Trace Matriks Real Berpangkat Bilangan Bulat Negatif
|
|
|
- Yohanes Cahyadi
- 8 tahun lalu
- Tontonan:
Transkripsi
1 Jul Sis Mtemtik Sttistik, Vol., No., Juli 01 ISSN pit/issn olie Te Miks Rel Bepgkt Bilg Bult Negtif Fii yi 1, Muhmm Solihi. 1, Juus Mtemtik, Fkults Sis Tekologi, UIN Sult Syif Ksim Riu Jl. HR. Soets No. 1 Simpg Bu, Pm, Peku, 89 Emil: [email protected], [email protected] BSTRK Te miks lh jumlh i eleme-eleme igol utm i miks uju sgk. Mklh ii, memhs e i miks el epgkt ilg ult egtif. Diptk pesm umum e miks el uku x epgkt ilg ult egtif yg iotsik eg x. Pesm umum x ipeh meji u etuk yitu pesm umum e miks epgkt ilg ult egtif utuk gep pesm umum e miks epgkt ilg ult egtif utuk gjil. Ives miks etemi miks uku x ipeluk lm pemetuk pesm umum teseut. Syt e i miks el epgkt ilg ult egtif lh miks uku x hus memiliki ives. Ktkui : etemi, ives, pekli miks, pgkt miks, e, BSTRCT Te mix is the sum of the mi igol elemets of sque mix. I this ppe, we isuss the e of mix k el egtive iteges, ommo fom of e mix otie el size of powe egtive itege eote y x. The geel fomul of x ivie ito two fom, e mix powe egtive itege fo eve o. ivese the etemit of mix x is equie i the fomtio of geel fomul. Tems e of mix powe el egtive itege is x mix tht hs ivese. Keywos : etemit, ivese, mix multiplitio, powe of miks, e. Pehulu Slh stu kji s lm mempelji ilmu mtemtik megei lj lh miks. Miks lh susu segi empt siku-siku i ilg-ilg. Bilg teseut imk ei i miks.byk hl yg pt ihitug i sutu miks, sepeti pekli miks, etemi, Te miks segiy. Pekli miks pt ilkuk pil memeuhi syt yitu jumlh kolom miks petm sm eg jumlh is miks keu. Te miks lh jumlh i eleme-eleme igol utm i miks uju sgk yg ooy. Seljuty meuut to 198, mislk lh miks uju sgk. Fugsi etemi iytk oleh et, kit efiisik et segi jumlh semu hsil kli elemete et i. Jumlh et kit mk etemi. Meuut Beziski 01, e i miks epgkt seig ihs p eep ig mtemtik, sepeti lisis Jig, Teoi Bilg, Sistem Dimik, Teoi Miks Pesm Difeesil. P thu 01 J. Phe M. Jh, telh memhs megei e i sutu miks yg epgkt ilg ult positif, hsily eup pesm etuk umum e i miks teseut. 16
2 Jul Sis Mtemtik Sttistik, Vol., No., Juli 01 ISSN pit/issn olie Te i miksyg epgkt ilg ult positif, mk teleih hulu hus iklik miks yg sm seyk pgkty. Nmu, eg megguk pesm etuk umum yg telh ipeoleh mk tik pelu lgi memfktok miks, sehigg eg ept pt itetuk e miks yg epgkt ilg ult positif teseut. Hl teseutlh yg ilkuk oleh J. Phe M. Jh p mklhy 01. Besk mklh teseut yg hy memhs megei e i miks epgkt ilg ult positif, mk peulis teik utuk melkuk kji megei etuk umum e miks epgkt ilg ult egtif tu e. Metoe Bh Peeliti Peeliti ii ilkuk utuk meptk etuk umum e miks epgkt ilg ult egtif. Peeliti ii imuli eg ieik miks uku, eg mempuyi ives. Seljuty meetuk e smpi e, meetuk umus umum e eg gep gjil. Seljuty megpliksik umus umum utuk e eg gep gjil. Beikut ieik ls teoi tu h-h yg ipeluk lm pemhs. Defiisi 1. [] Seuh miks lh susu segi empt siku-siku i ilg-ilg. Bilg-ilg lm susu teseut imk ei lm miks. Defiisi. [6] Mislk lh miks m k B lh miks k. Pekli B, iotsik eg B lh miks m eg ei ke-i, j sm eg jumlh pekli i eleme yg esesui i is ke-i i kolom ke-j i B. Deg kt li, jik B ], mk [ ij ij i1 1 j i j Defiisi. [] Jik lh seuh miks uju sgk, mk pt iefiisik pgkt-pgkt ilg ult tk egtif meji. k tetpi, jik pt ilik, mk pt iefiisik pgkt ilg ult egtif meji. Defiisi. [] Mislk lh miks uju sgk. Fugsi etemi iytk oleh et, kit efiisik et segi jumlh semu hsil kli elemete et i. Jumlh et kit mk etemi. et 1 j 1 j. j Defiisi. [] Miks uju sgk x mempuyi ives jik miks B sehigg elku huug B B I miks B iseut segi Ives i miks tu seliky. Defiisi 6. [] Mislk ] sutu miks pesegi euku, mk e i [ ij miks iefiisik segi jumlh i eleme igol miks iotsik eg. Diytk hw e miks lh: ii i ik kj 1 1
3 Jul Sis Mtemtik Sttistik, Vol., No., Juli 01 ISSN pit/issn olie Pemhs megei e sutu miks telh i hs oleh Phe, eg juul e of positive itege powe of el mies, p thu 01. Mklh teseut memhs megei umus umum e i miks epgkt ilg ult positif utuk gep gjil. Beikut ieik etuk Pesm Phe []: Utuk gep: / et 6 0 Utuk gjil: 1/ et Hsil Pemhs Pemhs eikut meupk lgkh-lgkh pemetuk etuk umum yg sesui utuk meyelesik e i miks epgkt ilg ult egtif. Pemetuk umus umum teii i e miks epgkt ilg ult egtif utuk gep e miks epgkt ilg ult egtif utuk gjil. Petm pemhs e miks epgkt ilg ult egtif utuk gep. 1. Dieik miks R,,,,, eg mempuyi ives.. Meetuk et, ives,. Ives i miks yitu: 1 1 et et e 1 1 yitu: et. Meetuk e e. 8 18
4 Jul Sis Mtemtik Sttistik, Vol., No., Juli 01 ISSN pit/issn olie 19 Seljuty ipeoleh: et et et 9 Besk Defiisi i peoleh miks yitu: Seljuty, ipeoleh: et et et et 10 Deg meliht kemli Pesm 9 10 mk ipeoleh:
5 Jul Sis Mtemtik Sttistik, Vol., No., Juli 01 ISSN pit/issn olie et et et et et et et Hl yg sm ilkuk teus smpi e miks yg epgkt ilg egtif 8, yitu: et 8 8 et 8 sehigg pt ietuk keumus umum - utuk gep yitu: et 11 Deg megguk Pesm 6 ipeoleh: et / et 0 et Seljuty k ihs megei e miks epgkt ilg ult egtif: 1 Besk Defiisi i peoleh miks 1 yitu: Seljuty, ipeoleh: 0
6 Jul Sis Mtemtik Sttistik, Vol., No., Juli 01 ISSN pit/issn olie 1 et et et 1 Besk Defiisi i peoleh miks yitu: Seljuty, ipeoleh: ] [ ] ][ [ ][ [ ] [ 10 et et et et 1 Deg yg sm ipeoleh, et 1 Deg meliht kemli Pesm 1, 1 1 mk ipeoleh: et et et et et et et
7 Jul Sis Mtemtik Sttistik, Vol., No., Juli 01 ISSN pit/issn olie et sehigg pt ietuk keumus umum - utuk gjil yitu: et Deg megguk Pesm ipeoleh: et 1/ et et 1 16 Kesimpul Besk hsil pemhs ipeoleh kesimpul segi eikut: Dieik miks x eg mempuyi ives tu et 0 mk: 1. Betuk umum i e miks el epgkt ilg ult egtif utuk gep, yitu: et / et 0 et. Betuk umum i e miks el epgkt ilg ult egtif utuk gjil, yitu: et 1/ et et S: Peeliti memhs e i miks yg euku eg ei-eiy meupk ilg el. Oleh ke itu, isk utuk megemgk e i miks yg euku leih es sepeti miks DfPustk [1] Beziski, C. Fik, P. M. Miouli, Estimtios of the e of powes of positive y expoltio of the momet, Eleoi Tstios o Numeil lysis, 9, 1-1, 01. [] H. to, Elemey Lie lge, Fifth E., Joh Wiley & Sos, New Yok, 198. [] I. Mhmu, lj Lie Ds, Elgg, Jkt, 009.
8 Jul Sis Mtemtik Sttistik, Vol., No., Juli 01 ISSN pit/issn olie [] J. E. Getle, Mix lge, Spige, New Yok, 00. [] J. Phe M. Jh, Te of positive itege powe of el Mies, ves i Lie lge & Mix Theoy,, 10-1, 01. [6] K. H. Rose, Disete Mthemtis Its pplitio, Seveth E., MGw-Hill, Sigpoe, 00. [] R. Lso, Elemey Lie lge, Seveth E., Books/Cole, Bosto,01.
INVERS MATRIKS SIRKULASI REGULAR MELALUI TEOREMA ADJOIN
INVERS MATRIKS SIRKULASI REGULAR MELALUI TEOREMA ADJOIN Fs Pletio N * Rol Pe Musii M Mhsisw Pogm S Mtemtik Dose Juus Mtemtik Fkults Mtemtik d Ilmu Pegethu Alm Uivesits Riu Kmpus Biwidy Pekbu 89 Idoesi
1 ) 8 berturut-turut. 1 ) 8, dan seterusnya. Lambang bilangan 3, 1 disebut
Kegit Belj Megj 7 BILANGAN BERPANGKAT Ds Ziuddi, MPd Kegit elj egj 7 ii eupk kegit elj egj tekhi di tkulih Mtetik Ds Ckup di kegit elj egj ii ehs pokok hs tetg ilg epgkt d opesiy Pokok hs ii eliputi su-su
KRIPTOGRAFI KUNCI PUBLIK: SANDI RSA
Kiptogfi Kuci Pulik: Sdi RSA KRIPTOGRAFI KUNCI PUBLIK: SANDI RSA Oleh: M Zki Riyto Pogm Studi Mtemtik, Fk Sis d Tekologi UIN Su Klijg Yogykt Sdi RSA Sdi RSA meupk lgoitm kiptogfi kuci pulik (simetis) Ditemuk
BAB V TRANSFORMASI - Z
BAB V TRANSFORMASI - Z A. Pegeti Tsfomsi- Tsfomsi- lh sutu tsfomsi yg egu utuk meyelesik esm e (iffeece equtio). Hl ii seu eg kegu tsfomsi Llce, teti elku utuk siyl sistem wktu iskit. Tsfomsi- i sutu siyl
1. Bilangan Berpangkat Bulat Positif
N : Zui Ek Sri Kels : NPM : 800 BILANGAN BERPANGKAT DAN BENTUK AKAR A. Pgkt Bilg Bult. Bilg Berpgkt Bult Positif Dl kehidup sehri-hri kit serig eeui perkli ilg-ilg deg fktor-fktor yg s. Mislk kit teui
24/02/2014. Sistem Persamaan Linear (SPL) Beberapa Aplikasi Sistem Persamaan Linear Rangkaian listrik Jaringan Komputer Model Ekonomi dan lain-lain.
// Alj Lie Elemete MUGE SKS Silus : B I Mtiks d Oesi B II Detemi Mtiks B III Sistem Pesm Lie B IV Vekto di Bidg d di Rug B V Rug Vekto B VI Rug Hsil Kli Dlm B VII Tsfomsi Lie B VIII Rug Eige // :8 MUGE
BAB XVIII. NOTASI SIGMA, BARISAN, DERET DAN INDUKSI MATEMATIKA
BAB XVIII. NOTASI SIGMA, BARISAN, DERET DAN INDKSI MATEMATIKA Notsi Sigm : dlh otsi sigm, diguk utuk meytk pejumlh beuut di sutu bilg yg sudh bepol. meupk huuf cpitl S dlm bjd Yui dlh huuf petm di kt SM
TRANSFORMASI-Z RASIONAL
TRANSFORMASI-Z RASIONAL. Pole d Zeo Zeo di sutu tsfomsi- dlh ili-ili deg X() = 0. Pole di sutu tsfomsi- dlh ili-ili deg X() =. Jik X() dlh fugsi siol, mk () Jik 0 0 d 0 0, kit dt meghidi gkt egtif deg
MATRIKS REFLEKSIF TERGENERALISASI. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia
MTRIKS REFLEKSIF TERGENERLISSI Hed Myulis, Si Gemwti, sli Siit Mhsisw Pogm Studi S Mtemtik Dose Juus Mtemtik Fkults Mtemtik d Ilmu Pegethu lm Uivesits Riu Kmpus Biwidy Pekbu (893), Idoesi [email protected]
SOLUSI SOAL ESSAY. No. 1 s.d 15. Jadi, uang tabungan Laila akan menjadi $6 kurang dari pada tabungan Tina setelah 13 minggu.
SOUSI SO ESSY No. s.. Solusi: Misly umur yh sy, iu sy, ik lki-lki sy sekrg lh x, y, z, mk x : y : z : 9 : x : z : x z. ( x 4 x 4 Jik : c :, mk c c x 36. ( ri ( (, kit memperoleh: x 36 x 36 z 3 Ji, ik lki-lki
FUNGSI KARAKTERISTIK. penelitian ini akan ditentukan fungsi karakteristik dari distribusi four-parameter
IV. FUNGSI KARAKTERISTIK Pd bgi seljuty k dijbrk megei ugsi krkteristik. Pd peeliti ii k ditetuk ugsi krkteristik dri distribusi our-prmeter geerlized t deg megguk deiisi d kemudi k membuktik ugsi krkteristik
III PEMBAHASAN. peubah. Sistem persamaan (6) dapat diringkas menjadi Bentuk Umum dari Magic Square, Bilangan Magic, dan Matriks SPL
III PEMBAHASAN 3.1. Betuk Umum dri Mgic Squre, Bilg Mgic, d Mtriks SPL Mislk eleme dri bris ke-i d kolom ke-j dlh i,j mk mgic squrey secr umum dlh 1,1 1, 1,,1,,,1,, Gmbr 1. Betuk umum mgic squre deg: i,j
Pertemuan : 3 Materi : Sistem Persamaan Linear : - Teorema Eksistensi - Reduksi ke Bentuk Echelon
Pertemu : 3 Mteri : Sistem Persm Lier : - Teorem Eksistesi - Reduksi ke Betuk Echelo Stdr Kompetesi : Setelh megikuti perkulih ii mhsisw dihrpk dpt. memhmi kemli pegerti mtriks d trsformsi lier. memhmi
LIMIT FUNGSI. lim lim. , c = konstanta 6. lim f(x) Penting : Persoalan limit adalah mengubah bentuk tak tentuk menjadi bentuk tertentu.
LIMIT FUNGSI Teoem. f() g() f() g( ). f().g() f(). g( ) f(). f() g() f() g( ). deg g() g() g(). c.f() c. f(), c = kostt. f() f() f() Betuk Tk Tetu Betuk di dlm mtemtik d mcm, yitu :. Betuk tedefiisi (tetetu)
BARISAN DAN DERET. 2. Tuliskan tiga suku berikutnya dari setiap barisan berikut ini dan tentukan rumus sederhana suku ke n! a.
BARIAN DAN DERET A. BARIAN BILANGAN Bis dlh himpu semg usu-usu yg ditulis sec euut. Bis ilg dlh susu ilg yg disusu meuut sutu pol/ tu tetetu. Cotoh :.. Cotoh ol. Cilh 4 suku petm di is eikut, jik :.. c..
Diijinkan memperbanyak demi kepentingan pendidikan dengan tetap mencantumkan alamat situs
Diijik memperyk demi kepetig pedidik deg tetp metumk lmt situs LATIH UN IPS. 008 00 KATA PENGANTAR Alhmdulillh peulis pjtk kehdirt Allh SWT., Ats limph rhmt, erkh, d hidyh-ny sehigg peulis dpt meyelesik
1. HIMPUNAN. Kadang-kadang suatu himpunan hanya dapat dinyatakan dengan salah satu cara, tetapi kadang-kadang juga dapat dinyatakan dengan keduanya.
1. HIMUNN Himpu iefiisik segi kumpul ojek-ojek yg ere Liu 1986. tu himpu ojek eg syrt keggot tertetu. otoh : { 12345} { x ult 1 x 5 } Jik sutu ojek x merupk ggot ri himpu mk itulisk x i : x lh ggot tu
CATATAN KULIAH Pertemuan III: Model-model linier dan Aljabar Matriks (1)
CTTN KULIH Pertemu III: Moel-moel liier ljr Mtriks () Tuju mempeljri ljr Mtriks : Memerik sutu r peulis sistem persm yg sigkt wlupu persmy lus sekli Memerik sutu r peguji sutu pemeh eg peekt etermi Meptk
EKSPONEN/PANGKAT, BENTUK AKAR, DAN LOGARITMA. Bilangan a (a 0) disebut basis atau bilangan pokok, sedangkan n disebut pangkat atau eksponen.
EKSPONEN/PANGKAT, BENTUK AKAR, DAN LOGARITMA theresivei.wordpress.o A. BENTUK PANGKAT BULAT. Pgkt Bult Positif Igt: 5 5 = (-) = -() = Defiisi Bilg erpgkt ult positif : Mislk ilg ult positif d ilg Rel,
BAB VI SIFAT-SIFAT LANJUTAN INTEGRAL RIEMANN
BAB VI SIFAT-SIFAT LANJUTAN INTEGAL IEMANN Sift-sift Ljut Itegrl iem Teorem 6.1 Jik f [, ] d f [, ] deg < < mk f [, ]. Leih ljut f x dx f x dx + () f x dx f [, ] d f [, ], mislk () f x dx A 1 d () f x
BAB V INTEGRAL DARBOUX
Itegrl Droux BAB V INTEGRAL DARBOUX Pd thu 1875, mtemtikw I.G. Droux secr kostruktif memodifiksi defiisi itegrl Riem deg terleih dhulu medefiisik jumlh Droux ts (upper Droux sum) d jumlh Droux wh (lower
LATIHAN UN MATEMATIKA IPA
LATIHAN UN MATEMATIKA IPA LATIH UN IPA. 00-00 DAFTAR ISI KATA PENGANTAR... DAFTAR ISI.... Pgkt Rsiol, Betuk Akr d Logritm.... Persm Kudrt...0. Sistem Persm Lier... 4. Trigoometri I...8 5. Trigoometri II...7
1. bentuk eksplisit suku ke-n 2. ditulis barisannya sejumlah berhingga suku awalnya. 3. bentuk rekursi ...
Bris d Deret Defiisi Bris bilg didefiisik sebgi fugsi deg derh sl merupk bilg sli. Notsi: f: N R f( ) = Fugsi tersebut dikel sebgi bris bilg Rel { } deg dlh suku ke-. Betuk peulis dri bris :. betuk eksplisit
A. Barisan Geometri. r u. 1).Definisi barisan geometri. 2). Suku ke-n barisan geometri
A. Bis Geometi ).Defiisi bis geometi Sutu bis yg suku-sukuy dipeoleh deg c meglik suku sebelumy deg sutu kostt (sio/pembdig) tu ili kost. Betuk umum bis geometi (deg suku wl d sio ) dlh : + + + +... +
Sistem Bilangan dan Kesalahan. Sistim Bilangan Metode Numerik 1
Sistem Bilg d Keslh Sistim Bilg Metode Numerik Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Sistim Bilg Metode Numerik Cotoh : 673 * 3 6* 7* 3*
Trihastuti Agustinah
TE 967 Tekik Numerik Sistem Lier Trihstuti gustih Big Stui Tekik Sistem Pegtur Jurus Tekik Elektro - FTI Istitut Tekologi Sepuluh Nopember O U T L I N E OBJEKTIF CONTOH SIMPULN 5 LTIHN OBJEKTIF Teori Cotoh
Diijinkan memperbanyak demi kepentingan pendidikan dengan tetap mencantumkan alamat situs
Diijik memperyk demi kepetig pedidik deg tetp mectumk lmt situs LATIH UN IPA. 00-00 KATA PENGANTAR Alhmdulillh peulis pjtk kehdirt Allh SWT., Ats limph rhmt, erkh, d hidyh-ny sehigg peulis dpt meyelesik
Aljabar Linear Elementer
Aljr Lier Elemeter MA SKS Silus : B I Mtriks d Opersiy B II Determi Mtriks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige
Sistem Bilangan dan Kesalahan. Metode Numerik
Sistem Bilg d Keslh Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Cotoh : 673 * 3 6* 7* 3* Bilg ult deg ilg dsr c didefiisik segi : ( )... c N c
BILANGAN BERPANGKAT DAN BENTUK AKAR
BILANGAN BERPANGKAT DAN BENTUK AKAR. Sift Opersi Bilg Bult Berpgkt Defiisi Pgkt Bult Positif Jik dlh ilg rel (yt) d dlh ilg sli (ilg ult positif), k... seyk fktor deg = pgkt tu ekspoe = ilg pokok/dsr/sis
Bab 3 SISTEM PERSAMAAN LINIER
Alis Numerik Bh Mtrikulsi B SISTEM PERSAMAAN LINIER Pedhulu Pd kulih ii k dipeljri eerp metode utuk meelesik sistem persm liier Peelesi sistem persm deg jumlh vriel g tidk dikethui serig ditemui didlm
Eliminasi Gauss Gauss Jordan
Persm Liier Simult Elimisi Guss Guss Jor Persm Liier Simult Persm liier simult lh sutu betuk persm-persm p yg secr bersm-sm meyjik byk vribel bebs. Betuk persm liier simult eg m persm vribel bebs pt itulisk
JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 41-45, April 2001, ISSN : KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH
Vol. 4. No. 1, 41-45, Aril 2001, ISSN : 1410-8518 KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH Bmbg Irwto Jurus Mtemtik FMIPA UNDIP Abstct I this er, it ws lered of the ecessry d sufficiet coditio for
RENCANA PELAKSANAAN PERKULIAHAN
Lesso Study FMIPA UNY RENCANA PELAKSANAAN PERKULIAHAN MATA KULIAH : ALJABAR LINEAR II SEMESTER : III TOPIK : NILAI EIGEN DAN VEKTOR EIGEN SUB TOPIK : NILAI EIGEN DAN VEKTOR EIGEN WAKTU : X 5 A. Stdr Kompetesi:
DETERMINAN MATRIKS dan
DETERMINN MTRIKS d TRNSFORMSI ELEMENTER gusti Prdjigsih, M.Si. Jurus Mtemtik FMIP UNEJ [email protected] DEFINISI Utuk setip mtriks bujursgkr berordo x dpt dikitk deg tuggl sutu bilg rel yg dimk determi.
BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ. Definisi 3.1 Matriks Toeplitz adalah suatu matriks., dengan nilai,, dan indeks yang
BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ 3. Mtriks Toeplitz Defiisi 3. Mtriks Toeplitz dlh sutu mtriks [ t ; k, j = 0,,..., ] : T =, k j, deg ili,, d ideks yg diguk setip etriy
SOAL UJIAN AKHIR MATEMATIKA INFORMATIKA 4 (A & B) Dosen: Dr. Asep Juarna Jumlah Soal: 3 Uraian Tanggal Ujian: 02/03/12 Waktu Ujian: 2 jam
SOAL UJIAN AKHIR MATEMATIKA INFORMATIKA 4 A & B Dose: Dr. Asep Jur Jumlh Sol: Uri Tggl Uji: // Wktu Uji: jm jik. Solusi t dlh: t + log, yg dpt dibuktik sbb: t jik t t + [t/ + ] + t/ + t/4 + t/8 + 4 t/
MA1201 MATEMATIKA 2A Hendra Gunawan
MA1201 MATEMATIKA 2A Hedr Guw Semester II, 2016/2017 24 Februri 2017 9.6 Deret Pgkt Kulih yg Llu Meetuk selg kekoverge deret pgkt 9.7 Opersi pd Deret Pgkt Melkuk opersi pd deret pgkt yg dikethui jumlhy
Matematika Dasar INTEGRAL TENTU . 2. Partisi yang terbentuk merupakan segiempat dengan ukuran x dan f ( x k ) sebagai
Mtemtik Dsr INTEGRAL TENTU Pegerti tu kosep itegrl tetu pertm kli dikelk oleh Newto d Leiiz. Nmu pegerti secr leih moder dikelk oleh Riem. Mteri pemhs terdhulu yki tetg itegrl tk tetu d otsi sigm k kit
Nuryanto,ST.,MT. Integral merupakan operasi invers dari turunan. Jika turunan dari F(x) adalah F (x) = f(x), maka F(x) = f(x) dx.
Nuryto,ST.,MT d c. INTEGRAL TAK TENTU KONSEP DASAR INTGRAL f. ALJABAR INTEGRAL f. TRIGONO CONTOH SOAL SOAL LATIHAN UJI KOMPETENSI Itegrl merupk opersi ivers dri turu. Jik turu dri F dlh F = f, mk F = f
BAB I SISTEM PERSAMAAN LINEAR
BAB I SISTEM PERSAMAAN LINEAR Sistem persm ditemuk hmpir di semu cg ilmu pegethu Dlm idg ilmu ukur sistem persm diperluk utuk mecri titik potog eerp gris yg seidg, di idg ekoomi tu model regresi sttistik
mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x
B 4. Peerp Itegrl BAB 4. PENGGUNAAN INTEGRAL 4.. Lus re dtr Perhtik derh di wh kurv y = f () di tr du gris tegk = d = di ts sumu, deg f fugsi kotiu. Seperti pd s medefiisik itegrl tertetu, kit gi itervl
HASIL DAN PEMBAHASAN
HASIL DAN PEMBAHASAN Perumus Pedug Bgi θ Misl N dlh proses Poisso pd itervl [0 deg rt μ yg otiu mutl d fugsi itesits λ yg teritegrl lol. Utu setip himpu Borel terts B m μ( B Ε N( B λ( s ds
Catatan Kuliah 1 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks
Ctt Kulih Mtemtik Ekoomi Memhmi d Meglis ljbr Mtriks. Mtriks d Vektor Mtriks Mtriks dlh kumpul bilg, prmeter tu vribel tersusu dlm bris d kolom sehigg terbetuk segi empt. Susu ii bisy diletkk dlm td kurug
METODE NUMERIK. Sistem Persamaan Linier (SPL) (1) Pertemuan ke 5. Rinci Kembang Hapsari, S.Si, M.Kom
METODE NUMERIK Pertemu ke 5 Sistem Persm Liier (SPL) () Rici Kemg Hpsri, S.Si, M.Kom www.rkhcdemy.com/wp Represetsi SPL Betuk umum persm lier deg peuh Dim :,, : koefisie dri persm, d,,..., merupk peuh.
1. SISTEM PERSAMAAN LINEAR DAN MATRIKS
Diktt Aljr Lier Sistem Persm Lier d Mtriks. SISTEM PERSAMAAN LINEAR DAN MATRIKS.. PENGANTAR DEFINISI. : PERSAMAAN LINEAR Sutu persm lier deg peuh x, x 2,, x dpt diytk dlm etuk : x + 2 x 2 + + x = (.) dim,
matematika PEMINATAN Kelas X SIFAT-SIFAT EKSPONEN K13 A. DEFINISI EKSPONEN B. SIFAT-SIFAT BENTUK PANGKAT
K1 Kels X tetik PEMINATAN SIFAT-SIFAT EKSPONEN TUJUAN PEMBELAJARAN Setelh epeljri teri ii, ku dihrpk eiliki kepu erikut. 1. Mehi defiisi ekspoe.. Mehi sift-sift etuk pgkt.. Mehi sift-sift etuk kr.. Megguk
BARISAN DAN DERET BARISAN DAN DERET. U n. 2 n. 2 a = suku pertama = U 1 b = beda deret = U n U n 1. I. Perngertian Barisan dan Deret
BARISAN DAN DERET I. Pergerti Bris d Deret Bris bilg dlh pemet dri bilg sli ke bilg rel yg diurutk meurut tur tertetu. U III. Deret Geometri Ciriy : rsio tetp U = r S r = r S r = r = bilg sli U = suku
Barisan dan Deret Tak Hingga
Modul Bris d Deret Tk Higg Dr. Spti Whyuigsih, M.Si. M PENDAHULUAN odul ii meyjik kji tetg Bris d Deret Tk Higg. Kji tetg bris d deret memegg per sgt petig kre sebgi dsr utuk pembhs Itegrl Tetu. Bris d
Hendra Gunawan. 19 Februari 2014
MA0 MATEMATIKA A Hedr Guw Semester II, 03/0 9 Februri 0 9. Deret Tk Terhigg Kulih yg Llu Memeriks kekoverge sutu deret d, bil mugki, meghitug jumlhy 9.3 Deret Positif: Uji Itegrl Memeriks kk kekoverge
htt://meetied.wordress.com Mtemtik X Semester SMAN BoeBoe Jik sesutu tmk sulit gi kti, jg meggg org li tidk mmu melkuk. Selik, jik sesutu dt dilkuk oleh org li, kikh hw kit jug mmu melkuk. (Mrcus Aurelius
Modul 8. (Pertemuan 12 s/d 16) DERET FOURIER
Modul 8. (Pertemu s/d 6) DERET FOURIER 8. FUNGSI PERIODIK DAN FUNGSI KONTINU TERPOTONG Defiisi Fugsi f diseut fugsi periodik il terdpt p > sedemiki sehigg utuk setip erlku f ( p) f ( ). Nili p > terkecil
BAB III SIFAT-SIFAT INTEGRAL RIEMANN-STIELTJES. 3.1 Integral Riemann-Stieltjes dari Fungsi Bernilai Real
BAB III SIFAT-SIFAT INTEGRAL RIEMANN-STIELTJES 3.1 Itegrl Riem-Stieltjes dri Fugsi Berili Rel Pd seelumy telh dihs megei eerp kosep dsr, dim kosep-kosep ii merupk slh stu teori pedukug yg tiy k erper segi
MA SKS Silabus :
Aljr Lier Elemeter A SKS Silus : B I triks d Opersiy B II Determi triks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige 7//7
syarat atau nilai awal a, , dengan solusi umum pola barisan aritmetika dan a, solusi umum pola barisan aritmetika tingkat tiga
SUKU KE- BARISAN ARITMETIKA TINGKAT DUA, TIGA DAN EMPAT DENGAN PENDEKATAN AKAR KARAKTERISTIK Drs Sumro Imil, MP ABSTRAK Utu memeuhi eutuh lm pegemg pemhm terhp sustsi mteri ris ritmeti, ji ii memeri uri
Analisa Kestabilan Pendahuluan Konsep Umum Kestabilan
Ali Ketil 4 Ali Ketil.. Pedhulu Hl yg mt petig dlm dei item kotrol dlh mlh tilit item. Buk hl yg rhi lgi hw pokok tuju terpetig dlm li d dei kotrol dlh meiptk utu item yg til. Sutu item diktk til pil teript
Hendra Gunawan. 21 Februari 2014
MA0 MATEMATIKA A Hedr Guw Semester II, 03/04 Februri 04 Kulih Sebelumy 9.4 Deret Positif: Uji Liy Memeriks kekoverge deret positif deg ujiperbdigd ujirsio 9.5 Deret Gti Td: Kekoverge Mutlk d Kekoverge
TE Dasar Sistem Pengaturan. Kriteria Kestabilan Routh
TE946 Dr Sitem Pegtur Kriteri Ketil Routh Ir. Jo Prmudijto, M.Eg. Juru Tekik Elektro FTI ITS Telp. 5947 Fx.597 Emil: [email protected] Dr Sitem Pegtur - 7 Ojektif: Koep Ketil Ketil Routh Proedur Ketil Routh
MA1201 MATEMATIKA 2A Hendra Gunawan
MA0 MATEMATIKA A Hedr Guw Semester II, 06/07 0 Februri 07 9. Deret Tk Terhigg Kulih yg Llu Memeriks kekoverge sutu deret d, bil mugki, meghitug jumlhy 9.3 Deret Positif: Uji Itegrl Memeriks kekoverge deret
BAB 2 SISTEM BILANGAN DAN KESALAHAN
Metode Numerik Segi Algoritm Komputsi 5 BAB SISTEM BILANGAN DAN KESALAHAN.. Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik : N ( )...... Cotoh : 67. 6. 7.. Bilg
MATEMATIKA DISKRIT FUNGSI 2 FUNGSI PEMBANGKIT (GENERATION FUNGTIONS) TITI RATNASARI, SSi., MSi. Modul ke: Fakultas ILKOM
MATEMATIKA DISKRIT Modul e: FUNGSI 2 FUNGSI PEMBANGKIT GENERATION FUNGTIONS Fults ILKOM TITI RATNASARI, SSi., MSi Pogm Studi TEKNIK INFORMATIKA www.mecubu.c.id Fugsi pembgit Fugsi pembgit digu utu meepesetsi
BAB IV INTEGRAL RIEMANN
Itegrl Rie BAB IV INTEGRAL RIEMANN Utuk epeljri leih ljut tetg kosep itegrl Rie, k leih ik jik pec ehi eerp hl erikut. A. Prtisi Defiisi 4.1 Dierik itervl tertutup [, ], hipu terurut d erhigg P = { = x
Soal-soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2008
Sol-sol d Pembhs Mtemtik Dsr SBMPTN - SNMPTN 8 y. Dlm betuk pgkt positif, ( y). A. ( + y ) ( y ) C. ( y ) E. - ( y ) B. - ( + y ) ( y ) D. ( y ) y ( y) y ( y) y y ( y) y (y). (y) y - ( y ) ( y + ) - (-y+
Persamaan Linier Simultan
Persm Liier Simult Elimisi Guss Guss Jord Elimisi_GussJord Persm Liier Simult Persm liier simult dlh sutu etuk persm-persm yg ser ersm-sm meyjik yk vriel es. etuk persm liier simult deg m persm d vriel
SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI. Prasetyo Budi Darmono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo
SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI Prsetyo Budi Drmoo Jurus Pedidik Mtemtik FKIP Uiversits Muhmmdiyh Purworejo Abstrk Persm lier dlm vribel 1, 2, 3,.. sebgi sebuh persm yg dpt diytk dlm
Estimasi Koefisien Fungsi Regular- Dari kelas Fungsi Analitik Bieberbach-Eilemberg
Estimsi Koefisie Fugsi Regulr- Dri kels Fugsi Alitik Bieberbch-Eilemberg Oleh Edg Chy M.A Jurus Mtemtik FPMIPA UPI Abstrk Tulis ii mejelsk tetg estimsi koefisie fugsi regulr- yg dideretk, sebgi fugsi yg
BAB V ENERGI DAN POTENSIAL
ENERGI DN POTENSIL 4. Eegi g dipeluk meggek mut titik dlm med listik. Itesits med listik didefiisik sebgi g g betumpu pd mut uji stu pd titik g igi kit dptk hg med vekt. Jik mut uji tesebut digekk melw
Bentuk umum persamaan aljabar linear serentak :
BAB III Pers Aljr Lier Seretk Betuk umum persm ljr lier seretk : x + x + + x = x + x + + x = x + x + + x = dim dlh koefisie-koefisie kost t, dlh kosttkostt d dlh yky persm Peyelesi persm lier seretk dpt
PENYELESAIAN INTEGRAL RANGKAP DUA DENGAN METODE SIMPSON DAN KUADRAATUR GAUSS
PENYELESAIAN INTEGRAL RANGKAP DUA DENGAN METODE SIMPSON DAN KUADRAATUR GAUSS IRWAN Jurus Mtemtik, Fkults Sis Tekologi, UINAM e-mil:[email protected] ABSTRAK Ifo: Jurl MSA Vol. 2 No. 1 Eisi: Juri Jui 2014 Artikel
Sub Pokok Bahasan Bilangan Bulat
MODUL MATERI PELAJARAN MATEMATIKA Sub Pokok Bhs Bilg Bult Kels : VII (tujuh) Seester: 1 (gjil) Kurikulu KTSP Disusu Oleh: Seri Rhwti, S.Pd NIP. 171101 001 001 MTsN SELAT KUALA KAPUAS TAHUN PELAJARAN 010/011
DERET PANGKAT TAK HINGGA
DERET PANGKAT TAK HINGGA TEOREMA-TEOREMA PENTING TERKAIT DERET PANGKAT TEOREMA-TEOREMA PENTING. Itegrsi d diferesisi deret pgkt dpt dilkuk per suku, yitu: ( ) d p q d d ( ) q p d d ( ) ( ) d, d p, q Selg
RINGKASAN MATERI UJIAN NASIONAL MATEMATIKA SMA PROGRAM IPS
RINGKASAN MATERI UJIAN NASIONAL MATEMATIKA SMA PROGRAM IPS COPYRIGHT www.solmtemtik.om 009 Rigks Mteri UN Mtemtik SMA Prog. IPS http://www.solmtemtik.om. PANGKAT RASIONAL, BENTUK AKAR DAN LOGARITMA A.
BARISAN DAN DERET. Jawaban : D a = 3, b = 2, U 10 = (a + 9b) U 10 = = 21. Jawaban : E a = 2,5 S ~ =
pge of SOAL Jumlh ke-0 dri bris :,, 7, 9,.dlh.. d. e. 7 9 Ebts 99 Sebuh bol jtuh dri ketiggi, meter d memtul deg ketiggi kli tiggi semul. D setip kli memtul berikuty, mecpi ketiggi kli tiggi ptul sebelumy.
STATISTIK. Diskusi dan Presentasi_ p.31
STATISTIK Diskusi d Presetsi_ p.31 No.1 Tetuk populsi d smpel yg mugki jik kit melkuk peeliti tu pegmt tetg kejdi-kejdi erikut:. Jeis-jeis ik yg hidup di terumu krg. Wh peykit demm erdrh di kot Mlg, d
Titik Biasa dan Titik Singular Misalkan ada suatu persamaan diferensial orde dua h(x)y + p(x)y + q(x)y = 0 (3)
PERSAMAAN LEGENDRE Fugi Rel Alitik Sutu fugi f( diktk litik pd jik fugi itu dpt diytk dl deret pgkt deg rdiu kovergei poitif. f ( ( + ( + ( + ( +... dl elg kovergeiy diperoleh f ( ( f '( f "(. f '''(......
TEOREMA DERET PANGKAT
TEOEMA DEET PANGKAT Kosep Dsr Deret pgkt erupk sutu etuk deret tk higg 3 + ( + + 3( +... ( disusik,, d koefisie i erupk ilg rel. Julh prsil utuk suku pert etuk di ts dlh s yg dpt ditulisk segi s ( + (
juga dinyatakan sebagai a n atau a n n n 0,1, 2, 3,... Pada barisan dibagi menjadi barisan konvergen dan barisan divergen.
MATERI: ) Perbed bris d deret b) Defiisi d teorem tetg deret c) Deret suku positif d uji kovergesiy d) Deret hiperhrmois e) Deret ukur f) Deret ltertig d uji kovergesiy g) Deret kus d opersiy h) Deret
PENYELESAIAN PERSAMAAN DIFERENSIAL ORDE TIGA DENGAN METODE DERET PANGKAT SKRIPSI. Oleh: NUR LAILI NINGSIH NIM :
PENYELESAIAN PERSAMAAN DIFERENSIAL ORDE TIGA DENGAN METODE DERET PANGKAT SKRIPSI Oleh: NUR LAILI NINGSIH NIM : 56 JURUSAN MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI MALANG 8 PENYELESAIAN
Dia yang menjadikan matahari dan bulan bercahaya, serta mengaturnya pada beberapa tempat, supaya kamu mengetahui bilangan tahun dan perhitunganya
Pemeljr M t e m t i k... Di g mejdik mthri d ul erch, sert megtur pd eerp tempt, sup kmu megethui ilg thu d perhitug (QS Yuus:5 ) Pedhulu us Sift : - us derh rt dlh ilg riil tk egtif - persegipjg=pjg ler
PANGKAT & AKAR (INDICES & SURDS)
PANGKAT & AKAR (INDICES & SURDS) Ksus Hituglh? A PANGKAT (EKSPONEN) Ksus Perhtik hw x x Terliht hw d tig uh gk yg diklik d jik d gk seyk uh, k seyk Secr uu, disipulk Igt keli ruus pert Secr uu disipulk
Rangkuman Materi dan Soal-soal
Rgkum Mteri d Sol-sol Dirgkum Oleh: Ag Wiowo, SPd mtikzoe@gmilcom / wwwmtikzoewordpresscom Rigks Mteri d Cotoh Sol Pegerti Limit k d it kiri * f L, rtiy ilm medekti dri k, mk ili f ( medekti L * f L, rtiy
Rangkuman Materi dan Soal-soal
Rgkum Mteri d Sol-sol Dirgkum Oleh: Ag Wiowo, SPd mtikzoe@gmilcom / wwwmtikzoewordpresscom Rigks Mteri d Cotoh Sol Pegerti Limit k d it kiri * f L, rtiy ilm medekti dri k, mk ili f ( medekti L * f L, rtiy
SISTEM PERSAMAAN LINEAR. Nurdinintya Athari (NDT)
SISTEM PERSAMAAN LINEAR Nurdiity Athri (NDT) Sistem Persm Lier (SPL) Sub Pokok Bhs Pedhulu Solusi SPL deg OBE Solusi SPL deg Ivers mtriks d Atur Crmmer SPL Homoge Beberp Apliksi Sistem Persm Lier Rgki
DEFINISI INTEGRAL RIEMANN MELALUI PENDEKATAN BARISAN FUNGSI TANGGA
DEFINISI INTEGRAL RIEMANN MELALUI PENDEKATAN BARISAN FUNGSI TANGGA Muslih 1), Sutrim 2) d Supriydi Wiowo 3) 1,2,3) Jurus Mtemtik FMIPA UNS, [email protected], [email protected], [email protected] Astrk
4. Fungsi Khusus Lainnya. (Hermite, Laguerre, Polinomial Chebyshev, Hipergeometri)
4. Fugsi Khusus Liy Hemite, Lguee, Poliomil Chebyshev, Hipegeometi 4.. Fugsi Hemite Fugsi geeto utuk poliomil Hemit: H : g, t e t t Hubug ekusi: d H H H t! H H ' H 4. 4. 4.3 tuuk f.g. thd t 4.; thd 4.3
KETAKSAMAAN HERMITE-HADAMARD TERHADAP INTEGRAL RIEMANN-STIELTJES
JMP : Volume 4 Nomor 1, Jui 2012, hl. 59-68 KETAKSAMAAN HERMITE-HADAMARD TERHADAP INTEGRAL RIEMANN-STIELTJES Dey Ivl Hkim Deprteme Mtemtik Istitut Tekologi Bdug Bdug 40132, Idoesi [email protected] Hedr
Modul II Limit Limit Fungsi
Modul II Limit Kosep it merupk sutu kosep dsr yg petig utuk memhmi klkulus dieresil d itegrl Oleh kre itu seelum kit mempeljri leih ljut tetg klkulus diresil d itegrl, mk kit terleih dhulu hrus mempeljri
Catatan Kecil Untuk MMC
Ctt Keil Utuk MMC Judul : MMC (Metode Meghitug Cept), Tekik ept d uik dlm megerjk sol mtemtik utuk tigkt SMA. Peulis : It Puspit. Peerit : PT NIR JAYA Bdug. Thu :. Tel : 8 + 5 hlm. Berikut dlh tt keil
Kalkulus 2. Deret Pangkat dan Uji Konvergensi. Department of Chemical Engineering Semarang State University. Dhoni Hartanto S.T., M.T., M.Sc.
Klkulus Deret Pgkt d Uji Kovergesi Dhoi Hrtto S.T., M.T., M.S. Deprtmet o Chemil Egieerig Semrg Stte Uiversity Eperimetl Deret Pgkt Urut d deret sequees d series). Urut gk merupk rgki gk tk terbts jumlh
Kajian Integral Cavalieri-Wallis dan Integral Porter-Wallis serta Kaitannya dengan Integral Riemann
J. Mth. d Its Appl. ISSN: 1829-605X Vol. 3, No. 2, Nov 2006, 81 93 Kji Itegrl Cvlieri-Wllis d Itegrl Porter-Wllis sert Kity deg Itegrl Riem Rt Sri Dewi d Sursii Jurus Mtemtik ITS Istitut Tekologi Sepuluh
BARISAN DAN DERET A. POLA BILANGAN B. BARISAN BILANGAN. Contoh Soal
BARIAN DAN DERET A. POLA BILANGAN Bergi jeis ilg yg serig it pergu mempuyi pol tertetu. Pol ii serig digu dlm meetu urut / let ilg dri seumpul ilg yg ditetu, cotoh ilg gjil e-5 dri ilg :,, 5, 7, yitu 9.
BILANGAN TETRASI. Sumardyono, M.Pd
BILAGA TETRASI Sumrdyoo, M.Pd Megp Tetrsi? Di dlm ritmetik tu ilmu berhitug, opersi hitug merupk kosep yg mt petig bhk mugki sm petigy deg kosep bilg itu sediri. Tp kehdir opersi hitug, mk tmpky musthil
Ketaksamaan Chaucy Schwarz Engel
Keksm Chuy Shwrz Egel Fedi Alfi Fuzi Rigks Keksm Cuhy Shwrz merupk Keksm yg ukup mpuh uuk memehk ergi mm persol yg meygku sol keksm pd olimpide memik igk siol mupu iersiol. Pd pper ii k diperkelk euk li
Pertemuan 7 Persamaan Linier
Perteu 7 Pers Liier Ojektif:. Prktik ehi teori dsr Pers Liier. Prktik dpt eyelesik Pers Liier. Prktik dpt eut progr erkisr tetg Pers Liier Pers Liier P7. Teori Pers lier dlh seuh pers ljr, yg tip sukuy
Pada Bab 12 kita mengasumsikan bahwa f kontinu pada [a, b] dan mendefinisikan f(x) dx sebagai supremum dari himpunan semua jumlah luas daerah
13. INTEGRAL RIEMANN 13.1 Jumlh Riem Ats d Jumlh Riem Bwh Pd Bb 12 kit megsumsik bhw f kotiu pd [, b] d medefiisik itegrl b f(x) dx sebgi supremum dri himpu semu jumlh lus derh persegi-pjg kecil di bwh
Penyelesaian Persamaan Linier Simultan
Peyelesi Persm Liier Simult Persm Liier Simult Persm liier simult dlh sutu betuk persm-persm yg ser bersm-sm meyjik byk vribel bebs Betuk persm liier simult deg m persm d vribel bebs ij utuk i= s/d m d
Pendahuluan Pengantar Metode Simpleks. Fitriani Agustina, Math, UPI
Pedhulu Pegtr Metode Sipleks Fitrii Agusti, Mth, METODE SIMPLEKS (PRIMAL) Mslh Progr Lier Mslh Progr Lier dl Betuk Mtriks Ketetu dl Betuk Stdr Mslh PL Betuk Stdr Mslh Progr Lier Betuk Stdr Pets Lier Betuk
EXPONEN DAN LOGARITMA
Drs Pudjul Prijoo SMA Negeri Mlg EXPONEN DAN LOGARITMA A EXPONEN Sift-sift il Berpgkt yg ekspoey il Bult Sift-sift il Berpgkt yg ekspoey il Rsiol/Peh 0 ; 0 ; 0 0, 0 ; 0 0 d ; 7 0 0; ; Meyederhk etuk :
III PEMBAHASAN. x x. 3.1 Analisis Metode Perhatikan persamaan integral Volterra berikut. x. atau (11)
III PEMBAHASAN 3 Alisis Metode Perhtik persm itegrl Volterr berikut y ( f( λ Ktyt ( ( (8 deg y( merupk fugsi yg k ditetuk sutu kostt f( fugsi sembrg yg dikethui d terdefiisi pd R d K(ty(t sutu fugsi yg
METODE NUMERIK SISTEM PERSAMAAN ALJABAR LINIER (SPL) SIMULTAN.
METODE NUMERIK SISTEM PERSAMAAN ALJABAR LINIER (SPL) SIMULTAN http://mul.lecture.u.c.id/lecture/metode-umerik/ Sistem Persm Liier Misl terdpt SPL deg uh vriel es Mtriks: m m m m Peyelesi Sistem Persm Liier
