Kimia Inti dan Radiokimia
|
|
|
- Yuliana Setiawan
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Kimia Inti dan Radiokimia
2 Keradioaktifan Keradioaktifan: proses atomatom secara spontan memancarkan partikel atau sinar berenergi tinggi dari inti atom. Keradioaktifan pertama kali diamati oleh Henry Becquerel pada tahun Berikut unsur-unsur dalam sistem periodik yang bersifat radioaktif (berwarna merah).
3 Unsur Radioaktif Alam dan Buatan Radioaktif Alam: Isotop yang telah ada sejak bumi terbentuk. Contoh: uranium. Unsur yang dihasilkan dari pancaran sinar kosmik matahari. Contoh: karbon 14 Radioaktif Buatan: Dibuat dalam reaktor nuklir ketika atom-atom terpecah (fisi). Dihasilkan menggunakan siklotron, akselerator linier, dll.
4 Tipe Emisi Radioaktif Tipe emisi radioaktif yang umum ada tiga: emisi α, β, dan γ. Layar pendeteksi Sumber radioaktif Pelat bermuatan
5 Radiasi Alfa α 4 He 2+ dipancarkan secara monoenergetik dengan cakupan energi: 1,5 11,7 MeV. (1 MeV = 1,6 x J Kelimpahan Spektrum α 212m Po Energi
6 Radiasi Beta β Emisi dipancarkan dalam 3 modus: Negatron, β : elektron dipancarkan dari inti, terutama oleh intri yang kaya neutron. Emisinya disertai dengan pemancaran antineutrino (kekekalan momentum). Positron, β + : e + dipancarkan dari inti atom, terutama inti yang kaya proton. Emisinya disertai dengan pemancaran neutrino (kekekalan momentum). Electron Capture (EC): suatu modus mengurangi nomor atom Z namun besarnya nomor massa A dipertahankan. Modus ini berkompetisi dengan pemancaran positron. Elektron tertarik ke dalam inti dari kulit K. Modus ini disukai jika energi peluruhan < 2mc 2.
7 Radiasi Beta β β + dan β dipancarkan pada cakupan energi tertentu Dipengaruhi oleh elektron-elektron sekitar atom. Memiliki karakteristik berupa nilai E maks. Kelimpahan E maks
8 Annihilasi β + bersifat tak stabil antimateri. β + dan e - akan dengan cepat berikatan dan akan terjadi dua hal: β + + e - 2γ (0,51 MeV) Diemisikan dalam arah berlawanan untuk kekekalan momentum. β + (lambat) + e - γ (1,02 MeV) Modus ini kurang umum terjadi
9 Radiasi Gamma γ Radiasi gamma merupakan bagian dari spektrum EM yang energinya lebih tinggi daripada daerah sinar-x. Besarnya energi 0,1-10 MeV, rata-rata > 5 MeV. Radiasi terjadi bersama-sama dengan emisi α dan β ketika atom kembali dari keadaan transisi ke keadaan dasar.
10 Radiasi Gamma γ Radiasi Gamma juga berlangsung secara monoenergetik. Kelimpahan Kelimpahan
11 Reaksi Inti Persamaan reaksi inti menunjukkan bagaimana atom-atom meluruh. Sama dengan persamaan kimia. Harus ada kesetaraan massa dan muatan. Berbeda dengan persamaan kimia karena: Unsur-unsur berubah menjadi unsur yang lain. Tipe isotop menjadi penting. Contoh: seorang pasien diberikan iod radioaktif untuk menguji fungsi tiroidnya. Apa yang terjadi dengan iod? Apakah persamaan reaksi berikut seimbang? Perhatikan bahwa muatan dan massa di kedua ruas sama.
12 Jawab: Massa 53 proton 54 proton 78 neutron 77 neutron 131 total massa 131 total massa Muatan + 53, proton + 54, proton 78 neutron - 1 muatan β + 53, total muatan + 53 total muatan Jadi persamaan reaksi ini setara
13 Modus Emisi Lainnya Fisi Spontan (Spontaneous Fission,SF): terjadi ketika nomor massa A 100 karena inti atom memiliki energi pengikat yang bernilai negatif. Fisi spontan tak dapat teramati, kecuali nomor massa 232. Secara umum modus emisi ini jarang teramati dan waktu paruhnya sangat lama. 2 fragmen fisi + energi
14 Modus Emisi Lainnya Emisi Neutron. Emisi ini jarang terjadi, hanya teramati untuk atom tertentu yang kaya neutron, biasanya isotop sintetis. Contoh: Nuklida sintetis dapat dibuat dengan reaksi inti terinduksi.
15 Reaksi Inti Terinduksi Suatu reaksi inti disebabkan tumbukan dari partikel yang bergerak dengan suatu inti. Proses ini terjadi di atmosfer bumi sepanjang waktu Contoh produksi 14 C berikut: Nuklida sintetis dapat dibuat dengan seperangkat alat yang menghasilkan energi tinggi, seperti: akselerator Cockcroft-Walton, akselerator linier, siklotron, generator Van der Graaff, reaktor nuklir, dan emiter isotop neutron.
16 Aktivasi Neutron Salah satu untuk membuat reaksi inti terinduksi adalah dengan aktivasi neutron. Sinar gamma dihasilkan yang disebut prompt gamma. Neutron yang digunakan biasanya neutron termal, yaitu suatu partikel lambat yang berada dalam kesetimbangan dengan lingkungan bersuhu kamar.
17 Satuan Aktivitas Satuan yang umum digunakan: dps : disintegrasi per sekon dpm : disintegrasi per menit Ci, Curie = 3,7 x dps = 2,22 x dpm Bq, Becquerel (satuan SI) = 1 kejadian s -1 = 1 dps Dalam studi radioanalitik, satuan yang biasa digunakan adalah µci atau mci.
18 Peluruhan Radioaktif Peluruhan rasioaktif bersifat eksponensial, dimana jumlah fraksi yang tersisa setelah peluruhan dinyatakan dengan persaman di samping: Dengan N t = jumlah partikel yang tersisa setelah t satuan waktu; N 0 = jumlah partikel sebelum meluruh; t = waktu peluruhan; k = tetapan laju peluruhan.
19 Peluruhan Radioaktif Tetapan laju (k) bergantung pada spesi radioaktif tertentu: Merupakan salah satu karakteristik yang jelas mengenai suatu isotop radoaktif. Bentuk termodifikasi dari tetapan laju k adalah t 1/2 dimana t 1/2 = ln2/k Nilai t 1/2 adalah waktu yang dibutuhkan oleh suatu spesi radioaktif tertentu untuk dapat meluruh 50% dari semula, disebut juga waktu paruh.
20 Waktu Paruh Pada waktu paruh, 50% isotop akan meluruh Waktu paruh
21 Contoh Waktu Paruh Nama Waktu Paruh tahun jam hari tahun tahun Miliaran tahun
22 Aktivitas Dalam praktek, kita tak dapa secara langsung mengetahui nilai N atau bahkan dn/dt. Sebagai pendekatan digunakan nilai A (aktivitas), yaitu A = disintegrasi/satuan waktu = cacahan/satuan waktu Karena aktivitas sebanding dengan N, maka bisa digunakan hubungan berikut, dengan asumsi kita hanya mengukur spesi tunggal saja: atau
23 Contoh soal waktu paruh Nilai t 1/2 untuk 63 Ni adalah 100 tahun. Jika terdapat 100 g 63 Ni, berapa banyak 63 Ni yang tersisa setelah 250 tahun? Jawab: - 0,693 t/t 1/2-0,693(250thn)/(100thn) 17,7 g
24 Waktu Paruh Jumlah 63 Ni yang tersisa adalah: Waktu paruh Jumlah sisa, g Waktu, tahun 12,5 6,25 63 Ni digunakan untuk detektor asap.
25 Grafik Nuklida Tabel periodik versi radiokimiawan meliputi daftar semua nuklida yang diketahui. Terdapat lebih dari 2300 nuklida dan lebih dari 400 isomer yang metastabil. Hanya 287 isotop yang stabil atau dalam bentuk radioaktif alam. Daftar informasi nuklida ini disusun dalam tabel dan grafik nuklida.
26 Contoh Isotop Stabil Isotop stabil dituliskan dalam kotak berwarna abuabu. Lambang atom dan nomor massa Persen kelimpahan Neutron termal dan bagian resonansi silang Massa isotop skala C-12
27 Contoh Radioisotop Alam Catatan: Pengkodean warna juga digunakan untuk menunjukkan nilai waktu paruh relatif. Waktu paruh Modus dan energi peluruhan (dalam MeV) Bagian persilangan Energi Disintegrasi beta dalam MeV
28 Radioaktif Buatan Contoh berikut menunjukkan modus peluruhan yang paling umum terjadi. Modus peluruhan lainnya bisa juga terjadi.
29 Memprediksi Tipe Peluruhan Grafik nuklida merupakan pemetaan yang baik untuk mengetahui tipe-tipe isotop. Grafik ini menunjukkan tiap tipe radioisotop yang akan mengalami peluruhan. Isotopisotop yang stabil adalah yang berada di daerah pita kestabilan, yaitu pada kemiringan 45 o. Nuklida radioaktif akan meluruh dengan modus peluruhan yang sesuai untuk mencapai jalur terpendek menuju pita kestabilan.
30 Trend Peluruhan Daerah kaya proton Isotop radioaktif alam Daerah kaya neutron
31 Rasio Proton:Neutron Peluruhan β + atau electron capture Peluruhan α Peluruhan β
32 Bilangan Sakti (Magic Number) Beberapa kombinasi proton dengan neutron menunjukkan kestabilan isotop dibandingkan isotop lainnya. Bilangan Sakti Proton: 2, 8, 20, 28, 40, 50, dan 82. Bilangan Sakti Neutron: 2, 8, 20, 28, 40, 50, 82, dan 126. Bilangan Sakti ini menunjukkan keberadaan tingkat energi dalam inti, sama dengan yang teramati pada elektron di luar inti atom.
33 Perubahan Energi dalam Reaksi Inti Energi Pengikat Inti: Ukuran kestabilan yang diperoleh ketika proton dan neutron saling berikatan membentuk inti atom. Persamaan yang menunjukkan hubungan antara massa dan energi adalah: E = mc 2. Hubungan ini dapat digunakan untuk menentukan berapa banyak energi yang dihasilkan oleh adanya pengurangan massa atom. Versi lain: E = mc 2. Dengan E = energi pengikat inti; m = perbedaan massa inti atom dengan nukleon yang terpisah. Karena 1 sma = 931 MeV, maka Energi Pengikat Inti = m(sma)x931mev/sma.
34 Contoh soal Tentukan energi pengikat inti untuk 16 O. Diketahui massa 16 O = 15, sma; n = 1, sma; p= 1, sma. Jawab: pertama-tama, hitung massa nukleon dalam 16 O yang terdiri dari 8 proton dan 8 neutron. 8 n = 8 x 1, = 8, p = 8 x 1, = 8, Total = 16, Kemudian hitung energi pengikat inti berdasarkan perbedaan massa: m = (16, , ) sma = 0, sma Energi Pengikat Inti = 0, sma x 931 MeV/sma = 127,6 MeV
35 Energi Pengikat Inti Kita dapat menghitung energi pengikat inti semua isotop stabil dan akan terbentuk grafik di bawah ini. Dengan semakin bertambahnya nukleon, akan mencapai energi maksimum (pada A = 56, besi). Massa nukleon yang lebih besar bersifat kurang stabil. Oleh karena itu kita bisa memperoleh energi baik dari peristiwa fisi maupun fusi. Untuk massa nukleon yang lebih berat akan cenderung mengalami emisi partikel α. Energi pengikat inti relatif per nukleon Fusi Fisi
36 Energi Inti Energi inti dapat diperoleh dengan dua cara: Fisi: pemecahan atom: Energi diperoleh jika inti atom besar Inti yang lebih kecil bersifat lebih stabil. Ini yang terjadi di dalam reaktor nuklir. Fusi: Penggabungan atom: Energi diperoleh jika inti atom kecil. Inti yang lebih besar bersifat lebih stabil. Ini yang terjadi pada matahari. Reaksi Fisi
37 Reaksi Berantai Reaksi Ktitik: terjadi ketika reaksi fisi yang cukup terjadi agar reaksi berantai berlangsung (neutron yang terbentuk = neutron yang digunakan) energi inti/nuklir. Reaksi Superkritik: ketika kelebihan neutron dihasilkan dan laju reaksi fisi terus meningkat bom inti/nuklir. Reaksi Berantai
38 Energi Fisi Uranium-235 digunakan sebagai bahan bakar dalam suatu reaktor nuklir. Reaksinya: energi Energi yang dihasilkan dari pemecahan satu atom uranium sekitar 200 miliaaar elektron volt. 100 g 235 U dapat menghasilkan energi yang sama besarnya dengan yang dihasilkan oleh 80 triliun ton TNT!
39 Bom Nuklir Ledakan konvensional digunakan untuk memicu dua bagian U-235 bersamaan. Hal ini yang menimbulkan massa superkritik.
40 Reaktor Nuklir Pendingin Pendingin pertama kedua Tabung reaktor turbin Pertukaran kalor
41 Energi Fusi Ketika beberapa atom bermassa kecil digabung, akan diperoleh sejumlah energi. Di dalam Matahari terjadi penggabungan atomatom hidrogen menjadi helium. Dalam reaktor dapat dibuat reaksi fusi antara dua isotop hidrogen, dengan dihasilkan energi. Energi ini bisa digunakan sebagai bahan bakar masa depan, murah karena bahan dasarnya bisa diperoleh dari lautan yang bisa dianggap tak usah dibeli.
42 Kegunaan Radionuklida Kemampuan untuk mengukur radioaktivitas bersifat sensitid sehingga bisa digunakan untuk beberapa keperluan apalagi interaksi radionuklida dengan organisme hidup telah dipelajari. Beberapa kegunaan diantaranya: Teknik penentuan umur material Pengobatan kanker Penelusur Pencitraan (imaging) Metode Pengujian sampel
43 Penentuan Umur material Terdapat dua tipe umum: Geokronologi: menggunakan isotop yang memiliki waktu paruh panjang untuk menentukan umur mineral. Penanggalan Karbon: menggunakan bentuk radioaktif karbon yaitu karbon-14 yang dihasilkan di bagian atas permukaan atmosfer oleh sinar kosmik pada laju yang hampir konstan, untuk mengetahui umur material yang pernah hidup di masa lampau. Karbon-14 akan segera bereaksi dengan oksigen di udara menghasilkan isotop karbondioksida.
44 Penanggalan Karbon Tanaman dan alga menggunakan karbondioksida untuk membuat gula dan protein. Kemudian tanaman dan alga dimakan dan begitu seterusnya dalam rantai makanan.
45 Aplikasi Medis Terapi kanker: Radiasi dapat menimbulkan sekaligus menyembuhkan kanker. Radiasi menyebabkan molekul-molekul dalam sel terpecah/terionisasi. Kerusakan yang paling terlihat apabila DNA rusak dan pengaruh terbesar terjadi dalam pertumbuhan sel yang cepat. Contoh: Iod-127 digunakan untuk menelusuri fungsi kelenjar tiroid. Tyroid normal Tumor Jinak Kanker
46 Pengukuran Pergerakan Lumpur dan Pasir di Sungai Isotop yang digunakan adalan yang memiliki waktu paruh singkat, contoh: 140 BaSO 4, t 1/2 = 12,8 hari. sungai Ke lautan Studi penelusuran ini membantu untuk memprediksi seberapa sering jalur air komersial perlu ditelusuri
47 Pendeteksi Kebocoran Digunakan sejumlah kecil radioisotop 24 Na (t 1/2 = 15 jam), dengan cara dimasukkan ke dalam saluran air, dan pergerakannya diikuti dengan detektor. Ketika proses ini berlangsung, air ini tak boleh digunakan oleh makhluk hidup.
KIMIA INTI DAN RADIOKIMIA. Stabilitas Nuklir dan Peluruhan Radioaktif
KIMIA INTI DAN RADIOKIMIA Stabilitas Nuklir dan Peluruhan Radioaktif Oleh : Arif Novan Fitria Dewi N. Wijo Kongko K. Y. S. Ruwanti Dewi C. N. 12030234001/KA12 12030234226/KA12 12030234018/KB12 12030234216/KB12
Inti atom Radioaktivitas. Purwanti Widhy H, M.Pd
Inti atom Radioaktivitas Purwanti Widhy H, M.Pd bagian terkecil suatu unsur yg mrpkn suatu partikel netral, dimana jumlah muatan listrik positif dan negatif sama. Bagian Atom : Elektron Proton Netron Jumlah
RADIOKIMIA Tipe peluruhan inti
LABORATORIUM KIMIA FISIK Departemen Kimia Fakultas MIPA Universitas Gadjah Mada (UGM) RADIOKIMIA Tipe peluruhan inti Drs. Iqmal Tahir, M.Si., Departemen Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam
PELURUHAN RADIOAKTIF
PELURUHAN RADIOAKTIF Inti-inti yang tidak stabil akan meluruh (bertransformasi) menuju konfigurasi yang baru yang mantap (stabil). Dalam proses peluruhan akan terpancar sinar alfa, sinar beta, atau sinar
Jumlah Proton = Z Jumlah Neutron = A Z Jumlah elektron = Z ( untuk atom netral)
FISIKA INTI A. INTI ATOM Inti Atom = Nukleon Inti Atom terdiri dari Proton dan Neutron Lambang Unsur X X = nama unsur Z = nomor atom (menunjukkan banyaknya proton dalam inti) A = nomor massa ( menunjukkan
2. Dari reaksi : akan dihasilkan netron dan unsur dengan nomor massa... A. 6
KIMIA INTI 1. Setelah disimpan selama 40 hari, suatu unsur radioaktif masih bersisa sebanyak 0,25 % dari jumlah semula. Waktu paruh unsur tersebut adalah... 20 hari 8 hari 16 hari 5 hari 10 hari SMU/Ebtanas/Kimia/Tahun
Pusat Pendidikan dan Pelatihan Badan Tenaga Nuklir Nasional
Pusat Pendidikan dan Pelatihan Badan Tenaga Nuklir Nasional 1 Pokok Bahasan STRUKTUR ATOM DAN INTI ATOM A. Struktur Atom B. Inti Atom PELURUHAN RADIOAKTIF A. Jenis Peluruhan B. Aktivitas Radiasi C. Waktu
BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Runusan Masalah
BAB I PENDAHULUAN 1.1 Latar Belakang Kimia inti adalah ilmu yang mempelajari struktur inti atom dan pengaruhnya terhadap kestabilan inti serta reaksi-reaksi inti yang terjadi pada proses peluruhan radio
CHAPTER III INTI ATOM DAN RADIOAKTIVITAS
CHAPTER III INTI ATOM DAN RADIOAKTIVITAS CHAPTER iii INTI ATOM DAN RADIOAKTIVITAS -Inti atom atau nukllida terdiri atas neutron (netral) dan proton (muatan positif) -Massa neutron sedikit lebih besar
CHAPTER iii INTI ATOM DAN RADIOAKTIVITAS
CHAPTER iii INTI ATOM DAN RADIOAKTIVITAS -Inti atom atau nukllida terdiri atas neutron (netral) dan proton (muatan positif) -Massa neutron sedikit lebih besar daripada massa proton -ukuran inti atom berkisar
RADIOKIMIA Pendahuluan Struktur Inti
LABORATORIUM KIMIA FISIK Departemen Kimia Fakultas MIPA Universitas Gadjah Mada (UGM) RADIOKIMIA Pendahuluan Struktur Inti Drs. Iqmal Tahir, M.Si., Departemen Kimia Fakultas Matematika dan Ilmu Pengetahuan
Radioaktivitas dan Reaksi Nuklir. Rida SNM
Radioaktivitas dan Reaksi Nuklir Rida SNM [email protected] Outline Sesi 1 Radioaktivitas Sesi 2 Peluruhan Inti 1 Radioaktivitas Tujuan Perkuliahan: Partikel pembentuk atom dan inti atom Bagaimana inti terikat
REAKSI NUKLIR NANIK DWI NURHAYATI,S.SI, M.SI
REAKSI NUKLIR NANIK DWI NURHAYATI,S.SI, M.SI nanikdn.staff.uns.ac.id nanikdn.staff.fkip.uns.ac.id 081556431053 / (0271) 821585 REAKSI INTI Reaksi Inti adalah proses perubahan yang terjadi dalam inti atom
BAB I Jenis Radiasi dan Interaksinya dengan Materi
BAB I Jenis Radiasi dan Interaksinya dengan Materi Radiasi adalah pancaran energi yang berasal dari proses transformasi atom atau inti atom yang tidak stabil. Ketidak-stabilan atom dan inti atom mungkin
Oleh ADI GUNAWAN XII IPA 2 FISIKA INTI DAN RADIOAKTIVITAS
Oleh ADI GUNAWAN XII IPA 2 FISIKA INTI DAN RADIOAKTIVITAS 1 - Dengan menyebut nama Allah yang Maha Pengasih lagi Maha Penyayang - " Dan Kami ciptakan besi yang padanya terdapat kekuatan yang hebat dan
Kedua nuklida tersebut mempunyai nomor massa (A) yang sama dengan demikian nuklida-nuklida tersebut merupakan isobar.
1. Ca dan Ar adalah merupakan A. Isotop B. Isobar C. Isomer D. Isoelektron E. Isoton Jawaban : B Kedua nuklida tersebut mempunyai nomor massa (A) yang sama dengan demikian nuklida-nuklida tersebut merupakan
PELURUHAN RADIOAKTIF. NANIK DWI NURHAYATI,S.Si,M.Si nanikdn.staff.uns.ac.id
PELURUHAN RADIOAKTIF NANIK DWI NURHAYATI,S.Si,M.Si nanikdn.staff.uns.ac.id 081556431053 Istilah dalam radioaktivitas Perubahan dari inti atom tak stabil menjadi inti atom yg stabil: disintegrasi/peluruhan
FISIKA ATOM & RADIASI
FISIKA ATOM & RADIASI Atom bagian terkecil dari suatu elemen yang berperan dalam reaksi kimia, bersifat netral (muatan positif dan negatif sama). Model atom: J.J. Thomson (1910), Ernest Rutherford (1911),
KIMIA (2-1)
03035307 KIMIA (2-1) Dr.oec.troph.Ir.Krishna Purnawan Candra, M.S. Kuliah ke-4 Kimia inti Bahan kuliah ini disarikan dari Chemistry 4th ed. McMurray and Fay Faperta UNMUL 2011 Kimia Inti Pembentukan/penguraian
DAFTAR ISI BAB I PENDAHULUAN
DAFTAR ISI BAB I PENDAHULUAN 3 BAB II STRUKTUR DAN INTI ATOM 5 A Struktur Atom 6 B Inti atom 9 1. Identifikasi Inti Atom (Nuklida) 9 2. Kestabilan Inti Atom 11 Latihan 13 Rangkuman Bab II. 14 BAB III PELURUHAN
Radioaktivitas Henry Becquerel Piere Curie Marie Curie
Radioaktivitas Inti atom yang memiliki nomor massa besar memilikienergi ikat inti yang relatif lebih kecil dibandingkan dengan nomor massa menengah. Kecenderungan inti atom yang memiliki nomor massa besar
PENEMUAN RADIOAKTIVITAS. Sulistyani, M.Si.
PENEMUAN RADIOAKTIVITAS Sulistyani, M.Si. Email: [email protected] APA ITU KIMIA INTI? Kimia inti adalah ilmu yang mempelajari struktur inti atom dan pengaruhnya terhadap kestabilan inti serta reaksi-reaksi
REAKSI NUKLIR NANIK DWI NURHAYATI,S.SI, M.SI. nanikdn.staff.uns.ac.id nanikdn.staff.fkip.uns.ac.id / (0271)
REAKSI NUKLIR NANIK DWI NURHAYATI,S.SI, M.SI nanikdn.staff.uns.ac.id nanikdn.staff.fkip.uns.ac.id 081556431053 / (0271) 821585 REAKSI INTI Reaksi Inti adalah proses perubahan yang terjadi dalam inti atom
PENEMUAN RADIOAKTIVITAS. Sulistyani, M.Si.
PENEMUAN RADIOAKTIVITAS Sulistyani, M.Si. Email: [email protected] SINAR KATODE Penemuan sinar katode telah menginspirasi penemuan sinar-x dan radioaktivitas Sinar katode ditemukan oleh J.J Thomson
INTI DAN RADIOAKTIVITAS
KIMIA INTI DAN RADIOKIMIA INTI DAN RADIOAKTIVITAS Disusun oleh Kelompok A 1: Siti Lailatul Arifah 12030234021/ KB 2012 Nuril Khoiriyah 12030234022/ KB 2012 Nurma Erlita Damayanti 12030234204/ KB 2012 Amardi
5. KIMIA INTI. Kekosongan elektron diisi elektron pada kulit luar dengan memancarkan sinar-x.
1 5. KIMIA INTI A. Unsur Radioaktif Unsur radioaktif secara sepontan memancarkan radiasi, yang berupa partikel atau gelombang elektromagnetik (nonpartikel). Jenis-jenis radiasi yang dipancarkan unsur radioaktif
RADIOKIMIA Kinetika dan waktu paro peluruhan. Drs. Iqmal Tahir, M.Si.
Departemen Kimia - FMIPA Universitas Gadjah Mada (UGM) RADIOKIMIA Kinetika dan waktu paro peluruhan Drs. Iqmal Tahir, M.Si. Laboratorium Kimia Fisika,, Departemen Kimia Fakultas Matematika dan Ilmu Pengetahuan
Materi. Radioaktif Radiasi Proteksi Radiasi
Fisika Radiasi Materi Radioaktif Radiasi Proteksi Radiasi PENDAHULUAN kecil dan berbeda, sama atom- Perkembanagn Model Atom : * Model Atom Dalton: - Semua materi tersusun dari partikel- partikel yang sangat
REAKSI INTI. HAMDANI, S.Pd
REAKSI INTI HAMDANI, S.Pd Reaktor atom Matahari REAKSI INTI Reaksi Inti adalah proses perubahan yang terjadi dalam inti atom akibat tumbukan dengan partikel lain atau berlangsung dengan sendirinya. isalkan
RENCANA PELAKSANAAN PEMBELAJARAN ( RPP 01 )
RENCANA PELAKSANAAN PEMBELAJARAN ( RPP 0 ) Sekolah : SMA Advent Makassar Kelas / Semester : XII/ 2 Mata Pelajaran : FISIKA Alokasi Waktu : 2 x 45 Menit I. Standar Kompetensi 4. Menunjukkan penerapan konsep
LEMBAR KERJA PESERTA DIDIK (LKPD 01) FISIKA INTI
A. Materi Pembelajaran : Struktur Inti LEMBAR KERJA PESERTA DIDIK (LKPD 01) FISIKA INTI B. Indikator Pembelajaran : 1. Mengidentifikasi karakterisrik kestabilan inti atom 2. Menjelaskan pengertian isotop,isobar
KEGIATAN BELAJAR 1 : KARAKTERISTIK INTI ATOM DAN RADIOAKTIVITAS
MODUL MATERI SULIT UN MODUL 1 : KARAKTERISASI INTI ATOM DAN RADIOAKTIVITAS Oleh: Yusman Wiyatmo, M.Si Pengantar: Dalam modul 1 ini, Anda akan mempelajari karakterisiasi inti atom mencakup tentang struktur
Radio Aktivitas dan Reaksi Inti
Radio Aktivitas dan Reaksi Inti CHATIEF KUNJAYA KK ASTRONOMI, ITB Reaksi Inti di Dalam Bintang Matahari dan bintang-bintang umumnya membangkitkan energi sendiri dengan reaksi inti Hidrogen menjadi Helium.
U Th He 2
MODUL UNSUR RADIOAKTIF dan RADIOISOTOP Radiasi secara spontan yang di hasilkan oleh unsure di sebut keradioaktifan, sedangkan unsure yang bersifat radioaktif disebut unsure radioaktif.unsur radioaktif
: Dr. Budi Mulyanti, MSi. Pertemuan ke-16
MATA KULIAH KODE MK Dosen : FISIKA DASAR II : EL-122 : Dr. Budi Mulyanti, MSi Pertemuan ke-16 CAKUPAN MATERI 1. INTI ATOM 2. BILANGAN ATOM DAN BILANGAN MASSA 3. MASS DEFECT 4. RADIOAKTIVITAS 5. WAKTU PARUH
BAB II PROSES-PROSES PELURUHAN RADIOAKTIF
BAB II PROSES-PROSES PELURUHAN RADIOAKTIF 1. PROSES PROSES PELURUHAN RADIASI ALPHA Nuklida yang tidak stabil (kelebihan proton atau neutron) dapat memancarkan nukleon untuk mengurangi energinya dengan
BAB 9. Fisika Inti dan Radioaktivitas
Berkelas BAB 9 Fisika Inti dan Radioaktivitas Standar Kompetensi: Menunjukkan penerapan konsep fsika inti dan radioaktivitas dalam teknologi dan kehidupan sehari-hari. Kompetensi Dasar: Mengidentifkasi
INTERAKSI RADIASI DENGAN MATERI NANIK DWI NURHAYATI,S.SI,M.SI
INTERAKSI RADIASI DENGAN MATERI NANIK DWI NURHAYATI,S.SI,M.SI suatu emisi (pancaran) dan perambatan energi melalui materi atau ruang dalam bentuk gelombang elektromagnetik atau partikel 2 3 Peluruhan zat
BAB III PERSAMAAN PELURUHAN DAN PERTUMBUIIAN RADIOAKTIF
BAB III PERSAMAAN PELURUHAN DAN PERTUMBUIIAN RADIOAKTIF 1. PELURUHAN EKSPONENSIAL Proses peluruhan merupakan statistik untuk nuklida yang cukup banyak, maka banyaknya peluruhan per satuan waktu (dn/dt)
LEMBAR SOAL ULANGAN AKHIR SEMESTER TAHUN (UTAMA) Mata Pelajaran (Beban) : Fisika 4 ( 4 sks) Hari/Tanggal : Rabu, 01 Desembar 2010
J A Y A R A Y A PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SEKOLAH MENENGAH ATAS (SMA) NEGERI 78 JAKARTA Jalan Bhakti IV/1 Komp. Pajak Kemanggisan Telp. 527115/5482914 JAKARTA BARAT
FISIKA MODERN UNIT. Radiasi Benda Hitam. Hamburan Compton & Efek Fotolistrik. Kumpulan Soal Latihan UN
Kumpulan Soal Latihan UN UNIT FISIKA MODERN Radiasi Benda Hitam 1. Suatu benda hitam pada suhu 27 0 C memancarkan energi sekitar 100 J/s. Benda hitam tersebut dipanasi sehingga suhunya menjadi 327 0 C.
Kimia Inti. B a b 4. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id)
B a b 4 Kimia Inti Sumber: Photografi from U.S Air Force Pada bab ini, Anda akan diajak untuk dapat memahami karakteristik unsur-unsur penting, kegunaan dan bahayanya, serta terdapatnya di alam dengan
ENERGETIKA KESTABILAN INTI. Sulistyani, M.Si.
ENERGETIKA KESTABILAN INTI Sulistyani, M.Si. Email: [email protected] PENDAHULUAN Apakah inti yang stabil itu? Apakah inti yang tidak stabil? Bagaimana menyatakan kestabilan U-238 berdasarkan reaksi
TEORI DASAR RADIOTERAPI
BAB 2 TEORI DASAR RADIOTERAPI Radioterapi atau terapi radiasi merupakan aplikasi radiasi pengion yang digunakan untuk mengobati dan mengendalikan kanker dan sel-sel berbahaya. Selain operasi, radioterapi
Dasar Fisika Radiasi. Daftar Isi
Dasar Fisika Radiasi (Hendriyanto Haditjahyono) Daftar Isi I. Pendahuluan... 2 II. Struktur Atom dan Inti Atom... 4 II.1 Struktur Atom...5 II.2 Inti Atom...8 III. Peluruhan Radioaktif... 13 III.1 Jenis
Sulistyani, M.Si.
Sulistyani, M.Si. Email: [email protected] Laju peluruhan radionuklida per satuan waktu berbanding lurus dengan jumlah radioaktif yang ada pada waktu itu. -dn/dt λn -dn/dt = λn dn/n = - λdt (jika diintegralkan)
Salah satu bahan bakar dalam stasiun pembangkit tenaga nuklir adalah FISIKA INTI DAN RADIOAKTIVITAS
11 FISIKA INTI DAN RADIOAKTIVITAS Reaktor nuklir menggunakan unsur radioaktivitas. Sumber: Ensiklopedia Iptek, PT Lentera Abadi, 2005 Salah satu bahan bakar dalam stasiun pembangkit tenaga nuklir adalah
BAB FISIKA INTI DAN RADIOAKTIVITAS
BAB FISIKA INTI DAN RADIOAKTIVITAS 1 BAB FISIKA INTI DAN RADIOAKTIVITAS I. SOAL PILIHAN GANDA Soal pilihan ganda 1. 202 80 X mewakili suatu atom unsure X. setiap atom netral unsure ini mengandung. A.
BAB II Besaran dan Satuan Radiasi
BAB II Besaran dan Satuan Radiasi A. Aktivitas Radioaktivitas atau yang lebih sering disingkat sebagai aktivitas adalah nilai yang menunjukkan laju peluruhan zat radioaktif, yaitu jumlah inti atom yang
MODEL ATOM. Atom : bagian terkecil suatu elemen yg merupakan suatu partikel netral, dimana jumlah muatan listrik positif dan negatif sama.
BAB.19 ATOM ATOM Atom : bagian terkecil suatu elemen yg merupakan suatu partikel netral, dimana jumlah muatan listrik positif dan negatif sama. MODEL ATOM J.JTHOMSON ( 1910 ) ERNEST RUTHERFORD ( 1911 )
KIMIA INTI. Inti atom: proton = sma 1 sma neutron = sma 1 sma. ket : Z = nomor atom = proton A = nomor massa = p + n.
KIMIA INTI Inti atom: proton =.007276 sma sma neutron =.008665 sma sma Simbol inti : A Z ket : Z = nomor atom = proton A = nomor massa = p + n. Contoh : 35 7 Berarti : no atom 7, p= 7 dan n= 35-7 = 8 Isotop
Bab 1 Reaksi Nuklir. Bab 1 : Reaksi Nuklir Page ev = 1.6 x Joule = 3.8 x kalori
Bab 1 Reaksi Nuklir 1.1 Pendahuluan Formula E=mc 2 yang diungkap oleh Albert Einstein merupakan formula ilmiah yang paling dikenal di era modern. Formula ini memaparkan hubungan antara energi, masa dan
CATATAN KULIAH ATOM, INTI DAN RADIOAKTIF. Diah Ayu Suci Kinasih Departemen Fisika Universitas Diponegoro Semarang 2016
CATATAN KULIAH ATOM, INTI DAN RADIOAKTIF Diah Ayu Suci Kinasih -24040115130099- Departemen Fisika Universitas Diponegoro Semarang 2016 FISIKA NUKLIR Atom, Inti dan Radioaktif 1. Pekembangan Teori Atom
RADIOAKTIF. Oleh : I WAYAN SUPARDI
RADIOAKTIF Oleh : I WAYAN SUPARDI PENDAHULUAN Fluoresensi yakni perpendaran suatu bahan selagi disinari cahaya. Fosforecensi yaitu berpendarnya suatu bahan setelah disinari cahaya, jadi berpendar setelah
RADIOAKTIF Oleh Arif Yachya, M.Si
RADIOAKTIF Oleh Arif Yachya, M.Si Sub bab : Radioaktivitas Tipe Radiasi Peluruhan Radioaktif Efek negatif & positif Radiasi I. Radioaktivitas Atom-atom dengan nomor atom sama & nomor massa berbeda Isotop
RENCANA PERKULIAHAN FISIKA INTI Pertemuan Ke: 1
Pertemuan Ke: 1 Mata Kuliah/Kode : Fisika Semester dan : Semester : VI : 150 menit Kompetensi Dasar : Mahasiswa dapat memahami gejala radioaktif 1. Menyebutkan pengertian zat radioaktif 2. Menjelaskan
BAB I PENDAHULUAN A. Latar Belakang
BAB I PENDAHULUAN A. Latar Belakang Kebutuhan akan energi semakin bertambah dari tahun ke tahun, sementara sumber yang ada masih berbanding terbalik dengan kebutuhan. Walaupun energi radiasi matahari (energi
RADIOAKTIF 8/7/2017 IR. STEVANUS ARIANTO 1. Oleh : STEVANUS ARIANTO TRANSMUTASI PENDAHULUAN DOSIS PENYERAPAN SIFAT-SIFAT UNSUR RADIOAKTIF REAKSI INTI
RADIOAKTIF Oleh : STEVANUS ARIANTO PENDAHULUAN SIFAT-SIFAT UNSUR RADIOAKTIF PANCARAN SINAR RADIOAKTIF SINAR,, HVL BAHAN STRUKTUR INTI ATOM ENERGI IKAT INTI KESTABILAN INTI ATOM HUKUM PERGESERAN WAKTU PARUH
BAB IV HASIL DAN PEMBAHASAN Geometri Aqueous Homogeneous Reactor (AHR) Geometri AHR dibuat dengan menggunakan software Visual Editor (vised).
BAB IV HASIL DAN PEMBAHASAN Penelitian ini telah dilakukan dengan membuat simulasi AHR menggunakan software MCNPX. Analisis hasil dilakukan berdasarkan perhitungan terhadap nilai kritikalitas (k eff )
Inti Atom dan Penyusunnya. Sulistyani, M.Si.
Inti Atom dan Penyusunnya Sulistyani, M.Si. Email: [email protected] Eksperimen Marsden dan Geiger Pendahuluan Teori tentang atom pertama kali dikemukakan oleh Dalton bahwa atom bagian terkecil dari
BAB I PENDAHULUAN I.1. Latar Belakang
BAB I PENDAHULUAN I.1. Latar Belakang Kesehatan merupakan salah satu hal yang sangat penting dalam kehidupan manusia, bahkan bisa dikatakan tanpa kesehatan yang baik segala yang dilakukan tidak akan maksimal.
BAB VI PENERAPAN RADIOKIMIA DI BIDANG ANALITIK
BAB VI PENERAPAN RADIOKIMIA DI BIDANG ANALITIK 1. ANALISIS RADIOMETRI Prinsip dari teknik radiometri adalah sederhana, yaitu mengukur aktivitas untuk mengindikasi jumlah substan tertentu yang ada. Pada
STUKTUR INTI. Bab terdahulu kita telah mempelajari bahwa sebuah atom Elektron terdiri dari bagian sangat kecil bermuatan positif dimana
A STUKTUR INTI Kata Kunci Bab terdahulu kita telah mempelajari bahwa sebuah atom Elektron terdiri dari bagian sangat kecil bermuatan positif dimana Proton Nukleon sebagian besar massa atom terpusat, disebut
Radioaktivtas; Sejarah
Radioaktivtas Radioaktivtas; Sejarah 896: Becquerel secara tak sengaja menemukan kristal uranil mengemisikan radiasi pada plat fotoe. 898: Marie and Pierre Curie menemukan polonium (Z=84) dan radium (Z
adukan beton, semen dan airmembentuk pasta yang akan mengikat agregat, yang
BAB II TINJAUAN PUSTAKA 2.1 Umum Beton adalah campuran antara semen portland, air, agregat halus, dan agregat kasar dengan atau tanpa bahan-tambah sehingga membentuk massa padat. Dalam adukan beton, semen
KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS NEGERI YOGYAKARTA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS NEGERI YOGYAKARTA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM Program Studi : Pendidikan Fisika/Fisika Nama Mata Kuliah :Fisika Inti Kode
Fisika Umum (MA 301) Topik hari ini. Fisika Atom & Inti
Fisika Umum (MA 301) Topik hari ini Fisika Atom & Inti 8/14/2007 Fisika Atom Model Awal Atom Model atom J.J. Thomson Bola bermuatan positif Muatan-muatan negatif (elektron)) yang sama banyak-nya menempel
LEMBAR SOAL ULANGAN AKHIR SEMESTER (UTAMA) Mata Pelajaran (Beban) : Fisika 4 ( 4 sks) Hari/Tanggal : Senin, 30 Nopember 2009
J A Y A R A Y A PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SEKOLAH MENENGAH ATAS (SMA) NEGERI 78 JAKARTA Jalan Bhakti IV/1 Komp. Pajak Kemanggisan Telp. 527115/5482914 JAKARTA BARAT
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Kanker adalah penyakit yang timbul karena adanya pertumbuhan yang tidak normal pada sel jaringan tubuh. Disebut tidak normal, karena sel-sel tumbuh dengan cepat dan
Partikel sinar beta membentuk spektrum elektromagnetik dengan energi
Partikel sinar beta membentuk spektrum elektromagnetik dengan energi yang lebih tinggi dari sinar alpha. Partikel sinar beta memiliki massa yang lebih ringan dibandingkan partikel alpha. Sinar β merupakan
UNIVERSITAS NEGERI YOGYAKARTA F A K U L T A S M I P A
UNIVERSITAS NEGERI YOGYAKARTA F A K U L T A S M I P A RENCANA PELAKSANAAN PERKULIAHAN RPP/KIM SKM 229/ 01-02 5 September 2012 1. Fakultas/ Program Studi : FMIPA/Kimia 2. Matakuliah/Kode : Radioanalisis
INTERAKSI RADIASI DENGAN MATERI
INTERAKSI RADIASI DENGAN MATERI Disusun Oleh : ERMAWATI UNIVERSITAS GUNADARMA JAKARTA 1999 1 ABSTRAK Dalam mendesain semua sistem nuklir, pelindung radiasi, generator isotop, sangat tergantung dari jalan
BAB II RADIASI PENGION
BAB II RADIASI PENGION Salah satu bidang penting yang berhubungan dengan keselamatan radiasi pengukuran besaran fisis radiasi terhadap berbagai jenis radiasi dan sumber radiasi. Untuk itu perlu perlu pengetahuan
S T R U K T U R I N T I
S T R U K T U R I N T I Inti atom terdiri dari: proton dan neutron. Jumlah proton dan neutron dalam inti (disebut nukleon) dinyatakan sebagai nomor atom (A). Jumlah proton dalam inti dinyatakan sebagai
MAKALAH APLIKASI NUKLIR DI INDUSTRI
MAKALAH APLIKASI NUKLIR DI INDUSTRI REAKSI NUKLIR FUSI DISUSUN OLEH : Mohamad Yusup ( 10211077) Muhammad Ilham ( 10211078) Praba Fitra P ( 10211108) PROGAM STUDI FISIKA INSTITUT TEKNOLOGI BANDUNG 2013
SILABUS PEMBELAJARAN
SILABUS PEMBELAJARAN Sekolah : SMA... Kelas / Semester : XII / II Mata Pelajaran : FISIKA Standar : 3. Menganalisis berbagai besaran fisis pada gejala kuantum dan batas-batas berlakunya relativitas Einstein
Adapun manfaat dari penelitian ini adalah: 1. Dapat menambah informasi dan referensi mengenai interaksi nukleon-nukleon
F. Manfaat Penelitian Adapun manfaat dari penelitian ini adalah: 1. Dapat menambah informasi dan referensi mengenai interaksi nukleon-nukleon di dalam inti atom yang menggunakan potensial Yukawa. 2. Dapat
EKSPERIMEN SPEKTROSKOPI RADIASI ALFA
Laporan Praktikum Fisika Eksperimental Lanjut Laboratorium Radiasi PERCOBAAN R4 EKSPERIMEN SPEKTROSKOPI RADIASI ALFA Dosen Pembina : Herlik Wibowo, S.Si, M.Si Septia Kholimatussa diah* (080913025), Mirza
PREDIKSI UN FISIKA V (m.s -1 ) 20
PREDIKSI UN FISIKA 2013 1. Perhatikan gambar berikut Hasil pengukuran yang bernar adalah. a. 1,23 cm b. 1,23 mm c. 1,52mm d. 1,73 cm e. 1,73 mm* 2. Panjang dan lebar lempeng logam diukur dengan jangka
FISIKA INTI DI BIDANG KEDOKTERAN, KESEHATAN, DAN BIOLOGI
FISIKA INTI DI BIDANG KEDOKTERAN, KESEHATAN, DAN BIOLOGI Stuktur Inti Sebuah inti disusun oleh dua macam partikel yaitu proton dan neutron terikat bersama oleh sebuah gaya inti. Proton adalah sebuah partikel
Struktur atom. Bagian terkecil dari materi disebut partikel. Beberapa pendapat tentang partikel materi :
Struktur atom A PARTIKEL MATERI Bagian terkecil dari materi disebut partikel. Beberapa pendapat tentang partikel materi : Menurut Democritus, pembagian materi bersifat diskontinyu ( jika suatu materi dibagi
SPEKTROSKOPI-γ (GAMMA)
SPEKTROSKOPI-γ (GAMMA) SPEKTROSKOPI-γ (GAMMA) Veetha Adiyani Pardede M0209054, Program Studi Fisika FMIPA UNS Jl. Ir. Sutami 36 A, Kentingan, Surakarta, Jawa Tengah email: [email protected] ABSTRAK
Xpedia Fisika. Soal Fismod 1
Xpedia Fisika Soal Fismod 1 Doc. Name: XPPHY0501 Version: 2013-04 halaman 1 01. Pertanyaan 01-02 : Sebuah botol tertutup berisi 100 gram iodin radioaktif. Setelah 24 hari, botol itu berisi 12,5 gram iodin
Antiremed Kelas 12 Fisika
Antiremed Kelas 12 Fisika Persiapan UAS 2 Doc. Name: AR12FIS02UAS Version : 2016-09 halaman 1 01. Batas ambang frekuensi dari seng untuk efek fotolistrik adalah di daerah sinar ultraviolet. Manakah peristiwa
SPEKTROSKOPI-γ (GAMMA)
SPEKTROSKOPI-γ (GAMMA) Veetha Adiyani Pardede M2954, Program Studi Fisika FMIPA UNS Jl. Ir. Sutami 36 A, Kentingan, Surakarta, Jawa Tengah email: [email protected] ABSTRAK Aras-aras inti dipelajari
SILABUS PEMBELAJARAN
SILABUS PEMBELAJARAN Sekolah : SMA NEGERI 3 DUMAI Kelas / Semester : XII / II Mata Pelajaran : FISIKA Standar : 3. Menganalisis berbagai besaran fisis pada gejala kuantum dan batas-batas berlakunya relativitas
BAB I. Dasar Fisika Radiasi
BAB I. Dasar Fisika Radiasi A. PENDAHULUAN Bab I tentang Dasar Fisika Radiasi direncanakan selesai dalam waktu 2 kali 3 jam (3 x 50 menit) tatap muka. Sebagai Pendahuluan terdiri dari 3 bagian, yaitu dcskripsi
UNIVERSITAS NEGERI YOGYAKARTA F A K U L T A S M I P A
UNIVERSITAS NEGERI YOGYAKARTA F A K U L T A S M I P A RENCANA PELAKSANAAN PEMBELAJARAN RPP/KIM 233/ 01 1 Februari 2013 1. Fakultas/ Program Studi : FMIPA/Dik Kimia 2. Matakuliah/Kode : Kimia Inti/ KIM
Jilid 1. Penulis : Citra Deliana D.S, M.Si. Copyright 2013 pelatihan-osn.com. Cetakan I : Oktober Diterbitkan oleh : Pelatihan-osn.
Jilid 1 Penulis : Citra Deliana D.S, M.Si. Copyright 2013 pelatihan-osn.com Cetakan I : Oktober 2012 Diterbitkan oleh : Pelatihan-osn.com Kompleks Sawangan Permai Blok A5 No.12 A Sawangan, Depok, Jawa
BAB 2 STRUKTUR ATOM PERKEMBANGAN TEORI ATOM
BAB 2 STRUKTUR ATOM PARTIKEL MATERI Bagian terkecil dari materi disebut partikel. Beberapa pendapat tentang partikel materi :. Menurut Democritus, pembagian materi bersifat diskontinyu ( jika suatu materi
Penemuan Keradioaktifan dan Kestabilan Inti
Modul 1 Penemuan Keradioaktifan dan Kestabilan Inti Drs. I Made Sukarna, MSi. M PENDAHULUAN odul 1 ini terdiri atas dua kegiatan belajar. Kegiatan Belajar 1, membahas penemuan keradioaktifan, yang tidak
Kunci dan pembahasan soal ini bisa dilihat di dengan memasukkan kode 5976 ke menu search. Copyright 2017 Zenius Education
01. Batas ambang frekuensi dari seng untuk efek fotolistrik adalah di daerah sinar ultraviolet. Manakah peristiwa yang akan terjadi jika sinar-x ditembakkan ke permukaan logam seng? (A) tidak ada elektron
PAKET SOAL LATIHAN FISIKA, 2 / 2
PAKET SOAL LATIHAN FISIKA, 2 / 2 1. Pada rangkaian berikut, masing - masing hambatan adalah 6. Tegangan baterai 9 Volt, sedangkan hambatan dalam baterai diabai kan. Arus I adalah. a. 0,5 I A b. 1 A c.
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Kanker adalah penyakit akibat pertumbuhan yang tidak normal dari sel-sel jaringan tubuh yang berubah menjadi sel kanker. Sel-sel kanker ini dapat menyebar ke
1. Hasil pengukuran yang ditunjukkan oleh alat ukur dibawah ini adalah.
1. Hasil pengukuran yang ditunjukkan oleh alat ukur dibawah ini adalah. 1 A. 5, 22 mm B. 5, 72 mm C. 6, 22 mm D. 6, 70 mm E. 6,72 mm 5 25 20 2. Dua buah vektor masing-masing 5 N dan 12 N. Resultan kedua
BAB FISIKA INTI DAN RADIOAKTIVITAS
BAB FISIKA INTI DAN RADIOAKTIVITAS I. SOAL PILIHAN GANDA Soal pilihan ganda 0. 80 mewakili suatu atom unsure. setiap atom netral unsure ini mengandung. A. 0 elektron dan 80 neutron B. elektron dan 0 neutron
UNIVERSITAS NEGERI YOGYAKARTA F A K U L T A S M I P A SILABI
UNIVERSITAS NEGERI YOGYAKARTA F A K U L T A S M I P A SILABI Fakultas : FMIPA Program Studi : Kimia Mata Kuliah : Kimia Inti Jumah sks : sks Semester : 6 Mata Kuliah Prasyarat : Kimia Dasar, Kimia Fisika
BORON NEUTRON CAPTURE THERAPY (BNCT)
BAB 3 BORON NEUTRON CAPTURE THERAPY (BNCT) Boron Neutron Capture Therapy (BNCT), merupakan terapi kanker dengan memanfaatkan reaksi penangkapan neutron termal oleh isotop boron-10 yang kemudian menghasilkan
Fisika EBTANAS Tahun 1996
Fisika EBTANAS Tahun 1996 EBTANAS-96-01 Di bawah ini yang merupakan kelompok besaran turunan A. momentum, waktu, kuat arus B. kecepatan, usaha, massa C. energi, usaha, waktu putar D. waktu putar, panjang,
BAB I PENDAHULUAN I.1. Latar Belakang
BAB I PENDAHULUAN I.1. Latar Belakang Ada beberapa kategori power/daya yang digunakan, antara lain backbone power, green power dan mobile power. Backbone power adalah sumber energi primer yang selalu tersedia
