BAB I PENDAHULUAN. Gambar 1.1 Lokasi Proyek jembatan

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB I PENDAHULUAN. Gambar 1.1 Lokasi Proyek jembatan"

Transkripsi

1 BAB I PENDAHULUAN 1.1 Latar Belakang Kabupaten Pasuruan merupakan salah satu daerah rawan banjir di Jawa Timur. Hampir di setiap musim hujan, Kabupaten Pasuruan selalu tergenang banjir. Tentu saja hal ini sangat mengganggu aktivitas masyarakat di Kabupaten Pasuruan. Untuk mengatasinya, maka pemerintah Kabupaten Pasuruan mengupayakan adanya normalisasi sungai. Salah satu sungai yang akan dinormalisasi adalah sungai Bangiltak. Dengan adanya normalisasi sungai, maka jembatan-jembatan di sepanjang sungai Bangiltak harus dibongkar. Karena lebar sungai yang bertambah. Sehingga perlu dirancang jembatan yang sesuai dengan lebar sungai akibat normalisasi. Untuk mendapatkan suatu desain jembatan yang baik dan memenuhi persyaratan keamanan dan kenyamanan seperti yang sesuai dengan peraturan yang berlaku, maka perlu didesain dimensi serta kebutuhan tulangan plat, balok, tiang sandaran, pilar, abutment dan bagian jembatan lainnya yang sesuai dengan prosedur yang ada pada peraturan yang berlaku. Jembatan Kedung Ringin pada tugas akhir ini didesain ulang menggunakan metode busur rangka batang. Metode busur rangka batang digunakan untuk jembatan ini dikarenakan dengan metode tersebut dapat digunakan untuk bentang yang panjang. Sehingga jembatan didesain sepanjang 10 meter atau hanya 1 bentang tanpa ada pilar di tengah bentang. Pada tugas akhir ini akan dibahas tentang perencanaan bentang tengah jembatan yang berupa rangka baja serta perencanaan pilar jembtan. Data jembatan rencanakedung Ringin akan diuraikan sebagai berikut : 1. Nama Proyek : Perencanaan Teknis Jembatan Kedung Ringin, Pasuruan.. Pemilik Proyek : Dinas PU Jawa Timur. 3. Lokasi Proyek : Desa Kedung Ringin, Pasuruan. 4. Bangunan Atas : Busur Rangka Batang Baja 5. Bangunan Bawah : Pondasi tiang pancang Gambar 1.1 Lokasi Proyek jembatan Kedung Ringin 1. Perumusan Masalah Dalam perencanaan bentang tengah jembatan Kedung Ringin yang berbentuk busur rangka batang pelu adanya suatu perhitungan khusus sehingga didapatkan suatu desain jembatan busur rangka batang baja beserta pilar yang baik serta memenuhi standar yang telah disyaratkan dalam peraturan yang berlaku. Sehingga akan timbul suatu pertanyaan, bagaimana perencanaann suatu jambatan busur rangka batang baja yang baik serta memenuhi persyaratan yang ditentukan? Pada perencanaan bentang tengah jembatan Kedung Ringin ini yang berupa busur rangka batang baja perlu adanya desain yang baik. Hal tersebut meliputi : 1. Bagaimana prosedur perencanaan busur rangka batang baja jembatan?. Bagaiman prosedurr perencanaan bangunan bawah jembatan? 3. Bagaimana prosedur perencanaan bangunan pelengkap jembatan? 1.3 Batasan Masalah Perencanaan Jembatan Kedung Ringin Kabupaten Pasuruan meliputi : 1. Perencanaan dimensi dan analisis struktur busur rangka batang, abutment jembatan dan bangunan pelengkap jembatan.. Penggunaan rumus-rumus yang sesuai dengan yang ada di peraturan ataupun literatur yang digunakan. 3. Penggambaran hasil perencanaan struktur jembatan. Perencanaan yang dilaksanakan tidak membahas tentang perhitungan anggaran biaya dan metode pelaksanaan pembangunan jembatan. 1

2 1.4 Tujuan Perencanaan Jembatan Kedung Ringin ini bertujuan untuk dapat merencanakan suatu struktur jembatan yang baik dan memenuhi kelayanan dan mempunyai kekuatan yang cukup. Dan apabila terjadi kehilangan kelayanan dan kemungkinan terjadi keruntuhan struktur maka hal itu terjadi tidak terlalu parah dan umur jembatan sesuai dengan umur rencana jembatan. Secara khusus, tujuan perencanaan Jembatan Kedung Ringin ini adalah : 1. Perencanaan bangunan atas jembatan yang meliputi perencanaan busur rangka batang, balok girder, balok diafragma, trotoar dan kerb jembatan. Yang meliputi perencanaan dimensi dan kebutuhan baut yang diperlukan sesuai dengan peraturan yang berlaku.. Perencanaan bangunan bawah jembatan yang meliputi perencanaan Abutment, poer pilar serta kebutuhan tiang pancang. Yang meliputi perencanaan dimensi, kebutuhan tulangan serta kebutuhan tiang pancang yang diperlukan sesuai dengan peraturan yang berlaku. 1.5 Manfaat Manfaat yang didapatkan dari proses perencanaan struktur Jembatan Kedung Ringin adalah kehidupan perekonomian masyarakat Kecamatan Kedung Ringin, Kabupaten Pasuruan akan berkembang. Karena ada prasarana yang memfasilitasi mereka untuk pergi ke pasar ataupun menuntut ilmu tanpa adanya kendala akibat tidak adanya jembatan di daerah mereka. Penggunan metode busur rangka batang pada bentang tengah jembatan menguntungkan karena bentang jembatan bisa panjang sehingga tidak perlu adanya pilar. Karena dengan adanya pilar maka akan dapat mengganggu aliran sungai. Resiko kegagalan struktur akibat tergerusnya lapisan bawah pilar dapat dihindari. BAB II TINJAUAN PUSTAKA.1. Umum Definisi jembatan adalah suatu struktur yang menghubungkan alur transportasi melintasi rintangan yang ada tanpa menutupnya. Rintangan bisa berupa sungai, jurang, jalan dan lain sebagainya. Jembatan Kedung Ringin Kabupaten Pasuruan didesain dengan menggunakan metode prategang. Dalam tugas akhir ini, Jembatan Kedung Ringin didesain ulang dengan menggunakan busur rangka batang baja. Metode dipilih karena dengan metode ini dimungkinkan untuk jembatan bentang panjang. Dari segi estetika jembatan dengan metode ini juga lebih indah... Analisis Pembebanan Jembatan Pada perencanaan jembatan yang perlu diperhatikan adalah beban-beban yang terjadi pada jembatan. Beban-beban tersebut akan mempengaruhi besarnya dimensi dari struktur jembatan serta banyak tulangan yang digunakan. Pada peraturan teknik jembatan Standar Nasional Indonesia T aksi-aksi (beban) digolongkan berdasarkan sumbernya yaitu:..1. Beban Mati Beban mati struktur jembatan adalah berat sendiri dari masing masing bagian struktural jembatan dan berat mati tambahan yang berupa berat perkerasan. Masing masing berat bagian tersebut harus dianggap sebagai aksi yang saling terkait.... Beban Hidup Beban hidup pada jembatan meliputi : 1. Beban Lalu Lintas Beban lalu lintas untuk perencanaan struktur jembatan terdiri dari beban lajur D dan beban truk T : a. Beban Lajur D Beban lajur D bekerja pada seluruh lebar jalur kendaraan dan menimbulkan pengaruh pada girder yang ekivalen dengan suatu iring iringan kendaraan yang sebenarnya. Intensitas beban D terdiri dari beban tersebar merata dan beban garis. Beban tersebar merata (UDL q). Besarnya beban tersebar merata q menurut Standar Nasional Indonesia T pasal adalah : q 9,0 kn/m² (untuk L < 30 m), digunakan desain...1 q 9,0 ( 0,5 + 15/L ) km/m² (untuk L > 30 m)... dimana, L Panjang total jembatan yang dibebani Beban garis (KEL). Besarnya beban garis P ditetapkan sebesar 49 kn/m.

3 Tabel.3. Faktor Beban Dinamik untuk KEL Lajur D 3. Beban Pejalan Kaki Semua elemen dari trotoar atau jembatan penyeberangan yang langsung memikul pejalan kaki harus direncanakan untuk beban nominal 5 kpa. Gambar.1. Kedudukan Beban Lajur D b. Beban Truk T Beban truk T adalah berat satu kendaraan berat dengan 3 as yang ditempatkan pada beberapa posisi yang digunakan untuk menganalisis pelat jalur lalu lintas. 4. Gaya Rem Pengaruh pengereman kendaraan diperhitungkan dalam analisis jembatan dimana gaya tersebut bekerja pada permukaan lantai jembatan. Pengaruh rem dan percepatan lalu lintas harus dipertimbangkan sebagai gaya memanjang. Gaya ini tidak tergantung pada lebar jembatan dan diberikan dalam tabel.4 untuk panjang struktur yang tertahan. Tabel.4. Gaya Rem Gambar.. Pembebanan Truk T c. Faktor Pembesaran Dinamis. Faktor pembesaran dinamis (DLA) berlaku pada KEL lajur D dan truk T sebagai simulasi kejut dari kendaraan bergerak pada struktur jembatan. Untuk Truk T nilai DLA adalah 0,3 sedangkan untuk KEL lajur D nilai dapat dilihat pada tabel Beban Lateral 1. Beban Gempa Berdasarkan peraturan Standar Nasional Indonesia T pasal 7.7, beban rencana akibat gempa minimum diperoleh dari rumus berikut : T EQ Kh. I. WT...3 Dengan : T EQ gaya geser dasar total dalam arah yang ditinjau I faktor kepentingan W T total berat nominal bangunan yang dipengaruhi oleh percepatan diambil akibat gempa, sebagai beban mati tambahan Kh koefisien beban gempa horisontal Kh C. S...4 3

4 C koefisien geser dasar untuk daerah, waktu dan kondisi setempat yang sesuai S faktor tipe bangunan Untuk bangunan yang mempunyai satu derajat kebebasan yang sederhana, maka rumus berikut ini dapat digunakan. WTP T π....5 g KP Dengan : T waktu getar dalam detik G percepatan gravitasi (g 9.8 m/dt ) W TP total berat nominal bangunan atas termasuk beban mati tambahan ditambah setengah dari pilar ( bila perlu dipertimbangkan ) KP kekakuan gabungan sebagai gaya horisontal yang diperlukan untuk menghasilkan satu satuan lendutan pada bagian atas pilar (kn/m).. Beban angin Gaya angin nominal ultimate pada jembatan tergantung pada kecepatan angin rencana sebagai berikut : TEW Cw (Vw) Ab....6 Dengan : Vw kecepatan angin rencana (m/dt) Cw koefisien seret ( lihat tabel.5) Ab luas ekivalen bagian samping jembatan (m ) Kecepatan angin rencana harus diambil seperti yang diberikan dalam tabel.5. Tabel.5. Koefisien Seret Cw Catatan : 1) b lebar keseluruhan jembatan dihitung dari sisi luar sandaran d tinggi bangunan atas, termasuk tinggi bagian sandaran yang masif. ) Untuk harga antara dari B/d bisa diinterpolasi linier. 3) Apabila bangunan atas mempunyai superelevasi, Cw harus dinaikkan sebesar 3% untuk setiap derajat superelevasi, dengan kenaikkan maksimum 5%..9. Perencanaan Rangka Batang Selain harus memiliki kekuatan yang cukup, rangka batang juga harus memiliki tinggi lengkung busur yang yang cukup dan ideal. Sehingga kekuatan busur dapat optimum. Tinggi lengkung busur tergantung pada panjang bentang jembatan. Dalam buku Bridge Engineering Handbook, Gerard F. Fox mencontohkan beberapa jembatan yang ada di dunia yang menggunakan busur rangka baja. Antara lain : The Cowlitz River Bridge, di Washington. Jembatan ini memiliki panjang bentang 159 meter dengan tinggi lengkung busur 45 meter. Sehingga perbandingan tinggi tampang dengan panjang bentang adalah 1 : 3,5. Jembatan ini merupakan jembatan beton rangka busur. Wanxian Yangtze Bridge, di China. Jembatan ini memiliki panjang bentang 45 meter dengan tinggi lengkung busur 85 meter. Sehingga perbandingan tinggi tampang dengan panjang bentang adalah 1 : 5. Jembatan ini merupakan jembatan beton rangka busur dan merupakan yang terpanjang. New River Gorge, di Fayetteville Virginia Barat. Merupakan jembatan busur rangka batang. Dan merupakan yang terpanjang.jembatan ini memiliki panjang bentang 518 meter dengan perbandingan tinggi legkung busur dengan panjang bentang adalah 1 : 4,6. Dari beberapa contoh di atas, dapat diambil kesimpulan bahwa perbandingan tinggi muka tampang busur dengan panjang bentang jembatan adalah berkisar 1 : 4,5 hingga 1 : 6. Sehingga tinggi lengkung jembatan Kedung Ringin adalah 4 meter Tinggi tampang busur untuk jembatan rangka batang adalah sekitar hingga. Dan jembatan Kedung Ringin direncanakan memiliki tinggi tampang busur 4 meter. Lebar jembatan rangka batang agar busur kaku, maka harus direncanakan memiliki perbandingan lebar dan panjang lebih besar sama dengan 1 : 0. Sehingga lebar minimum jembatan Kedung Ringin adalah 5,5 meter. Dan jembatan Kedung Ringin ini direncanakan memiliki lebar jembatan 10 meter. Pada perencanaan rangka baja, interaksi antara unsur rangka utama dan sistem ikatan lateral strutur jembatan harus dipertimbangkan. 4

5 Pengaruh beban global pada struktur harus dihitung sesuai dengan teori elastis, berdasarkan anggapan bahwa semua unsur adalah lurus. Semua unsur saling berhubungan dan tiap hubungan terletak pada pertemuan sumbu garis berat unsur-unsur yang relevan dan semua beban, termasuk berat sendiri unsur, bekerja pada titik hubungan. BAB III METODOLOGI 3.1. Diagram Alir Metodologi Data Umum Jembatan Nama jembatan : Jembatan Kedung Ringin Kabupaten Pasuruan Tipe jembatan : Jembatan beton konvensional Lokasi : Ruas Jalan Kecamatan Kedung Ringin, Kabupaten Pasuruan, Propinsi Jawa Timur. Lebar jembatan : 7 meter. Bentang jembatan : 90 meter. Dibagi menjadi x 45 meter Data Perencanaan Jembatan Lebar jembatan : 10.5 meter. Tinggi fokus : meter. Tinggi tampang : 4 meter. Bentang jembatan : 10 meter Struktur utama : Baja. Data Bahan Kekuatan tekan beton (fc ) 35 MPa Tegangan leleh baja (fy) 400 Mpa Mutu profil baja BJ 50 dengan : Tegangan leleh (fy) 90 MPa Tegangan putus (fu) 500 Mpa Data Tanah Data tanah digunakan untuk merencanakan pondasi jembatan tersebut. 3.. Pengumpulan data Data-data perencanaan secara keseluruhan mencakup data umum jembatan, data bahan dan data tanah Studi literatur 1. Standar Nasional Indonesia (SNI) T Standar Pembebanan Untuk Jembatan. Departemen Pekerjaan Umum.. Standar Nasional Indonesia (SNI) T Perencanaan Struktur Baja Untuk Jembatan. Departemen Pekerjaan Umum. 3. Standar Nasional Indonesia (SNI) T Perencanaan Struktur Beton Untuk Jembatan. Departemen Pekerjaan Umum. 4. Bridge Design Manual Bridge Management System (BMS) Departemen Pekerjaan Umum Dirjen Bina Marga. 5. Chen, Wai-Fah, Duan, Lian Bridge Engineering Handbook. Boca Raton. London 6. Sosrodarsono, Suyono.Ir, dan Nakazawa, Kazuto Mekanika Tanah dan Teknik Pondasi. Jakarta : PT. Pradnya Paramitha. 7. Troitsky, M. S Planning and Design of Bridge. John Wiley & Sons, Inc. New York 5

6 3.4. Pembebanan Pembebanan pada perencanaan jembatan ini mengacu pada peraturan teknik perencanaan jembatan BMS 199. Beban beban meliputi : Beban Tetap Berat Sendiri Berat sendiri adalah berat bahan dan bagian jembatan yang merupakan elemen struktural, ditambah dengan elemen non struktural yang dianggap tetap. Berikut ini merupakan berat isi dan kerapatan massa untuk berat sendiri dari bermacam macam bahan. Beban Mati Tambahan Beban mati tambahan adalah berat seluruh bahan yang membentuk suatu beban pada jembatan yang merupakan elemen non struktural, dan mungkin besarnya berubah selama umur jembatan. Tekanan Tanah Koefisen tekanan tanah nominal harus dihitung dari sifat sifat tanah yang ditentukan berdasarkan pada kepadatan, kadar kelembaban, kohesi sudut geser dalam dan sebagainya. Dan sifat sifat tanah tersebut dapat diperoleh dari hasil pengukuran dan pengujian tanah. Untuk bagian tanah di belakang dinding penahan harus diperhitungkan adanya beban tambahan yang bekerja apabila beban lalu lintas kemungkinan akan bekerja pada bagian daerah keruntuhan aktif teoritis (Gambar 3.1). Besarnya beban tambahan ini bekerja secara merata pada bagian tanah yang dilewati oleh beban lalu lintas tersebut. Dan beban tambahan ini hanya diterapkan untuk menghitung tekanan tanah dalam arah lateral saja. Limit of travel Batas lewat Surchage Beban tambahan Limit of travel Batas lewat Surchage Beban tambahan lebar jalur kendaraan dan menimbulkan pengaruh pada jembatan yang ekivalen dengan suatu iring iringan kendaraan yang sebenarnya. Jumlah total beban lajur D yang bekerja tergantung pada lebar jalur kendaraan itu sendiri. Beban truck T adalah satu kendaraan berat dengan 3 as yang ditempatkan pada beberapa posisi dalam lajur lalu lintas rencana. Tiap as terdiri dari bidang kontak pembebanan yang dimaksud sebagai simulasi pengaruh roda kendaraan berat. Hanya satu truck T diterapkan per lajur lalu lintas rencana. Secara umum beban D akan menentukan dalam perhitungan yang mempunyai bentang mulai dari sedang sampai panjang, sedangkan beban T digunakan untuk bentang pendek dan lantai kendaraan Gaya Rem Pengaruh percepatan dan pengereman dari lalu lintas harus diperhtungkan sebagai gaya dalam arah memanjang, dan dianggap bekerja pada permukaan lantai kendaraan.sistem memanjang harus direncanakan untuk menahan gaya memanjang tersebut, tanap melihat berapa besarnya lebar bangunan. Dalam perencanaan gaya rem tidak boleh digunakan tanpa beban lalu lintas vertikal yang bersangkutan. Dalam hal ini dimana pengaruh beban lalu lintas vertikal dapat mengurangi pengaruh dari gaya rem ( seperti pada stabilitas guling dari pangkal jembatan ) Beban Untuk Pejalan Kaki Semua elemen dari trotoar atau jembatan penyeberangan yang langsung memikul pejalan kaki harus direncanakan untuk beban nominal 5 kpa. Jembatan pejalan kaki dan trotoar pada jembatan jalan raya harus direncanakan untuk memikul beban per m dari luas yang di bebani. Aktive failure zone Daerah keruntuhan aktif 600 mm Aktive failure zone Daerah keruntuhan aktif Beban Lingkungan Beban lingkungan dapat terjadi karena pengaruh temperature, angin, banjir, gempa, dan penyebab penyebab lainnya. Traffic able to travel next to wall Lalu lintas bisa lewat disebelah dinding Traffic prevented from travelling next to wall Lalu lintas dicegah untuk bisa melewati disebelah dinding Gambar 3.1. Tambahan Beban Hidup Beban Lalu Lintas Beban lalu lintas untuk perencanaan jembatan terdiri dari beban lajur D dan beban truck T. Beban lajur D bekerja pada seluruh BAB IV PERHITUNGAN PELAT LANTAI KENDARAAN 4.1. Perencanaan Tebal Pelat Lantai Kendaraan Menurut SNI T ps tentang tebal minimum pelat lantai kendaraan, tebal 6

7 pelat lantai kendaraan harus memenuhi persyaratan berikut : d 00 mm d (b) mm Direncanakan tebal pelat lantai kendaraan 50 mm dimana : d tebal lantai kendaraan b jarak antar antar tumpuan Gambar 4.1. Pelat Lantai Kendaraan 4.. Pembebanan Pelat Lantai Kendaraan Pembebanan pada pelat lantai kendaraan merupakan kombinasi antara beban mati dan beban hidup. Rincian pembebanan pada pelat lantai kendaraan : - Beban Mati : Berat sendiri pelat 0.5 x 1 x 1.75 x Ton/m Berat aspal 0.05 x 1 x 1.75 x Ton/m Beban air hujan 0.05 x 1 x 1.75 x Ton/m + Total beban mati 1.37 Ton/m - Beban Hidup : Menurut SNI T ps tentang besarnya beban truk T, beban T ditentukan sebesar 11.5 KN 11.5 Ton. Faktor beban ultimate untuk beban T 1,8. Maka total beban T 1,8 x 11.5 x (1+0.3) 6.35 Ton Perhitungan Momen Pada Pelat Lantai Kendaraan Untuk balok menerus, rumus sederhana perhitungan momen adalah sebagai berikut : Gambar 4.. Gambar Rumus Perhitungan Momen Balok Menerus Momen akibat beban mati : M D 1 q D b ton.m Dimana : b Jarak bersih antar balok memanjang Momen akibat beban hidup : M L ( S + 0.6) T 0.8 u 10 ( ) ton.m Mu M D + M L ton.m 4.4. Penulangan Pelat Lantai Kendaraan Data perencanaan untuk penulangan pelat lantai antara lain : f c 35 MPa fy 400 Mpa t 50 mm φ lentur 16 mm (arah x) 13 mm (arah y) Decking 40 mm dx φ tul. lentur x t decking mm dy φ tul. lentur y t decking φ tul. lentur x mm Dimana : dx jarak antara serat tekan terluar hingga pusat tulangan tarik untuk tulangan arah melintang. dy jarak antara serat tekan terluar hingga pusat tulangan tarik untuk tulangan arah memanjang Perhitungan Tulangan Arah Melintang m fy f ' c ρ min 1,4 1,4 f y (SNI ps 1.5.1) ρ b.85 f ' c β 600 f y f 0 1 y 7

8 (SNI ps ) menurut SNI-T nilai β 1 untuk beton dengan f c lebih dari 30 MPa adalah : β ( f ' c 30) (35 30) 0.81 ρb ,0361 ρ max 0,75 x ρ b (SNI ps 1.3.3) 0,75 x 0,0361 0,071 M u ton.m x 10 7 N.mm 7 M n M u x 10 7 N.mm R n M n b d x ρ 1 m R n 1 1 m fy ρ min < ρ < ρ max A s ρ x b x d 0,0044 x 1000 x mm Dipasang tulangan D16-00 (As pasang 1005 mm ) Perhitungan Tulangan Arah Memanjang Dipasang tulangan susut dengan ketentuan besar rasio luas tulangan terhadap luas penampang beton untuk struktur yang menggunakan tulangan dengan fy 400 MPa sebesar 0,0018. sehingga didapatkan luas tulangan yang digunakan : As b d As mm Dipasang tulangan D13-00 (As pasang mm ) Perhitungan Kekuatan Pelat Menahan Geser Pons Kekuatan geser pelat lantai kendaraan didapat dengan menggunakan rumus : Karena Mv* 0, sehingga Vn Vno SNI T ps Gambar 4.. Bidang Geser Pons Maka digunakan rumus : u d f cv f SNI T-1- Vn ( ) 004 ps Dimana, Vn Kuat geser nominal pelat u panjang efektif dari keliling geser kritis, mm ( bo + do) bo mm do mm u ( ) 400 mm d jarak serat tekan terluar ke pusat tulangan tarik φ d 4 decking mm f cv 1 1 f ' c 0.34 f ' c 6 + β h SNI T ps β h rasio sisi panjang dan sisi pendek beban terpusat f cv MPa <.01 MPa. Memenuhi syarat pe 8

9 f pe tegangan tekan dalam beton akibat gaya pratekan. 0 MPa Maka, V n ( ) 7700 N 77. kn Kekuatan geser efektif φ V n Dimana : φ faktor reduksi kekuatan geser 0.7. SNI T ps φ V n kn V u gaya geser yang terjadi 11.5 kn < φ Vn kn. Pelat mampu menahan gaya geser terjadi BAB V PERENCANAAN GELAGAR JEMBATAN Untuk perencanaan gelagar jembatan ini menggunakan profil baja dengan mutu BJ 55, dengan ketentuan sebagai berikut : Tegangan leleh fy 410 MPa Tegangan ultimate fu 550 MPa Modulus Elastisitas E.1 x 10 6 kg/cm 5.1 Perencanaan Gelagar Memanjang Gambar 5.1. Detail Perencanaan Gelagar Untuk perencanan gelagar memanjang dipilih profil WF dengan dimensi : 500 x 300 x 11 x 18 Data data profil : g 18 kg/m ; Ix cm 4 A cm ; Iy 8110 cm 4 ix 0.8 cm ; Zx 910 cm 3 iy 7.04 cm ; Zy 541 cm 3 d 488 mm ; t f 18 mm b 300 mm ; t w 11 mm Berat aspal 0,05 x 1.75 x 00 x kg/m Berat bekisting 50 x 1.45 x kg/m Berat sendiri balok 18 x kg/m Qd (u) kg/m Qd (u) kg/m M D 1 Qd (u) L Kg.m b. Beban Hidup Beban terbagi rata (UDL) Menurut ketentuan SNI T ps () untuk : 15 L 30 m ; q 9.0 (0.5 + ) kpa L Pembeban UDL : 15 L 10 m ; q 9.0 (0.5 + ) kpa 10 q 5.65 kpa 56.5 Kg/m Beban yang bekerja : q L 56.5 x 1.75 x kg/m kn/m Beban garis (KEL) Menurut ketentuan SNI T ps (3), beban garis (KEL) sebesar p kn/m, ditempatkan tegak lurus dari arah lalu lintas pada jembatan dimana besarnya : P 49 kn/m 4900 kg/m Faktor beban dinamik yang berlaku untuk KEL ditentukan melalui persamaan : P 1 U ( 1+ DLA ) P b1 K TD Dengan, DLA 0.3 U K TD 1.8 Maka, P1 ( ) kn Kg Pembebanan a. Beban Mati Berat pelat beton 0.5 x 1.75 x 400 x kg/m 9

10 Gambar 5.. Pembebanan Akibat Beban UDL dan KEL M L1 1 1 q L + P L 8 L kgm c. Momen akibat beban truk T Menurut SNI T-0-005, besar beban truk T adalah sebesar 11.5 kn Gambar 5.3. Pembebanan Akibat Beban Truk M L 1 T ( ) L K U 4 TT (1 + 0,3) kn.m Kg.m Karena M L1 > M L, maka dipakai momen akibat beban UDL dan KEL yaitu M L Kg.m 5.1. Kontrol kekuatan lentur Kontrol penampang Badan : h (LRFD Psl tw fy tabel 7.5.1) OK!! Sayap : b (LRFD Psl t f fy tabel 7.5.1) x OK!! Penampak kompak : M nx M px Kontrol tekuk lateral Dipasang shear connector praktis sejarak 10 cm sebagai pengaku arah lateral. L P E... (LRFD Psl i y fy tabel 8.3.) cm L B 10 cm L P > L B (Bentang Pendek) M nx M px Mp Z x fy Kg.cm φ.m n M u Kg.cm Kg.cm Kontrol lendutan Persyaratan untuk lendutan per bentang memanjang (L 5 m) a. Lendutan ijin : δ 1 ijin λ cm... SNI T ps b. Lendutan akibat beban hidup ( UDL + KEL ) : δ 5 q L λ (udl+ kel) 384 E I 1 P1 λ 48 E I x x ( 500) 6.1 x 10 x x

11 x (500) x 10 x ,351 0,458 cm c. Lendutan akibat beban truck : 1 P λ δ T ( T ) 48 E I x ( 500) x 10 x cm Dipakai beban dari lendutan yang lebih besar yaitu akibat beban UDL + KEL 0.5 cm δ δ (udl+ kel) ijin 0.5 0,65... OK Kontrol geser Gaya geser maksimum terjadi apabila beban hidup berada dekat dengan perletakan. Jadi Va yang digunakan adalah Va akibat beban truk sebesar 950 kg. h (LRFD Psl. t w V u 8.8.-a) fy OK a) Vu 3 3 φ V... (LRFD Psl. n 0.6 fy A w Dimana, A w d tb Sehingga : 950 Kg Kg Kg... OK!! 5. Perencanaan Gelagar Melintang Untuk perencanan awal gelagar melintang dipilih profil WF dengan dimensi : 900 x 300 x 18 x 34 Data data profil : g 86 kg/m ; Ix cm 4 A 364 cm ; Iy cm 4 ix 37 cm ; Zx 1.1 cm 3 iy 6,56 cm ; Zy cm 3 d 91 mm ; Sx cm 3 b 30 mm ; Sy cm 3 t f 34 mm t w 18 mm 5..1 Pembebanan a. Beban Mati Sebelum komposit q D1 ( u ) q kg/m D1 M 1 q Q1 D 1 B Kg.m Sesudah komposit Ra Kg kn M Q (Ra x 5.5) (31.0 x 1 x 4.45) (7.15 x 3.95 x 1.975) ( x 5.5) (31.0 x 1 x 4.45) (7.15 x 3.95 x 1.975) kn.m Kg.m b. Beban Hidup Beban D Beban UDL + Beban KEL kg/m - q % x kg/m - q 50 % x kg/m M max L1 Va x 5.5 q x 1. x 3.35 q 1 x.75 x ( x 5.5) (918.5 x 1. x 3.35) (18365x.75 x 1.375) kgm c. Beban truk T Va Kg M max L a Va x 5.5 T ( ) 5650 x x ( ) kgm Dari kondisi di atas, maka dipilih kondisi yang memberikan M max terbesar yaitu : M max L Kg.m BAB VI KONSTRUKSI PEMIKUL UTAMA 6.1 Umum f 4 m syarat : W.S Kinne) untuk f L 1 6 f L K OK (A. Hool & 11

12 h 4 m syarat : 1 40 h L (A. Hool & W.S Kinne) untuk h K OK L Batang Penggantung Persamaan parabola : Yn 4. f. X. ( L X )... (A. Hool 13. L & W.S Kinne) L 10 m ; f 4 m ; Y n f - Yn Tabel 6.1 Panjang Penggantung Frame X Y Yn' panjang penggantung Titik Segm en X (m) Y (m) Yn' (m) An (cm²) Sn (m) Profil yang dipakai WF 350 x 350 x 14 x dengan data data sebagai berikut : A 0 cm ; ix cm g 159 kg/m ; iy 8.90 cm Konstruksi Busur Bentuk Geometrik Busur Persamaan parabola : Y n 4. f. X (L X) L L 10 m ; f 4 m ; Y n f - Y n Sn (Y n ' Y 1 ') + X n Tabel 6.3 Persamaan Parabola Busur Penampang Busur Ukuran tebal sayap (tf) dan tebal badan (tw) : Segmen 11-1 sampai dengan segmen 0-1 : d 498 mm B 43 mm tf 70 mm tw 45 mm Luas penampang : A cm Momen inersia penampang : Ix cm 4 Momen tahanan penampang : 1

13 W 1000 cm 3 BAB VII KONSTRUKSI SEKUNDER Ikatan Angin Atas WF 300x300x11x17(horizontal) WF 50x50x11x11 (diagonal) Ikatan angin bawah WF 50x50x11x11 (diagonal) Portal Akhir Balok end frame WF 400x400x45x75 Kolom end framewf 450 x 00 x 8 x 1 BAB VIII PERHITUNGAN SAMBUNGAN 8.1 Sambungan Gelagar Melintang Gelagar Memanjang Alat sambung yang digunakan adalah baut mutu tinggi (HTB) yang perencanaannya berdasarkan AISC LRFD. Kekuatan geser baut (LRFD ) Vd φ f x Vn Dimana Vn b r 1 x f u x Ab Kekuatan tumpu (LRFD ) Rd φ f x Rn Dimana Rn,4 x d b x t p x f u Data data perencanaan : Pelat penyambung t p 10 mm Baut d b 19 mm Sambungan pada gelagar memanjang ( bidang geser) Kekuatan ijin 1 baut : - Kekuatan geser baut Vd φ f x Vn kg - Kekuatan tumpu baut Rd φ f x Rn 8044 kg Jumlah baut yang diperlukan. - n Pu Vd baut Sambungan pada gelagar melintang - Kekuatan geser baut Vd φ f x Vn kg - Kekuatan tumpu baut Rd φ f x Rn 8044 kg Jumlah baut yang diperlukan. - n Pu Vd baut ( sisi) WF 500 x 300 x 11 x 18 (memanjang) Profil siku 90 x 90 x 13 Baut pada balok melintang Baut pada balok memanjang WF 900 x 300 x 18 x 34 (melintang) 8. Sambungan Gelagar Melintang Batang Tarik Alat sambung yang digunakan adalah : Baut d b 3 mm ; BJ 41 Pelat t p 30 mm ; BJ 37 Jumlah baut yang dibutuhkan n Pu Vd baut 8.3 Sambungan Gelagar Melintang Batang Penggantung Alat sambung yang digunakan adalah : Baut d b 6 mm ; BJ 41 Pelat t p 0 mm ; BJ 37 Jumlah baut yang dibutuhkan n Pu Vd baut 8.4 Sambungan Batang Penggantung Rangka Busur Alat sambung yang digunakan adalah : Baut d b 6 mm ; BJ 41 Pelat t p 16 mm ; BJ 37 Jumlah baut yang dibutuhkan n Pu Vd baut 8.5 Sambungan Konstruksi Busur Sambungan Batang Atas Dari hasil perhitungan diperoleh : a. Frame 110 Direncanakan : Baut d b 6 mm ; BJ 41 Pelat t p 0 mm ; BJ 37 Jumlah baut yang dibutuhkan n Pu Vd baut 13

14 PLAT t0mm BAUT 5Ø6 n Pu Vd baut B BAUT 10Ø40 BAUT 43Ø6 BAUT 6Ø6 BAUT 45Ø6 A BAUT 45Ø6 A1 STUD CONNECTOR B1 ANCHOR BOLT b. Frame 34 Direncanakan : Baut d b 6 mm ; BJ 41 Pelat t p 0 mm ; BJ 37 Jumlah baut yang dibutuhkan n Pu Vd 34 baut D c. Frame 1 Direncanakan : Baut d b 6 mm ; BJ 41 Pelat t p 0 mm ; BJ 37 Jumlah baut yang dibutuhkan n Pu Vd 45 baut D Sambungan Batang Bawah a. Frame 117 Direncanakan : Baut d b 6 mm ; BJ 41 Pelat t p 0 mm ; BJ 37 Jumlah baut yang dibutuhkan C 14

15 BAB IX DESAIN PERLETAKAN 9.1. Perencanaan Perletakan Direncanakan perletakan baja - Mutu baja BJ 50 - Mutu beton f c 35 Mpa 350 kg/cm L M Beban mati (dead load) H Beban hidup (live load) Ta Tekanan tanah Gg Gaya gesek 0,15 (M + H) Rm Gaya Rem (traffic load) A Beban angin (wind load) Hg Gaya gempa (earthquake) Tag Tekanan tanah akibat gempa 135 S S5 S1 L S4 h BAB X STRUKTUR BAWAH JEMBATAN Rangkuman Data Beban V Hy Hx Ordinat My Mx Beban (ton) (ton) (ton) (m) (ton-m) (ton-m) M H Ta Ta Ta Ta Gg Rm A Hg (atas) Hg (bawah) Tag Dimana : S3 S S3 b 500 S3 h Perhitungan daya dukung S-1 Cn A JHP kell P Dengan, P daya dukung tanah Cn nilai konus pada kedalaman n A luas penampang tiang pancang 1 π D 1 π cm JHP nilai jumlah hambatan pelekat pada kedalaman n Kell keliling tiang pancang π D π cm Pijin tekan Kg Pijin Kg cabut 5 Q L Pijin η 07.3 x tekan ton Yang terjadi : Ptekan ton Pcabut ton Kontrol Kekuatan Tiang Dari Spesifikasi Wika Pile Classification direncanakan tiang pancang beton dengan : Diameter : 60 cm Tebal : 10 cm Luas : 157 cm : inch Kelas : C fc : 600 kg/cm : psi fpe : 55.5 kg/cm : psi Allowable axial : ton Bending moment crack : 9.00 t-m Bending moment ultimate : t-m P ultimit tiang (0.85 x fc 0.60 x fpe) x 0.6 x A ( )

16 lbs ton Modulus elastisitas (E) wc 1.5 x0.043x x MPa kg/cm Momen inersia (I) π ( ) cm 4 Perencanaan Tulangan Abutment Dan Pilecap Penulangan pilecap Perhitungan tulangan pilecap yaitu penulangan lentur pada pilecap, dianalisa sebagai balok kantilever dengan perletakan jepit. Beban yang diterima pilecap adalah beban terpusat dari tiang sebesar P dan beban merata dari berat pilecap dan urugan diatasnya sebesar q. Perhitungan dari gaya dalam dianalisa dengan statis tertentu. Data perencanaan : fc 35 MPa fy 360 Mpa q Lebar pilecap x tinggi pilecap x γ beton 1 x x t/m P Mu Dari gaya reaksi PV 1 tiang t P tiang pancang x ( ) berat poer x 3.6 x 1.8 (70.50 x 7 x x 7 x.70) x 3.6 x ton-m Nmm Tebal plat.0 m Diameter tul utama 3 mm Diameter tul memanjang 3 mm Selimut beton 100 mm d t - selimut beton φutama - φmemanjang 185 mm ρ balance 0.85 x fc' xβ x fy fy 0.85 x 35 x x ρ max 0.75 x ρ balance... SNI Ps ρ min fy Koefisien Ketahanan Rn Mu φ x b x d fc' x 1000 x N/mm m fy fc' 0.85 x ρ perlu 1 m Rn 1 1 m fy Syarat : ρ min < ρ perlu < ρ max Pakai ρ min Luas Tulangan As perlu x 1.10 x 1.64 ρ x b x d x 1000 x mm Digunakan tulangan φ mm (As mm ) Untuk tulangan memanjang : As perlu ρ x b x d x 1000 x mm Digunakan tulangan φ 3-75 mm (As mm ) Kontrol geser poer Gaya geser yang terjadi : Vu Jumlah reaksi tiang x jumlah tiang x ton Kekuatan beton : φ Vc 0.6 x 1 fc' bw 6 d 0.6 x 1 35 x 1000 x N ton Vu < φ Vc Tidak perlu tulangan geser. Pasang tulangan geser praktis Φ mm Penulangan dinding abutment Kontrol apakah dinding abutment dihitung sebagai kolom atau dinding. Kontrol dilakukan dengan menggunakan rumus : ΣPu < φ.10%.0,85.fc.a Dengan, ΣPu jumlah total gaya aksial yang terjadi ton N fc A 35 Mpa luas penampang.4 x m mm 16

17 φ x 10% x 0.85 x fc x A 0.7 x 10% x 0.85 x 35 x N < N Maka perhitngan dinding abutment dihitung sebagai pelat. Untuk perencanaan dinding abutment direncanakan berdasarkan momen maksimum yang terjadi Mx max tm maka akan direncanakan Tulangan abutment Mmax tm.36 x Nmm Tebal dinding abutment 40 cm Diameter tul utama 3 mm Diameter tul mmanjang 3 mm Selimut beton 00 mm dx t selimut beton 0.5 φ utama φ memanjang 15 mm ρ balance 0.85 x fc' xβ1 600 x fy fy 0.85 x 35 x x ρ max 0.75 x ρ balance... (SNI Ps ) ρ min fy a. Koefisien Ketahanan Rn Mu φ x b x d.36 x x 1000 x N/mm m fy fc' ρ perlu 1 m Rn 1 1 m fy ,0014 Syarat : ρ min < ρ perlu < ρ max Dipakai ρ min b. Luas Tulangan As perlu 10 x 1.10 x 0.50 ρ x b x d x 1000 x mm Digunakan tulangan φ mm (As mm ) Untuk tulangan memanjang digunakan : As perlu ρ x b x d x 1000 x mm Digunakan tulangan φ 3-00 mm (As mm ) BAB XI PENUTUP 11.1 Kesimpulan Dari hasil perencanaan yang diperoleh dapat disimpulkan sebagai berikut: 1. Dimensi melintang lantai kendaraan lengkap dengan trotoar adalah 10 m untuk jalan jalur arah. Tinggi fokus busur adalah 4 m.. Pelat lantai kendaraan komposit, dengan tebal pelat beton bertulang 50 mm. Tulangan terpasang arah melintang D16-00 dan arah memanjang D Gelagar melintang WF , lendutan m (UDL+KEL) dan m (T) m (Y ijin). 4. Struktur utama busur berupa profil WF 400x400x45x70 dan penggantung menggunakan WF 350 x 350 x 14 x. 5. Struktur sekunder berupa ikatan angin atas dengan dimensi profil yaitu WF 300 x 300 x 11 x 17, ikatan angin bawah menggunakan profil WF 300 x 300 x 11 x 17 (diagonal), sedangkan untuk dimensi portal akhir berupa profil WF 400 x 400 x 45 x dengan menggunakan mutu baja BJ Perletakan berupa perletakan sendi dan rol. 7. Konstruksi abutment berupa dinding penuh setebal.4 m selebar 1 m untuk mendukung bentang 10 m yang ditumpu pondasi tiang pancang beton dengan diameter 0,6 m dengan kuat tekan K600, sebanyak 35 buah kedalaman 13 m untuk S-1 dan. Ukuran pile cap (poer) 9.6 x 1 x m. 8. Stabitas struktur bangunan bawah diperhitungkan untuk beban layan (service load) dan juga dikontrol terhadap beban-beban selama masa pelaksanaan. 17

18 DAFTAR PUSTAKA 1. Standar Nasional Indonesia (SNI) T Standar Pembebanan Untuk Jembatan. Departemen Pekerjaan Umum.. Standar Nasional Indonesia (SNI) T Perencanaan Struktur Baja Untuk Jembatan. Departemen Pekerjaan Umum. 3. Standar Nasional Indonesia (SNI) T Perencanaan Struktur Beton Untuk Jembatan. Departemen Pekerjaan Umum. 4. Bridge Design Manual Bridge Management System (BMS) Departemen Pekerjaan Umum Dirjen Bina Marga. 5. Chen, Wai-Fah, Duan, Lian Bridge Engineering Handbook. Boca Raton. London 6. Sosrodarsono, Suyono.Ir, dan Nakazawa, Kazuto Mekanika Tanah dan Teknik Pondasi. Jakarta : PT. Pradnya Paramitha. 7. Troitsky, M. S Planning and Design of Bridge. John Wiley & Sons, Inc. New York 18

PERENCANAAN STRUKTUR JEMBATAN BANGILTAK DESA KEDUNG RINGIN KECAMATAN BEJI KABUPATEN PASURUAN DENGAN BUSUR RANGKA BAJA

PERENCANAAN STRUKTUR JEMBATAN BANGILTAK DESA KEDUNG RINGIN KECAMATAN BEJI KABUPATEN PASURUAN DENGAN BUSUR RANGKA BAJA SEMINAR TUGAS AKHIR PERENCANAAN STRUKTUR JEMBATAN BANGILTAK DESA KEDUNG RINGIN KECAMATAN BEJI KABUPATEN PASURUAN DENGAN BUSUR RANGKA BAJA OLEH : AHMAD FARUQ FEBRIYANSYAH 3107100523 DOSEN PEMBIMBING : Ir.

Lebih terperinci

BAB I PENDAHULUAN. Dosen Pembimbing : Ir. Djoko Irawan, MS.

BAB I PENDAHULUAN. Dosen Pembimbing : Ir. Djoko Irawan, MS. MODIFIKASI PERENCANAAN STRUKTUR JEMBATAN JUANDA (KOTA DEPOK) DENGAN MENGGUNAKAN STRUKTUR RANGKA BATANG LENGKUNG ASIMETRIS Nama mahasiswa : Damar Adisasongko NRP : 3109.106.037 Jurusan : Teknik Sipil Dosen

Lebih terperinci

MODIFIKASI PERENCANAAN JEMBATAN BANTAR III BANTUL-KULON PROGO (PROV. D. I. YOGYAKARTA) DENGAN BUSUR RANGKA BAJA MENGGUNAKAN BATANG TARIK

MODIFIKASI PERENCANAAN JEMBATAN BANTAR III BANTUL-KULON PROGO (PROV. D. I. YOGYAKARTA) DENGAN BUSUR RANGKA BAJA MENGGUNAKAN BATANG TARIK SEMINAR TUGAS AKHIR JULI 2011 MODIFIKASI PERENCANAAN JEMBATAN BANTAR III BANTUL-KULON PROGO (PROV. D. I. YOGYAKARTA) DENGAN BUSUR RANGKA BAJA MENGGUNAKAN BATANG TARIK Oleh : SETIYAWAN ADI NUGROHO 3108100520

Lebih terperinci

MODIFIKASI PERENCANAAN JEMBATAN JUANDA DENGAN METODE BUSUR RANGKA BAJA DI KOTA DEPOK

MODIFIKASI PERENCANAAN JEMBATAN JUANDA DENGAN METODE BUSUR RANGKA BAJA DI KOTA DEPOK SEMINAR TUGAS AKHIR MODIFIKASI PERENCANAAN JEMBATAN JUANDA DENGAN METODE BUSUR RANGKA BAJA DI KOTA DEPOK OLEH : FIRENDRA HARI WIARTA 3111 040 507 DOSEN PEMBIMBING : Ir. IBNU PUDJI RAHARDJO, MS JURUSAN

Lebih terperinci

PERENCANAAN JEMBATAN MALANGSARI MENGGUNAKAN STRUKTUR JEMBATAN BUSUR RANGKA TIPE THROUGH - ARCH. : Faizal Oky Setyawan

PERENCANAAN JEMBATAN MALANGSARI MENGGUNAKAN STRUKTUR JEMBATAN BUSUR RANGKA TIPE THROUGH - ARCH. : Faizal Oky Setyawan MENGGUNAKAN STRUKTUR JEMBATAN BUSUR Oleh : Faizal Oky Setyawan 3105100135 PENDAHULUAN TINJAUAN PUSTAKA METODOLOGI HASIL PERENCANAAN Latar Belakang Dalam rangka pemenuhan dan penunjang kebutuhan transportasi

Lebih terperinci

MODIFIKASI PERENCANAAN STRUKTUR JEMBATAN MALO-KALITIDU DENGAN SYSTEM BUSUR BOX BAJA DI KABUPATEN BOJONEGORO M. ZAINUDDIN

MODIFIKASI PERENCANAAN STRUKTUR JEMBATAN MALO-KALITIDU DENGAN SYSTEM BUSUR BOX BAJA DI KABUPATEN BOJONEGORO M. ZAINUDDIN JURUSAN DIPLOMA IV TEKNIK SIPIL FTSP ITS SURABAYA MODIFIKASI PERENCANAAN STRUKTUR JEMBATAN MALO-KALITIDU DENGAN SYSTEM BUSUR BOX BAJA DI KABUPATEN BOJONEGORO Oleh : M. ZAINUDDIN 3111 040 511 Dosen Pembimbing

Lebih terperinci

OLEH : ANDREANUS DEVA C.B DOSEN PEMBIMBING : DJOKO UNTUNG, Ir, Dr DJOKO IRAWAN, Ir, MS

OLEH : ANDREANUS DEVA C.B DOSEN PEMBIMBING : DJOKO UNTUNG, Ir, Dr DJOKO IRAWAN, Ir, MS SEMINAR TUGAS AKHIR OLEH : ANDREANUS DEVA C.B 3110 105 030 DOSEN PEMBIMBING : DJOKO UNTUNG, Ir, Dr DJOKO IRAWAN, Ir, MS JURUSAN TEKNIK SIPIL LINTAS JALUR FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT

Lebih terperinci

BAB IV ANALISIS PERHITUNGAN STRUKTUR

BAB IV ANALISIS PERHITUNGAN STRUKTUR BAB IV ANALISIS PERHITUNGAN STRUKTUR 4.1 Data Perencanaan Bangunan Direncanakan : Bentang Jembatan : 120 meter Lebar Jembatan : 7.5 (1 + 6.5) meter Jenis Jembatan : Sturktur Rangka Baja (Tipe Warren Truss)

Lebih terperinci

PERHITUNGAN SLAB LANTAI JEMBATAN

PERHITUNGAN SLAB LANTAI JEMBATAN PERHITUNGAN SLAB LANTAI JEMBATAN JEMBATAN PANTAI HAMBAWANG - DS. DANAU CARAMIN CS A. DATA SLAB LANTAI JEMBATAN Tebal slab lantai jembatan t s = 0.35 m Tebal trotoar t t = 0.25 m Tebal lapisan aspal + overlay

Lebih terperinci

Nama : Mohammad Zahid Alim Al Hasyimi NRP : Dosen Konsultasi : Ir. Djoko Irawan, MS. Dr. Ir. Djoko Untung. Tugas Akhir

Nama : Mohammad Zahid Alim Al Hasyimi NRP : Dosen Konsultasi : Ir. Djoko Irawan, MS. Dr. Ir. Djoko Untung. Tugas Akhir Tugas Akhir PERENCANAAN JEMBATAN BRANTAS KEDIRI DENGAN MENGGUNAKAN SISTEM BUSUR BAJA Nama : Mohammad Zahid Alim Al Hasyimi NRP : 3109100096 Dosen Konsultasi : Ir. Djoko Irawan, MS. Dr. Ir. Djoko Untung

Lebih terperinci

Modifikasi Perencanaan Struktur Jembatan Kasiman Bojonegoro Dengan Busur Rangka Baja

Modifikasi Perencanaan Struktur Jembatan Kasiman Bojonegoro Dengan Busur Rangka Baja JURNAL TEKNIK POMITS Vol. 1, No. 1, (2012) 1-6 1 Modifikasi Perencanaan Struktur Jembatan Kasiman Bojonegoro Dengan Busur Rangka Baja Andreanus Deva C.B, Djoko Untung, Ir.Dr. Jurusan Teknik Sipil, Fakultas

Lebih terperinci

Mencari garis netral, yn. yn=1830x200x x900x x x900=372,73 mm

Mencari garis netral, yn. yn=1830x200x x900x x x900=372,73 mm B. Perhitungan Sifat Penampang Balok T Interior Menentukan lebar efektif balok T B ef = ¼. bentang balok = ¼ x 19,81 = 4,95 m B ef = 1.tebal pelat + b w = 1 x 200 + 400 = 00 mm =, m B ef = bentang bersih

Lebih terperinci

MODIFIKASI PERENCANAAN STRUKTUR JEMBATAN JALAN Ir. H JUANDA KECAMATAN SUKMAJAYA KOTA DEPOK DENGAN BUSUR RANGKA BAJA LANTAI KENDARAAN DI ATAS

MODIFIKASI PERENCANAAN STRUKTUR JEMBATAN JALAN Ir. H JUANDA KECAMATAN SUKMAJAYA KOTA DEPOK DENGAN BUSUR RANGKA BAJA LANTAI KENDARAAN DI ATAS MODIFIKASI PERENCANAAN STRUKTUR JEMBATAN JALAN Ir. H JUANDA KECAMATAN SUKMAJAYA KOTA DEPOK DENGAN BUSUR RANGKA BAJA LANTAI KENDARAAN DI ATAS Nama mahasiswa : Sanda Praja Riduwan NRP : 3..033 Jurusan :

Lebih terperinci

PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN

PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN TUGAS AKHIR PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN Merupakan Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Jurusan Teknik Sipil Fakultas Teknik

Lebih terperinci

PERENCANAAN JEMBATAN RANGKA BAJA SUNGAI AMPEL KABUPATEN PEKALONGAN

PERENCANAAN JEMBATAN RANGKA BAJA SUNGAI AMPEL KABUPATEN PEKALONGAN TUGAS AKHIR PERENCANAAN JEMBATAN RANGKA BAJA SUNGAI AMPEL KABUPATEN PEKALONGAN Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Strata Satu (S-1) Pada Jurusan Teknik Sipil Fakultas Teknik

Lebih terperinci

TUBAGUS KAMALUDIN DOSEN PEMBIMBING : Prof. Tavio, ST., MT., Ph.D. Dr. Ir. Hidayat Soegihardjo, M.S.

TUBAGUS KAMALUDIN DOSEN PEMBIMBING : Prof. Tavio, ST., MT., Ph.D. Dr. Ir. Hidayat Soegihardjo, M.S. MODIFIKASI STRUKTUR ATAS JEMBATAN CISUDAJAYA KABUPATEN SUKABUMI JAWA BARAT DENGAN SISTEM RANGKA BATANG MENGGUNAKAN MATERIAL FIBER REINFORCED POLYMER (FRP) TUBAGUS KAMALUDIN 3110100076 DOSEN PEMBIMBING

Lebih terperinci

ANAAN TR. Jembatan sistem rangka pelengkung dipilih dalam studi ini dengan. pertimbangan bentang Sungai Musi sebesar ±350 meter. Penggunaan struktur

ANAAN TR. Jembatan sistem rangka pelengkung dipilih dalam studi ini dengan. pertimbangan bentang Sungai Musi sebesar ±350 meter. Penggunaan struktur A ANAAN TR Jembatan sistem rangka pelengkung dipilih dalam studi ini dengan pertimbangan bentang Sungai Musi sebesar ±350 meter. Penggunaan struktur lengkung dibagi menjadi tiga bagian, yaitu pada bentang

Lebih terperinci

PERHITUNGAN STRUKTUR BOX CULVERT

PERHITUNGAN STRUKTUR BOX CULVERT A. DATA BOX CULVERT h1 ta c ts d H h2 h3 L DIMENSI BOX CULVERT 1. Lebar Box L = 5,00 M 2. Tinggi Box H = 3,00 M 3. Tebal Plat Lantai h1 = 0,40 M 4. Tebal Plat Dinding h2 = 0,35 M 5. Tebal Plat Pondasi

Lebih terperinci

PERHITUNGAN VOIDED SLAB JOMBOR FLY OVER YOGYAKARTA Oleh : Ir. M. Noer Ilham, MT. [C]2008 :MNI-EC

PERHITUNGAN VOIDED SLAB JOMBOR FLY OVER YOGYAKARTA Oleh : Ir. M. Noer Ilham, MT. [C]2008 :MNI-EC A. DATA VOIDED SLAB PERHITUNGAN VOIDED SLAB JOMBOR FLY OVER YOGYAKARTA Oleh : Ir. M. Noer Ilham, MT. [C]2008 :MNI-EC Lebar jalan (jalur lalu-lintas) B 1 = 7.00 m Lebar trotoar B 2 = 0.75 m Lebar total

Lebih terperinci

PERANCANGAN JEMBATAN KATUNGAU KALIMANTAN BARAT

PERANCANGAN JEMBATAN KATUNGAU KALIMANTAN BARAT PERANCANGAN JEMBATAN KATUNGAU KALIMANTAN BARAT TUGAS AKHIR SARJANA STRATA SATU Oleh : RONA CIPTA No. Mahasiswa : 11570 / TS NPM : 03 02 11570 PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS ATMA

Lebih terperinci

BEBAN JEMBATAN AKSI KOMBINASI

BEBAN JEMBATAN AKSI KOMBINASI BEBAN JEMBATAN AKSI TETAP AKSI LALU LINTAS AKSI LINGKUNGAN AKSI LAINNYA AKSI KOMBINASI FAKTOR BEBAN SEMUA BEBAN HARUS DIKALIKAN DENGAN FAKTOR BEBAN YANG TERDIRI DARI : -FAKTOR BEBAN KERJA -FAKTOR BEBAN

Lebih terperinci

PERENCANAAN JEMBATAN BUSUR MENGGUNAKAN DINDING PENUH PADA SUNGAI BRANTAS KOTA KEDIRI. Oleh : GALIH AGENG DWIATMAJA 3107 100 616

PERENCANAAN JEMBATAN BUSUR MENGGUNAKAN DINDING PENUH PADA SUNGAI BRANTAS KOTA KEDIRI. Oleh : GALIH AGENG DWIATMAJA 3107 100 616 PERENCANAAN JEMBATAN BUSUR MENGGUNAKAN DINDING PENUH PADA SUNGAI BRANTAS KOTA KEDIRI Oleh : GALIH AGENG DWIATMAJA 3107 100 616 LATAR BELAKANG Kondisi jembatan yang lama yang mempunyai lebar 6 meter, sedangkan

Lebih terperinci

MODIFIKASI PERENCANAAN GEDUNG GRAHA AMERTA RSU Dr. SOETOMO SURABAYA MENGGUNAKAN STRUKTUR KOMPOSIT BAJA BETON

MODIFIKASI PERENCANAAN GEDUNG GRAHA AMERTA RSU Dr. SOETOMO SURABAYA MENGGUNAKAN STRUKTUR KOMPOSIT BAJA BETON SEMINAR TUGAS AKHIR MODIFIKASI PERENCANAAN GEDUNG GRAHA AMERTA RSU Dr. SOETOMO SURABAYA MENGGUNAKAN STRUKTUR KOMPOSIT BAJA BETON Oleh : ANTON PRASTOWO 3107 100 066 Dosen Pembimbing : Ir. HEPPY KRISTIJANTO,

Lebih terperinci

BAB III METODOLOGI DESAIN

BAB III METODOLOGI DESAIN BAB III METODOLOGI DESAIN Metodologi suatu perencanaan adalah tata cara atau urutan kerja suatu perhitungan perencanaan untuk mendapatkan hasil perencanaan ulang bangunan atas jembatan. Adapun uraian dan

Lebih terperinci

LANDASAN TEORI. Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan

LANDASAN TEORI. Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan BAB III LANDASAN TEORI 3.1. Tinjauan Umum Menurut Supriyadi dan Muntohar (2007) dalam Perencanaan Jembatan Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan mengumpulkan data dan informasi

Lebih terperinci

STUDIO PERANCANGAN II PERENCANAAN GELAGAR INDUK

STUDIO PERANCANGAN II PERENCANAAN GELAGAR INDUK PERANCANGAN II PERENCANAAN GELAGAR INDUK DATA PERENCANAAN : Panjang jembatan = 20 m Lebar jembatan = 7,5 m Tebal plat lantai = 20 cm (BMS 1992 K6 57) Tebal lapisan aspal = 5 cm (BMS 1992 K2 13) Berat isi

Lebih terperinci

PERHITUNGAN GELAGAR JEMBATAN BALOK-T A. DATA STRUKTUR ATAS

PERHITUNGAN GELAGAR JEMBATAN BALOK-T A. DATA STRUKTUR ATAS PERHITUNGAN GELAGAR JEMBATAN BALOK-T A. DATA STRUKTUR ATAS Panjang bentang jembatan L = 15.00 m Lebar jalan (jalur lalu-lintas) B1 = 7.00 m Lebar trotoar B2 = 1.00 m Lebar total jembatan B1 + 2 * B2 =

Lebih terperinci

PERHITUNGAN STRUKTUR JEMBATAN LENGKUNG RANGKA BAJA DUA TUMPUAN BENTANG 120 METER Razi Faisal 1 ) Bambang Soewarto 2 ) M.

PERHITUNGAN STRUKTUR JEMBATAN LENGKUNG RANGKA BAJA DUA TUMPUAN BENTANG 120 METER Razi Faisal 1 ) Bambang Soewarto 2 ) M. Perhitungan Struktur Jembatan Lengkung Rangka Baja Dua Tumpuan Bentang 10 eter PERHITUNGAN STRUKTUR JEBATAN LENGKUNG RANGKA BAJA DUA TUPUAN BENTANG 10 ETER Razi Faisal 1 ) Bambang Soewarto ). Yusuf ) Abstrak

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI DAFTAR ISI HALAMAN JUDUL.. i LEMBAR PENGESAHAN. ii LEMBAR PERSEMBAHAN.. iii KATA PENGANTAR. iv ABSTRAKSI vi DAFTAR ISI vii DAFTAR GAMBAR xi DAFTAR TABEL xv DAFTAR NOTASI.. xx DAFTAR LAMPIRAN xxiv BAB I

Lebih terperinci

BAB II PERATURAN PERENCANAAN

BAB II PERATURAN PERENCANAAN BAB II PERATURAN PERENCANAAN 2.1 Klasifikasi Jembatan Rangka Baja Jembatan rangka (Truss Bridge) adalah jembatan yang terbentuk dari rangkarangka batang yang membentuk unit segitiga dan memiliki kemampuan

Lebih terperinci

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek DAFTAR NOTASI A g = Luas bruto penampang (mm 2 ) A n = Luas bersih penampang (mm 2 ) A tp = Luas penampang tiang pancang (mm 2 ) A l =Luas total tulangan longitudinal yang menahan torsi (mm 2 ) A s = Luas

Lebih terperinci

BAB V PERHITUNGAN STRUKTUR

BAB V PERHITUNGAN STRUKTUR PERHITUNGAN STRUKTUR V-1 BAB V PERHITUNGAN STRUKTUR Berdasarkan Manual For Assembly And Erection of Permanent Standart Truss Spans Volume /A Bridges, Direktorat Jenderal Bina Marga, tebal pelat lantai

Lebih terperinci

BAB XI PERENCANAAN PONDASI TIANG PANCANG

BAB XI PERENCANAAN PONDASI TIANG PANCANG GROUP BAB XI PERENCANAAN PONDASI TIANG PANCANG 11. Perencanaan Pondasi Tiang Pancang Perencanaan pondasi tiang pancang meliputi daya dukung tanah, daya dukung pondasi, penentuan jumlah tiang pondasi, pile

Lebih terperinci

PERENCANAAN PERHITUNGAN STRUKTUR JEMBATAN BETON BERTULANG JALAN RAPAK MAHANG DI DESA SUNGAI KAPIH KECAMATAN SAMBUTAN KOTA SAMARINDA

PERENCANAAN PERHITUNGAN STRUKTUR JEMBATAN BETON BERTULANG JALAN RAPAK MAHANG DI DESA SUNGAI KAPIH KECAMATAN SAMBUTAN KOTA SAMARINDA PERENCANAAN PERHITUNGAN STRUKTUR JEMBATAN BETON BERTULANG JALAN RAPAK MAHANG DI DESA SUNGAI KAPIH KECAMATAN SAMBUTAN KOTA SAMARINDA Herman Waris Npm : 07.11.1001.7311.040 INTISARI Perencanaan Jembatan

Lebih terperinci

TUGAS AKHIR RC

TUGAS AKHIR RC TUGAS AKHIR RC 090412 PERENCANAAN STRUKTUR JEMBATAN SUMBER SARI, KUTAI BARAT, KALIMANTAN TIMUR DENGAN SISTEM BUSUR BAJA OLEH : YANISFA SEPTIARSILIA ( 3112040612 ) DOSEN PEMBIMBING : Ir. M. Sigit Darmawan

Lebih terperinci

TUGAS AKHIR PERENCANAAN ULANG STRUKTUR JEMBATAN MERR II-C DENGAN MENGGUNAKAN BALOK PRATEKAN MENERUS (STATIS TAK TENTU)

TUGAS AKHIR PERENCANAAN ULANG STRUKTUR JEMBATAN MERR II-C DENGAN MENGGUNAKAN BALOK PRATEKAN MENERUS (STATIS TAK TENTU) TUGAS AKHIR PERENCANAAN ULANG STRUKTUR JEMBATAN MERR II-C DENGAN MENGGUNAKAN BALOK PRATEKAN MENERUS (STATIS TAK TENTU) OLEH : ABDUL AZIZ SYAIFUDDIN 3107 100 525 DOSEN PEMBIMBING : Prof. Dr. Ir. I GUSTI

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG RUSUNAWA UNIMUS

PERENCANAAN STRUKTUR GEDUNG RUSUNAWA UNIMUS TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG RUSUNAWA UNIMUS Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata (S-1) Pada Program Studi Teknik Sipil Fakultas Teknik Universitas Katolik

Lebih terperinci

PERHITUNGAN PILECAP JEMBATAN PANTAI HAMBAWANG - DS. DANAU CARAMIN CS

PERHITUNGAN PILECAP JEMBATAN PANTAI HAMBAWANG - DS. DANAU CARAMIN CS PERHITUNGAN PILECAP JEMBATAN PANTAI HAMBAWANG - DS. DANAU CARAMIN CS A. DATA STRUKTUR ATAS URAIAN DIMENSI NOTASI DIMENSI SATUAN Lebar jembatan b 10.50 m Lebar jalan (jalur lalu-lintas) b 1 7.00 m Lebar

Lebih terperinci

Bab 6 DESAIN PENULANGAN

Bab 6 DESAIN PENULANGAN Bab 6 DESAIN PENULANGAN Laporan Tugas Akhir (KL-40Z0) Desain Dermaga General Cargo dan Trestle Tipe Deck On Pile di Pulau Kalukalukuang Provinsi Sulawesi Selatan 6.1 Teori Dasar Perhitungan Kapasitas Lentur

Lebih terperinci

DAFTAR ISI HALAMAN PENGESAHAN HALAMAN PERNYATAAN KATA PENGANTAR DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR LAMBANG, NOTASI, DAN SINGKATAN

DAFTAR ISI HALAMAN PENGESAHAN HALAMAN PERNYATAAN KATA PENGANTAR DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR LAMBANG, NOTASI, DAN SINGKATAN DAFTAR ISI HALAMAN PENGESAHAN HALAMAN PERNYATAAN ABSTRAK KATA PENGANTAR DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR LAMBANG, NOTASI, DAN SINGKATAN i ii iii iv vii xiii xiv xvii xviii BAB

Lebih terperinci

MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER

MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER MAKALAH TUGAS AKHIR PS 1380 MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER FERRY INDRAHARJA NRP 3108 100 612 Dosen Pembimbing Ir. SOEWARDOYO, M.Sc. Ir.

Lebih terperinci

Arah X Tabel Analisa Δs akibat gempa arah x Lantai drift Δs drift Δs Syarat hx tiap tingkat antar tingkat Drift Ke (m) (cm) (cm) (cm)

Arah X Tabel Analisa Δs akibat gempa arah x Lantai drift Δs drift Δs Syarat hx tiap tingkat antar tingkat Drift Ke (m) (cm) (cm) (cm) 7 rah X Tabel nalisa Δs akibat gempa arah x Lantai drift Δs drift Δs Syarat hx tiap tingkat antar tingkat Drift terangan 10 40 13,340 0,90 2 ok 9 36 12,77140 1,89310 2 ok 8 32 11,908 1,80140 2 ok 7 28

Lebih terperinci

Jembatan Komposit dan Penghubung Geser (Composite Bridge and Shear Connector)

Jembatan Komposit dan Penghubung Geser (Composite Bridge and Shear Connector) Jembatan Komposit dan Penghubung Geser (Composite Bridge and Shear Connector) Dr. AZ Department of Civil Engineering Brawijaya University Pendahuluan JEMBATAN GELAGAR BAJA BIASA Untuk bentang sampai dengan

Lebih terperinci

MODIFIKASI PERENCANAAN GEDUNG RUMAH SAKIT ROYAL SURABAYA MENGGUNAKAN STRUKTUR KOMPOSIT BAJA-BETON

MODIFIKASI PERENCANAAN GEDUNG RUMAH SAKIT ROYAL SURABAYA MENGGUNAKAN STRUKTUR KOMPOSIT BAJA-BETON TUGAS AKHIR RC09 1380 MODIFIKASI PERENCANAAN GEDUNG RUMAH SAKIT ROYAL SURABAYA MENGGUNAKAN STRUKTUR KOMPOSIT BAJA-BETON OLEH: RAKA STEVEN CHRISTIAN JUNIOR 3107100015 DOSEN PEMBIMBING: Ir. ISDARMANU, M.Sc

Lebih terperinci

5.4 Perencanaan Plat untuk Bentang 6m

5.4 Perencanaan Plat untuk Bentang 6m 5.4 Perencanaan Plat untuk Bentang 6m pagar pengaman kerb 25 cm lantai kendaraan pile tiang pancang poer tunggal 5.5 Perencanaan Plat untuk Bentang 8m pagar pengaman kerb 25 cm lantai kendaraan pile tiang

Lebih terperinci

JURNAL ILMU-ILMU TEKNIK - SISTEM, Vol. 11 No. 1

JURNAL ILMU-ILMU TEKNIK - SISTEM, Vol. 11 No. 1 PERENCANAAN GELAGAR JEMBATAN BETON BERTULANG BERDASARKAN PADA METODE KUAT BATAS (STUDI KASUS : JEMBATAN SUNGAI TINGANG RT.10 DESA UJOH BILANG KABUPATEN MAHAKAM ULU) Arqowi Pribadi 2 Abstrak: Jembatan adalah

Lebih terperinci

DESAIN JEMBATAN BARU PENGGANTI JEMBATAN KUTAI KARTANEGARA DENGAN SISTEM BUSUR

DESAIN JEMBATAN BARU PENGGANTI JEMBATAN KUTAI KARTANEGARA DENGAN SISTEM BUSUR 1 DESAIN JEMBATAN BARU PENGGANTI JEMBATAN KUTAI KARTANEGARA DENGAN SISTEM BUSUR Hilmy Gugo Septiawan, Ir. Djoko Irawan, MS. Jurusan Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan Institut Teknologi

Lebih terperinci

LAPORAN TUGAS AKHIR (KL-40Z0) Perancangan Dermaga dan Trestle Tipe Deck On Pile di Pelabuhan Garongkong, Propinsi Sulawesi Selatan. Bab 6.

LAPORAN TUGAS AKHIR (KL-40Z0) Perancangan Dermaga dan Trestle Tipe Deck On Pile di Pelabuhan Garongkong, Propinsi Sulawesi Selatan. Bab 6. LAPORAN TUGAS AKHIR (KL-40Z0) Perancangan Dermaga dan Trestle Tipe Deck On Pile di Pelabuhan Garongkong, Propinsi Sulawesi Selatan Bab 6 Penulangan Bab 6 Penulangan Perancangan Dermaga dan Trestle Tipe

Lebih terperinci

BAB V ANALISA STRUKTUR PRIMER

BAB V ANALISA STRUKTUR PRIMER BAB V ANALISA STRUKTUR PRIMER PEMBEBANAN GRAVITASI Beban Mati Pelat lantai Balok & Kolom Dinding, Tangga, & Lift dll Beban Hidup Atap : 100 kg/m2 Lantai : 250 kg/m2 Beban Gempa Kategori resiko bangunan

Lebih terperinci

PERENCANAAN JEMBATAN GEDANGAN RUAS JL. PUNGGUL JL. MUNJUNGAN KABUPATEN TRENGGALEK DENGAN BANGUNAN ATAS RANGKA BATANG BERBENTUK BUSUR

PERENCANAAN JEMBATAN GEDANGAN RUAS JL. PUNGGUL JL. MUNJUNGAN KABUPATEN TRENGGALEK DENGAN BANGUNAN ATAS RANGKA BATANG BERBENTUK BUSUR PERENCANAAN JEMBATAN GEDANGAN RUAS JL. PUNGGUL JL. MUNJUNGAN KABUPATEN TRENGGALEK DENGAN BANGUNAN ATAS RANGKA BATANG BERBENTUK BUSUR NAMA : HAVIS FIKRI NRP : 3108.100.622 Dosen Pembimbing : 1. KETUT DUNIA,

Lebih terperinci

PRESENTASI TUGAS AKHIR PROGRAM STUDI D III TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010

PRESENTASI TUGAS AKHIR PROGRAM STUDI D III TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010 PRESENTASI TUGAS AKHIR oleh : PROGRAM STUDI D III TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010 LATAR BELAKANG SMA Negeri 17 Surabaya merupakan salah

Lebih terperinci

ABSTRAK. Oleh : Wahyu Rifai Dosen Pembimbing : Sapto Budi Wasono, ST, MT

ABSTRAK. Oleh : Wahyu Rifai Dosen Pembimbing : Sapto Budi Wasono, ST, MT ABSTRAK PERENCANAAN ULANG JEMBATAN KALI MARMOYO STA 41 + 300 SAMPAI DENGAN STA 41 + 500 DENGAN METODE RANGKA BAJA DI KABUPATEN MOJOKERTO DAN PEHITUNGAN RAB Oleh : Wahyu Rifai Dosen Pembimbing : Sapto Budi

Lebih terperinci

DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI DAN SINGKATAN

DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI DAN SINGKATAN vii DAFTAR ISI vi Halaman Judul i Pengesahan ii PERNYATAAN BEBAS PLAGIASI iii DEDIKASI iv KATA PENGANTAR v DAFTAR ISI vii DAFTAR TABEL x DAFTAR GAMBAR xiii DAFTAR LAMPIRAN xiv DAFTAR NOTASI DAN SINGKATAN

Lebih terperinci

PERENCANAAN STRUKTUR ATAS JEMBATAN RANGKA BAJA MUSI VI KOTA PALEMBANG SUMATERA SELATAN. Laporan Tugas Akhir. Universitas Atma Jaya Yogyakarta.

PERENCANAAN STRUKTUR ATAS JEMBATAN RANGKA BAJA MUSI VI KOTA PALEMBANG SUMATERA SELATAN. Laporan Tugas Akhir. Universitas Atma Jaya Yogyakarta. PERENCANAAN STRUKTUR ATAS JEMBATAN RANGKA BAJA MUSI VI KOTA PALEMBANG SUMATERA SELATAN Laporan Tugas Akhir Sebagai salah satu syarat untuk memperoleh gelar sarjana dari Universitas Atma Jaya Yogyakarta

Lebih terperinci

PERENCANAAN LANTAI KENDARAAN, SANDARAN DAN TROTOAR

PERENCANAAN LANTAI KENDARAAN, SANDARAN DAN TROTOAR PERENCANAAN LANTAI KENDARAAN, SANDARAN DAN TROTOAR 1. Perhitungan Lantai Kendaraan Direncanakan : Lebar lantai 7 m Tebal lapisan aspal 10 cm Tebal plat beton 20 cm > 16,8 cm (AASTHO LRFD) Jarak gelagar

Lebih terperinci

PLATE GIRDER A. Pengertian Pelat Girder

PLATE GIRDER A. Pengertian Pelat Girder PLATE GIRDER A. Pengertian Pelat Girder Dalam penggunaan profil baja tunggal (seperti profil I) sebagai elemen lentur jika ukuran profilnya masih belum cukup memenuhi karena gaya dalam (momen dan gaya

Lebih terperinci

PERENCANAAN STRUKTUR RANGKA BAJA BERATURAN TAHAN GEMPA BERDASARKAN SNI DAN FEMA 450

PERENCANAAN STRUKTUR RANGKA BAJA BERATURAN TAHAN GEMPA BERDASARKAN SNI DAN FEMA 450 PERENCANAAN STRUKTUR RANGKA BAJA BERATURAN TAHAN GEMPA BERDASARKAN SNI 03-1726-2002 DAN FEMA 450 Calvein Haryanto NRP : 0621054 Pembimbing : Yosafat Aji Pranata, S.T.,M.T. JURUSAN TEKNIK SIPIL FAKULTAS

Lebih terperinci

PERENCANAAN ULANG GEDUNG PERKULIAHAN POLITEKNIK ELEKTRONIKA NEGERI SURABAYA (PENS) DENGAN MENGGUNAKAN METODE PRACETAK

PERENCANAAN ULANG GEDUNG PERKULIAHAN POLITEKNIK ELEKTRONIKA NEGERI SURABAYA (PENS) DENGAN MENGGUNAKAN METODE PRACETAK JURNAL TEKNIK POMITS Vol. 2, No. 1, (2014) 1-6 1 PERENCANAAN ULANG GEDUNG PERKULIAHAN POLITEKNIK ELEKTRONIKA NEGERI SURABAYA (PENS) DENGAN MENGGUNAKAN METODE PRACETAK Whisnu Dwi Wiranata, I Gusti Putu

Lebih terperinci

DAFTAR NOTASI. xxvii. A cp

DAFTAR NOTASI. xxvii. A cp A cp Ag An Atp Al Ao Aoh As As At Av b bo bw C C m Cc Cs d DAFTAR NOTASI = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas bruto penampang (mm²) = Luas bersih penampang (mm²) = Luas penampang

Lebih terperinci

MODIFIKASI PERENCANAAN JEMBATAN KALI BAMBANG DI KAB. BLITAR KAB. MALANG MENGGUNAKAN BUSUR RANGKA BAJA

MODIFIKASI PERENCANAAN JEMBATAN KALI BAMBANG DI KAB. BLITAR KAB. MALANG MENGGUNAKAN BUSUR RANGKA BAJA MODIFIKASI PERENCANAAN JEMBATAN KALI BAMBANG DI KAB. BLITAR KAB. MALANG MENGGUNAKAN BUSUR RANGKA BAJA Mahasiswa: Farid Rozaq Laksono - 3115105056 Dosen Pembimbing : Dr. Ir. Djoko Irawan, Ms J U R U S A

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2014) 1-6 1

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2014) 1-6 1 JURNAL TEKNIK POMITS Vol. 1, No. 1, (2014) 1-6 1 Modifikasi Jembatan Cisudajaya Kabupaten Sukabumi, Jawa Barat Dengan Sistem Rangka Batang Menggunakan Material Fiber Reinforced Polymer (FRP) Tubagus Kamaludin,

Lebih terperinci

STRUKTUR JEMBATAN BAJA KOMPOSIT

STRUKTUR JEMBATAN BAJA KOMPOSIT STRUKTUR JEMBATAN BAJA KOMPOSIT WORKSHOP/PELATIHAN - 2015 Sebuah jembatan komposit dengan perletakan sederhana, mutu beton, K-300, panjang bentang, L = 12 meter. Tebal lantai beton hc = 20 cm, jarak antara

Lebih terperinci

PERENCANAAN BANGUNAN ATAS JEMBATAN LENGKUNG RANGKA BAJA KRUENG SAKUI KECAMATAN SUNGAI MAS KABUPATEN ACEH BARAT

PERENCANAAN BANGUNAN ATAS JEMBATAN LENGKUNG RANGKA BAJA KRUENG SAKUI KECAMATAN SUNGAI MAS KABUPATEN ACEH BARAT PERENCANAAN BANGUNAN ATAS JEMBATAN LENGKUNG RANGKA BAJA KRUENG SAKUI KECAMATAN SUNGAI MAS KABUPATEN ACEH BARAT Aulia Azra, Faisal Rizal2, Syukri3 ) Mahasiswa, Diploma 4 Perancangan Jalan dan Jembatan,

Lebih terperinci

Perancangan Struktur Atas P7-P8 Ramp On Proyek Fly Over Terminal Bus Pulo Gebang, Jakarta Timur. BAB II Dasar Teori

Perancangan Struktur Atas P7-P8 Ramp On Proyek Fly Over Terminal Bus Pulo Gebang, Jakarta Timur. BAB II Dasar Teori BAB II Dasar Teori 2.1 Umum Jembatan secara umum adalah suatu konstruksi yang berfungsi untuk menghubungkan dua bagian jalan yang terputus oleh adanya beberapa rintangan seperti lembah yang dalam, alur

Lebih terperinci

PERENCANAAN JEMBATAN MALANGSARI MENGGUNAKAN STRUKTUR JEMBATAN BUSUR RANGKA TIPE THROUGH-ARCH

PERENCANAAN JEMBATAN MALANGSARI MENGGUNAKAN STRUKTUR JEMBATAN BUSUR RANGKA TIPE THROUGH-ARCH TUGAS AKHIR PS 380 PERENCANAAN JEMATAN MALANGSARI MENGGUNAKAN STRUKTUR JEMATAN USUR RANGKA TIPE THROUGH-ARCH FAIZAL OKY SETYAWAN NRP 305 00 35 JURUSAN TEKNIK SIPIL Fakultas Teknik Sipil dan Perencanaan

Lebih terperinci

II. TINJAUAN PUSTAKA. rintangan yang berada lebih rendah. Rintangan ini biasanya jalan lain ( jalan

II. TINJAUAN PUSTAKA. rintangan yang berada lebih rendah. Rintangan ini biasanya jalan lain ( jalan 5 II. TINJAUAN PUSTAKA A. Jembatan Jembatan adalah suatu konstruksi untuk meneruskan jalan melalui suatu rintangan yang berada lebih rendah. Rintangan ini biasanya jalan lain ( jalan air / lalu lintas

Lebih terperinci

Kajian Pengaruh Panjang Back Span pada Jembatan Busur Tiga Bentang

Kajian Pengaruh Panjang Back Span pada Jembatan Busur Tiga Bentang Reka Racana Jurusan Teknik Sipil Itenas Vol. 2 No. 4 Jurnal Online Institut Teknologi Nasional Desember 2016 Kajian Pengaruh Panjang Back Span pada Jembatan Busur Tiga Bentang YUNO YULIANTONO, ASWANDY

Lebih terperinci

Perhitungan Struktur Bab IV

Perhitungan Struktur Bab IV Permodelan Struktur Bored pile Perhitungan bore pile dibuat dengan bantuan software SAP2000, dimensi yang diinput sesuai dengan rencana dimensi bore pile yaitu diameter 100 cm dan panjang 20 m. Beban yang

Lebih terperinci

Soal 2. b) Beban hidup : beban merata, w L = 45 kn/m beban terpusat, P L3 = 135 kn P1 P2 P3. B C D 3,8 m 3,8 m 3,8 m 3,8 m

Soal 2. b) Beban hidup : beban merata, w L = 45 kn/m beban terpusat, P L3 = 135 kn P1 P2 P3. B C D 3,8 m 3,8 m 3,8 m 3,8 m Soal 2 Suatu elemen struktur sebagai balok pelat berdinding penuh (pelat girder) dengan ukuran dan pembebanan seperti tampak pada gambar di bawah. Flens tekan akan diberi kekangan lateral di kedua ujung

Lebih terperinci

TUGAS AKHIR RC

TUGAS AKHIR RC TUGAS AKHIR RC09-1380 MODIFIKASI PERENCANAAN GEDUNG OFFICE BLOCK PEMERINTAHAN KOTA BATU MENGGUNAKAN STRUKTUR KOMPOSIT BAJA BETON AMANDA KHOIRUNNISA 3109 100 082 DOSEN PEMBIMBING IR. HEPPY KRISTIJANTO,

Lebih terperinci

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan BAB 2 DASAR TEORI 2.1. Dasar Perencanaan 2.1.1 Jenis Pembebanan Dalam merencanakan struktur suatu bangunan bertingkat, digunakan struktur yang mampu mendukung berat sendiri, gaya angin, beban hidup maupun

Lebih terperinci

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN PUSAT YSKI SEMARANG

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN PUSAT YSKI SEMARANG TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN PUSAT YSKI SEMARANG Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Program Studi Teknik Sipil Fakultas Teknik

Lebih terperinci

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG KANTOR PERPAJAKAN PUSAT KOTA SEMARANG

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG KANTOR PERPAJAKAN PUSAT KOTA SEMARANG TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG KANTOR PERPAJAKAN PUSAT KOTA SEMARANG Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Program Studi Teknik Sipil Fakultas

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG BANK MANDIRI JL. NGESREP TIMUR V / 98 SEMARANG

PERENCANAAN STRUKTUR GEDUNG BANK MANDIRI JL. NGESREP TIMUR V / 98 SEMARANG HALAMAN JUDUL TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG BANK MANDIRI JL. NGESREP TIMUR V / 98 SEMARANG Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Fakultas

Lebih terperinci

D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Eksentrisitas dari pembebanan tekan pada kolom atau telapak pondasi

D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Eksentrisitas dari pembebanan tekan pada kolom atau telapak pondasi DAFTAR NOTASI A cp = Luas yang dibatasi oleh keliling luar penampang beton, mm 2 Ag = Luas bruto penampang (mm 2 ) An = Luas bersih penampang (mm 2 ) Atp = Luas penampang tiang pancang (mm 2 ) Al = Luas

Lebih terperinci

DAFTAR NOTASI. = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas penampang tiang pancang (mm²)

DAFTAR NOTASI. = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas penampang tiang pancang (mm²) DAFTAR NOTASI A cp Acv Ag An Atp Al Ao Aoh As As At Av b = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas bruto penampang

Lebih terperinci

DAFTAR ISI. Halaman Judul Pengesahan Persetujuan Surat Pernyataan Kata Pengantar DAFTAR TABEL DAFTAR GAMBAR DAFTAR NOTASI DAFTAR LAMPIRAN

DAFTAR ISI. Halaman Judul Pengesahan Persetujuan Surat Pernyataan Kata Pengantar DAFTAR TABEL DAFTAR GAMBAR DAFTAR NOTASI DAFTAR LAMPIRAN DAFTAR ISI Halaman Judul i Pengesahan ii Persetujuan iii Surat Pernyataan iv Kata Pengantar v DAFTAR ISI vii DAFTAR TABEL x DAFTAR GAMBAR xiv DAFTAR NOTASI xviii DAFTAR LAMPIRAN xxiii ABSTRAK xxiv ABSTRACT

Lebih terperinci

DAFTAR ISI. BAB II TINJAUAN PUSTAKA Tinjauan Umum Pemilihan Tipe Jembatan Tinjauan Penelitian Pembahasan...

DAFTAR ISI. BAB II TINJAUAN PUSTAKA Tinjauan Umum Pemilihan Tipe Jembatan Tinjauan Penelitian Pembahasan... DAFTAR ISI HALAMAN JUDUL... i LEMBAR PENGESAHAN... ii MOTTO... iii HALAMAN PERSEMBAHAN... iv KATA PENGANTAR... v ABSTRAKSI... viii DAFTAR ISI... ix DAFTAR GAMBAR... xiv DAFTAR TABEL... xix DAFTAR NOTASI...

Lebih terperinci

OPTIMASI TEKNIK STRUKTUR ATAS JEMBATAN BETON BERTULANG (STUDI KASUS: JEMBATAN DI KABUPATEN PEGUNUNGAN ARFAK)

OPTIMASI TEKNIK STRUKTUR ATAS JEMBATAN BETON BERTULANG (STUDI KASUS: JEMBATAN DI KABUPATEN PEGUNUNGAN ARFAK) OPTIMASI TEKNIK STRUKTUR ATAS JEMBATAN BETON BERTULANG (STUDI KASUS: JEMBATAN DI KABUPATEN PEGUNUNGAN ARFAK) Christhy Amalia Sapulete Servie O. Dapas, Oscar H. Kaseke Fakultas Teknik Jurusan Sipil Universitas

Lebih terperinci

DAFTAR NOTASI. A cp. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

DAFTAR NOTASI. A cp. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom DAFTAR NOTASI A cp Acv Ag An Atp Al Ao Aoh As As At Av b bo bw C Cc Cd = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom (mm²) = Luas bruto

Lebih terperinci

PERANCANGAN JEMBATAN TAHOTA II KABUPATEN MANOKWARI PROVINSI PAPUA BARAT

PERANCANGAN JEMBATAN TAHOTA II KABUPATEN MANOKWARI PROVINSI PAPUA BARAT PERANCANGAN JEMBATAN TAHOTA II KABUPATEN MANOKWARI PROVINSI PAPUA BARAT Laporan Tugas Akhir sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta Oleh: MARTUA MURDANI

Lebih terperinci

DAFTAR ISI. HALAMAN JUDUL...i. LEMBAR PENGESAHAN... ii. LEMBAR PERSEMBAHAN... iii. KATA PENGANTAR...iv. DAFTAR ISI...vi. DAFTAR GAMBAR...

DAFTAR ISI. HALAMAN JUDUL...i. LEMBAR PENGESAHAN... ii. LEMBAR PERSEMBAHAN... iii. KATA PENGANTAR...iv. DAFTAR ISI...vi. DAFTAR GAMBAR... DAFTAR ISI HALAMAN JUDUL...i LEMBAR PENGESAHAN... ii LEMBAR PERSEMBAHAN... iii KATA PENGANTAR...iv DAFTAR ISI...vi DAFTAR GAMBAR...ix DAFTAR TABEL... xii DAFTAR LAMPIRAN... xv INTISARI...xvi ABSTRACT...

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG PUSAT GROSIR BARANG SENI DI JALAN Dr. CIPTO SEMARANG

PERENCANAAN STRUKTUR GEDUNG PUSAT GROSIR BARANG SENI DI JALAN Dr. CIPTO SEMARANG TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG PUSAT GROSIR BARANG SENI DI JALAN Dr. CIPTO SEMARANG Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Program Studi Teknik

Lebih terperinci

MODIFIKASI PERENCANAAN GEDUNG SEKOLAH TERANG BANGSA SEMARANG MENGGUNAKAN STRUKTUR KOMPOSIT BAJA BETON

MODIFIKASI PERENCANAAN GEDUNG SEKOLAH TERANG BANGSA SEMARANG MENGGUNAKAN STRUKTUR KOMPOSIT BAJA BETON SEMINAR TUGAS AKHIR MODIFIKASI PERENCANAAN GEDUNG SEKOLAH TERANG NGSA SEMARANG MENGGUNAKAN STRUKTUR KOMPOSIT JA BETON Oleh : Insan Wiseso 3105 100 097 Dosen Pembimbing : Ir. R. Soewardojo, MSc Ir. Isdarmanu,

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN 3.1 Diagram Alir Mulai Data Eksisting Struktur Atas As Built Drawing Studi Literatur Penentuan Beban Rencana Perencanaan Gording Preliminary Desain & Penentuan Pembebanan

Lebih terperinci

3.6.4 Perhitungan Sambungan Balok dan Kolom

3.6.4 Perhitungan Sambungan Balok dan Kolom 64 3.6.4 Perhitungan Sambungan Balok dan Kolom A. Sambungan pada balok anak melintang ke balok anak memanjang Diketahui: Balok anak memanjang menggunakan profil WF 00.150.6.9, BJ 37 Balok anak melintang

Lebih terperinci

DESAIN JEMBATAN BARU PENGGANTI JEMBATAN KUTAI KARTANEGARA DENGAN SISTEM BUSUR

DESAIN JEMBATAN BARU PENGGANTI JEMBATAN KUTAI KARTANEGARA DENGAN SISTEM BUSUR TUGAS AKHIR DESAIN JEMBATAN BARU PENGGANTI JEMBATAN KUTAI KARTANEGARA DENGAN SISTEM BUSUR DISUSUN OLEH : HILMY GUGO SEPTIAWAN 3110.106.020 DOSEN KONSULTASI: DJOKO IRAWAN, Ir. MS. PROGRAM STUDI S-1 LINTAS

Lebih terperinci

PERENCANAAN PETRA SQUARE APARTEMENT AND SHOPPING ARCADE SURABAYA MENGGUNAKAN HEXAGONAL CASTELLATED BEAM NON-KOMPOSIT

PERENCANAAN PETRA SQUARE APARTEMENT AND SHOPPING ARCADE SURABAYA MENGGUNAKAN HEXAGONAL CASTELLATED BEAM NON-KOMPOSIT TUGAS AKHIR MODIFIKASI PERENCANAAN PETRA SQUARE APARTEMENT AND SHOPPING ARCADE SURABAYA MENGGUNAKAN HEXAGONAL CASTELLATED BEAM NON-KOMPOSIT Dosen Pembimbing : Ir. Heppy Kristijanto, MS Oleh : Fahmi Rakhman

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN 1 BAB V HASIL DAN PEMBAHASAN 5.1 DATA TEKNIS JEMBATAN Dalam penelitian ini menggunakan Jembatan Kebon Agung-II sebagai objek penelitian dengan data jembatan sebagai berikut: 1. panjang total jembatan (L)

Lebih terperinci

disusun oleh : MOCHAMAD RIDWAN ( ) Dosen pembimbing : 1. Ir. IBNU PUDJI RAHARDJO,MS 2. Dr. RIDHO BAYUAJI,ST.MT

disusun oleh : MOCHAMAD RIDWAN ( ) Dosen pembimbing : 1. Ir. IBNU PUDJI RAHARDJO,MS 2. Dr. RIDHO BAYUAJI,ST.MT disusun oleh : MOCHAMAD RIDWAN (3111040607) Dosen pembimbing : 1. Ir. IBNU PUDJI RAHARDJO,MS 2. Dr. RIDHO BAYUAJI,ST.MT DIPLOMA 4 TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH

Lebih terperinci

MODIFIKASI PERANCANGAN JEMBATAN TRISULA MENGGUNAKAN BUSUR RANGKA BAJA DENGAN DILENGKAPI DAMPER PADA ZONA GEMPA 4

MODIFIKASI PERANCANGAN JEMBATAN TRISULA MENGGUNAKAN BUSUR RANGKA BAJA DENGAN DILENGKAPI DAMPER PADA ZONA GEMPA 4 MODIFIKASI PERANCANGAN JEMBATAN TRISULA MENGGUNAKAN BUSUR RANGKA BAJA DENGAN DILENGKAPI DAMPER PADA ZONA GEMPA 4 Citra Bahrin Syah 3106100725 Dosen Pembimbing : Bambang Piscesa, ST. MT. Ir. Djoko Irawan,

Lebih terperinci

LAMPIRAN 1. DESAIN JEMBATAN PRATEGANG 40 m DARI BINA MARGA

LAMPIRAN 1. DESAIN JEMBATAN PRATEGANG 40 m DARI BINA MARGA LAMPIRAN 1 DESAIN JEMBATAN PRATEGANG 40 m DARI BINA MARGA LAMPIRAN 2 PERINCIAN PERHITUNGAN PEMBEBANAN PADA JEMBATAN 4.2 Menghitung Pembebanan pada Balok Prategang 4.2.1 Penentuan Lebar Efektif

Lebih terperinci

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom A cp Acv Ag An Atp Al Ao Aoh As As At Av b bo bw C Cc Cs d DAFTAR NOTASI = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom (mm²) = Luas

Lebih terperinci

PLATE GIRDER A. Pengertian Pelat Girder

PLATE GIRDER A. Pengertian Pelat Girder PLATE GIRDER A. Pengertian Pelat Girder Dalam penggunaan profil baja tunggal (seperti profil I) sebagai elemen lentur jika ukuran profilnya masih belum cukup memenuhi karena gaya dalam (momen dan gaya

Lebih terperinci

BAB I. Perencanaan Atap

BAB I. Perencanaan Atap BAB I Perencanaan Atap 1. Rencana Gording Data perencanaan atap : Penutup atap Kemiringan Rangka Tipe profil gording : Genteng metal : 40 o : Rangka Batang : Kanal C Mutu baja untuk Profil Siku L : BJ

Lebih terperinci

BAB IV POKOK PEMBAHASAN DESAIN. Perhitungan prarencana bertujuan untuk menghitung dimensi-dimensi

BAB IV POKOK PEMBAHASAN DESAIN. Perhitungan prarencana bertujuan untuk menghitung dimensi-dimensi BAB IV POKOK PEMBAHASAN DESAIN 4.1 Perencanaan Awal (Preliminary Design) Perhitungan prarencana bertujuan untuk menghitung dimensi-dimensi rencana struktur, yaitu pelat, balok dan kolom agar diperoleh

Lebih terperinci

D4 TEKNIK SIPIL POLITEKNIK NEGERI BANDUNG BAB II DASAR TEORI. Gambar 2.1 Underpass berbentuk kotak Sumber:

D4 TEKNIK SIPIL POLITEKNIK NEGERI BANDUNG BAB II DASAR TEORI. Gambar 2.1 Underpass berbentuk kotak Sumber: BAB II DASAR TEORI 2.1 Umum Underpass merupakan bangunan transportasi jalan yang dibuat sebagai salah satu solusi untuk menyelesaikan masalah tranportasi khususnya masalah kemacetan. Underpass dibangun

Lebih terperinci

JURNAL TUGAS AKHIR PERHITUNGAN STRUKTUR BETON BERTULANG PADA PEMBANGUNAN GEDUNG PERKULIAHAN FAPERTA UNIVERSITAS MULAWARMAN

JURNAL TUGAS AKHIR PERHITUNGAN STRUKTUR BETON BERTULANG PADA PEMBANGUNAN GEDUNG PERKULIAHAN FAPERTA UNIVERSITAS MULAWARMAN JURNAL TUGAS AKHIR PERHITUNGAN STRUKTUR BETON BERTULANG PADA PEMBANGUNAN GEDUNG PERKULIAHAN FAPERTA UNIVERSITAS MULAWARMAN Diajukan oleh : ABDUL MUIS 09.11.1001.7311.046 JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK

Lebih terperinci

KAJIAN PEMANFAATAN KABEL PADA PERANCANGAN JEMBATAN RANGKA BATANG KAYU

KAJIAN PEMANFAATAN KABEL PADA PERANCANGAN JEMBATAN RANGKA BATANG KAYU Konferensi Nasional Teknik Sipil 3 (KoNTekS 3) Jakarta, 6 7 Mei 2009 KAJIAN PEMANFAATAN KABEL PADA PERANCANGAN JEMBATAN RANGKA BATANG KAYU Estika 1 dan Bernardinus Herbudiman 2 1 Jurusan Teknik Sipil,

Lebih terperinci

STUDI PERILAKU TEKUK TORSI LATERAL PADA BALOK BAJA BANGUNAN GEDUNG DENGAN MENGGUNAKAN PROGRAM ABAQUS 6.7. Oleh : RACHMAWATY ASRI ( )

STUDI PERILAKU TEKUK TORSI LATERAL PADA BALOK BAJA BANGUNAN GEDUNG DENGAN MENGGUNAKAN PROGRAM ABAQUS 6.7. Oleh : RACHMAWATY ASRI ( ) TUGAS AKHIR STUDI PERILAKU TEKUK TORSI LATERAL PADA BALOK BAJA BANGUNAN GEDUNG DENGAN MENGGUNAKAN PROGRAM ABAQUS 6.7 Oleh : RACHMAWATY ASRI (3109 106 044) Dosen Pembimbing: Budi Suswanto, ST. MT. Ph.D

Lebih terperinci