANK SOAL KIMIA ORGANIK I UJIAN MID SEMESTER GANJIL 2002/2003
BANK SOAL KIMIA ORGANIK I UJIAN MID SEMESTER GANJIL 2002/2003 1. Terangkan dengan jelas bagaimana terjadinya ikatan sigma dan pi antara atom-atom pada periode II yaitu atom boron, karbon, dan nitrogen.
KIMIAWI SENYAWA KARBONIL
BAB 1 KIMIAWI SENYAWA KARBONIL Senyawa karbonil adalah kelompok senyawaan organik yang mengandung gugus karbonil, C=O, gugus fungsional yang paling penting dalam kimia organik. Senyawa karbonil ada di
LAPORAN RESMI PAKTIKUM KIMIA KOMPUTASI. Analisis Butana. Oleh : AMRULLAH 13/347361/PA/ Jum at, 4 Maret 2016 Asisten Pembimbing : Wiji Utami
LAPORAN RESMI PAKTIKUM KIMIA KOMPUTASI Analisis Butana Oleh : AMRULLAH 13/347361/PA/15202 Jum at, 4 Maret 2016 Asisten Pembimbing : Wiji Utami Laboratorium Kimia Komputasi Departemen Kimia Fakultas Matematika
SENYAWA AROMATIK (Benzena & Turunannya)
SENYAWA AROMATIK (Benzena & Turunannya) Senyawa Aromatik Alkana C n H 2n+2 C 6 H 14 (Hidrokarbon Jenuh) Alkena C n H 2n C 6 H 12 (Hidrokarbon Tak Jenuh) Alkuna C n H 2n-2 C 6 H 10 Benzena - C 6 H 6 Hidrokarbon
BAB II ALKANA DAN SIKLOALKANA
BAB II ALKANA DAN SIKLOALKANA Hidrokarbon Kelompok senyawa organik yang berisi atom C dan atom H Ikatan yang dimiliki bisa ikatan atau Universitas Gadjah Mada 1 Tabel nama Alkana Jumlah Nama Alkana Nama
KONSEP DASAR KIMIA ORGANIK YANG MENUNJANG PEMBELAJARAN KIMIA SMA GEBI DWIYANTI
KNSEP DASAR KIMIA RGANIK YANG MENUNJANG PEMBELAJARAN KIMIA SMA GEBI DWIYANTI 1. Kekhasan Atom Karbon Atom karbon adalah atom yang memiliki enam elektron dengan dengan konfigurasi 1s 2 2s 2 2p 2. Empat
LAPORAN PRAKTIKUM KIMIA ORGANIK I PERCOBAAN VII STRUKTUR MOLEKUL DAN REAKSI-REAKSI KIMIA ORGANIK DENGAN MENGGUNAKAN MODEL MOLEKUL
LAPORAN PRAKTIKUM KIMIA ORGANIK I PERCOBAAN VII STRUKTUR MOLEKUL DAN REAKSI-REAKSI KIMIA ORGANIK DENGAN MENGGUNAKAN MODEL MOLEKUL O L E H: NAMA : HABRIN KIFLI HS STAMBUK : F1C1 15 034 KELOMPOK : VI (ENAM)
Secara umum terdapat 4 tipe reaksi kimia organik: 1. Reaksi substitusi (Penggantian)
Secara umum terdapat 4 tipe reaksi kimia organik: 1. Reaksi substitusi (Penggantian) Suatu atom/gugus di dalam suatu senyawa diganti oleh suatu atom/gugus lain dari senyawa yang lain. Konsep dasarnya adalah
SENYAWA HIDROKARBON SIKLIK
SENYAWA HIDROKARBON SIKLIK PENDAHULUAN Ujung-ujung rantai suatu hidrokarbon rantai lurus dapat tergabungkan membentuk suatu rantai karbon yang tertutup atau cincin. alisiklik : atom-atom pembentuk cincin
Studi Hidrogenasi Senyawa Hidrokarbon Golongan Alkena Dan Alkuna Secara Komputasi
Prosiding Semirata FMIPA Universitas Lampung, 2013 Studi idrogenasi Senyawa idrokarbon Golongan Alkena Dan Alkuna Secara Komputasi Nyoman andra Program Studi Pendidikan Kimia FKIP UNIB Telah dilakukan
berupa ikatan tunggal, rangkap dua atau rangkap tiga. o Atom karbon mempunyai kemampuan membentuk rantai (ikatan yang panjang).
HIDROKARBON Senyawa hidrokarbon merupakan senyawa karbon yang paling sederhana. Dari namanya, senyawa hidrokarbon adalah senyawa karbon yang hanya tersusun dari atom hidrogen dan atom karbon. Dalam kehidupan
ALKANA DAN SIKLOALKANA
ALKANA DAN SIKLOALKANA (merupakan senyawa hidrokarbon) 1 Pengelompokan Hidrokarbon Hidrokarbon Jenuh Tak jenuh Aromatik Ikatan tunggal Ik. Rangkap dua Ik. Rangkap tiga Benzena dan turunannya Alkana alkena
BAB 4 SIKLOALKANA DAN STEREOKIMIANYA
Slaid kuliah Kimia Organik I untuk mhs S1 Kimia semester 3 BAB 4 SIKLOALKANA DAN STEREOKIMIANYA Budi Arifin Luthfan Irfana Bagian Kimia Organik Departemen Kimia FMIPA-IPB TIU TIK 1 Daftar Pustaka: McMurry
MEMINIMUMKAN ENERGI SUATU SISTEM
MEMINIMUMKAN ENERGI SUATU SISTEM Proses peminimuman energi dilakukan dengan mengubah geometri molekular sistem menuju konformasi yang lebih stabil, yakni struktur molekular yang energinya relatif tidak
Alkena. KO 1 pertemuan III. Indah Solihah
Alkena KO 1 pertemuan III Indah Solihah Pengertian Alkena Merupakan senyawa hidrokarbon yang mengandung ikatan rangkap karbon-karbon. Terdapat dalam jumlah berlebih di alam Etena (etilena) merupakan ssalah
REAKTIVITAS SENYAWA AROMATIK. DR. Bambang Cahyono
REAKTIVITAS SENYAWA AROMATIK DR. Bambang Cahyono PERBEDAAN IKATAN RANGKAP BENZENA DAN ALKENA AKIBAT LAIN AKIBAT ADANYA STABILITAS PADA AROMATIK Senyawa aromatik distabilkan oleh stabilitas aromatik Mengingat
BAB 7 HIDROKARBON DAN MINYAK BUMI
BAB 7 HIDROKARBON DAN MINYAK BUMI A. Kekhasan / Keunikan Atom Karbon o Terletak pada golongan IVA dengan Z = 6 dan mempunyai 4 elektron valensi. o Untuk mencapai konfigurasi oktet maka atom karbon mempunyai
RUMUS GARIS DAN KONFORMASI
Reaksi DielsAlder Satutipereaksi adisi1,4 yang sangatpentingdiwakiliolehreaksi DielsAlder, yang merupakansuatujalankesenyawasikloheksena. reaksiinidiberinamaahlikimiajermanotto Diels dan Kurt Alder, yang
LKS HIDROKARBON. Nama : Kelas/No.Abs :
Nama : Kelas/No.Abs : LKS HIDROKARBON 1. Kekhasan / Keunikan Atom Karbon 1. Terletak pada golongan IVA dengan Z = 6 dan mempunyai 4 elektron valensi. 2. Untuk mencapai konfigurasi oktet maka atom karbon
PAH akan mengalami degradasi saat terkena suhu tinggi pada analisis dengan GC dan instrumen GC sulit digunakan untuk memisahkan PAH yang berbentuk
BAB I PENDAHULUAN I.I Latar Belakang Poliaromatik hidrokarbon (PAH) adalah golongan senyawa organik yang terdiri atas dua atau lebih molekul cincin aromatik yang disusun dari atom karbon dan hidrogen.
(2) kekuatan ikatan yang dibentuk untuk karbon;
Reaksi Subsitusi Nukleofilik Alifatik Reaksi yang berlangsung karena penggantian satu atau lebih atom atau gugus dari suatu senyawa oleh atom atau gugus lain disebut reaksi substitusi. Bila reaksi substitusi
1. Pendahuluan 2. Intermediate reaktif 3. Nukleofil and elektrofil 4. Tipe reaksi 5. Ions versus radicals
1. Pendahuluan 2. Intermediate reaktif 3. Nukleofil and elektrofil 4. Tipe reaksi 5. Ions versus radicals TUJUAN INSTRUKSIONAL KHUSUS Setelah mengikuti kuliah pokok bahasan Reaktivitas dan Mekanisme, mahasiswa
RENCANA PEMBELAJARAN SEMESTER. Mata Kuliah : KIMIA KOMPUTASI Semester: VI (ENAM) sks: 3 Kode: D
FM-0-AKD-05 Rektor: (024)850808 Fax (024)8508082, Purek I: (024) 850800 RENCANA PEMBELAJARAN SEMESTER dari 2 29 Februari 206 Mata Kuliah : KIMIA KOMPUTASI Semester: VI (ENAM) sks: 3 Kode: D34047 Program
kimia HIDROKARBON III DAN REVIEW Tujuan Pembelajaran
K-13 kimia K e l a s XI HIDROKARBON III DAN REVIEW Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut 1 Memahami definisi dan jenis-jenis isomer beserta contohnya
DAFTAR ISI LEMBAR PERNYATAAN... ABSTRAK KATA PENGANTAR. UCAPAN TERIMA KASIH... DAFTAR TABEL DAFTAR GAMBAR... DAFTAR LAMPIRAN..
DAFTAR ISI LEMBAR PERNYATAAN... ABSTRAK KATA PENGANTAR. UCAPAN TERIMA KASIH... DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR... DAFTAR LAMPIRAN.. i ii iv v vi ix xi xii BAB I PENDAHULUAN A. Latar Belakang Masalah..
AROMATISITAS, BENZENA DAN BENZENA TERSUBSTITUSI ACHMAD SYAHRANI ORGANIC CHEMISTRY, FESSENDEN DAN FESSENDEN, THIRD EDITION
AROMATISITAS, BENZENA DAN BENZENA TERSUBSTITUSI ACHMAD SYAHRANI ORGANIC CHEMISTRY, FESSENDEN DAN FESSENDEN, THIRD EDITION 1 BENZENA PERTAMA KALI DIISOLASI OLEH MICHAEL FARADAY, 1825 DARI RESIDU BERMINYAK
MODUL KIMIA SMA IPA Kelas 12
A. BENZENA 1. Rumus a. Rumus molekul : C 6H 6 b. Rumus bangun : 2. Hibridisasi Struktur Kekule, setiap atom C dalam benzena membentuk 3 ikatan sigma = ( sp 2 ) 3 dan 1 ikatan phi = ( p-p ) 1. Hal ini dapat
ALKENA & ALKUNA. Prof. Dr. Jumina Robby Noor Cahyono, S.Si., M.Sc.
ALKENA & ALKUNA Prof. Dr. Jumina Robby Noor Cahyono, S.Si., M.Sc. Alkena, C n H 2n ; n = 3 C 3 H 6 CH 3 -CH=CH 2 } Hidrokarbon Alkuna, C n H 2n-2 ; n = 3 C 3 H 4 CH 3 -C=CH Tak Jenuh Ikatan rangkap Lebih
1. Pendahuluan 2. Orbital atom 3. Orbital molekul 4. Ikatan sigma 5. Ikatan pi 6. Orbital hibrida 7. Panjang dan kekuatan ikatan
1. Pendahuluan 2. Orbital atom 3. Orbital molekul 4. Ikatan sigma 5. Ikatan pi 6. Orbital hibrida 7. Panjang dan kekuatan ikatan TUJUAN INSTRUKSIONAL KHUSUS Setelah mengikuti kuliah pokok bahasan Orbital,
KIMIA. Sesi. Benzena A. STRUKTUR DAN SIFAT BENZENA. Benzena merupakan senyawa hidrokarbon dengan rumus molekul C 6 H 6
KIMIA KELAS XII IPA - KURIKULUM GABUNGAN 18 Sesi NGAN Benzena Benzena merupakan senyawa hidrokarbon dengan rumus molekul C 6 H 6 dengan struktur berbentuk cincin (siklik) segienam beraturan. Struktur kimia
REAKSI SUBSTITUSI ALFA KARBONIL
BAB 5 REAKSI SUBSTITUSI ALFA KARBONIL Dalam bab ini akan dibahas mengenai reaksi substitusi alfa. Ciri utama dari reaksi ini adalah terjadi melalui pembentukan intermediet enol atau ion enolat. 5.1. Keto-enol
SENYAWA AROMATIK. Tim dosen kimia dasar FTP
SENYAWA AROMATIK Tim dosen kimia dasar FTP SENYAWA AROMATIK SIFAT-SIFAT Senyawa dengan aroma tertentu Senyawa siklik yang mengandung ikatan rangkap berselang seling (konjugasi) Bersifat non polar Banyak
SENYAWA ORGANIK HIDROKARBON DENGAN KARBON ELEKTROFILIK
SENYAWA ORGANIK HIDROKARBON DENGAN KARBON ELEKTROFILIK Aromatisitas Seperti yang dibicarakan pada kimia organik I., senyawa hidrokarbon adalah kelompok zat organik yang hanya terdiri dari unsur karbon
MAKALAH KIMIA ORGANIK IKATAN KIMIA DAN STRUKTUR MOLEKUL
MAKALAH KIMIA ORGANIK IKATAN KIMIA DAN STRUKTUR MOLEKUL Untuk Memenuhi Salah Satu Tugas Mata Kuliah Kimia Organik Dosen Pembimbing : Ir. Dyah Tri Retno, MM Disusun oleh : Kelompok 1 1. Angga Oktyashari
Serangan elektrofil pada posisi orto
Serangan elektrofil pada posisi orto O Y + O Y O Y O Y I II III O O Y Y Serangan elektrofil pada posisi meta Serangan elektrofil pada posisi para Pada reaksi substitusi elektrofilik fenol ini terlihat
Konsep Dasar Sifat Molekul
Modul 1 Konsep Dasar Sifat Molekul Gebi Dwiyanti D PENDAULUAN alam Modul 1 ini disajikan materi mengenai konsep dasar sifat molekul senyawa organik (senyawa karbon). Materi di atas terdiri dari materi
Dr. Sci. Muhammad Zakir Laboratorium Kimia Fisika, Jurusan Kimia, FMIPA, Unhas Makassar
Perhitungan Orbital Molekul Dr. Sci. Muhammad Zakir Laboratorium Kimia Fisika, Jurusan Kimia, FMIPA, Unhas Makassar Maksud percobaan 1. Mempelajari aplikasi software Hyperchem. Mempelajari cara menghitung
BAB IX AROMATISITAS, BENZENA, DAN BENZENA TERSUBSTITUSI
BAB IX AROMATISITAS, BENZENA, DAN BENZENA TERSUBSTITUSI Benzena diisolasi tahun 1825 oleh Michael Faraday dan residu berminyak yang terimbun dalam pipa induk gas di London. Sampai 1940 ter batubara sebagai
Chapter 20 ASAM KARBOKSILAT
Chapter 20 ASAM KARBOKSILAT Pengantar Gugus fungsi dari asam karboksilat terdiri atas ikatan C=O dengan OH pada karbon yang sama. Gugus karboksil biasanya ditulis -COOH. Asam alifatik memiliki gugus alkil
Pengenalan Kimia Organik
Pengenalan Kimia Organik Unsur-unsur umum dalam senyawa organik 11.1 1 Kimia Organik berfokus pada kimia karbon. Apa yang telah diingat mengenai ikatan karbon dari pelajaran sebelumnya? Karbon adalah unsur
BAB I PENDAHULUAN. Dari uraian latar belakang diatas dirumuskan permasalahan sebagai berikut:
BAB I PENDAHULUAN 1.1 Latar belakang Dalam kehidupan sehari-hari kita banyak menjumpai senyawa, baik senyawa organik maupun anorganik. Senyawa organik sangat banyak jenisnya, sehingga perlu adanya penggolongan
Tutorial Aplikasi Kimia Hyperchem
Video Praktikum Berikut merupakan Video praktikum untuk menentukan suatu larutan polar atau non polar. Jika suatu larutan polar maka akan berpengaruh terhadap magnet dan jika larutan itu non polar maka
SIMULASI EFEKTIVITAS SENYAWA OBAT ERITROMISIN F DAN 6,7 ANHIDROERITROMISIN F DALAM LAMBUNG MENGGUNAKAN METODE SEMIEMPIRIS AUSTIN MODEL 1 (AM1)
SIMULASI EFEKTIVITAS SENYAWA OBAT ERITROMISIN F DAN 6,7 ANHIDROERITROMISIN F DALAM LAMBUNG MENGGUNAKAN METODE SEMIEMPIRIS AUSTIN MODEL 1 (AM1) Agung Tri Prasetya, M. Alauhdin, Nuni Widiarti Kimia FMIPA
Bab 12 Pengenalan Kimia Organik
Bab 12 Pengenalan Kimia Organik Sikloalkana Ikhtisar Sumber: hang Bab 11 Alkuna idrokarbon Aromatik Gugus Fungsi Departemen Kimia FMIPA IPB Kimia Organik berfokus pada kimia karbon. Beberapa karakteristik
4 Pembahasan. 4.1 Sintesis Resasetofenon
4 Pembahasan 4.1 Sintesis Resasetofenon O HO H 3 C HO ZnCl 2 CH 3 O Gambar 4. 1 Sintesis resasetofenon Pada sintesis resasetofenon dilakukan pengeringan katalis ZnCl 2 terlebih dahulu. Katalis ZnCl 2 merupakan
BENZEN DAN AROMATISITAS. Oleh : Dr. Yahdiana Harahap, MS
BENZEN DAN AROMATISITAS Oleh : Dr. Yahdiana Harahap, MS BENZEN DAN AROMATISITAS BENZENA DAN AROMATISITAS C6H6 Hidrokarbon tidak jenuh ikatan rangkap beresonisasi Senyawa aromatis benzena & senyawa-senyawa
BAB 3 GEOMETRI DAN KEPOLARAN MOLEKUL
GEOMETRI DAN KEPOLARAN MOLEKUL 3.1 PENGANTAR MENGENAI BENTUK MOLEKUL Bentuk molekul mengontrol sifat-sifat fisik maupun kimia molekul. Geometri elektron dan bentuk molekul ditentukan oleh orientasi semua
KO I Pertemuan 2. Indah Solihah
KO I Pertemuan 2 Indah Solihah Representations of Structural Formulas Menggambar struktur molekul menggunakan Dot formula (struktur lewis) lebih tidak praktis daripada dash formula (struktur garis) maupun
PENENTUAN PANJANG IKATAN KARBON KARBON DAN ENERGI RESONANSI MOLEKUL BENZALDEHIDA SECARA IN SILICO MENGGUNAKAN SOFTWARE Website Molecule (WebMo)
PENENTUAN PANJANG IKATAN KARBN KARBN DAN ENERGI RESNANSI MLEKUL BENZALDEIDA SEARA IN SILI MENGGUNAKAN SFTWARE Website Molecule (WebMo) leh: Ach. aris Efendy (101810301021) *) *) Mahasiswa S1 Jurusan Kimia,
ORBITAL DAN IKATAN KIMIA ORGANIK
ORBITAL DAN IKATAN KIMIA ORGANIK Objektif: Pada Bab ini, mahasiswa diharapkan untuk dapat memahami, Teori dasar orbital atom dan ikatan kimia organik, Orbital molekul orbital atom dan Hibridisasi orbital
BAB II TINJAUAN PUSTAKA. akan berlangsung selama sintesis, serta alat-alat yang diperlukan untuk sintesis.
II TINJUN PUSTK 2.1 Rancangan nalisis Dalam sintesis suatu senyawa kimia atau senyawa obat yang baik, diperlukan beberapa persiapan. Persiapan tersebut antara lain berupa bahan dasar sintesis, pereaksi,
REAKSI-REAKSI ALKOHOL DAN FENOL
REAKSI-REAKSI ALKHL DAN FENL TUJUAN Tujuan dari Percobaan ini adalah: 1. Membedakan alkohol dengan fenol berdasarkan reaksinya dengan asam karboksilat 2. Membedakan alkohol dan fenol berdasarkan reaksi
I. Pendahuluan II. Agen Penitrasi
I. Pendahuluan Nitrasi merupakan reaksi terbentuknya senyawa nitro atau masuknya gugus nitro (-NO2) dalam suatu senyawa. Pada reaksi nitrasi, gugus nitro dapat berikatan dengan atom yang berbeda dan bisa
BAB 10. Aromatisitas, Benzena, dan Benzena Tersubstitusi. Tabel Struktur dan nama-nama benzene yang umum
BAB 10 Aromatisitas, Benzena, dan Benzena Tersubstitusi 10.1 Tata Nama Benzena Tersubstitusi Benzena tersubstitusi diberi nama dengan awalan orto, meta, para dan tidak dengan nomor-nomor posisi. Awalan
REAKSI PENATAAN ULANG. perpindahan (migrasi) tersebut adalah dari suatu atom ke atom yang lain yang
EAKSI PENATAAN ULANG eaksi penataan ulang adalah reaksi penataan kembali struktur molekul untuk membentuk struktur molekul yang baru yang berbeda dengan struktur molekul yang semula. eaksi ini dapat terjadi
STANDART KOMPETENSI INDIKATOR MATERI EVALUASI DAFTAR PUSTAKA
STANDART KOMPETENSI INDIKATOR MATERI EVALUASI DAFTAR PUSTAKA STANDART KOMPETENSI Mendeskripsikan struktur, cara penulisan, tata nama, sifat, kegunaan, dan identifikasi senyawa karbon. (halo alkan, alkanol,
Komponen Materi. Kimia Dasar 1 Sukisman Purtadi
Komponen Materi Kimia Dasar 1 Sukisman Purtadi Pengamatan ke Arah Pandangan Atomik Materi Konservasi Massa Komposisi Tetap Perbandingan Berganda Teori Atom Dalton Bagaimana Teori Dalton Menjelaskan Hukum
RENCANA PROGRAM KEGIATAN PEMBELAJARAN SEMESTER (RPKPS)
RENCANA PROGRAM KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) I. Nama matakuliah Kimia Organik Dasar I II. Kode / SKS MKS 2401 /2 SKS III. Prasyarat Matakuliah prasyarat adalah Kimia Dasar II IV. Status matakuliah
BAB I PENDAHULUAN O H O-CH 2 -CH=CH 2 CH 2 CH=CH 2
BAB I PENDAHULUAN 1.1. Latar Belakang Penataan ulang Claisen merupakan penataan ulang sigmatropik, yaitu reaksi perubahan suatu atom atau gugus yang terpisah dari satu atom ke atom lain disepanjang sistem
FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA BAHAN AJAR KIMIA DASAR BAB VII KIMIA ORGANIK
BAAN AJAR KIMIA DASAR No. BAK/TBB/SBG201 Revisi : 00 Tgl. 01 Mei 2008 al 1 dari 19 BAB VII KIMIA ORGANIK Dari 109 unsur yang ada di alam ini, karbon mempunyai sifat-sifat istimewa : 1. Karbon dapat membentuk
KIMIA ORGANIK KIMIA KARBON
KIMIA ORGANIK KIMIA ORGANIK 1850 Kimia dari senyawa yang datang dari benda hidup muncul istilah organik 1900 ahli kimia mensintesa senyawa kimia baru di lab yang tidak ada hubunganya dengan makhluk hidu
BAB I PENDAHULUAN. B. Rumusan Masalah 1. Apakah konformasi itu? 2. Konformasi apa saja yang di jelaskan di dalam konformasi senyawa rantai terbuka?
BAB I PENDAULUAN A. Latar Belakang Stereokimia adalah studi mengenai molekul molekul dalam ruang tiga dimensi yakni bagaimana atom atom dalam sebuah molekul ditata dalam ruangan satu relatif terhadap yang
GUGUS FUNGSI, TATA NAMA, SIFAT, DAN SINTESIS SEDERHANA SENYAWA HIDROKARBON
GUGUS FUNGSI, TATA NAMA, SIFAT, DAN SINTESIS SEDERHANA SENYAWA HIDROKARBON Kelompok VII: 1. Anggi Cahaya Nirwana (F1C116012) 2. Eko Prastyo (F1C116022) 3. Mardiana (F1C116023) 4. Mutiara Sarah H. (F1C116029)
RENCANA PELAKSANAAN PEMBELAJARAN (RPP)
1 No. Dokumen : F/751/WKS1/P/5 No. Revisi : 1 Tanggal Berlaku : 1 Juli 2016 RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Satuan Pendidikan : SMA Negeri 1 Godean Mata Pelajaran : Kimia Kelas/Semester : XI/ Gasal
Kimia Organik 1. Pertemuan ke 2 Indah Solihah
Kimia Organik 1 Pertemuan ke 2 Indah Solihah TEORI VALENCE SHELL ELECTRON REPULSION (VSEPR) (TEORI TOLAKAN PASANGAN ELEKTRON BEBAS) Pasangan elektron valensi mempunyai gaya tolak menolak Pasangan elektron
PERHITUNGAN MEKANIKA MOLEKUL
Austrian Indonesian Centre (AIC) for Computational Chemistry Jurusan Kimia - FMIPA Universitas Gadjah Mada (UGM) KIMIA KOMPUTASI Anatomi Perhitungan Mekanika Molekul l Drs. Iqmal Tahir, M.Si. Austrian-Indonesian
Struktur Molekul:Teori Orbital Molekul
Kimia Fisik III, Struktur Molekul:, Dr. Parsaoran Siahaan, November/Desember 2014, 1 Pokok Bahasan 3 Struktur Molekul:Teori Orbital Molekul Oleh: Dr. Parsaoran Siahaan Pendahuluan: motivasi/review pokok
Ikatan Kimia. 2 Klasifikasi Ikatan Kimia :
Ikatan Kimia Ikatan Kimia : Gaya tarik yang menyebabkan atom-atom yang terikat satu sama lain dalam suatu kombinasi untuk membentuk senyawa yang lebih kompleks. 2 Klasifikasi Ikatan Kimia : 1. Ikatan ion
1.3 Pemodelan Molekul dalam Kurikulum A. Mengapa pemodelan molekul penting untuk pembelajaran kimia?
11 1.3 Pemodelan Molekul dalam Kurikulum Berikut disampaikan pentingnya pemodelan molekul dalam pembelajaran pada jenjang strata 1 bagi mahasiswa kimia. Beberapa contoh diberikan untuk dapat lebih memahami
KIMIA. Sesi. Hidrokarbon (Bagian III) A. REAKSI-REAKSI SENYAWA KARBON. a. Adisi
KIMIA KELAS XII IPA - KURIKULUM GABUNGAN 17 Sesi NGAN Hidrokarbon (Bagian III) A. REAKSI-REAKSI SENYAWA KARBON Reaksi-reaksi kimia yang terjadi pada senyawa hidrokarbon secara umum adalah reaksi adisi,
TINJAUAN PUSTAKA 1. Stereokimia Stereokimia 1.1 Isomer Geometri dalam Alkena
TINJAUAN PUSTAKA 1. Stereokimia Stereokimia merupakan ilmu yang mempelajari tentang struktur 3 dimensi dari molekul. Perlu diketahui bahwa stereokimia ini sangatlah penting. bahkan karena seterokimia ini,
RANCANGAN PEMBELAJARAN KBK
RANCANGAN PEMBELAJARAN KBK Nama / Kode Matakuliah : Kimia Organik Sintesis II / 305H3102 Komptensi Sasaran : 1. Kompetensi Utama : Kemampuan dalam menerapkan pengetahuan dasar Kimia. Kemampuan dan keterampilan
Penyelesaian Tugas Kuliah Kimia Umum C (Soal bagi kelompok jadwal kuliah Kamis pagi pukul 08.00)
Penyelesaian Tugas Kuliah Kimia Umum C (Soal bagi kelompok jadwal kuliah Kamis pagi pukul 08.00) Nama : Archemi Puspita Wijaya NIM : L2C007010 Alamat blog : archemipuspita.wordpress.com 1. Jari-jari ion
LAPORAN PRAKTIKUM SINTESIS SENYAWA ORGANIK
Paraf Asisten LAPRAN PRAKTIKUM SINTESIS SENYAWA RGANIK Judul : Sintesis Para Nitroasetanilida Tujuan Percobaan : Memperlajari reaksi nitrasi senyawa aromatis Pendahuluan Asetanilida adalah senyawa turunan
VI Benzena dan Turunannya
Bab VI Benzena dan Turunannya Tujuan Pembelajaran Setelah mempelajari bab ini Anda dapat memahami tentang struktur, tata nama, sifat, dan kegunaan benzena dan turunannya. Benzena dan turunannya (benzena
JIK Asas Kimia Organik
WERSITI SANS MALAYSIA Peperiksaan Semester Kedua Sidang Akadernik 2002/2003 Februari/Mac 2003 JIK 222 - Asas Kimia Organik Masa : 3jam Sila pastikan bahawa kertas peperiksaan ini mengandungi LIMA muka
! " "! # $ % & ' % &
Valensi ! " "! # $ % & ' %& # % ( ) # *+## )$,) & -#.. Semua unsur memiliki bilangan oksidasi +1 Semua unsur memiliki bilangan oksidasi +2 Semua unsur memiliki bilangan oksidasi +3. Tl juga memiliki bilangan
Bentuk-Bentuk Molekul
Bentuk-Bentuk Molekul Di bab ini, kita akan mempelajari bagaimana cara mengubah rumus molekul dari suatu senyawa menjadi sebuah rumus struktur senyawa dalam bentuk dua dimensi yang memperlihatkan hubungan
Cara Install Chemdraw
Cara Install Chemdraw Berikut ini adalah langkah-langkah install ChemDraw pada sistem operasi Windows 1. Unduh ChemDraw dari tautan dibawah ini Unduh ChemDraw (versi Windows) 2. Buka installer ChemDraw
Spektroskopi IR Dalam Penentuan Struktur Molekul Organik Posted by ferry
Spektroskopi IR Dalam Penentuan Struktur Molekul Organik 08.30 Posted by ferry Spektrofotometri inframerah lebih banyak digunakan untuk identifikasi suatu senyawa melalui gugus fungsinya. Untuk keperluan
Alkena dan Alkuna. Pertemuan 4
Alkena dan Alkuna Pertemuan 4 Alkena/Olefin hidrokarbon alifatik tak jenuh yang memiliki satu ikatan rangkap (C = C) Senyawa yang mempunyai dua ikatan rangkap: alkadiena tiga ikatan rangkap: alkatriena,
Senyawa Hidrokarbon. Linda Windia Sundarti
Senyawa Hidrokarbon Senyawa Hidrokarbon adalah senyawa yang mengandung hanya karbon dan hidrogen C + H Carbon sebagai unsur pokok memiliki keistimewaan sbb : 1. Dengan ev = 4 membentuk 4 ikatan kovalen
Keunikan atom C?? Atom karbon primer, sekunder, tersier dan kuartener
Keunikan atom C?? Atom karbon primer, sekunder, tersier dan kuartener Jenis ikatan karbon edakan : Propena (tak jenuh) Propuna (tak jenuh) Propana (jenuh) Rantai Atom Karbon Bedakan : 2-metil butana siklobutana
MAKALAH PRAKTIKUM KIMIA DASAR REAKSI-REAKSI ALKOHOL DAN FENOL
MAKALAH PRAKTIKUM KIMIA DASAR REAKSI-REAKSI ALKOHOL DAN FENOL Oleh : ZIADUL FAIEZ (133610516) PROGRAM STUDI TEKNIK GEOLOGI FAKULTAS TEKNIK UNIVERSITAS ISLAM RIAU PEKANBARU 2015 BAB I PENDAHULUAN LatarBelakang
Senyawa organik adalah senyawa kimia yang molekulnya mengandung karbon, kecuali karbida, karbonat, dan oksida karbon.
PENDAULUAN Definisi senyawa organik Kimia organik adalah studi ilmiah mengenai struktur, sifat, komposisi, reaksi, dan sintesis senyawa organik. Senyawa organik dibangun oleh karbon dan hidrogen, dan dapat
Senyawa yang hanya tersusun oleh karbon dan hidrogen Banyak terdapat di alam (Contoh : gas alam, minyak bumi) Dibagi menjadi 3 yaitu : 1.
Senyawa yang hanya tersusun oleh karbon dan hidrogen Banyak terdapat di alam (Contoh : gas alam, minyak bumi) Dibagi menjadi 3 yaitu : 1. Jenuh : alkana, mempunyai ikatan tunggal dibagi menjadi 2 yaitu
PEMBAHASAN SBMPTN KIMIA 2016
PEMBAHASAN SBMPTN KIMIA 2016 DISUSUN OLEH Amaldo Firjarahadi Tane 1 31. 32. MATERI: SISTEM PERIODIK UNSUR Energi pengionan disebut juga energi ionisasi. Setiap unsur bisa mengalami energi ionisasi berkali-kali,
Rencana Pelaksanaan Pembelajaran
Rencana Pelaksanaan Pembelajaran Mata Pelajaran : KIMIA Kelas/Prog/Semester : XII / IPA / 2 Alokasi Waktu : 2x45 menit Standar Kompetensi : 4. Memahami senyawa organik dan reaksinya, benzena dan turunannya,
STRUKTUR LEWIS DAN TEORI IKATAN VALENSI
Ikatan Kimia STRUKTUR LEWIS DAN TEORI IKATAN VALENSI Disusun oleh : Kelompok 11 Penty Cahyani 4301411038 Diyah Ayu Lestari 4301411040 Ifan Shovi 4301411041 Rombel 2 UNIVERSITAS NEGERI SEMARANG 2013 A.
SK KIMIA ORGANIK I PETUNJUK PRAKTIKUM
SK 091341 KIMIA ORGANIK I PETUNJUK PRAKTIKUM Tim Pembina Kimia Organik I Taslim Ersam Mardi Santoso Yulfi Zetra Agus Wahyudi Sri Fatmawati Arif Fadlan Jurusan Kimia Fakultas Matematika Dan Ilmu Pengetahuan
Kimia Dasar II / Kimia Organik. Shinta Rosalia D. (SRD) Angga Dheta S. (ADS) Sudarma Dita W. (SDW) Nur Lailatul R. (NLR) Feronika Heppy S (FHS)
Kimia Dasar II / Kimia Organik Shinta Rosalia D. (SRD) Angga Dheta S. (ADS) Sudarma Dita W. (SDW) Nur Lailatul R. (NLR) Feronika Heppy S (FHS) Kontrak perkuliahan : 1. Ujian : 50% 2. Tugas : 10% 3. Kuis
BENTUK-BENTUK MOLEKUL
BENTUK-BENTUK MOLEKUL 10. 1. Menggambarkan Molekul dan Ion dengan Struktur Lewis Berikut adalah langkah-langkah dalam menggambarkan molekul dengan ikatan tunggal menggunakan struktur Lewis: 1) Letakkan
SAP DAN SILABI KIMIA DASAR PROGRAM STUDI TEKNOLOGI PANGAN UNIVERSITAS PASUNDAN
SAP DAN SILABI KIMIA DASAR PROGRAM STUDI TEKNOLOGI PANGAN UNIVERSITAS PASUNDAN KATA PENGANTAR Satuan acara perkuliahan (SAP) atau garis besar program pembelajaran (GBPP)merupakan panduan bagi dosen dan
Enantiomer dan Karbon Tetrahedral. Gambaran karbon tetrahedral dan pencerminannya
STEREOKIMIA Enantiomer dan Karbon Tetrahedral Gambaran karbon tetrahedral dan pencerminannya Molekul bayangan cermin yang tidak dapat dihimpitkan disebut enantiomer (dalam bahasa Yunani enantio berarti
