dy_pertemuan 2 dan 3 1

Ukuran: px
Mulai penontonan dengan halaman:

Download "dy_pertemuan 2 dan 3 1"

Transkripsi

1 KKt Gsl /20/2011 e t e m u K e - 2 & 3 KINETIK N KTLISIS SEMESTER GSL 2011/2012 SR-SR KINETIK REKSI KIMI St y Kholsoh ROGRM STUI TEKNIK KIMI FTI UN ETERN YOGYKRT Rbu, 21 Septembe 2011 Kompetes yg g cp (1: 1. Mmpu meyusu tbel stokomet eks (yg sellu ushk bebss mol utuk eks tuggl mupu eks kompleks, bebep plksy. 2. Memhm mk koves eks mol extet of ecto, yg ktk eg lmtg ectt excess ectt. 3. Mmpu membek t cmpu ekumol, cmpu stokometk, cmpu eg pebg (tu so mol tetetu. 4. Mmpu memftk peekt tu sums ke el utuk melkuk pehtug gsgs. 5. Memhm bebep mcm peggolog eks (eg bs mejelsk pebey cotohy msg-msg. Kompetes yg g cp (2: 6. Memhm bebep c peefs kecept eks: efs sec ekstesf tesf, efs utuk eks homoge heteoge, set mmpu mejelsk kty msg-msg. 7. Memhm kosep stokomet lm kecept eks bs mejelsk hubug t kecept eks yg ytk tehp msg-msg kompoe/zty. 8. Memhm stokomet eks (mellu peyusu tbel stokomet, utuk eks tuggl-vs-kompleks, mupu sstem btch-vs-kotyu (l. 9. Memhm stlh 2 koves eks, yel (peoleh pouk, selektvts pouk, set kty eg stokomet eks. 10. Memhm gmb eks yg belgsug sec btch. Kompetes yg g cp (3: 11. Memhm gmb eks yg beests tetp (costt-esty tu beests beubh (vble/vyg-esty 12. Mmpu memftk stokomet eks utuk mejbk hubug t kosets msg 2 kompoe eks eg koves ekt-ekty. 13. Mmpu memftk stokomet eks pesm ke gs (el utuk mejbk hubug t tek psl msg 2 kompoe eks eg tek totly. 14. Memhm mk pesm ketk/kecept/lju eks km bgm pesm tesebut peoleh (utuk melkuk stu ketk. 15. Memhm moel pesm ketk eks yg bebetuk hukum pgkt (powe-lw o-hukum pgkt. Kompetes yg g cp (4: 16. Memhm kosep oe tu tgkt eks (lm ketk hukum pgkt pebey eg kemolekul/molekults eks, set memhm pebe t eks elemete oelemete (lm koteks. 17. Memhm kostt kecept eks (tu kecept eks spesfk, k lm pesm ketk eks mmpu megetfksk oe sebuh eks homoge besk stu k. 18. Memhm fkto-fkto yg mempeguh kecept eks. 19. Memhm peguh suhu tehp kecept eks, bk sec kulttf mupu kutttf (mellu peekt koels heus. ENGGOLONGN REKSI-1 1. esk byky fse yg telbt lm sstem eks Reks homoge, eks heteoge 2. esk kebe tu peggu ktls Reks ktltk, eks o-ktltk 3. esk meksme tu komplekstsy Reks seeh (eks tuggl seh tu evesbel Reks kompleks (eks bolk-blk tu evesbel, eks se tu kosekutf tu beuut, eks plel, eks se-plel, eks t, eks polmess 4. esk kemolekul eksy Reks umolekule, eks bmolekule, eks tmolekule tu temolekule 5. esk oe eksy Reks beoe blg bult, eks beoe blg pech y_etemu 2 3 1

2 KKt Gsl /20/2011 ENGGOLONGN REKSI-2 6. esk h eksy Reks evesbel (bolk-blk Reks evesbel meupk eks bolkblk; lm hl tej kesetmbg. Reks evesbel (seh Reks evesbel meupk eks stu h; tk ke setmbg, meskpu sesugguhy tk eks km yg betul-betul tk pt blk. yk ksus kesetmbg be sgt juh k seemk sehgg ggp evesbel. 7. esk jes pegopes ektoy Sstem ekto btch, sstem ekto l tu kotyu 8. esk posesy (kos posesy Reks soteml (p volume tetp, p tek tetp, eks btk, eks osoteml o-btk otoh-cotoh Reks eoe 1: ekomposs N 2 O 5 : N 2 O 5 2 NO 2 + ½ O 2 eoe 2: embetuk HI: H 2 + I 2 2 HI eoe 3: 2 NO + O 2 2 NO 2 eoe pech: embetuk phosgee O l 2 ( k (l 2 3/2 O Heteoge oktltk: (s + O 2 (g O 2 (g REKSI KOMLEKS - otoh Reks evesbel (bolk-blk: Isomess but: Holss metl sett: Reks evesbel plel: ehs ehoges etol: Reks evesbel se: ekomposs seto (se tehp kete: 4 EFINISI KEETN REKSI Kecept eks ekstesf: Kecept eks tesf: mol tebetuk ( volume flu ( wktu t ' mol tebetuk mol tebetuk R stu wktu 1 1 W ( mss p t ( wktu t '' mol tebetuk ( lus pemuk ( wktu S t ''' mol tebetuk 1 1 ( volume pt ( wktu s t mol tebetuk 1 '''' ( volume ekto ( wktu t W ' S '' s ''' R ''' ' t (sstem eks homoge (sstem eks heteoge lm sstem eks homoge: STOIKIOMETRI KEETN REKSI KIMI Utuk sebuh eks tuggl, hubug stokometk t molekul-molekul lm sstem eks pt sjk lm betuk tbel stokomet eks. Utuk eks homoge tuggl: + b c + hubug stokomet kecept eksy pt tulsk: b c meytk kecept eks homoge pembetuk kompoe meytk koefse stokomet eks kompoe. Jg lup bhw: Hg tu, sec umum: postf (+ utuk pouk tu hsl eks egtf (- utuk ekt tu zt peeks oblem: Tulsk hubug stokometk t lju eks bekugy ekt lju eks tebetuky pouk, utuk ekseks sbb.:. 2 NOl 2 NO + l 2 b. H 2 O 2 + H 2 2 H 2 O y_etemu 2 3 2

3 KKt Gsl /20/2011 oblem: Reks fse gs: 4 NH O 2 2 N H 2 O belgsug sec btch. Jk p sutu st (t t gs N 2 tebetuk eg lju 0,60 mol lte -1 etk -1, bepkh lju bekugy O 2? Oe eks semu (pseuo oe Kompoe Mol wl Mol tebetuk Mol tess Iet (I Jumlh eg: I0 T0 STOIKIOMETRI REKSI KIMI SISTEM TH-1 Utuk eks homoge tuggl: + b c + p sstem btch, pt susu tbel stokomety (sesuh tecp koves sebes sebg bekut: δ c b b ( 0 b 0 ( 0 c ( c ( 0 ( ( 0 0 δ 0 T T 0 I I 0 + δ 0 ob ulg (peyusu tbel stokomet t, jk koves eks ytk tehp ( STOIKIOMETRI REKSI KIMI SISTEM TH-2 Kosets setp kompoe yg ytk lm koves: 0 (1 b ( 0 0 c ( ( eg: θ 0 b 0 θ tu: c 0 θ + tu: 0 θ + tu: ( meytk kompoe-kompoe sstem eks sel STOIKIOMETRI REKSI KIMI SISTEM TH-3 Sstem btch eg volume eks tetp Kos sstem volume eks kost (tu tetp pt cp jk: Selm eks belgsug, tetp tu ρ tetp lm sstem btch fse gs, ekto legkp eg stume pegtu suhu tek, seemk sehgg tetp. Jumlh mol pouk eks jumlh mol ekt otoh: Reks gs O eg p poses gsfks btub: O + H 2 O O 2 + H 2 2 mol 2 mol (jk z-fcto ggp tetp Reks fse c;ρtetp seemk sehgg tetp STOIKIOMETRI REKSI KIMI SISTEM TH-4 sstem btch eg sstem volume eks tetp: sstem setp st (t t sm eg sstem mulmul, tu: 0 eg emk: 0 (1 0 (1 b 0 θ b 0 θ eg c yg sm, peoleh: c 0 θ + 0 θ + (Sstem btch eg volume eks beubh (tk tetp k pelj lm mte yg l y_etemu 2 3 3

4 KKt Gsl /20/2011 Hubug t ejt Koves Tgkt Reks (Mol Extet of Recto ε (tgkt eks (koves eks (koves ekt Kompoe Mol wl Mol tebetuk Mol tess Iet (I Jumlh STOIKIOMETRI REKSI KIMI SISTEM TH(lm Tgkt Reks Utuk eks homoge tuggl: + b I0 T0 ε c + p sstem btch, pt susu tbel stokomety (sesuh tecp tgkt eks sebes ε sebg bekut: ε 0 ob sk kolomkolom yg l s!!! otoh Sol: Reks homoge fse c: lgsugk lm ekto btch p T tetp, eg volume sstem eks sebes 1 m 3. mpu mul-mul megug eg kosets 20 gmol/m 3 sebes 5 gmol/m 3. epkh mol extet of ecto kosets hsl jk koves : ( 15%, (b 90% ek komet!!! Utuk mempeoleh hubug t tek psl tek totl sstem eks, besk stokomet, slk pelj se p hout kulh, hlm 5. otoh Sol: Utuk eks homoge fse gs: R + S yg belgsug p kos soteml lm sebuh ekto sstem btch bevolume tetp, tuuklh hubug t tek psl (p, (p, R (p R, S (p S sebg fugs tek totly ( setp st. mpu wl eks te ts: 30%-mol, 50%-mol, R 5%-mol, ssy beup gs et. Gs-gs sumsk bekelku el oblem: Set up stochometc tble fo the followg ecto expess the cocetto of ech speces the ecto s fucto of coveso evlutg ll costts. 2 H 4 + ½ O 2 H 2 (OH 2 The fee etes t 6 tm 260 o s stochometc mxtue of ethylee. (Fogle, 1992, p. 97 gm pesm ketk sebuh eks pt peoleh?...? ERSMN KINETIK TU KEETN REKSI esm ketk tu kecept eks: hubug mtemtk yg meggmbk besy peubh jumlh mol sebuh kompoe eks seg eg peubh wktu, sesu eg efs kecept eks bg sebelumy. t-t pesm-pesm kecept eks yg tese ltetu Metoe-metoe utuk mempeoleh t kecept eks pecob lbotoum, meglssy, megtepetsky. ostuls meksme eks utuk mempeks pesm kecept eks y_etemu 2 3 4

5 KKt Gsl /20/2011 KEMOLEKULN, ORE, N KONSTNT KEETN REKSI-1 Utuk moel pesm kecept (tu ketk eks yg bebetuk hukum pgkt, pesm kecept eks homoge pt tulsk sebg fugs kosets ekt-ekty, tu: f ( tu: f (k, esm lzm tulsk sebg: k α β γ... Utuk eks: + b c + pesm kecept eksy pt tulsk: k α β eg:, kosets ekt, α, β oe eks tehp, k kostt tu tetp kecept eks eks fse gs, eks belgsug p volume tetp sec soteml, kecept eks kg-kg ytk sebg peubh tek pe stu wktu. KEMOLEKULN, ORE, N KONSTNT KEETN REKSI-2 Kemolekul (Moleculty Reks: byky molekul zt peeks (ekt lm sebuh pesm stokomet eks yg seeh. Kemolekul eks sellu beup blg bult postf. otoh: Reks: + b c + Kemolekul eksy + b Reks: Kemolekul eksy Reks eg kemolekul 1 (stu: eks umolekule. Reks eg kemolekul 2 (u: eks bmolekule. Reks eg kemolekul 3 (tg: eks tmolekule tu temolekule KEMOLEKULN, ORE, N KONSTNT KEETN REKSI-3 Oe Reks Oe eks (ecto oe meupk jumlh pgkt fkto kosets ekt-ekt lm pesm kecept (tu ketk eks. Oe eks hy pt tetuk besk tepets t hsl pecob lbotoum. Oe eks pt beup blg bult postf, pech, tupu ol. Jk pesm kecept eks: + b c + lh: k α β mk: α oe eks tehp β oe eks tehp α + β oe eks keseluuh (tu sebut oe eks sj. Utuk eks elemete : oe eks kemolekul eks Utuk eks o-elemete : oe eks kemolekul eks (Hll, 1977 KEMOLEKULN, ORE, N KONSTNT KEETN REKSI-4 Kostt Kecept Reks (Rte ostt - 1 sebut jug kecept eks spesfk (specfc te Jk sebuh eks eg ekt tuggl mempuy kecept eks yg beoe sebes: k tu: k' p mk eks tsb. mempuy hg kostt kecept eks sebes: k tu: k' p Ke lm hl bs ytk lm stu mol pe stu volume eks lm stu mol pe stu volume eks pe stu wktu, mk sec umum hg k pt ytk lm stu: 1 mol k [ ] ( wktu tu: k' [ ]( tek ( wktu volume KEMOLEKULN, ORE, N KONSTNT KEETN REKSI-5 Kostt Kecept Reks (Rte ostt - 2 esk stu-stu yg sgt spesfk utuk setp oe eks yg bel, hg k sebuh eks km sec tk lgsug pt megksk besy oe eks tesebut. (ob jbklh stu-stu kostt kecept eks yg beoe 0, 1, 2, 3, ½ Hg k sgt peguh oleh suhu. eks fse gs, hg k jug peguh oleh ktls, tek totl sstem, sb. eks fse c, hg k jug peguh oleh tek totl sstem, kekut o, pemlh pelut, sb. Nmu emk, peguh fkto-fkto bsy sgt kecl sehgg pt bk tehp peguh suhu. y_etemu 2 3 5

6 KKt Gsl /20/2011 oblem: oblem: Lju eks homoge: + + lh: k ½ ½. epkh oe eks? b. Tulsk slh stu cotoh stu kostt kecept eksy. c. Jk kk mej 4 kl lpt, mej bep kl lptkh kecept eksy? Sebuh eks homoge fse gs p 300 o mempuy l kostt lju eks sebes 5 x 10-4 tm -1 s -1.. eoe bepkh eks? b. epkh l kostt lju eksy jk ytk lm kombs stu: mol (utuk kosets met (utuk wktu FKTOR YNG MEMENGRUHI KEETN REKSI ebep fkto yg mempeguh kecept eks: 1. Suhu (T 2. Komposs cmpu eks ( 3. Tek ( 4. Kebe ktls tu hbto 5. mete-pmete yg behubug eg poses tsfe sec fsk (msly: kos l, tgkt pecmpu, pmete-pmete peph mss tfse, kesetmbg fse, lus bg kotk tfse, pmete-pmete peph ps, sb. eks homoge o-ktltk, hy fkto (1, (2, (3 yg mempeguh kecept eks. eks ktltk, fkto (4 tu fkto ktls jug bepe mempeguh kecept eks. sstem eks heteoge ( m poblem yg hp mej juh lebh kompleks bgk eg sstem eks homoge, fkto (5 jug mempeguh kecept eks. ENGRUH SUHU TERH KONSTNT KEETN REKSI Sec seeh, peguh suhu tehp sebg bes eks km pt ekt mellu koels yg smpk oleh heus, yk: E k exp Jk T mk bes, mk R T k jug mk bes eg: k kostt kecept eks fkto fekues tumbuk eks (tu sebut jug fkto pe-ekspoesl E eeg tu teg ktvs eks R kostt gs uvesl (R 8,314 J/mol.K 1,987 kl/mol.k 82,06 cm 3.tm/mol.K T suhu bsolut E exp fkto ekspoesl R T Gmb Eeg ktvs (E s Reks ( H utuk Ksus Reks Seeh eetu Eeg ktvs Reks besk ecob E sebuh eks pt kethu mellu pecob ketk eks p bebg suhu T yg bebe-be. T T 1 T 2 T 3 T 4 T 5 k k 1 k 2 k 3 k 4 k 5 (Ksus eks eotemk Tgkt Eeg (Ksus eks eksotemk l k l E R 1 T eguh suhu tehp kecept eks yg gmbk tesebut ts tk belku utuk ksus eks-eks bokm (ezmtk eks pelek. y_etemu 2 3 6

7 KKt Gsl /20/2011 oblem: oblem: Sebuh eks homoge mempuy eeg pegktf sebes 65 kj mol -1. suhu 100 o eks mempuy kecept sebes 7,8 x 10-2 mol lte -1 etk -1.. suhu bep kecepty mej 1/10 kl kecept p 100 o? b. epkh kecept eks p 20 o, jk t yg l tetp? Hg k yg temt utuk eks fse gs: 2 HI H 2 + I 2 p 356 o 443 o msg-msg lh 3,02 x ,53 x 10-3 mol -1 m 3 s -1. Jk peubh etlp eksy (ggp tetp p etg suhu yg tju lh H 16,32 kj/mol, bepkh besy eeg ktvs eks lm h mju (fow mupu keblky (evese? oblem: u eks homoge beoe u eg kostt lju k 1 k 2 set E 1 > E 2. Jk suhu eks kk T 1 ke T 2, mk:? k 1 ( T 2 2 ( 2... k T k ( T k ( T Koves Sebuh Rekt Koves sebuh ekt ( : mol yg tekoves mol yg beeks mol wl mol wl,0,0 F,0 F F,0,0 0 1,0 eoleh (Yel Sebuh ouk Reks eoleh sebuh pouk tehp ekt (Y / : Y / mol yg beeks membetuk mol wl Y Y / / Y / F,0,0 F F,0,0,0,0 0 Y / 1 Selektvts (Fctol Yel ouk Reks Selektvts ovell sebuh pouk tehp ekt (S / : S / mol yg beeks membetuk mol yg beeks S S S / / /,0,0 F F,0 F F,0,0,0 0 S / 1 y_etemu 2 3 7

8 KKt Gsl /20/2011 Hubug t peoleh, koves, selektvts: Y /. S / Hubug t ejt Koves Tgkt Reks (Mol Extet of Recto Istteous fctol yel sebuh pouk tehp ekt (s / : kecept pembetuk s / kecept bekugy ε (tgkt eks (koves eks sebuh sstem eks plel: ε k (utuk multple ectos moles of ese pouct fome Selektvts 0 moles of uese pouct fome R R0 ese Selektvt s uese R Test Youself! ose the followg p of ectos: 2 (ese (uese Suppose 100 mol of s fe to btch ecto the fl pouct cots 20 mol of, 140 mol of, 10 mol of. lculte: ( The fctol coveso of (b The pecetge selectvty of & eltve to (c The extets of the fst seco ectos Reks fse-gs: Yel & Selectvty ehyogeto Recto 2 H 6 2 H 4 + H 2 (1 2 H 6 + H 2 2 H 4 (2 Kos wl: 85%-mol et ssy et (I. Fctol coveso et 0,70 Fctol yel (selektvts etle 0,60. lculte the mol composto of the pouct gs. ONTOH SOL 1 Sstem eks plel: 2 Q + R belgsug lm sebuh ekto bevolume tetp yg beopes sec btch. Jk: # mul-mul hy tept Q eg kosets msg-msg sebes: 0 0,5 mol/l Q0 0,01 mol/l, # selektvts (ovell fctol yel tehp pembetuk sebes 80%, # byky yg telh beeks p sutu st sebes 35%, mk bep: kosets,, Q, R p st tesebut? b yel (tu peoleh pouk p st tesebut? oblem (Fogle, 1992, p. 531 Okss fomleh yg meghslk sm fomt belgsug lm fse gs meuut eks sbb: HHO + ½ O 2 HOOH 2 HHO HOOH 3 yg belgsug smult. Jk k 1 0,7 (m 3 /mol ½ m -1 k 2 0,6 (m 3 /mol m -1. Lju l volumetk ump msuk 100 m 3 /m p 5 tm 140 o. Ump beup cmpu: HHO 66,7% O 2 33,3%. Wktu ug 10 met.. ep koves HHO? b. ep yel selektvts HOOH? y_etemu 2 3 8

DASAR-DASAR KINETIKA REAKSI KIMIA

DASAR-DASAR KINETIKA REAKSI KIMIA DSR-DSR KINETIK REKSI KIMI ENGGOLONGN REKSI ebep mcm peggolog eks: 1. edsk byky fse yg telbt dlm sstem eks Reks homoge Yk sstem eks deg fse tuggl. eup eks homoge fse gs tu eks homoge fse c. Reks tejd d

Lebih terperinci

Dr.Eng. Agus S. Muntohar Department of Civil Engineering

Dr.Eng. Agus S. Muntohar Department of Civil Engineering Pertemu ke-7 Persm Ler Smult Oktober 0 Metode Iters Guss-Sedel Dr.Eg. Agus S. Mutohr Deprtmet of Cvl Egeerg Metode Guss-Sedel Merupk metode ters. Prosedur umum: - Selesk ser lbr vrbel tdk dkethu msg-msg

Lebih terperinci

A. Barisan Geometri. r u. 1).Definisi barisan geometri. 2). Suku ke-n barisan geometri

A. Barisan Geometri. r u. 1).Definisi barisan geometri. 2). Suku ke-n barisan geometri A. Bis Geometi ).Defiisi bis geometi Sutu bis yg suku-sukuy dipeoleh deg c meglik suku sebelumy deg sutu kostt (sio/pembdig) tu ili kost. Betuk umum bis geometi (deg suku wl d sio ) dlh : + + + +... +

Lebih terperinci

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Integral Pertemuan - 6

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Integral Pertemuan - 6 home se to ecellece Mt Kulh : Klkulus Kode : TSP 0 SKS : SKS Itegrl Pertemu - 6 home se to ecellece TIU : Mhssw dpt memhm tegrl fugs d plksy TIK : Mhssw mmpu mecr tegrl fugs Mhssw mmpu megguk tegrl utuk

Lebih terperinci

REGRESI. Curve Fitting Regresi Linier Regresi Eksponensial Regresi Polynomial. Regresi 1

REGRESI. Curve Fitting Regresi Linier Regresi Eksponensial Regresi Polynomial. Regresi 1 REGRESI Curve Fttg Regres Ler Regres Ekspoesl Regres Poloml Regres Curve Fttg: Ksus Dberk dt berup kumpul ttk-ttk dskrt. Dperluk estms / perkr utuk medptk l dr ttk-ttk g berd d tr ttk-ttk dskrt tersebut

Lebih terperinci

REGRESI. Curve Fitting. Regresi Eksponensial. Regresi 1

REGRESI. Curve Fitting. Regresi Eksponensial. Regresi 1 REGRESI Curve Fttg Regres Ler Regres Ekspoesl Regres Poloml Regres Curve Fttg: Ksus Dberk dt berup kumpul ttk-ttk dskrt. Dperluk estms / perkr utuk medptk l dr ttk-ttk g berd d tr ttk-ttk dskrt t tersebut

Lebih terperinci

Batas Nilai Eigen Maksimal Dari Matriks Tak Negatif

Batas Nilai Eigen Maksimal Dari Matriks Tak Negatif Vol. 3 No. 80-85 Ju 007 Bts Nl Ege Mksl D Mtks Tk Negtf A. Kes Jy Abstk Ide ut skps dlh utuk edptk etode dl eetuk bts d l ege ksl d tks tk egtf deg bedsk bts Fobeus. Ytu R d dlh ulh bs tu kolo u d R dlh

Lebih terperinci

BAB XVIII. NOTASI SIGMA, BARISAN, DERET DAN INDUKSI MATEMATIKA

BAB XVIII. NOTASI SIGMA, BARISAN, DERET DAN INDUKSI MATEMATIKA BAB XVIII. NOTASI SIGMA, BARISAN, DERET DAN INDKSI MATEMATIKA Notsi Sigm : dlh otsi sigm, diguk utuk meytk pejumlh beuut di sutu bilg yg sudh bepol. meupk huuf cpitl S dlm bjd Yui dlh huuf petm di kt SM

Lebih terperinci

LIMIT FUNGSI. lim lim. , c = konstanta 6. lim f(x) Penting : Persoalan limit adalah mengubah bentuk tak tentuk menjadi bentuk tertentu.

LIMIT FUNGSI. lim lim. , c = konstanta 6. lim f(x) Penting : Persoalan limit adalah mengubah bentuk tak tentuk menjadi bentuk tertentu. LIMIT FUNGSI Teoem. f() g() f() g( ). f().g() f(). g( ) f(). f() g() f() g( ). deg g() g() g(). c.f() c. f(), c = kostt. f() f() f() Betuk Tk Tetu Betuk di dlm mtemtik d mcm, yitu :. Betuk tedefiisi (tetetu)

Lebih terperinci

VARIASI PEMBAYARAN ANUITAS DENGAN POLA DERET ARITMATIKA

VARIASI PEMBAYARAN ANUITAS DENGAN POLA DERET ARITMATIKA VARIASI PEMBAYARAN ANUITAS DENGAN POLA DERET ARITMATIKA De Prm Sr Jurus Mtemtk Uersts Neger Pg, Ioes eml: [email protected] Abstrk. Auts lh rgk pembyr tu peerm lm jumlh tertetu yg lkuk secr berkl p jgk wktu

Lebih terperinci

BAB V ENERGI DAN POTENSIAL

BAB V ENERGI DAN POTENSIAL ENERGI DN POTENSIL 4. Eegi g dipeluk meggek mut titik dlm med listik. Itesits med listik didefiisik sebgi g g betumpu pd mut uji stu pd titik g igi kit dptk hg med vekt. Jik mut uji tesebut digekk melw

Lebih terperinci

PRAKTIKUM 8 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss

PRAKTIKUM 8 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Prktkum 8 Peyeles Persm Ler Smult Metoe Elms Guss PRAKTIKUM 8 Peyeles Persm Ler Smult Metoe Elms Guss Tuju : smult Mempeljr metoe Elms Guss utuk peyeles persm ler Dsr Teor : Metoe Elms Guss merupk metoe

Lebih terperinci

PEMECAHAN SISTEM PERSAMAAN LINIER NON HOMOGEN DENGAN METODE SAPUAN GANDA CHOLESKY. Oleh : Yusup Fakultas Ilmu Komputer, Universitas AKI Semarang

PEMECAHAN SISTEM PERSAMAAN LINIER NON HOMOGEN DENGAN METODE SAPUAN GANDA CHOLESKY. Oleh : Yusup Fakultas Ilmu Komputer, Universitas AKI Semarang PEMECAHAN SISTEM PERSAMAAN LINIER NON HOMOGEN DENGAN METODE SAPUAN GANDA CHOLESKY Oleh : Yusup Fkults Ilmu Komputer, Uversts AKI Semrg Astrt The frto of No Homoge Lerty Ajustmet System towr Cholesky Doule

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Ltr Belkg Smp st, model Regres d model Alss Vrs telh dpdg sebg du hl g tdk berkt. Meskpu merupk pedekt g umum dlm meergk kedu cr pd trf permul, model Alss Vrs dpt dpdg sebg hl khusus model

Lebih terperinci

m n II. PERSAMAAN LINEAR, PERTIDAKSAMAAN LINIER, FUNGSI LINIER A. Persamaan Linier 3. Persamaan Linear Tiga Variabel ( ax + by + cz = d )

m n II. PERSAMAAN LINEAR, PERTIDAKSAMAAN LINIER, FUNGSI LINIER A. Persamaan Linier 3. Persamaan Linear Tiga Variabel ( ax + by + cz = d ) I. OPERSI ILNGN REL. Pgt (Esoe. +. RNGKMN MTEMTIK. (.. ( 5. 6. 7. 8.. etu... ( ± ( + ± 5. ( Mesol Peeut etu Peh. (. + + C. Logt. log. log. log log. log log...( log log... log log... ( log... ( log. log+

Lebih terperinci

Teorema Gauss. Garis Gaya oleh muatan negatip. Garis gaya listrik. Garis gaya oleh sebuah muatan titik. Sebuah muatan negatip

Teorema Gauss. Garis Gaya oleh muatan negatip. Garis gaya listrik. Garis gaya oleh sebuah muatan titik. Sebuah muatan negatip Gs Gy Lstk Konsep fluks Teoem Guss Teoem Guss Penggunn Teoem Guss Medn oleh mutn ttk Medn oleh kwt pnjng tk behngg Medn lstk oleh plt lus tk behngg Medn lstk oleh bol solto dn kondukto Medn lstk oleh slnde

Lebih terperinci

TRANSFORMASI-Z RASIONAL

TRANSFORMASI-Z RASIONAL TRANSFORMASI-Z RASIONAL. Pole d Zeo Zeo di sutu tsfomsi- dlh ili-ili deg X() = 0. Pole di sutu tsfomsi- dlh ili-ili deg X() =. Jik X() dlh fugsi siol, mk () Jik 0 0 d 0 0, kit dt meghidi gkt egtif deg

Lebih terperinci

Anuitas. Anuitas Akhir

Anuitas. Anuitas Akhir Auts Auts bersl r kt bhs Iggrs uty yg pt efsk sebg rgk pembyr tu peerm tetp lm jumlh tertetu yg lkuk secr berkl p jgk wktu tertetu. Kt uty sly berrt pembyr ul (thu), k tetp serg eg berjly wktu kt uts jug

Lebih terperinci

PRAKTIKUM 22 Interpolasi Linier, Kuadratik, Polinomial, dan Lagrange

PRAKTIKUM 22 Interpolasi Linier, Kuadratik, Polinomial, dan Lagrange Prktkum. Iterpols Ler, Kudrtk, Poloml d Lgrge PRAKTIKUM Iterpols Ler, Kudrtk, Poloml, d Lgrge Tuju : Mempeljr berbg metode Iterpols g d utuk meetuk ttkttk tr dr buh ttk deg megguk sutu fugs pedekt tertetu.

Lebih terperinci

SOAL UJIAN AKHIR MATEMATIKA INFORMATIKA 4 (A & B) Dosen: Dr. Asep Juarna Jumlah Soal: 3 Uraian Tanggal Ujian: 02/03/12 Waktu Ujian: 2 jam

SOAL UJIAN AKHIR MATEMATIKA INFORMATIKA 4 (A & B) Dosen: Dr. Asep Juarna Jumlah Soal: 3 Uraian Tanggal Ujian: 02/03/12 Waktu Ujian: 2 jam SOAL UJIAN AKHIR MATEMATIKA INFORMATIKA 4 A & B Dose: Dr. Asep Jur Jumlh Sol: Uri Tggl Uji: // Wktu Uji: jm jik. Solusi t dlh: t + log, yg dpt dibuktik sbb: t jik t t + [t/ + ] + t/ + t/4 + t/8 + 4 t/

Lebih terperinci

BAB 2 ANAVA 2 JALAN. Merupakan pengembangan dari ANAVA 1 Jalan Jika pada ANAVA 1 jalan 1 Faktor Jika pada ANAVA 2 jalan 2 Faktor

BAB 2 ANAVA 2 JALAN. Merupakan pengembangan dari ANAVA 1 Jalan Jika pada ANAVA 1 jalan 1 Faktor Jika pada ANAVA 2 jalan 2 Faktor BAB ANAVA JALAN Merupk pegembg dr ANAVA 1 Jl Jk pd ANAVA 1 l 1 Fktor Jk pd ANAVA l Fktor Model Ler Asums: Model efek Tetp! 1,..., 1,..., Stu fktor g dtelt Av 1 l k k 1,,..., 1,,..., b k 1,,..., Du fktor

Lebih terperinci

PRAKTIKUM 12 Regresi Linier, Regresi Eksponensial dan Regresi Polinomial

PRAKTIKUM 12 Regresi Linier, Regresi Eksponensial dan Regresi Polinomial Prktkum. Regres Regres Ler, Regres Ekspoesl, d Regres Poloml Poltekk Elektrok eger Surb ITS 47 PRAKTIKUM Regres Ler, Regres Ekspoesl d Regres Poloml. Tuju : Mempeljr metode peeles regres ler, ekspoesl

Lebih terperinci

Analisis Variansi satu faktor (Analysis Of Variance / ANOVA)

Analisis Variansi satu faktor (Analysis Of Variance / ANOVA) Alss Vrs stu fktor (Alss Of Vrce / ANOVA) 1. Megethu rcg d eses. Megethu model ler 3. Meuruk Jumlh Kudrt (JK) 4. Melkuk uj lss vrs 5. Melkuk uj perbdg gd Apkh ber kot dlm rokok dpt megkbtk Kker? Sel kker

Lebih terperinci

CATATAN KULIAH Pertemuan XIII: Analisis Dinamik dan Integral (1)

CATATAN KULIAH Pertemuan XIII: Analisis Dinamik dan Integral (1) CATATAN KULIAH Pertemu XIII: Alss Dmk d Itegrl () A. Dmk d Itegrs Model Stts : mecr l vrel edoge yg memeuh kods ekulrum tertetu. Model Optms : mecr l vrel plh yg megoptms fugs tuju tertetu. Model Dmk :

Lebih terperinci

BAB VI ANALISIS REGRESI

BAB VI ANALISIS REGRESI BAB VI ANALISIS REGRESI A. Pedhulu Alss regres merupk slh stu lss yg ertuju utuk megethu pegruh sutu vrel terhdp vrel l. Vrel yg mempegruh dseut depedet vrle/vrel es () d vrel yg dpegruh dseut depedet

Lebih terperinci

INTERPOLASI PERTEMUAN : S K S - T E K N I K I N F O R M A T I K A - S1 M O H A M A D S I D I Q

INTERPOLASI PERTEMUAN : S K S - T E K N I K I N F O R M A T I K A - S1 M O H A M A D S I D I Q INTERPOLASI 3 S K S - T E K N I K I N F O R M A T I K A - S M O H A M A D S I D I Q PERTEMUAN : - SEBELUM-UTS Pegtr Metode Numerik Sistem Bilg d Keslh Peyji Bilg Bult & Pech Nili Sigiik Akursi d Presisi

Lebih terperinci

Hendra Gunawan. 19 Februari 2014

Hendra Gunawan. 19 Februari 2014 MA0 MATEMATIKA A Hedr Guw Semester II, 03/0 9 Februri 0 9. Deret Tk Terhigg Kulih yg Llu Memeriks kekoverge sutu deret d, bil mugki, meghitug jumlhy 9.3 Deret Positif: Uji Itegrl Memeriks kk kekoverge

Lebih terperinci

adalah jika sebuah benda bergerak membentuk suatu lingkaran dengan kecepatan konstan. v1 = v2 = v

adalah jika sebuah benda bergerak membentuk suatu lingkaran dengan kecepatan konstan. v1 = v2 = v Gek Melingk Betun (GMB) dlh jik sebuh bend begek ebentuk sutu lingkn dengn keceptn konstn. 1 = = Peceptn dlh bes peubhn keceptn selng wktu t, h keceptn jug enyebbkn peceptn. 1 = peubhn keceptn t = peubhn

Lebih terperinci

PENERAPAN PERSAMAAN SCHRODINGER PADA PERMASALAHAN PARTIKEL DALAM KEADAAN TERIKAT (BOUND STATES) UNTUK TIGA DIMENSI

PENERAPAN PERSAMAAN SCHRODINGER PADA PERMASALAHAN PARTIKEL DALAM KEADAAN TERIKAT (BOUND STATES) UNTUK TIGA DIMENSI ENEAAN ESAMAAN SHODINGE ADA EMASAAHAN ATIKE DAAM KEADAAN TEIKAT (BOUND STATES) UNTUK TIGA DIMENSI A. At Hg (Mslh Gy Stl). Hlt Nl Eg ^ H ^ p ^ z. (7.) s Schg yg bt g sst bup hg t tu lh: ^ p ^ z E (7.) tu

Lebih terperinci

DASAR MATEMATIKA. Untuk mempelajari teori sistem kontrol diperlukan latar belakang matematika. bidang s. s 1. σ 1. Gambar 2-1 Bidang kompleks

DASAR MATEMATIKA. Untuk mempelajari teori sistem kontrol diperlukan latar belakang matematika. bidang s. s 1. σ 1. Gambar 2-1 Bidang kompleks DASAR MATEMATIKA Utu mempelj teo tem otol dpelu lt belg mtemt Koep Peubh Komple Peubh Komple jω bdg σ jω σ σ Gmb - Bdg omple Gmb - meggmb betu bdg omple, yg m tt ddef oleh oodt σ σ d ω ω, tu ec edeh dtul

Lebih terperinci

Analisis Variansi satu faktor Single Factor Analysis Of Variance (ANOVA)

Analisis Variansi satu faktor Single Factor Analysis Of Variance (ANOVA) BAB 1 Alss Vrs stu fktor Sgle Fctor Alss Of Vrce (ANOVA) ANALISIS VARIANSI SATU FAKTOR D MetStt 1 sudh dkel uj hpotess rt-rt du populs A d B g berdstrbus Norml Bgm jk terdpt lebh dr du populs? Alss vrs

Lebih terperinci

ALJABAR. 1. AMS (Algemeene Middelbare School)-HBS (Hogere Burger School), 1949 Y terletak pada garis y

ALJABAR. 1. AMS (Algemeene Middelbare School)-HBS (Hogere Burger School), 1949 Y terletak pada garis y Megeg Jejk Sebgi Kecil Bgs Idoesi Yg Peh Megikuti Uji Sekolh Pd Awl Ms Keedek UJIAN PENGHABISAN SEKOLAH MENENGAH TINGKAT ATAS TAHUN 949 ALJABAR. AMS (Algeeee Middelbe School)-HBS (Hogee Buge School), 949

Lebih terperinci

III PEMBAHASAN. peubah. Sistem persamaan (6) dapat diringkas menjadi Bentuk Umum dari Magic Square, Bilangan Magic, dan Matriks SPL

III PEMBAHASAN. peubah. Sistem persamaan (6) dapat diringkas menjadi Bentuk Umum dari Magic Square, Bilangan Magic, dan Matriks SPL III PEMBAHASAN 3.1. Betuk Umum dri Mgic Squre, Bilg Mgic, d Mtriks SPL Mislk eleme dri bris ke-i d kolom ke-j dlh i,j mk mgic squrey secr umum dlh 1,1 1, 1,,1,,,1,, Gmbr 1. Betuk umum mgic squre deg: i,j

Lebih terperinci

CNH2B4 / KOMPUTASI NUMERIK

CNH2B4 / KOMPUTASI NUMERIK CNHB4 / KOMPUTASI NUMERIK TIM DOSEN KK MODELING AND COMPUTATIONAL EXPERIMENT PENCOCOKAN KURVA Pedhulu Dt g bersl dr hsl pegmt lpg pegukur tu tbel g dmbl dr buku-buku cu. Nl tr turu tegrl mudh dcr utuk

Lebih terperinci

PRINSIP PRINSIP PEMOD O ELA L N F I F S I IS

PRINSIP PRINSIP PEMOD O ELA L N F I F S I IS PRINSIP PRINSIP PEMODELAN FISIS Tig fse dlm menci model mtemtik Menyusun mslh secr terstruktur Meformulsikn ersmn ersmn dsr Membentuk model rung-kedn Pemodeln Hed Bo Mesin Kerts Mesin Kerts Digrm hed bo

Lebih terperinci

Trihastuti Agustinah

Trihastuti Agustinah TE 967 Tekik Numerik Sistem Lier Trihstuti gustih Big Stui Tekik Sistem Pegtur Jurus Tekik Elektro - FTI Istitut Tekologi Sepuluh Nopember O U T L I N E OBJEKTIF CONTOH SIMPULN 5 LTIHN OBJEKTIF Teori Cotoh

Lebih terperinci

Kalkulus 2. Deret Pangkat dan Uji Konvergensi. Department of Chemical Engineering Semarang State University. Dhoni Hartanto S.T., M.T., M.Sc.

Kalkulus 2. Deret Pangkat dan Uji Konvergensi. Department of Chemical Engineering Semarang State University. Dhoni Hartanto S.T., M.T., M.Sc. Klkulus Deret Pgkt d Uji Kovergesi Dhoi Hrtto S.T., M.T., M.S. Deprtmet o Chemil Egieerig Semrg Stte Uiversity Eperimetl Deret Pgkt Urut d deret sequees d series). Urut gk merupk rgki gk tk terbts jumlh

Lebih terperinci

1 yang akan menghasilkan

1 yang akan menghasilkan Rset Opers Probblstk Teor Per (Ge Theor) Nughthoh Arfw Kurdh, M.Sc Deprteet of Mthetcs FMIPA UNS Lecture 6: Med Strteg: Ler Progrg Method A. Metode Cpur deg Progr Ler Terdpt hubug g ert tr teor per d progr

Lebih terperinci

SOLUSI SOAL ESSAY. No. 1 s.d 15. Jadi, uang tabungan Laila akan menjadi $6 kurang dari pada tabungan Tina setelah 13 minggu.

SOLUSI SOAL ESSAY. No. 1 s.d 15. Jadi, uang tabungan Laila akan menjadi $6 kurang dari pada tabungan Tina setelah 13 minggu. SOUSI SO ESSY No. s.. Solusi: Misly umur yh sy, iu sy, ik lki-lki sy sekrg lh x, y, z, mk x : y : z : 9 : x : z : x z. ( x 4 x 4 Jik : c :, mk c c x 36. ( ri ( (, kit memperoleh: x 36 x 36 z 3 Ji, ik lki-lki

Lebih terperinci

CATATAN KULIAH Pertemuan IV: Model-model linier dan Aljabar Matriks (2)

CATATAN KULIAH Pertemuan IV: Model-model linier dan Aljabar Matriks (2) TTN KULH ertemu V: Moel-moel ler lr Mtrks (). Mer Mtrks vers Sutu mtrks () mempuy vers l terpt sutu mtrks B, seh B B. Mtrks B seut vers mtrks, tuls -, y merupk mtrks uur skr ermes. Syrt keer r Mtrks vers

Lebih terperinci

24/02/2014. Sistem Persamaan Linear (SPL) Beberapa Aplikasi Sistem Persamaan Linear Rangkaian listrik Jaringan Komputer Model Ekonomi dan lain-lain.

24/02/2014. Sistem Persamaan Linear (SPL) Beberapa Aplikasi Sistem Persamaan Linear Rangkaian listrik Jaringan Komputer Model Ekonomi dan lain-lain. // Alj Lie Elemete MUGE SKS Silus : B I Mtiks d Oesi B II Detemi Mtiks B III Sistem Pesm Lie B IV Vekto di Bidg d di Rug B V Rug Vekto B VI Rug Hsil Kli Dlm B VII Tsfomsi Lie B VIII Rug Eige // :8 MUGE

Lebih terperinci

I PENDAHULUAN II TINJAUAN PUSTAKA

I PENDAHULUAN II TINJAUAN PUSTAKA I PENDAHULUAN. Lt Belkg Kt-kt mu p t mempuy pebe bt peget. Bebep kt mugk mempuy t yg lebh umum bgk eg yg ly. Det kemp u kt tk pelu met tu ttf. Sebg cotoh w meh mempuy peget yg lebh umum lebh lu bgk eg

Lebih terperinci

Bentuk Umum Perluasan Teorema Pythagoras

Bentuk Umum Perluasan Teorema Pythagoras Jrl Grde Vol No Jr 6 : 9-4 Betk Umm Perls Teorem Pythors Ml stt By Kerm Ulsr les Jrs Mtemtk Fklts Mtemtk d Ilm Peeth lm Uversts Bekl Idoes Dterm Septemer 5; dset Desemer 5 strk - Peelt memhs perls teorem

Lebih terperinci

matematika WAJIB Kelas X KUADRAN SUDUT Kurikulum 2013 A. Besar Sudut pada Setiap Kuadran

matematika WAJIB Kelas X KUADRAN SUDUT Kurikulum 2013 A. Besar Sudut pada Setiap Kuadran Kuikulum 03 Kels mtemtik WAJIB KUADRAN SUDUT Tujun Pembeljn Setelh mempelji ini, kmu dihpkn memiliki kemmpun beikut.. Memhmi bes sudut di setip kudn.. Memhmi pebndingn tigonometi sudut-sudut di setip kudn.

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA0 MATEMATIKA A Hedr Guw Semester II, 06/07 0 Februri 07 9. Deret Tk Terhigg Kulih yg Llu Memeriks kekoverge sutu deret d, bil mugki, meghitug jumlhy 9.3 Deret Positif: Uji Itegrl Memeriks kekoverge deret

Lebih terperinci

Eliminasi Gauss Gauss Jordan

Eliminasi Gauss Gauss Jordan Persm Liier Simult Elimisi Guss Guss Jor Persm Liier Simult Persm liier simult lh sutu betuk persm-persm p yg secr bersm-sm meyjik byk vribel bebs. Betuk persm liier simult eg m persm vribel bebs pt itulisk

Lebih terperinci

PRAKTIKUM 10 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Seidel

PRAKTIKUM 10 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Seidel Prktkum 0 Peyeles Persm Ler Smult - Metode Elms Guss Sedel PRAKTIKUM 0 Peyeles Persm Ler Smult Metode Elms Guss Sedel Tuu : ler smult Mempelr metode Elms Guss Sedel utuk peyeles persm Dsr Teor : Metode

Lebih terperinci

METODE NUMERIK PERTEMUAN : 5 & 6 M O H A M A D S I D I Q 3 S K S - T E K N I K I N F O R M A T I K A - S1

METODE NUMERIK PERTEMUAN : 5 & 6 M O H A M A D S I D I Q 3 S K S - T E K N I K I N F O R M A T I K A - S1 METODE NUMERIK S K S - T E K N I K I N F O R M A T I K A - S M O H A M A D S I D I Q PERTEMUAN : 5 & 6 PENYELESAIAN PERSAMAAN LINIER SIMULTAN S K S - T E K N I K I N F O R M A T I K A - S M O H A M A D

Lebih terperinci

BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ. Definisi 3.1 Matriks Toeplitz adalah suatu matriks., dengan nilai,, dan indeks yang

BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ. Definisi 3.1 Matriks Toeplitz adalah suatu matriks., dengan nilai,, dan indeks yang BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ 3. Mtriks Toeplitz Defiisi 3. Mtriks Toeplitz dlh sutu mtriks [ t ; k, j = 0,,..., ] : T =, k j, deg ili,, d ideks yg diguk setip etriy

Lebih terperinci

INTEGRAL TERTENTU. sebagai P = max{x i x i-1 1 = 1, 2, 3,, n}. a = x 0 x 1 x 2 x n = b. Contoh: Pada interval [ 3, 3], suatu partisi P = { 3, 1 2 , 31

INTEGRAL TERTENTU. sebagai P = max{x i x i-1 1 = 1, 2, 3,, n}. a = x 0 x 1 x 2 x n = b. Contoh: Pada interval [ 3, 3], suatu partisi P = { 3, 1 2 , 31 INTEGRAL TERTENTU Defs: Prs P pd ervl [,] dlh suu suse erhgg P = {,,,, } dr [,] deg = < < < < = Jk P = {,,,, } prs pd [,] mk Norm P, duls P, ddefsk seg P = m{ - =,,,, } Cooh: = = Pd ervl [, ], suu prs

Lebih terperinci

Pada Bab 12 kita mengasumsikan bahwa f kontinu pada [a, b] dan mendefinisikan f(x) dx sebagai supremum dari himpunan semua jumlah luas daerah

Pada Bab 12 kita mengasumsikan bahwa f kontinu pada [a, b] dan mendefinisikan f(x) dx sebagai supremum dari himpunan semua jumlah luas daerah 13. INTEGRAL RIEMANN 13.1 Jumlh Riem Ats d Jumlh Riem Bwh Pd Bb 12 kit megsumsik bhw f kotiu pd [, b] d medefiisik itegrl b f(x) dx sebgi supremum dri himpu semu jumlh lus derh persegi-pjg kecil di bwh

Lebih terperinci

kimia HIDROLISIS K e l a s Kurikulum 2013 A. Definisi, Jenis, dan Mekanisme Hidrolisis

kimia HIDROLISIS K e l a s Kurikulum 2013 A. Definisi, Jenis, dan Mekanisme Hidrolisis urikulum 2013 kimi e l s XI HIDROLISIS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi, jenis, dn meknisme hidrolisis. 2. Memhmi sift-sift dn ph lrutn

Lebih terperinci

Perbedaan Interpolasi dan Ekstrapolasi

Perbedaan Interpolasi dan Ekstrapolasi Iterolsi Iterolsi Perbed Iterolsi d Ekstrolsi Iterolsi Liier L Iterolsi Kudrt L h h Iterolsi Qubic L h h h Iterolsi dg Poliomil 5 Tble : Si equidisttly sced oits i [- ] y 5 -..846 -.6. -..5..5.6...846

Lebih terperinci

Bab 2 LANDASAN TEORI

Bab 2 LANDASAN TEORI b LNDSN TEORI. Hmpu Fuzzy Tdk semu hmpu yg dump dlm kehdup sehr-hr terdefs secr els, msly hmpu org msk, hmpu org pd, hmpu org tgg, d sebgy. Msly, pd hmpu org tgg, tdk dpt dtetuk secr tegs pkh seseorg dlh

Lebih terperinci

KAJIAN BATAS KESALAHAN MINIMUM METODE RUNGE-KUTTA ORDE KEDUA, KETIGA, DAN KEEMPAT

KAJIAN BATAS KESALAHAN MINIMUM METODE RUNGE-KUTTA ORDE KEDUA, KETIGA, DAN KEEMPAT Prosdg Semr Nsol Mtemtk d Terpy 06 p-issn : 550-084; e-issn : 550-09 KAJIAN BATAS KESALAHAN MINIMUM METODE RUNGE-KUTTA ORDE KEDUA, KETIGA, DAN KEEMPAT St Muhwh Uversts Jederl Soedrm [email protected]

Lebih terperinci

Metode Iterasi Gauss Seidell

Metode Iterasi Gauss Seidell Metode Itersi Guss Seidell Metode itersi Guss-Seidel : metode yg megguk proses itersi higg diperoleh ili-ili yg berubh. Bil dikethui persm liier simult: Berik ili wl dri setip i (i s/d ) kemudi persm liier

Lebih terperinci

INVERS MATRIKS SIRKULASI REGULAR MELALUI TEOREMA ADJOIN

INVERS MATRIKS SIRKULASI REGULAR MELALUI TEOREMA ADJOIN INVERS MATRIKS SIRKULASI REGULAR MELALUI TEOREMA ADJOIN Fs Pletio N * Rol Pe Musii M Mhsisw Pogm S Mtemtik Dose Juus Mtemtik Fkults Mtemtik d Ilmu Pegethu Alm Uivesits Riu Kmpus Biwidy Pekbu 89 Idoesi

Lebih terperinci

Hendra Gunawan. 21 Februari 2014

Hendra Gunawan. 21 Februari 2014 MA0 MATEMATIKA A Hedr Guw Semester II, 03/04 Februri 04 Kulih Sebelumy 9.4 Deret Positif: Uji Liy Memeriks kekoverge deret positif deg ujiperbdigd ujirsio 9.5 Deret Gti Td: Kekoverge Mutlk d Kekoverge

Lebih terperinci

SISTEM PERSAMAAN LINEAR. Nurdinintya Athari (NDT)

SISTEM PERSAMAAN LINEAR. Nurdinintya Athari (NDT) SISTEM PERSAMAAN LINEAR Nurdiity Athri (NDT) Sistem Persm Lier (SPL) Sub Pokok Bhs Pedhulu Solusi SPL deg OBE Solusi SPL deg Ivers mtriks d Atur Crmmer SPL Homoge Beberp Apliksi Sistem Persm Lier Rgki

Lebih terperinci

PRAKTIKUM 8 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss

PRAKTIKUM 8 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Prktkum 8 Peyeles Persm Ler Smult Metode Elms Guss PRAKTIKUM 8 Peyeles Persm Ler Smult Metode Elms Guss Tuju : Mempeljr metode Elms Guss utuk peyeles persm ler smult Dsr Teor : Metode Elms Guss merupk

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN Ltr Belg Istlh Pemrogrm Geometr (PG) dperel oleh Duff, Peterso, d Zeer pd thu 967 Istlh dmbl dr mslh-mslh geometr g dpt dformuls sebg PG Pemrogrm Geometr dlh sutu tpe mslh optmlss mtemt g

Lebih terperinci

BAB V TRANSFORMASI - Z

BAB V TRANSFORMASI - Z BAB V TRANSFORMASI - Z A. Pegeti Tsfomsi- Tsfomsi- lh sutu tsfomsi yg egu utuk meyelesik esm e (iffeece equtio). Hl ii seu eg kegu tsfomsi Llce, teti elku utuk siyl sistem wktu iskit. Tsfomsi- i sutu siyl

Lebih terperinci

Fisika Dasar I (FI-321) 3) Gerak dalam Dua dan Tiga Dimensi Posisi dan Perpindahan Kecepatan Percepatan Gerak Parabola Gerak Melingkar

Fisika Dasar I (FI-321) 3) Gerak dalam Dua dan Tiga Dimensi Posisi dan Perpindahan Kecepatan Percepatan Gerak Parabola Gerak Melingkar Fisik Ds I (FI-31) Topik hi ini (minggu 3) Gek dlm Du dn Tig Dimensi Posisi dn Pepindhn Kecepn Pecepn Gek Pbol Gek Melingk Gek dlm Du dn Tig Dimensi Menggunkn nd u idk cukup unuk menjelskn sec lengkp gek

Lebih terperinci

1. bentuk eksplisit suku ke-n 2. ditulis barisannya sejumlah berhingga suku awalnya. 3. bentuk rekursi ...

1. bentuk eksplisit suku ke-n 2. ditulis barisannya sejumlah berhingga suku awalnya. 3. bentuk rekursi ... Bris d Deret Defiisi Bris bilg didefiisik sebgi fugsi deg derh sl merupk bilg sli. Notsi: f: N R f( ) = Fugsi tersebut dikel sebgi bris bilg Rel { } deg dlh suku ke-. Betuk peulis dri bris :. betuk eksplisit

Lebih terperinci

PENCOCOKAN KURVA (CURVE FITTING) INTERPOLASI

PENCOCOKAN KURVA (CURVE FITTING) INTERPOLASI PENCOCOKAN KURVA (CURVE FITTING) Iterpols : Iterpols er Iterpols Kudrtk Iterpols Poloml Iterpols grge Regres : Regres er Regres Ekspoesl Regres Poloml INTERPOASI Iterpols dguk utuk meksr l tr (termedte

Lebih terperinci

DIGRAF EKSENTRIS PADA DIGRAF SIKEL, DIGRAF KOMPLIT DAN DIGRAF KOMPLIT MULTIPARTIT. Jl. Prof. H. Soedarto SH Semarang 50275

DIGRAF EKSENTRIS PADA DIGRAF SIKEL, DIGRAF KOMPLIT DAN DIGRAF KOMPLIT MULTIPARTIT. Jl. Prof. H. Soedarto SH Semarang 50275 DIGRAF ESENTRIS PADA DIGRAF SIEL DIGRAF OMPLIT DAN DIGRAF OMPLIT MULTIPARTIT Reto tur umlsr d Luc Rtsr Jurus Mtemtk FMIPA UNDIP Jl Prof H Soedrto SH Semrg 5075 Abstrct The eccetrc dgrph of dgrph ED ( D)

Lebih terperinci

Persamaan Linier Simultan

Persamaan Linier Simultan Persm Liier Simult Elimisi Guss Guss Jord Elimisi_GussJord Persm Liier Simult Persm liier simult dlh sutu etuk persm-persm yg ser ersm-sm meyjik yk vriel es. etuk persm liier simult deg m persm d vriel

Lebih terperinci

BAB I SISTEM PERSAMAAN LINEAR

BAB I SISTEM PERSAMAAN LINEAR BAB I SISTEM PERSAMAAN LINEAR Sistem persm ditemuk hmpir di semu cg ilmu pegethu Dlm idg ilmu ukur sistem persm diperluk utuk mecri titik potog eerp gris yg seidg, di idg ekoomi tu model regresi sttistik

Lebih terperinci

Metode Numerik. Regresi. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2008 PENS-ITS

Metode Numerik. Regresi. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2008 PENS-ITS Metode Numerk Regres Um S dh Polteknk Elektronk Neger Surb 008 PENS-ITS 1 Metode Numerk Topk Regres Lner Regres Non Lner PENS-ITS Metode Numerk Metode Numerk Regres vs Interpols REGRESI KUADRAT TERKECIL

Lebih terperinci

A. Pusat Massa Suatu Batang

A. Pusat Massa Suatu Batang Perteu 7 Pust ss sutu Kepg, Setrod, d Teore Pppus A. Pust ss Sutu Btg Dskusk!. slk ss,,..., terletk pd tg pdt sgsg d ttk,...,,, d = jrk errh tr ss ke sutu ttk tetp 0 pd tg,,,...,. ss prtkel, oe prtkel

Lebih terperinci

MA SKS Silabus :

MA SKS Silabus : Aljr Lier Elemeter A SKS Silus : B I triks d Opersiy B II Determi triks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige 7//7

Lebih terperinci

x 1 M = x 1 m 1 + x 2 m x n m n = x i

x 1 M = x 1 m 1 + x 2 m x n m n = x i Iterl Tertetu..6 oe d ust ss Ttk Bert slk d du ed s-s elk ss sesr d y dletkk pd pp er de jrk erturut-turut d d d dr ttk pey pd - y ered. Ked terseut k se jk dpeuh d d. d d Sutu odel tets y k dperoleh pl

Lebih terperinci

Two-Stage Nested Design

Two-Stage Nested Design Mteri #13 TIN309 DESAIN EKSPERIMEN Two-Stge Nested Design Nested design dlh slh stu ksus dri desin multi fktor dimn level dri slh stu fktor (misl: fktor B) serup tpi tidk identik untuk setip level yng

Lebih terperinci

bila nilai parameter sesungguhnya adalah. Jadi, K( ) P( SU jatuh ke dalam WP bila nilai parameter sama dengan )

bila nilai parameter sesungguhnya adalah. Jadi, K( ) P( SU jatuh ke dalam WP bila nilai parameter sama dengan ) Kus Uji d Lem Neym-Perso Kebik sutu uji serig diukur oleh d. Di dlm prktek, bisy ditetpk, d kibty wilyh peolk (WP) mejdi tertetu pul. Kierj sutu uji jug serig diukur oleh p yg disebut kus uji (power of

Lebih terperinci

III PEMBAHASAN. x x. 3.1 Analisis Metode Perhatikan persamaan integral Volterra berikut. x. atau (11)

III PEMBAHASAN. x x. 3.1 Analisis Metode Perhatikan persamaan integral Volterra berikut. x. atau (11) III PEMBAHASAN 3 Alisis Metode Perhtik persm itegrl Volterr berikut y ( f( λ Ktyt ( ( (8 deg y( merupk fugsi yg k ditetuk sutu kostt f( fugsi sembrg yg dikethui d terdefiisi pd R d K(ty(t sutu fugsi yg

Lebih terperinci

Penyelesaian Persamaan Linier Simultan

Penyelesaian Persamaan Linier Simultan Peyelesi Persm Liier Simult Persm Liier Simult Persm liier simult dlh sutu betuk persm-persm yg ser bersm-sm meyjik byk vribel bebs Betuk persm liier simult deg m persm d vribel bebs ij utuk i= s/d m d

Lebih terperinci

JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER 1

JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER 1 FITRIANA RICHA HIDAYATI 7 46 Dose Pembimbig M. ARIEF BUSTOMI, M.Si Surby, Jui JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER Alis disesuik deg geometri

Lebih terperinci

RENCANA PELAKSANAAN PERKULIAHAN

RENCANA PELAKSANAAN PERKULIAHAN Lesso Study FMIPA UNY RENCANA PELAKSANAAN PERKULIAHAN MATA KULIAH : ALJABAR LINEAR II SEMESTER : III TOPIK : NILAI EIGEN DAN VEKTOR EIGEN SUB TOPIK : NILAI EIGEN DAN VEKTOR EIGEN WAKTU : X 5 A. Stdr Kompetesi:

Lebih terperinci

Sistem Bilangan dan Kesalahan. Sistim Bilangan Metode Numerik 1

Sistem Bilangan dan Kesalahan. Sistim Bilangan Metode Numerik 1 Sistem Bilg d Keslh Sistim Bilg Metode Numerik Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Sistim Bilg Metode Numerik Cotoh : 673 * 3 6* 7* 3*

Lebih terperinci

Contoh Soal log 9 = 2 b. 5 log 1 = log 32 = 2p. Jawab: log 9 = 2 9 = log 1 = 3 1 =

Contoh Soal log 9 = 2 b. 5 log 1 = log 32 = 2p. Jawab: log 9 = 2 9 = log 1 = 3 1 = Ifo Mth Joh Npier (0 67). Cotoh Sol. Nytk logrit berikut dl betuk pgkt.. log 9 = log = log = p Jwb:. log 9 = 9 = log = = Suber: ctiques.krokes.free.fr Metode logrit pert kli dipubliksik oleh tetikw Scotldi,

Lebih terperinci

NOTASI SIGMA, BARISAN, DERET DAN INDUKSI MATEMATIKA

NOTASI SIGMA, BARISAN, DERET DAN INDUKSI MATEMATIKA NOTASI SIGMA, BARISAN, DERET DAN INDKSI MATEMATIKA 4. K i K i Notsi Sigm : 5. ( ± V i i i V i i ± dlh otsi sigm, digu utu meyt ejumlh beuut di sutu bilg yg sudh beol. meu huuf citl S dlm bjd Yui dlh huuf

Lebih terperinci

MetodeLelaranUntukMenyelesaikanSPL

MetodeLelaranUntukMenyelesaikanSPL MetodeLelrUtukMeyelesikSPL Metode elimisi Guss melitk yk glt pemult. Glt pemult yg terjdi pd elimisi Guss dpt meyek solusiyg diperoleh juh drisolusiseery. Ggs metod lelr pd pecri kr persm irljr dptjugditerpkutukmeyelesikspl.

Lebih terperinci

Sistem Bilangan dan Kesalahan. Metode Numerik

Sistem Bilangan dan Kesalahan. Metode Numerik Sistem Bilg d Keslh Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Cotoh : 673 * 3 6* 7* 3* Bilg ult deg ilg dsr c didefiisik segi : ( )... c N c

Lebih terperinci

Soal-soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2008

Soal-soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2008 Sol-sol d Pembhs Mtemtik Dsr SBMPTN - SNMPTN 8 y. Dlm betuk pgkt positif, ( y). A. ( + y ) ( y ) C. ( y ) E. - ( y ) B. - ( + y ) ( y ) D. ( y ) y ( y) y ( y) y y ( y) y (y). (y) y - ( y ) ( y + ) - (-y+

Lebih terperinci

dan mempunyai vektor normal n =(a b c). Misal P(x,y,z) suatu titik berada pada bidang. 1. Persamaan bidangnya adalah n P P

dan mempunyai vektor normal n =(a b c). Misal P(x,y,z) suatu titik berada pada bidang. 1. Persamaan bidangnya adalah n P P Rug Vektor Tuju:. Megigt kembli persm gris d bidg di rug.. Memhmi ksiom rug vektor, kombisi liier d rug bgi.. Megigt kembli pegerti bebs d bergtug liier, bsis d dimesi. Arti geometris dri determi Jik A

Lebih terperinci

SISTIM PERSAMAAN LINIER. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

SISTIM PERSAMAAN LINIER. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ SISTIM PERSAMAAN LINIER Agusti Prdjigsih, M.Si. Jurus Mtemtik FMIPA UNEJ [email protected] DEFINISI : Persm Liier Persm Liier dlm peubh,, ditk dlm betuk b dim,,, b R Pemech persm liier dits dlh urut

Lebih terperinci

PROBLEM SOLVING TERKAIT DENGAN KELAS X SEMESTER 1 PADA STANDAR KOMPETENSI (SK) 1.

PROBLEM SOLVING TERKAIT DENGAN KELAS X SEMESTER 1 PADA STANDAR KOMPETENSI (SK) 1. PROLEM SOLVING TERKIT DENGN KELS X SEMESTER PD STNDR KOMPETENSI (SK). LJR Memechkn mslh yng berkitn dengn bentuk pngkt, kr, dn logritm Oleh: Sigit Tri Guntoro. Du orng berselisih mengeni bnykny psngn bilngn

Lebih terperinci

Pertemuan ke-5 Persamaan Linier Simultan. 11 Oktober Dr.Eng. Agus S. Muntohar Department of Civil Engineering

Pertemuan ke-5 Persamaan Linier Simultan. 11 Oktober Dr.Eng. Agus S. Muntohar Department of Civil Engineering Pertemu ke-5 Persm Liier Simult Oktober Metode Elimisi Guss (Gussi Elimitio) Metode Elimisi Gus Sutu metode utuk meyelesik persm liier simult dri [A][X][C] Du lgkh peyelesi peyelesi:: Elimisi mju (Forwrd

Lebih terperinci

Redoks Spontan. A. Tujuan : Untuk mengamati reaksi redoks spontan

Redoks Spontan. A. Tujuan : Untuk mengamati reaksi redoks spontan Reoks Spontn A. Tujun : Untuk mengmti eksi eoks spontn B. Teoi penunjng Konsep euksi n oksisi (eoks) beskn pengiktn n pelepsn oksigen penyehn n peneimn elekton set peningktn n penuunn bilngn oksisi. Reksi

Lebih terperinci

BAB 7. LIMIT DAN LAJU PERUBAHAN

BAB 7. LIMIT DAN LAJU PERUBAHAN BAB 7. LIMIT DAN LAJU PERUBAHAN 7. LIMIT FUNGSI 7.. Limit fungsi di sutu titik Menggmbrkn perilku fungsi jik peubhn mendekti sutu titik Illustrsi: Dikethui f( ) f(), 3,30,0 3,030,00 3,003 3 f() = f() 3,000?

Lebih terperinci

BAB IV METODA ANALISIS RANGKAIAN

BAB IV METODA ANALISIS RANGKAIAN 6 BAB METODA ANALSS RANGKAAN Metod nlss rngkn sebenrny merupkn slh stu lt bntu untuk menyeleskn sutu permslhn yng muncul dlm mengnlss sutu rngkn, blmn konsep dsr tu hukum-hukum dsr sepert Hukum Ohm dn

Lebih terperinci

Dosen: Dr. Ir. Adi Surjosatyo, M.Eng. Asisten: Hafif dafiqurrohman Sumber:

Dosen: Dr. Ir. Adi Surjosatyo, M.Eng. Asisten: Hafif dafiqurrohman Sumber: Dosen: Dr. Ir. A Surjostyo, M.Eng. Assten: qurrohmn Sumer: htt://osen.t.t../~mornto/ienas/eknk%0elektro/el% 0ermonmk.t ERMODINAMIKA PROSES-PROSES ERMODINAMIKA Proses Isork () eknn konstn Proses Isoterms

Lebih terperinci

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. Dikethui bhw,. Untuk k didefinisikn bhw k k k. Tentukn jumlh tk hingg dri. Kit mislkn S S. Dengn demikin kit dpt menuliskn Kedu

Lebih terperinci

DERET PANGKAT TAK HINGGA

DERET PANGKAT TAK HINGGA DERET PANGKAT TAK HINGGA TEOREMA-TEOREMA PENTING TERKAIT DERET PANGKAT TEOREMA-TEOREMA PENTING. Itegrsi d diferesisi deret pgkt dpt dilkuk per suku, yitu: ( ) d p q d d ( ) q p d d ( ) ( ) d, d p, q Selg

Lebih terperinci

RELASI REKURENSI. Heru Kurniawan Program Studi Pendidikan Matematika Jalan KHA. Dahlan 3 Purworejo. Abstrak

RELASI REKURENSI. Heru Kurniawan Program Studi Pendidikan Matematika Jalan KHA. Dahlan 3 Purworejo. Abstrak RELASI REKURENSI Heru Kuriw Progrm Studi Pedidik Mtemtik Jl KHA. Dhl Purworejo Abstrk Relsi Rekuresi merupk slh stu mslh dlm Mtemtik Diskrit. Sebuh relsi rekuresi medeiisik suku ke- dri sebuh bris secr

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer Aljr Lier Elemeter MA SKS Silus : B I Mtriks d Opersiy B II Determi Mtriks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige

Lebih terperinci

Diijinkan memperbanyak demi kepentingan pendidikan dengan tetap mencantumkan alamat situs

Diijinkan memperbanyak demi kepentingan pendidikan dengan tetap mencantumkan alamat situs Diijik memperyk demi kepetig pedidik deg tetp mectumk lmt situs LATIH UN IPA. 00-00 KATA PENGANTAR Alhmdulillh peulis pjtk kehdirt Allh SWT., Ats limph rhmt, erkh, d hidyh-ny sehigg peulis dpt meyelesik

Lebih terperinci