REKAYASA MIXER PEMBUAT PUPUK ORGANIK LIMBAH KOTORAN SAPI

Ukuran: px
Mulai penontonan dengan halaman:

Download "REKAYASA MIXER PEMBUAT PUPUK ORGANIK LIMBAH KOTORAN SAPI"

Transkripsi

1 HALAMAN PERSETUJUAN REKAYASA MIXER PEMBUAT PUPUK ORGANIK LIMBAH KOTORAN SAPI Disusun Oleh : FAISYAL ANDRI AMRULLAH I Proyek Akhir ini telah disetujui untuk diajukan dihadapan Tim Penguji Tugas Akhir Program Studi D-III Teknik Mesin Fakultas Teknik Universitas Sebelas Maret Surakarta Pembimbing I Pembimbing II Dr.Kuncoro Diharjo, ST., MT NIP Eko Prasetya Budiana, ST., MT NIP ii

2 HALAMAN PENGESAHAN REKAYASA MIXER PEMBUAT PUPUK ORGANIK LIMBAH KOTORAN SAPI Disusun oleh : Nama : Faisyal Andri A NIM : I Telah dipertahankan dihadapan Tim Penguji Pendadaran Jurusan Teknik Mesin Fakultas Teknik Universitas Sebelas Maret pada : Hari : Tanggal : No Nama 1. Dr.Kuncoro Diharjo, ST., MT NIP Eko Prasetya Budiana, ST., MT NIP Eko Surojo ST.,MT NIP ( ) ( ) ( ) 4. Bambang Kusharjanta,ST.,MT ( ) Mengetahui, Ketua Program D-III Teknik Fakultas Teknik UNS Disahkan, Koordinator Proyek Akhir Fakultas Teknik UNS Zainal Arifin, S.T., M.T. Jaka Sulistya Budi, S.T. NIP NIP iii

3 HALAMAN MOTTO Manusia sepantasnya berusaha dan berdoa, tetapi Tuhan yang menentukan. Apa yang kita cita-citakan tidak akan terwujud tanpa disertai tekad dan usaha yang keras. Tidak ada suatu rencana tidak dapat terwujud kala kita punya keyakinan dan mengubah cara pandang kita semua itu dapat terwujud karena tekad semangat dan keyakinan. Tiada sesuatu yang paling indah di dunia ini keculai keberhasilan. Kegagalan merupakan sebuah proses menuju keberhasilan. Orang yang mengabaikan orang lain lambat laun akan mengabaikan dirinya sendiri. iv

4 PERSEMBAHAN Sebuah hasil karya yang kami buat demi menggapai sebuah cita-cita, yang ingin ku-persembahkan kepada: Allah SWT, karena dengan rahmad serta hidayah-nya saya dapat melaksanakan `Tugas Akhir dengan baik serta dapat menyelesaikan laporan ini dengan lancar Kedua Orang Tua yang aku sayangi yang telah memberi dorongan moril maupun meteril serta semangat yang tinggi sehingga saya dapat menyelesaikan tugas akhir ini. Kakak dan ade`-ade`ku yang aku sayangi, ayo kejar cita-citamu. My love yang aku cintai dan sayangi yang selalu mendukungku dalam suka maupun duka, siang maupun malam. D III Produksi dan Otomotif angkatan 06 yang masih tertinggal, jangan patah semangat dan berjuang demi masa depan. Ade -ade angkatanku, tingkatkan mutu dan kualitas diri, jangan pernah menyerah!!! v

5 ABSTRAKSI Faisyal Andri A, 010, REKAYASA MIXER PEMBUATAN PUPUK ORGANIK LIMBAH KOTORAN SAPI, Program study diploma III Mesin Produksi, Fakultas Teknik, Universitas Sebelas Maret Surakarta. Pondok pesantren Abdurrahman Bin Auf di klaten mempunyai peternakan sapi cukup banyak, sehingga menghasilkan kotoran yang banyak. Kotoran ini dikumpulkan dan digunakan untuk pemembuatan biogas. Sisa kotoran hasil biogas dimanfaatkan untuk pembuatan pupuk pertanian. Proyek Akhir ini bertujuan untuk merencanakan, membuat, dan menguji mesin mixer sebelum pelletisasi untuk keperluan homogenisasi pupuk kotoran sapi. Metode dalam perancangan mesin ini adalah studi pustaka dan pengujian alat. Alat ini memiliki bagian utama yaitu tabung pengaduk bersudu. Untuk mentransmisikan daya dari motor ke reducer menuju ke poros melalui puli, V- belt, juga gear dan rantai. Proses pembuatannya melalui beberapa tahapan yaitu pemotongan, pembubutan, pengelasan, pelubangan dan perakitan komponen. Dari hasil perancangan dan pembuatan mesin mixer didapatkan mesin dengan spesifikasi sebagai berikut: diameter poros 4 mm, diameter tabung 550 mm, panjang tabung 800 mm, keliling lubang masukan 690 mm. Dari uji alat yang dilakukan mesin mixer ini dapat mencetak homogenisasi pupuk kotoran sapi dengan kapasitas 10 kg/jam. vi

6 KATA PENGANTAR Puji syukur kehadirat Allah SWT. yang memberikan limpahan rahmat, karunia dan hidayah-nya, sehingga laporan Proyek Akhir dengan judul REKAYASA MIXER PEMBUATAN PUPUK ORGANIK LIMBAH KOTORAN SAPI ini dapat terselesaikan dengan baik tanpa halangan suatu apapun. Proyek Akhir ini disusun untuk memenuhi salah satu persyaratan kelulusan bagi mahasiswa DIII Teknik Mesin Produksi Universitas Sebelas Maret Surakarta. Dalam laporan ini, penulis menyampaikan banyak terima kasih atas bantuan semua pihak, sehingga laporan ini dapat disusun. Penulis menyampaikan terima kasih kepada: 1. Zainal Arifin, ST.,MT Selaku ketua program DIII Teknik Mesin Universitas Sebelas Maret.. Bapak Dr. Kuncoro Diharjo, ST., MT. Selaku pembimbing Proyek Akhir I. 3. Bapak Eko Prasetya Budiana, ST., MT Selaku pembimbing Proyek Akhir II. 4. Bapak Jaka Sulistya Budi, ST. Selaku koordinator proyek akhir. 5. Bapak dan Ibu di rumah atas segala bentuk dukungan dan doanya. 6. Rekan-rekan mahasiswa D III Produksi dan Otomotif angkatan Berbagai pihak yang tidak dapat disebutkan satu per satu. Penulis menyadari dalam penulisan laporan ini masih jauh dari sempurna. Oleh karena itu kritik dan saran yang membangun dari pembaca sangat dinantikan. Semoga laporan ini dapat bermanfaat bagi penulis pada khususnya dan bagi pembaca bagi pada umumnya. Amin. Surakarta, Januari 010 Penulis vii

7 DAFTAR ISI HALAMAN JUDUL...ii HALAMAN PERSETUJUAN... iii HALAMAN PENGESAHAN... iii HALAMAN MOTTO... iv PERSEMBAHAN... v ABSTRAKSI... vi KATA PENGANTAR... vii DAFTAR ISI... viii DAFTAR GAMBAR... x DAFTAR TABEL... xi DAFTAR NOTASI... xii BAB I PENDAHULUAN Latar Belakang Perumusan Masalah Batasan Masalah Tujuan Proyek Akhir Manfaat Proyek Akhir Metode Pemecahan Masalah... 3 BAB II DASAR TEORI Puli dan Sabuk Bantalan Poros Statika Proses Pengelasan Proses Permesinan Pemilihan Mur dan Baut... 9 BAB III ANALISA PERHITUNGAN Prinsip Kerja Perhitungan dan Analisis Menentukan Putaran Poros Motor... 3 viii

8 3.. Perencanaan reduksi putaran Perhitungan Rantai dan sprocket Perencanaan Poros: Perhitungan Rangka Perencanaan Mur dan Baut Baut Pada Dudukan Motor Baut Pada Dudukan Reduce Perencanaan Bantalan Perhitungan Las BAB IV PROSES PRODUKSI Pembuatan poros Waktu Permesinan Membuat rangka Proses pengecatan Perakitan Estimasi Biaya Perawatan Mesin BAB V PENUTUP Kesimpulan Saran. 61 ix

9 DAFTAR GAMBAR Gambar.1 Gambar sabuk dan sudut kontak puli(khurmi dan Gupta, 00)... 5 Gambar.. Jenis-jenis bantalan gelinding (Sularso dan suga, 1978)... 9 Gambar.3. Sketsa prinsip statika kesetimbangan (Popov, 1996)... 1 Gambar.4. Sketsa gaya dalam (Popov, 1996) Gambar.5. Sketsa reaksi tumpuan rol (Popov, 1996) Gambar.6. Sketsa reaksi tumpuan sendi (Popov, 1996) Gambar.7. Sketsa reaksi tumpuan jepit (Popov, 1996t Gambar 3.1. Sketsa mesin rekayasa Mixer... Gambar 3.. Skema pembebanan pada poros Gambar 3.3. Potongan yang dianalisa... 3 Gambar 3.4.Potongan X-X (C- A)... 3 Gambar 3.5. Potongan Y-Y (A-D) Gambar 3.6.Potongan A-A (B-E) Gambar 3.7.Potongan Z-Z (B-D) Gambar 3.8.Diagram Gaya Normal Gambar 3.9.Diagram Gaya Geser Gambar 3.10.Diagram Momen Lentur Gambar 3.11 Pembebanan pada salah satu rangka Gambar 3.1. Analisa Pembebanan salah satu rangka Gambar 3.13.Diagram gaya geser (A-E-B) Gambar 3.14 Diagram momen lentur (A-E-B) Gambar 3.15 Diagram gaya pada rangka Gambar 3.16 Diagram gaya normal Gambar 3.17 Diagram pembebanan pada batang A-C Gambar 3.18 SFD batang A-C Gambar 3.19 NFD batang A-C Gambar 3.0 BMD batang A-C Gambar 4.1. Poros Transmisi x

10 Gambar 4.. Konstruksi rangka DAFTAR TABEL Tabel 4.1. Kecepatan pahat HSS (mm/menit)...6 Tabel 4.. Kecepatan pemakanan pahat (mm/rev)... 5 Tabel 4.3. Daftar harga komponen mesin Tabel 4.4. Daftar harga komponen cat Tabel 4.5. Daftar harga pengerjaan xi

11 DAFTAR NOTASI A luas penampang (mm ). b d tebal roda gigi (mm). diameter (mm). Dp diameter puli besar (m) F i L l gaya (N). jumlah langkah pemakanan. panjang pembubutan (mm). jarak (mm). M momen (kg.m). m modul (mm). Me momen ekivalen (kg.m). N,n kecepatan putaran (rpm). P r s T daya motor (watt). jari-jari (mm). kecepatan pemakanan (mm/rev). torsi (kg.m). Te torsi ekivalen (kg.m). Tc Tegangan sentrifugal (N) Sudut kontak puli (rad) T P jumlah gigi pinion. v kecepatan (m/s). P d daya motor (watt) WA beban aksial pada gigi (N). WT beban tangensial pada gigi (N). y faktor pinion. z jumlah gigi pahat frais. sudut kemiringan gigi (derajat). σ tegangan tekan (N/mm ). tegangan kerja ijin (N/mm ). w xii

12 1 BAB I PENDAHULUAN 1.1. Latar Belakang Berdasarkan peninjauan di lapangan pada Pondok Pesantren Abdurrahman Bin Auf yang memiliki luas lahan kurang lebih mencapai lima hektar mempunyai beberapa unit usaha, diantaranya peternakan ayam, dan peternakan sapi. Pondok Pesantren berkapasitas 10 orang santri ini memiliki sekitar ekor ayam dan 100 ekor sapi yang dipisahkan dalam empat kandang ayam dan dua kandang sapi. Dengan jumlah sapi mencapai 100 ekor, volume kotoran yang dihasilkan sekitar.360 kg/hari. Kotoran ini dikumpulkan dan digunakan untuk membuat biogas. Sisa kotoran setelah dibuat biogas digunakan untuk pupuk pertanian. Sebagian pupuk ini digunakan sendiri dan yang lain dijual. Penggunaan pupuk ini masih dalam bentuk serbuk, sehingga menimbulkan beberapa masalah antara lain: pemerataan pupuk dalam bentuk ini dirasa kurang begitu mudah dan berdebu. Permasalahan pemerataan dan berdebu ini dapat diatasi dengan mengolahnya menjadi pellet. Pembuatan pellet membutuhkan teknologi dan mesin-mesin tepat guna. Pembuatan pellet adalah proses mengkompresikan kotoran sapi berbentuk serbuk untuk menghasilkan pupuk yang berbentuk silindris. Namum sebelum proses peletisasi kotoran sapi harus dicampur dengan cairan tetes tebu menggunakan mesin mixer. Mesin mixer memberikan keuntungan dalam pencampuran cairan tetes tebu dengan kotoran sapi lebih efisien waktu dan lebih merata. Sehingga hasil pupuk yang dibuat semakin berkualitas tinggi bagi tanaman. Beberapa keuntungan ini yang mendorong kami untuk membuat mesin mixer.

13 1.. Perumusan Masalah Perumusan masalah dalam proyek akhir ini adalah bagaimana merancang, membuat, dan menguji mixer dengan tabung yang berputar dengan penggerak motor bensin yang sederhana dan efektif. Masalah yang akan diteliti meliputi: 1. Cara kerja mesin.. Pemilihan bahan dalam proses pembuatan komponen mesin. 3. Analisa perhitungan mesin. 4. Perkiraan perhitungan biaya. 5. Pembuatan mesin. 6. Pengujian campuran kotoran sapi dengan tetes tebu Batasan Masalah Batasan masalah pada proyek akhir ini adalah: 1. Perhitungan dibatasi hanya pada komponen mesin yang meliputi: perhitungan putaran rantai, roda gigi, poros, bantalan, kekuatan rangka, dan kekuatan las.. Daya motor yang digunakan 5,5 HP. 3. Kapasitas volume tabung adalah 40 Kg 1.4. Tujuan Proyek Akhir Tujuan dari proyek akhir ini adalah supaya mahasiswa dapat merancang,membuat, dan menguji mesin rekayasa mixer pembuatan pupuk organik limbah kotoran sapi untuk dimanfaatkan sebagai usaha yang berguna Manfaat Proyek Akhir Proyek akhir ini mempunyai manfaat sebagai berikut : 1) Secara Teoritis Mahasiswa dapat memperoleh pengetahuan tentang perencanaan, pembuatan, dan pengujian alat rekayasa mixer pembuatan pupuk organik limbah kotoran sapi sistem putar drum sentrifugal.

14 3 ) Secara Praktis Mahasiswa dapat menerapkan ilmu yang diperoleh selama kuliah khususnya dalam bidang mata kuliah kerja bangku dan plat, permesinan, mekanika teknik, elektronika, dan elemen mesin serta mengetahui karakteristik setiap komponen yang digunakan beserta cara kerjanya Metode Pemecahan Masalah Dalam penyusunan laporan ini penulis mengunakan beberapa metode untuk merancang rekayasa mixer pembuatan pupuk organik limbah kotoran sapi antara lain: a. Studi pustaka. Yaitu data diperoleh dengan merujuk pada beberapa literatur sesuai dengan permasalahan yang dibahas. b. Pengujian alat. Yaitu dengan melakukan beberapa kali percobaan/pembuatan langsung untuk mendapatkan mesin dengan spesifikasi yang dikehendaki.

15 4 BAB II DASAR TEORI Untuk melakukan perhitungan pada komponen mesin ini diperlukan dasardasar perhitungan yang sudah menjadi standar internasional. Perhitungan ini akan memperkecil ketidaksesuaian dari material maupun komponen mesin. Hal-hal yang berkaitan dengan perancangan mesin ini meliputi:.1 Puli dan Sabuk Puli merupakan salah satu elemen dalam mesin yang mereduksi putaran dari motor bensin menuju reducer, ini juga berfungsi sebagai kopling putaran motor bensin dengan reducer. Puli dapat terbuat dari besi cor, baja cor, baja pres, atau aluminium (Khurmi dan Gupta, 00). Sabuk berfungsi sebagai alat yang meneruskan daya dari satu poros ke poros yang lain melalui dua puli dengan kecepatan rotasi sama maupun berbeda. Tipe sabuk antara lain: sabuk flat, sabuk V, dan sabuk circular. Faktor-faktor dalam perencanaan sabuk (Khurmi dan Gupta, 00) : 1. Perbandingan kecepatan Perbandingan antara kecepatan puli penggerak dengan puli pengikut ditulis dengan persamaan sebagai berikut (Khurmi dan Gupta, 00) : N D (.1 ) N 1 D dengan: D 1 D N 1 N Diameter puli penggerak (mm) Diameter puli pengikut (mm) Kecepatan puli penggerak (rpm) Kecepatan puli pengikut (rpm)

16 5 c T DP1 T1 Dp Gambar.1. Panjang sabuk dan sudut kontak pada sabuk terbuka (Khurmi dan Gupta, 00). Perhitungan panjang sabuk Perhitungan panjang sabuk ditulis dengan persamaan sebagai berikut (Sularso dan Suga, 1978) : L C + π/ ( Dp + dp ) + ¼c ( Dp dp )²...(. ) dengan: L Panjang sabuk ( cm ) C Jarak sumbu poros ( m ) Dp Diameter puli besar ( m ) dp Diameter puli kecil ( m ) 3. Jarak antara kedua poros Perhitungan jarak kedua poros ditulis dengan persamaan sebagai berikut (Sularso dan Suga, 1978) : C b + b² - 8 ( Dp dp )²...(.3 ) dimana : 8 b h 3,14 ( Dp dp )...(.4 ) 4. Sudut singgung sabuk dan puli Perhitungan sudut singgung sabuk dan puli ditulis dengan persamaan sebagai berikut (Khurmi dan Gupta, 00) : r1 r sin α...(.5 ) X

17 6 dengan : α Sudut singgung sabuk dan puli ( ) R Jari-jari puli besar ( m ) r Jari-jari puli kecil ( m ) 5. Sudut kontak puli Perhitungan sudut kontak puli ditulis dengan persamaan sebagai berikut (Khurmi dan Gupta, 00) : ( α ) π/180...(.6 ) Sudut kontak puli ( ) 6. Kecepatan sabuk Perhitungan kecepatan sabuk ditulis dengan persamaan sebagai berikut (Khurmi dan Gupta, 00) :. d. n V 60 dengan : d Diameter puli roll ( m ) n Putaran roll ( rpm ) 7. Gaya sentrifugal ( m/s )...(.7 ) Perhitungan gaya sentrifugal ditulis dengan persamaan sebagai berikut (Khurmi dan Gupta, 00) : Tc m. ( V )²... (.8 ) dengan : Tc Tegangan sentrifugal m Massa sabuk ( kg/m ) V Kecepatan keliling sabuk ( m ) 8. Besarnya gaya yang bekerja pada sabuk V Perhitungan gaya gaya yang bekerja pada sabuk V ditulis dengan persamaan sebagai berikut (Khurmi dan Gupta, 00) : Tt 1 Tc,3 log...(.9 ) T Tc t T t1 Tegangan total sisi kencang (N) T t Tegangan total sisi kendor (N)

18 7 Koefisien geser antara sabuk dan puli Sudut kontak puli (rad) 9. Perhitungan Penggunaan Jumlah Sabuk Perhitungan penggunaan jumlah sabuk ditulis dengan persamaan sebagai berikut (Khurmi dan Gupta, 00) : Ps ( T 1 T ). V...(.10 ) P Ps : daya yang ditransmisikan sabuk ( watt ) T 1 F1 : gaya tegang sabuk sisi kencang ( kg ) T F : gaya tegang sabuk sisi kendor ( kg ) V Kecepatan linier ( m/s ) 10. Jumlah Sabuk Yang Diperlukan Perhitungan jumlah sabuk yang diperlukan ditulis dengan persamaan sebagai berikut (Sularso dan Suga, 1978): P d N... (.11 ) P s Dengan : P d : Daya motor (watt) P s : Daya yang ditransmisikan sabuk (watt) 11. Menentukan banyaknya gigi sprocket Perhitungan untuk menentukan banyaknya gigi sproket ditulis dengan persamaan sebagai berikut (Sularso dan Suga, 1978): n Z 1. 1 Z... (.1 ) n dengan : Z Jumlah gigi sprocket pada poros I (penggerak) Z 1 Jumlah gigi sprocket pada poros II (yang digerakkan) n 1 Putaran pada poros I (rpm) n Putaran pada poros II (rpm Menentukan Diameter Jarak Bagi Sprocket Perhitungan untuk menentukan diameter jarak bagi sproket ditulis dengan persamaan sebagai berikut (Sularso dan Suga, 1978):

19 8 p dp...(.13 ) sin / Z 1 p Dp... (.14 ) sin / Z dengan : dp Diameter lingkaran jarak bagi sprocket poros I (mm) Dp P Z Z 1. Bantalan Diameter lingkaran jarak bagi sprocket poros II (mm) Jarak bagi rantai (mm) Jumlah gigi sprocket pada poros I Jumlah gigi sprocket pada poros II Bantalan adalah suatu elemen mesin yang berfungsi untuk menumpu poros yang berbeban dan mengurangi gesekan pada poros, sehingga putaran poros dapat berlangsung secara halus. Pelumas digunakan untuk mengurangi panas yang dihasilkan dari gesekan tersebut. Secara garis besar bantalan dapat diklasifikasikan menjadi jenis yaitu (Sularso dan Suga, 1987): 1. Bantalan Luncur Pada bantalan ini terjadi gesekan antara poros dengan bantalan yang dapat menimbulkan panas yang besar sehingga untuk mengatasi hal tersebut diberikan lapisan pelumas antara poros dengan bantalan (Sularso dan Suga, 1987).. Bantalan Gelinding Pada bantalan gelinding ini terjadi gesekan antara bagian yang berputar dengan bagian yang diam melalui elemen gelinding, sehingga gesekan yang terjadi menjadi lebih kecil. Berdasarkan arah beban terhadap poros bantalan dibagi menjadi 3 macam yaitu (Sularso dan Suga, 1987): 1. Bantalan radial Pada bantalan ini arah beban adalah tegak lurus dengan sumbu poros.. Bantalan aksial Pada bantalan ini arah beban adalah sejajar dengan sumbu poros.

20 9 3. Bantalan gelinding khusus Bantalan ini dapat menumpu beban yang arahnya sejajar dan tegak lurus dengan sumbu poros. Gambar.. Jenis-jenis bantalan gelinding (Sularso dan Suga, 1978).3 Poros Poros merupakan bagian yang berputar, dimana terpasang elemen pemindah gaya, seperti roda gigi, bantalan dan lain-lain. Poros bisa menerima beban-beban tarikan, lenturan, tekan atau puntiran yang bekerja sendiri-sendiri maupun gabungan satu dengan yang lainnya. Kata poros mencakup beberapa variasi seperti shaft atau axle (as). Shaft merupakan poros yang berputar dimana akan menerima beban puntir, lenturan atau puntiran yang bekerja sendiri maupun secara gabungan. Sedangkan axle (as) merupakan poros yang diam atau berputar yang tidak menerima beban puntir (Khurmi dan Gupta, 00). Jenis poros yang lain (Sularso dan Suga, 1987) adalah jenis poros transmisi. Poros ini akan mentransmisikan daya meliputi kopling, roda gigi, puli, sabuk, atau sproket rantai dan lain-lain. Poros jenis ini memperoleh beban puntir murni atau puntir dan lentur.

21 10 Untuk merencanakan suatu poros maka perlu memperhatikan hal-hal sebagai berikut (Sularso dan Suga, 1987): 1. Kekuatan Poros. Suatu poros transmisi dapat mengalami beban puntir atau gabungan antara puntir dan lentur, juga ada poros yang mendapatkan beban tarik atau tekan. Oleh karena itu, suatu poros harus direncanakan hingga cukup kuat untuk menahan beban-beban di atas.. Kekakuan Poros. Meskipun suatu poros mempunyai kekuatan cukup tetapi jika lenturan puntirnya terlalu besar akan mengakibatkan ketidaktelitian atau getaran dan suara, karena itu disamping kekuatan poros, kekakuannya juga harus diperhatikan dan disesuaikan dengan macam mesin yang akan dilayani poros tersebut. 3. Korosi. Baja tahan korosi dipilih untuk poros. Bila terjadi kontak fluida yang korosif maka perlu diadakan perlindungan terhadap poros supaya tidak terjadi korosi yang dapat menyebabkan kekuatan poros menjadi berkurang. 4. Bahan Poros. Poros untuk mesin biasanya dibuat dari baja batang yang ditarik dingin dan finishing, baja konstruksi mesin yang dihasilkan dari ingot yang di cill (baja yang dideoksidasikan dengan ferrosilikon dan dicor, kadar karbon terjamin). Meskipun demikian, bahan ini kelurusannya agak kurang tetap dan dapat mengalami deformasi karena tegangan yang kurang seimbang. Poros-poros untuk meneruskan putaran tinggi dan beban berat umumnya dibuat dari baja paduan dengan pengerasan kulit yang tahan terhadap keausan. Pertimbangan-pertimbangan yang digunakan untuk poros menggunakan persamaan sebagai berikut (Khurmi dan Gupta, 00): 1. Torsi

22 11 T 60 x P...(.15) x x N Keterangan : T Torsi maksimum yang terjadi (kg.m). P Daya motor (W). N Kecepatan putaran poros (rpm).. Torsi ekivalen T e M T... (. 16) Diameter poros : d 16 x T 3 e. x...(. 17) s Keterangan : T e Torsi ekivalen (kg.m). T Torsi maksimum yang terjadi (kg.m). M Momen maksimum yang terjadi (kg.m). s Tegangan geser maksimum yang terjadi (kg/cm ). d Diameter poros (cm). 3. Momen ekivalen 1 M e M M T...(.18 ) Diameter poros : d x M 3 e 3 x...(.19 ) b Keterangan : M e Momen ekivalen (kg.m). b Tegangan tarik maksimum yang terjadi (kg/cm )..4 Statika

23 1 Statika adalah ilmu yang mempelajari tentang statika dari suatu beban terhadap gaya-gaya dan juga beban yang mungkin ada pada bahan tersebut. Dalam ilmu statika keberadaan gaya-gaya yang mempengaruhi sistem menjadi suatu obyek tinjauan utama dan meliputi gaya luar dan gaya dalam. Gaya luar adalah gaya yang diakibatkan oleh beban yang berasal dari luar sistem yang pada umumnya menciptakan kestabilan konstruksi. Reaksi Beban Reaksi Reaksi Gambar.3. Sketsa prinsip statika kesetimbangan ( Popov, 1996 ) Jenis bebannya dibagi menjadi: 1. Beban dinamis adalah beban sementara dan dapat dipindahkan pada konstruksi.. Beban statis adalah beban yang tetap dan tidak dapat dipindahkan pada konstruksi. 3. Beban terpusat adalah beban yang bekerja pada suatu titik. 4. Beban terbagi adalah beban yang terbagi merata sama pada setiap satuan luas. 5. Beban terbagi variasi adalah beban yang tidak sama besarnya tiap satuan luas. 6. Beban momen adalah hasil gaya dengan jarak antara gaya dengan titik yang ditinjau. 7. Beban torsi adalah beban akibat puntiran.

24 13 Gambar.4. Sketsa gaya dalam ( Popov, 1996 ) Gaya dalam dapat dibedakan menjadi : 1. Gaya normal (normal force) adalah gaya yang bekerja sejajar sumbu batang.. Gaya lintang/geser (shearing force) adalah gaya yeng bekerja tegak lurus sumbu batang. 3. Momen lentur (bending momen). Persamaan kesetimbangannya adalah (Popov, 1996): - Σ F 0 atau Σ Fx 0 Σ Fy 0 (tidak ada gaya resultan yang bekerja pada suatu benda) - Σ M 0 atau Σ Mx 0 Σ My 0 (tidak ada resultan momen yang bekerja pada suatu benda) 4. Reaksi. Reaksi adalah gaya lawan yang timbul akibat adanya beban. Reaksi sendiri terdiri dari : 1. Momen. (M) F x s...(.0) di mana : M Momen (N.mm). F Gaya (N).

25 14 S Jarak (mm).. Torsi. 3. Gaya. 5. Tumpuan Dalam ilmu statika, tumpuan dibagi atas: 1. Tumpuan roll/penghubung. Tumpuan ini dapat menahan gaya pada arah tegak lurus penumpu, biasanya penumpu ini disimbolkan dengan. Reaksi Gambar.5. Sketsa reaksi tumpuan rol (Popov, 1996 ). Tumpuan sendi. Tumpuan ini dapat menahan gaya dalam segala arah. Reaksi Reaksi Gambar.6. Sketsa reaksi tumpuan sendi (Popov, 1996) 3. Tumpuan jepit. Tumpuan ini dapat menahan gaya dalam segala arah dan dapat menahan momen. Momen Reaksi Reaksi Gambar.7. Sketsa reaksi tumpuan jepit (Popov, 1996)

26 15 4. Diagram gaya dalam. Diagram gaya dalam adalah diagram yang menggambarkan besarnya gaya dalam yang terjadi pada suatu konstruksi. Sedang macam-macam diagram gaya dalam itu sendiri adalah sebagai berikut (Popov, 1996) : 1. Diagram gaya normal (NFD), diagram yang menggambarkan besarnya gaya normal yang terjadi pada suatu konstruksi.. Diagram gaya geser (SFD), diagram yang menggambarkan besarnya gaya geser yang terjadi pada suatu konstruksi. 3. Diagram moment (BMD), diagram yang menggambarkan besarnya momen lentur yang terjadi pada suatu konstruksi..5 Proses Pengelasan Dalam proses pengelasan rangka, jenis las yang digunakan adalah las listrik DC dengan pertimbangan akan mendapatkan sambungan las yang kuat. Pada dasarnya instalasi pengelasan busur logam terdiri dari bagian bagian penting sebagai berikut (Kenyon, 1985): 1. Sumber daya, yang bisa berupa arus bolak balik (ac) atau arus searah (dc).. Kabel timbel las dan pemegang elektroda. 3. Kabel balik las (bukan timbel hubungan ke tanah) dan penjepit. 4. Hubungan ke tanah. Fungsi lapisan elektroda dapat diringkaskan sebagai berikut : 1. Menyediakan suatu perisai yang melindungi gas sekeliling busur api dan logam cair.. Membuat busur api stabil dan mudah dikontrol. 3. Mengisi kembali setiap kekurangan yang disebabkan oksidasi elemen elemen tertentu dari genangan las selama pengelasan dan menjamin las mempunyai sifat sifat mekanis yang memuaskan. 4. Menyediakan suatu terak pelindung yang juga menurunkan kecepatan pendinginan logam las dan dengan demikian menurunkan kerapuhan akibat pendinginan.

27 16 5. Membantu mengontrol (bersama sama dengan arus las) ukuran dan frekuensi tetesan logam cair. 6. Memungkinkan dipergunakannya posisi yang berbeda. Dalam las listrik, panas yang akan digunakan untuk mencairkan logam diperoleh dari busur listrik yang timbul antara benda kerja yang dilas dan kawat logam yang disebut elektroda. Elektroda ini terpasang pada pegangan atau holder las dan didekatkan pada benda kerja hingga busur listrik terjadi. Karena busur listrik itu, maka timbul panas dengan temperatur maksimal 3450 o C yang dapat mencairkan logam (Kenyon, 1985). 1. Sambungan las Ada beberapa jenis sambungan las, yaitu: Butt join Yaitu dimana kedua benda kerja yang dilas berada pada bidang yang sama. Lap join Yaitu dimana kedua benda kerja yang dilas berada pada bidang yang pararel. Edge join Yaitu dimana kedua benda kerja yang dilas berada pada bidang paparel, tetapi sambungan las dilakukan pada ujungnya. T- join Yaitu dimana kedua benda kerja yang dilas tegak lurus satu sama lain. Corner join Yaitu dimana kedua benda kerja yang dilas tegak lurus satu sama lain.. Memilih besarnya arus Besarnya arus listrik untuk pengelasan tergantung pada diameter elektroda dan jenis elektroda. Tipe atau jenis elektroda tersebut misalnya: E 6010, huruf E tersebut singkatan dari elektroda, 60 menyatakan kekuatan tarik terendah setelah dilaskan adalah kg/mm, angka 1 menyatakan posisi pengelasan segala posisi dan angka 0 untuk pengelasan

28 17 datar dan horisontal. Angka keempat adalah menyatakan jenis selaput elektroda dan jenis arus (Kenyon, 1985). Besar arus listrik harus sesuai dengan elektroda, bila arus listrik terlalu kecil, maka: - Pengelasan sukar dilaksanakan. - Busur listrik tidak stabil. - Panas yang terjadi tidak cukup untuk melelehkan elektroda dan benda kerja. - Hasil pengelasan atau rigi-rigi las tidak rata dan penetrasi kurang dalam. Apabila arus terlalu besar maka: - Elektroda mencair terlalu cepat. - Hasil pengelasan atau rigi-rigi las menjadi lebih besar permukaannya dan penetrasi terlalu dalam..6 Proses Permesinan Proses permesinan adalah waktu yang dibutuhkan untuk mengerjakan elemen-elemen mesin, yang meliputi proses kerja mesin dan waktu pemasangan. Pada umumnya mesin-mesin perkakas mempunyai bagian utama sebagai berikut (Scharkus dan Jutz, 1996): 1. Motor penggerak (sumber tenaga).. Kotak transmisi (roda-roda gigi pengatur putaran). 3. Pemegang benda kerja. 4. Pemegang pahat/alat potong. Macam-macam gerak yang terdapat pada mesin perkakas sebagai berikut (Scharkus dan Jutz, 1996) : 1. Gerak utama (gerak pengirisan). Adalah gerak yang menyebabkan mengirisnya alat pengiris pada benda kerja. Gerak utama dapat dibagi : Gerak utama berputar Misalnya pada mesin bubut, mesin frais, dan mesin drill.

29 18 Mesin perkakas dengan gerak utama berputar biasanya mempunyai gerak pemakanan yang kontinyu. Gerak utama lurus Misalnya pada mesin sekrap. Mesin perkakas dengan gerak utama lurus biasanya mempunyai gerak pemakanan yang periodik.. Gerak pemakanan. Gerak yang memindahkan benda kerja atau pahat tegak lurus pada gerak utama. 3. Gerak penyetelan. Menyetel atau mengatur tebal tipisnya pemakanan, mengatur dalamnya pahat masuk dalam benda kerja Adapun macam-macam mesin perkakas yang digunakan antar lain: Mesin bubut Prinsip kerja mesin mesin bubut adalah benda kerja yang berputar dan pahat yang menyayat baik memanjang maupun melintang. Benda kerja yang dapat dikerjakan pada mesin bubut adalah benda kerja yang silindris, sedangkan macam-macam pekerjaan yang dapat dikerjakan dengan mesin ini adalah antara lain (Scharkus dan Jutz, 1996): - pembubutan memanjang dan melintang - pengeboran - pembubutan dalam atau memperbesar lubang - membubut ulir luar dan dalam Perhitungan waktu kerja mesin bubut adalah: 1. Kecepatan pemotongan (v). V π.d.n...(.1) dimana : D Diameter banda kerja (mm). N Kecepatan putaran (rpm).. Pemakanan memanjang waktu permesinan pada pemakanan memenjang adalah :

30 19 n v (.). d T m L S....(.3) r n Dimana : T m Waktu permesinan memanjang (menit) L Panjang pemakanan (mm) S Pemakanan (mm/put) N Putaran mesin (rpm) d Diameter benda kerja (mm) v Kecepatan pemakanan (m/menit) 3. Pada pembubutan melintang waktu permesinan yang dibutuhkan pada waktu pembubutan melitang adalah : T m r S.... (.4) r n Dimana : r Jari-jari bahan (mm) Mesin Bor Mesin bor digunakan untuk membuat lubang (driling) serta memperbesar lubang (boring) pada benda kerja. Jenis mesin bor adalah sebagai berikut (Scharkus dan Jutz, 1996): 1. Mesin bor tembak. Mesin bor vertikal 3. Mesin bor horisontal Pahat bor memiliki dua sisi potong, proses pemotongan dilakukan dengan cara berputar. Putaran tersebut dapat disesuaikan atau diatur sesuai dengan bahan pahat bor dan bahan benda kerja yang dibor. Gerakan pemakanan pahat bor terhadap benda kerja dilakukan dengan menurunkan pahat hingga menyayat benda kerja. Waktu permesinan pada mesin bor adalah (Scharkus dan Jutz, 1996):

31 0 T m L S x n r... (.5) v x1000 n... (.6) x d L l + 0,3 x d... (.7) `Dimana: d Diameter pelubangan (mm).7 Pemilihan Mur dan Baut Pemilihan mur dan baut merupakan pengikat yang sangat penting. Untuk mencegah kecelakaan, atau kerusakan pada mesin, pemilihan baut dan mur sebagai alat pengikat harus dilakukan secara teliti dan direncanakan dengan matang di lapangan. Tegangan maksium pada baut dihitung dengan persamaan di bawah ini (Khurmi dan Gupta, 1980): σ maks F... (.8) A F d x 4 Bila tegangan yang terjadi lebih kecil dari tegangan geser dan tarik bahan, maka penggunaan mur-baut aman. Baut berbentuk panjang bulat berulir, mempunyai fungsi antara lain (Khurmi dan Gupta, 00): Sebagai pengikat Baut sebagai pengikat dan pemasang yang banyak digunakan ialah ulir profil segitiga (dengan pengencangan searah putaran jarum jam). Baut pemasangan untuk bagian-bagian yang berputar dibuat ulir berlawanan dengan arah putaran dari bagian yang berputar, sehingga tidak akan terlepas pada saat berputar. Sebagai pemindah tenaga Contoh ulir sebagian pemindah tenaga adalah dongkrak ulir, transportir mesin bubut, berbagai alat pengendali pada mesin-mesin. Batang ulir seperti ini disebut ulir tenaga (power screw). Tegangan geser maksimum pada baut

32 1 max x 4 F d c x n...(.9) Dimana : max Tegangan geser maksimum (N/mm ) F dc r n Beban yang diterima (N) Diameter baut (mm) Jari-jari baut (mm) Jumlah baut

33 BAB III ANALISA PERHITUNGAN 3.1. Prinsip Kerja Gambar 3.1 Sketsa mesin rekayasa mixer pembuatan pupuk Mesin rekayasa mixer pembuatan pupuk organik limbah kotoran sapi sistem pemasukan dengan dituang ke dalam drum dengan gerakan utama berputar. Gaya putar ini disebabkan karena adanya putaran dari motor diesel. Motor diesel dipasang pada kerangka dan diberi gear, kemudian dipasangkan couple yang terdapat tuas sebagai kopling antar mesin diesel dengan reducer. Putaran reducer dari gear dilanjutkan ke rantai yang berhubungan dengan gear besar yang terpasang pada satu poros yang berhubungan dengan dengan drum. Setelah motor diesel dihidupkan (dalam keadaan on), maka drum akan berputar. Karena adanya reducer maka akan mengurangi kecepatan putar drum sehingga putaran menjadi lambat, tetapi tetap menghasilkan tenaga yang besar. Untuk memudahkan dalam pencampuran kotoran sapi dengan tetes tebu pada

34 bagian drum terdapat sudu sebagai jari jari yang melintang. Pada bagian poros terdapat dua buah bearing yang menopang drum. Rekayasa mixer pembuatan pupuk organik limbah kotoran sapi memiliki lubang masukan pada drum setengah lingkaran, pada bagian pintu terdapat pengunci. Kotoran sapi dimasukkan ke dalam drum, sedang perbandingan tetes tebu dengan air yaitu 60% untuk air dan 40% untuk tetes tebu. Setelah selesai maka pintu masukan ditutup dan mesin dihidupkan, selama mesin diesel hidup drum bisa dihentikan putarannya untuk menuangkan campuran tetes tebu dengan menarik tuas koplingnya yang terpasang pada rangka. Jika tetes tebu sudah tercampur dengan kotoran sapi maka mesin bisa dimatikan Bagian-bagian utama dari mesin rekayasa mixer pembuatan pupuk organik limbah kotoran sapi sistem putaran drum antara lain: a. Elemen yang berputar : gear, rantai, poros dan drum. b. Elemen yang diam : bearing c. Penggerak : motor listrik. d. Bagian pendukung : rangka, reducer, dudukan dan lain-lain. Cara kerja mesin rekayasa mixer pembuatan pupuk organik limbah kotoran sapi sistem pencampur dengan putaran drum antara lain: 1. Memasukkan kotoran sapi. Menuangkan campuran tetes tebu 3. Setelah bahan dimasukkan mesin dinyalakan dengan menarik tuas 4. Setelah 0 menit mesin dimatikan dengan menekan tombol off. 3..Perhitungan dan Analisis Menentukan Putaran Poros Motor Daya dari bahan bakar untuk motor diesel Kebutuhan Bahan bakar Asumsi campuran tetes tebu yang dibutuhkan Kebutuhan mixer kotoran sapi W 1 liter 108 liter/hari kg/har i Asumsi laju massa mixer (kg/jam) sebanding dengan putaran (rpm)

35 Panjang poros Diameter drum Tinggi drum 1.50 mm 550 mm 800 mm 3... Perencanaan reduksi putaran Putaran motor (N 1 ).000 rpm Puli 1 (D 1 ) 60 mm r 1 30 mm Puli (D ) 114 mm r 57 mm Jarak puli 1dan 10 mm Reducer 30 : 1 Putaran puli (N) N1 x D D 1 Putaran sproket (N3).000 x ,6 rpm N1 Perbandingan 1.05, ,1 rpm reducer Sudut kontak puli 1 dan : Sin α rr1 X Sin α 0,1 α 6,8 Sudut kontak puli1 dan

36 θ (180 - α ) 180 ( 180 x 6,8 ) 180,90 rad Panjang sabuk antara puli motor dengan puli ( L 1 ) L 1 (r 1 +r ) + X 1 + r1 r X 3,14( ) + x ,18 mm 1 Sesuai dengan data analisa menunjukan bahwa untuk transmisi ini mengunakan sabuk tipe A yang mempunyai data sbb : 1. Lebar (b ) 13 mm. Tebal ( t ) 8 mm 3. Berat 1,06 N/m Kecepatan linier puli1 dan : v 3,14xD1xN1 60 3,14x60( mm) x.000( rpm) 60 6,8 m/dt Direncanakan sabuk yang digunakan adalah sabuk V tipe A untuk sabuk V tipe A, m 0, 106 (Kg/m)...(Khurmi dan Gupta, 00) Gaya sentrifugal ( Tc ) Tc m. v ² 0,106 (Kg/m) x 6,8² (m/dt) ² 4,18 ( N ) Gaya gaya yang bekerja pada sabuk :

37 Direncanakan bahan puli dari besi cor dan sabuk dari karet sehingga koefisien geseknya ( µ 0,3 ) (Khurmi dan Gupta, 00) Besarnya gaya yang bekerja pada sabuk V :,3 log,3 log Log T T T T t1 t t1 t T T t1 t T C T C 4,18 4,18 4,18 4,18 µ θ 0,3 x,90 0,38 T T t1 t 4,18,38 4,18 Tt1 [,38.(Tt 4,18)] + 4,18...(1) Daya yang dihasilkan motor 5,5 Hp 1Hp 746 watt P 5,5Hp x 746 watt 4103 (Watt) P ( Tt1 Tt ) x v 4103 watt ( Tt1 Tt ) x 6,8 Tt1 Tt 653,3 Tt 1 653,3+ Tt.. () Disubstitusikan persamaan ke 1 [,38.(Tt 4,18)] + 4,18 653,3 + Tt,38Tt 9,95 + 4,18 653,3+ Tt 1,38 Tt 659,07 Tt 477,6 ( N ) Maka Tt 1 653, ,6 T 1 Tt 1 - Tc 1.130,9 ( N )

38 1.130,9 N 4,18N 1.16,7 N T Tt Tc 477,6 N 4,18N 473,4 N Daya yang ditransmisikan sabuk (Ps) Ps (T 1 T ). v Dengan : Ps P Daya yang ditransmisikan sabuk ( Watt ) T1 T : Gaya sabuk sisi kencang 1.16,7 N : Gaya sabuk sisi kendor 473,4 N v kecepatan linier 6,8 (m/dt) Ps (1.16,7 N) (473,4 N ) x 6,8 (m/dt) Ps 4.10,7 (Watt) Dengan demikian sabuk yang diperlukan ( N ) adalah : N N P P d s 4.103( Watt ) 4.10,7( Watt ) N 1,00 1 buah Jadi jumlah sabuk yang dibutuhkan dalam merencanakan mesin ini adalah 1 buah Perhitungan Rantai dan sprocket Perhitungan rantai reducer ke poros drum Direncanakan : Z 1 11 n 30,1 (rpm) 1 Z 17 Dipilih rantai 50 dengan jarak bagi (p) 15,875 (mm)...(sularso dan Suga, 1997)

39 Jumlah gigi ( Z ) Z Z 1 n n 1 i Z 17 n1 x Z n 1 30,1 ( Rpm) x11 n n 19,47 (Rpm) Diameter jarak bagi sprocket : dp p 180 sin Z1 0 Dp 15,875( mm) 180 sin 11 56,7 (mm) p 180 sin Z ,875( mm) sin 17 88, (mm) Kecepatan rantai : p x Z1 x n v D 60 x ,875 (mm) x 11 x 30,1 (Rpm) x menit meter x 60dt 1.000( mm) 0,0876 (m/dt) Beban pada rantai :

40 Gaya yang terjadi pada satu rantai : 10 x Pd F (Kg) v D dimana Fc 1,9...( Sularso dan Suga, 1997) Pd Fc x N F 1,9 x 30,1 57,19 w 0,057 kw 10 x Pd v 10 x 0,057 0, ,4 Kg Panjang rantai : Direncanakan jarak sumbu poros ( C ) adalah 35 mm C Cp.p C 35( mm ) Cp 14,8 p 15,875( mm) Panjang rantai yang diperlukan ( Lp ) : Lp Lp Z1 Z Z Z1 / 6, 8 Cp Cp 1117 x 14,8 43,6 43 buah mata rantai Jarak sumbu poros 1 Z Cp L 4 1 Z 1117 / 6,8 14,8 Z L 1 Z 9,86 Z Z Cp ,

41 1 4 Cp 9 8,9 Cp 14,5 (mm) Perencanaan poros Diasumsikan bahan poros yang digunakan adalah ST 4 dengan B 40 N / mm Putaran poros tabung rencana (N) 30,1 rpm Daya yang di transmisikan (P) 4.10,7 watt Torsi yang ditransmisikan poros T P x60 N 4.10,7 x 60 30, , ,5 Nm Nmm Panjang poros 1.50 mm Beban pada poros : Berat tabung + poros 11 kg Berat kotoran sapi dan tabung 55 kg F C berat gear & rantai + Gaya yang memutar poros (F) ,4 kg 69,4 kg Diagram poros

42 Gambar 3. Reaksi gaya dalam Fy 0 69,4kg + 7,5kg + 7,5kg RAV RBV 0 14,4 kg RAV + RBV MA 0 69,4 kg x 100 mm + 7,5 kg x 100mm + 7,5kg x 1000 RBV x kg.mm kg.mm kg.mm RBV x 1100mm kg.mm RBV x RBV 33,80 kg RAV + RBV 14,4 kg RAV + 33,80 kg 14,4 kg RAV 90,5 kg Potongan yang dianalisa :

43 Gambar 3.3 Potongan yang dianalisa Potongan X X ( C ke A ) Gambar 3.4 Potongan X X ( C ke A ) Nx 0 Vx 69,4 N Mx -69,4 x X

44 Titik A ( X 100 ) N A 0 V A - 69,4 Kg M A - 69,4 x 100 Titik C ( X 0 ) N C 0 V C - 69,4 kg M C kg.mm Potongan y y ( A - D ) Gambar 3.5 Potongan y y ( A - D ) Nx 0 Vx - 69,4 + 90,5 159,9 kg Mx - 69,4 x ,5 x ( X-100 ) Titik A ( X 0 ) N A 0 V A 159,9 kg M A - 69,4 x ,5 x kg.mm Titik D ( X 00 ) N D 0 V D 159,9 kg M D - 69,4 x ,5 x kg.mm

45 Potongan A A kanan ( B E ) Gambar 3.6 Potongan A A kanan ( B E ) Nx 0 Vx 33,80 kg Mx 33,80 x X Titik B ( X 0 ) N B 0 V B 33,80 kg M B 33,80 x 0 0 Titik E ( X 100 ) N E 0 V E 33,80 kg M E 33,80 x kg.mm Potongan Z Z kanan ( B D ) Gambar 3.7 Potongan Z Z kanan ( B D ) Nx 0 Vx 3.3,80-7,5 6,3 kg Mx - 7,5 ( x-100) + 33,

46 Titik E ( X 0 ) N E 0 V E 6,3 kg M E -7,5x0+3.3, kg.mm Titik D ( X 1000) N D 0 V D 6,3 kg M D - 7,5 x , kg.mm Diagram gaya dalam yang ada pada batang a. Diagram gaya normal ( NFD ) C A D E B Gambar 3.8 Diagram gaya normal b. Diagram Gaya Geser ( SFD ) Gambar 3.9 Diagram gaya geser

47 c. Diagram momen lentur ( BMD ) Gambar 3.10 Diagram momen lentur Bahan poros utama (horisontal) dari ST 4 Sehingga : - Tegangan tarik (σt) 40 N/mm - Tegangan geser (τ) sf ,5 Nmm - Momen maksimal poros ( M ) 9050 Nmm Dari tabel 14. (Khurmi, R.S., 00, hal : 474) mengenai poros berputar dengan beban kontinyu dan tetap diperoleh : Faktor keamanan momen ( Km ) 1,5 Faktor keamanan torsi ( Kt ) 1 Sehingga torsi ekuivalen dapat dicari dengan rumus :

48 Momen ekivalen ( Me ) : Diameter poros Tegangan Lentur ijin Tegangan geser Faktor Keamanan ,8 N/ mm M. 3 b. 3 d d M. b ,14.0,8 11,15 mm Dari perhitungan yang didapat maka untuk mendapatkan poros dengan kekuatan yang baik maka dipilih poros dengan diameter 4 mm Perhitungan rangka Berat drum + poros Berat kotoran sapi maksimal Berat gear + rantai 15 kg 40 kg 3 kg Berat keseluruhan yang diterima dua buah rangka 58 kg

49 Gambar 3.11 Pembebanan pada salah satu rangka Gambar 3.1 Diagram pembebanan pada salah satu rangka M A 0 P x 4,5 R BV x x 4, R BV x 9 0 R BV x 9 0 R BV R BV 145 N M B 0 R AV x 9 P x 4,5 0 R AV x 9 90 x R AV x R AV 145 N

50 Momen lentur di titik E ME R AV x X 145 N x 4,5 65,5 N Diagram gaya geser ( SFD ) Gambar 3.13 Diagram gaya geser ( A - E - B ) Diagram momen lentur (BMD) Gambar 3.14 Diagram momen lentur ( A E B ) Gambar 3.15 Diagram gaya pada rangka

51 F Rah Rav 145N Cos 0,90 161,1 N F Sin 161,1 x 0,4 67,66 N Dimana F F 1 Rcv Cos x 1 F 0,90 x 161,1 N 144,99 Rch 1 F x Cos 161,1 x 0,4 67,66 Gambar 3.16 Diagram gaya normal F1 F Rav x Cos 145 N x 0,4 60,9 N Rav x Cos 145 N x 0,90 130,5 N

52 Mc F x X 60,9 x ,1 Nmm Gambar 3.17 Diagram pembebanan pada batang A-C Gambar 3.18 SFD batang A-C Gambar 3.19 NFD batang A-C Gambar 3.0 BMD batang A-C Pada kontruksi rangka untuk mesin mixer ini digunakan baja profil L ISA 00 (50 mm x 50 mm x 4 mm) dengan momen inersia (I) 9,05 x 10 4 mm 4 dan pusat titik berat (Y) 10,9 mm. Dan dari hasil perhitungan,

53 dapat diketahui besar momen maksimum rangka adalah 6.09,1 Nmm. Sehingga dari data tersebut akan ditentukan : 1. Tegangan tarik yang terjadi M. y max I 6.09,1 x10,9 9,05 x10 4 0,76 N/mm. Tegangan tarik ijin bahan b Sf ,5 N/mm Sehingga didapat max < b ( rangka aman digunakan ) 3.3. Perencanaan Mur dan Baut Dalam perencanaan mesin mixer dengan tenaga motor ini mur dan baut digunakan untuk merangkai beberapa elemen mesin diantaranya : 1. Baut pada dudukan rangka motor, untuk mengunci posisi motor.. Baut pada dudukan rangka reducer, untuk mengunci posisi reducer. 3. Baut pengunci rangka dengan rumah bantalan. 4. Baut pengunci sambungan (klem) dengan rangka Baut pada dudukan motor Baut yang digunakan adalah M10 sebanyak 4 buah, terbuat dari baja ST 37 yang menopang beban (P) sebesar 150 N. dari lampiran diketahui mengenai baut M10 antara lain sebagai berikut : 1. Diameter mayor (d) 1 mm. Diameter minor (dc) 9,85 mm 3. Tegangan tarik ( ) 370 N/mm 4. Tegangan geser ( ) 0,18 x 0,18 x ,6 N/mm

54 5. Faktor keamanan ( sf ) 6 6. W (T 1 + T ) (1.50, ,15 ) (.133,4 ) 4.66,8 N Kekuatan baut berdasarkan perhitungan tegangan tarik a. Tegangan tarik ijin ( t ) t sf ,67 N /mm b. Tegangan geser ijin ( t ) t sf 66,6 6 11,1 N /mm c. Beban geser langsung yang diterima baut Ws n W 4.66, ,7 N d. Beban tarik yang terjadi akibat gaya tarik sabuk, beban tarik maksimal terjadi pada baut 3 dan 4. W t W x L x L L L ,8 x6 x ,806, ,34 N

55 e. Diasumsikan beban tarik dan geser yang diterima baut ekivalen 1 - Beban tarik ekivalen W te W t Wt 4W s 1 354,34 354,34 4 x1.066,7 1.58,48 N 1 - Beban geser ekivalen W se Wt 4W s 1 354,34 4 x ,3 N f. Tegangan tarik ( baut - Tegangan tarik baut ) dan tegangan geser ( baut ) yang terjadi W te 4 x dc 1.58,48 x9, ,49 N /mm Tegangan tarik pada baut baut< tegangan tarik ijin t maka baut aman - Tegangan geser baut W se 4 x d 1.081,3 x1 4 9,56 N /mm Tegangan geser pada baut baut < tegangan geser ijin t maka baut aman

56 3.5. Baut pada dudukan reducer Baut yang digunakan adalah M1 sebanyak 4 buah, terbuat dari baja ST 37 yang menopang beban (P) sebesar 100 N. dari lampiran diketahui mengenai baut M1 antara lain sebagai berikut : 1. Diameter mayor (d) 1 mm. Diameter minor (dc) 9,85 mm 3. Tegangan tarik ( ) 370 N/mm 4. Faktor keamanan ( sf ) 6 5. Tegangan geser ( ) 0,18 x 0,18 x ,6 N/mm 6. W (T 1 + T ) (1.50, ,15 ) 4.66,8 N Kekuatan baut berdasarkan perhitungan tegangan tarik a. Tegangan tarik ijin ( t ) t sf 370 N mm 6 61,67 N /mm b. Tegangan geser ijin ( t ) t sf 66,6 N mm 6 11,1 N /mm c. Beban geser langsung yang diterima baut Ws n W 4.66, ,7 N 4

57 d. Beban tarik yang terjadi akibat gaya tarik sabuk, beban tarik maksimal terjadi pada baut 3 dan 4. W x L x L W t L1 L 4.66,8 x8,75 x1,5 9,5 1, , ,86 N e. Diasumsikan beban tarik dan geser yang diterima baut ekivalen 1 - Beban tarik ekivalen W te W t Wt 4W s 1.434,86.434,86 4 x1.006,7.836,06 N 1 - Beban geser ekivalen W se Wt 4W s f. Tegangan tarik ( baut a. Tegangan tarik baut 1.434,86 4 x1.006,7 1.47,4 N ) geser ( baut ) yang terjadi pada baut W te 4 x dc.836,06 x9, ,18 N /mm Tegangan tarik pada baut baut< tegangan tarik ijin t maka baut aman b. Tegangan geser baut W se 4 x d

58 1.47,4 x N /mm Tegangan geser pada baut baut < tegangan geser ijin t maka baut aman Perencanaan Bantalan Perencanaan bantalan pada mesin mixer ini berfungsi untuk menyangga poros, maka diperlukan analisa bantalan yang sesuai. Diketahui : 1. Nomor bantalan yang digunakan 05. Beban dasar static (Co) N 3. Beban dinamik (C) N 4. Kecepatan putar (N) 19,47 rpm Bantalan B Beban radial (W R ) Sama dengan R BV 7,3 N Beban radial ekivalen (W e ) - Beban radial ekivalen statis (W e ) Faktor radial (X) 0,6 Faktor aksial (Y) 0,5 Faktor keamanan (K S ) 1 Beban aksial (W A ) 0 W e ( X. W R + Y. W A ). K S ( 0,6. 7,3+ 0,5. 0 ). 1 16,33 N - Beban radial ekivalen dinamis (W e ) Faktor radial (X) 1 Faktor aksial (Y) 0 Faktor keamanan (K S ) 1 Faktor putaran (V) 1 ( semua jenis bantalan ) Beban aksial (W A ) 0 W e ( X. V. W R + Y. W A ). K S ( , ). 1

59 7,3 N Jadi bantalan yang digunakan aman karena W e < N Bantalan C Beban radial (W R ) Sama dengan R AV 30,77 N Beban radial ekivalen (W e ) - Beban radial ekivalen statis (W e ) Faktor radial (X) 0,6 Faktor aksial (Y) 0,5 Faktor keamanan (K S ) 1 Beban aksial (W A ) 0 W e ( X. W R + Y. W A ). K S ( 0,6. 30,77 + 0,5. 0 ). 1 18,46 N - Beban radial ekivalen dinamis (W e ) Faktor radial (X) 1 Faktor aksial (Y) 0 Faktor keamanan (K S ) 1 Faktor putaran (V) 1 ( semua jenis bantalan ) Beban aksial (W A ) 0 W e ( X. V. W R + Y. W A ). K S ( , ). 1 30,77 N Jadi bantalan yang digunakan aman karena W e < N 3.7. Perhitungan Las Perhitungan Las Sambungan las yang dilakukan adalah sambungan las jenis sudut ( fillet ) dan las temu (butt) Sambungan pada rangka utama menggunakan baja profil L (50 mm x 50mm x 4 mm) Dari data diketahui :

60 h 4 mm l 50 mm b 46 mm W 9 kg Tegangan geser ijin pada pengelasan ( s ) 350 kg/cm Tegangan geser pada sambungan las s s W 0,707hl 9 0, s 0,0 kg/mm 0 kg /cm Section modulus 4l. b b Z t x mm 3 Tegangan lengkung b W.l Z

61 0,19 kg /mm 19 kg /cm Tegangan geser maxsimum 1 max ( ) s b 4 s (0) 1. 44,8,14 kg/cm s maximum < s ijin ( aman )

62 51 BAB IV PROSES PRODUKSI 4.1. Pembuatan Poros Dari perencanaan di atas poros mesin mixer memiliki panjang (Lo) 1.50 mm, diameter (do) sebesar 4 mm, dan Bahan dari jenis baja ST-4. Gambar 4.1 Poros transmisi Pengerjaan poros sepanjang (Lo) 1.50 mm diameter (do) 4 mm bahan poros ST-37. Bahan dibubut dari diameter mula mula (do) 4 mm, menjadi dimeter (d1) mm dengan panjang (L) 50 mm, dan (d) mm dengan panjang (L3) 100 mm. Proses kerja setelah dilakukan persiapan di atas adalah sebagai berikut. Bahan yang dipergunakan sebagai poros adalah baja ST 4 dengan kekuatan tarik sebesar 50 N/mm. Poros dibubut dengan mesin bubut. Kecepatan pemakanan disesuaikan dengan benda kerja. Beberapa hal yang perlu dipersiapkan dalam proses pembubutan adalah : 1. Alat ukur seperti jangka sorong.. Dial indicator untuk menentukan titik pusat. 3. Pahat yang digunakan adalah pahat HSS untuk baja dengan kecepatan tinggi. 4. Kunci kunci untuk penyetelan chuck dan pahat. 5. Penitik. 6. Center drill. 7. Gerinda untuk mengasah pahat.

63 5 Tabel 4.1 Kecepatan pahat HSS (mm/menit) Bahan benda kerja Bubut kasar Bubut halus Bubut ulir Baja mesin Baja perkakas Besi tuang Perunggu alumunium Tabel 4. Kecepatan pemakanan pahat (mm/rev) Bahan benda kerja Bubut kasar Bubut halus Baja mesin 0,5 0,50 0,07 0,5 Besi tuang 0,5 0,50 0,07 0,5 Baja perkakas 0,40 0,65 0,13 0,30 Perunggu 0,40 0,65 0,07 0,5 Langkah-langkah pembubutan: 1. Proses pertama yakni pemasangan pahat, pahat dipasang secara benar dengan pengaturan letak ketinggian supaya center dengan bantuan kepala lepas pada bagian mesin bubut.. Pemasangan bahan poros pada chuck kepala tetap, dengan bantuan dial indicator kita dapat menentukan letak center yang tepat pada benda kerja, dibuat lubang kecil pada center sebagai pegangan kepala lepas. 3. Membubut benda kerja sampai ukuran yang diinginkan. 4. Setelah itu benda kerja yang sudah jadi dilepas. 4.. Waktu Permesinan Bahan poros dari ST-4 (do) 4 mm (d 1 ) mm ( d ) mm (L o ) 1.50 mm (L 1 ) mm (L ) 50 mm

64 53 (L 3 ) 100 mm V c Sr 1 m/menit (HSS dengan σ < 45 kg/mm) 0,5 mm/put Waktu permesinan dengan mesin bubut, putaran yang terjadi : n Vc d ,99 rpm Putaran yang digunakan adalah 300 rpm (lampiran 9) Pembubutan muka a. Waktu pembubutan muka : Tm L x I Sr x n dimana : I I L L0 t t 1 mm Tm 0 kali pemakanan 0 x 0 0,5 x 600,66 menit Waktu setting (ts) 15 menit Waktu pengukuran (tu) 5 menit Waktu total Tm + ts + tu, ,66 menit b. Pembubutan memanjang Pemakanan dari (L0)ø 4 x 1.50 mm menjadi (L) ø x 50 mm dan ( L3) ø x 100 mm

65 54 Tm L x I Sr x n dimana: t 1 mm I I d 0. t d kali pemakanan 50 x1 Tm1 0,5 x 600 0,33menit 100 x1 Tm 0,5 x 600 0,66 menit Tm Tm1 + Tm 0,33 + 0,66 0,99 menit Waktu setting (ts) 15 menit Waktu pengukuran (tu) 5 menit Waktu total Tm + ts + tu 0, ,99 menit Total waktu pembubutan keseluruhan :,66 + 0,99 43,65 menit

66 Membuat Rangka Bahan yang digunakan adalah : Besi profil L 50 x 50 x 4 bahan ST-37 Gambar 4.. Konstruksi rangka Langkah Pengerjaan Untuk tiang mesin: Potong besi kanal siku 50 x 50 x 4 sepanjang 97 cm sebanyak 4buah, Untuk tiang penyangga kaki mesin: Potong besi kanal siku 50 x 50 x 4 sepanjang 66 cm sebanyak buah Potong besi kanal siku 50 x 50 x 4 sepanjang 110 cm sebanyak buah Untuk landasan tabung : Potong besi kanal siku 50 x 50 x 4 sepanjang 9 cm sebanyak buah, Untuk landasan motor dan reducer : Potong besi kanal siku 40 x 40 x 4 sepanjang 6 cm sebanyak 6buah Potong besi kanal siku 40 x 40 x 4 sepanjang 1 cm sebanyak buah Potong besi kanal siku 40 x 40 x 4 sepanjang 13 cm sebanyak 1 buah

67 56 Potong besi kanal siku 40 x 40 x 4 sepanjang 9 cm sebanyak 1 buah, Potong besi kanal siku 40 x 40 x 4 sepanjang 5 cm sebanyak 4 buah, 4.4. Proses Pengecatan Langkah pengerjaan dalam proses pengecatan yaitu : 1. Membersihkan seluruh permukaan benda dengan amplas dan air untuk menghilangkan korosi.. Pengamplasan dilakukan beberapa kali sampai permukaan benda luar dan dalam benar-benar bersih dari korosi. 3. Memberikan cat dasar ke seluruh bagian yang akan dicat. 4. Mengamplas kembali permukaan yang telah diberi cat dasar sampai benar-benar halus dan rata. 5. Melakukan pengecatan warna Perakitan Perakitan merupakan tahap terakhir dalam proses perancangan dan pembuatan suatu mesin atau alat, dimana suatu cara atau tindakan untuk menempatkan dan memasang bagian-bagian dari suatu mesin yang digabung dari satu kesatuan menurut pasangannya, sehingga akan menjadi perakitan mesin yang siap digunakan sesuai dengan fungsi yang direncanakan. Sebelum melakukan perakitan hendaknya memperhatikan beberapa hal sebagai berikut : 1. Komponen-komponen yang akan dirakit, telah selesai dikerjakan dan telah siap ukuran sesuai perencanaan.. Komponen-komponen standart siap pakai ataupun dipasangkan. 3. Mengetahui jumlah yang akan dirakit dan mengetahui cara pemasangannya. 4. Mengetahui tempat dan urutan pemasangan dari masing-masing komponen yang tersedia. 5. Menyiapkan semua alat-alat bantu untuk proses perakitan.

REKAYASA MIXER PEMBUAT PUPUK ORGANIK LIMBAH KOTORAN SAPI

REKAYASA MIXER PEMBUAT PUPUK ORGANIK LIMBAH KOTORAN SAPI 50 REKAYASA MIXER PEMBUAT PUPUK ORGANIK LIMBAH KOTORAN SAPI PROYEK AKHIR Diajukan untuk memenuhi persyaratan guna memperoleh gelar Ahli Madya (A.Md) Program Studi DIII Teknik Mesin Disusun oleh : JOKO

Lebih terperinci

RANCANG BANGUN MESIN POLES POROS ENGKOL PROYEK AKHIR

RANCANG BANGUN MESIN POLES POROS ENGKOL PROYEK AKHIR RANCANG BANGUN MESIN POLES POROS ENGKOL PROYEK AKHIR Diajukan untuk memenuhi persyaratan guna Memperoleh gelar Ahli Madya (A.Md) Program Studi DIII Teknik Mesin Disusun oleh: SUPRIYADI I8612046 PROGRAM

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Statika rangka Dalam konstruksi rangka terdapat gaya-gaya yang bekerja pada rangka tersebut. Dalam ilmu statika keberadaan gaya-gaya yang mempengaruhi sistem menjadi suatu obyek

Lebih terperinci

BAB II DASAR TEORI. c) Untuk mencari torsi dapat dirumuskan sebagai berikut:

BAB II DASAR TEORI. c) Untuk mencari torsi dapat dirumuskan sebagai berikut: BAB II DASAR TEORI 2.1 Daya Penggerak Secara umum daya diartikan sebagai suatu kemampuan yang dibutuhkan untuk melakukan sebuah kerja, yang dinyatakan dalam satuan Watt ataupun HP. Penentuan besar daya

Lebih terperinci

REKAYASA MESIN PEMBUAT PELLET PUPUK DARI KOTORAN SAPI

REKAYASA MESIN PEMBUAT PELLET PUPUK DARI KOTORAN SAPI REKAYASA MESIN PEMBUAT PELLET PUPUK DARI KOTORAN SAPI PROYEK AKHIR Diajukan untuk memenuhi persyaratan guna memperoleh gelar Ahli Madya (A.Md) Program Studi DIII Teknik Mesin Disusun oleh : Setyo Budi

Lebih terperinci

BAB III PERENCANAAN DAN GAMBAR

BAB III PERENCANAAN DAN GAMBAR BAB III PERENCANAAN DAN GAMBAR 3.1 Flowchart Perencanaan Pembuatan Mesin Pemotong Umbi Proses Perancangan mesin pemotong umbi seperti yang terlihat pada gambar 3.1 berikut ini: Mulai mm Studi Literatur

Lebih terperinci

BAB II DASAR TEORI. Mesin perajang singkong dengan penggerak motor listrik 0,5 Hp mempunyai

BAB II DASAR TEORI. Mesin perajang singkong dengan penggerak motor listrik 0,5 Hp mempunyai BAB II DASAR TEORI 2.1. Prinsip Kerja Mesin Perajang Singkong. Mesin perajang singkong dengan penggerak motor listrik 0,5 Hp mempunyai beberapa komponen, diantaranya adalah piringan, pisau pengiris, poros,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Pengertian Mesin Pan Granulator Mesin Pan Granulator adalah alat yang digunakan untuk membantu petani membuat pupuk berbentuk butiran butiran. Pupuk organik curah yang akan

Lebih terperinci

BAB III PERENCANAAN DAN GAMBAR

BAB III PERENCANAAN DAN GAMBAR BAB III PERENCANAAN DAN GAMBAR 3.1 Diagram Alir Proses Perancangan Proses perancangan mesin peniris minyak pada kacang seperti terlihat pada gambar 3.1 berikut ini: Mulai Studi Literatur Gambar Sketsa

Lebih terperinci

BAB II DASAR TEORI. 2.1 Konsep Perencanaan Sistem Transmisi Motor

BAB II DASAR TEORI. 2.1 Konsep Perencanaan Sistem Transmisi Motor BAB II DASAR TEORI 2.1 Konsep Perencanaan Sistem Transmisi Pada perancangan suatu kontruksi hendaknya mempunyai suatu konsep perencanaan. Untuk itu konsep perencanaan ini akan membahas dasar-dasar teori

Lebih terperinci

BAB III. Metode Rancang Bangun

BAB III. Metode Rancang Bangun BAB III Metode Rancang Bangun 3.1 Diagram Alir Metode Rancang Bangun MULAI PENGUMPULAN DATA : DESAIN PEMILIHAN BAHAN PERHITUNGAN RANCANG BANGUN PROSES PERMESINAN (FABRIKASI) PERAKITAN PENGUJIAN ALAT HASIL

Lebih terperinci

BAB IV PEMBUATAN DAN PENGUJIAN

BAB IV PEMBUATAN DAN PENGUJIAN BAB IV PEMBUATAN DAN PENGUJIAN 4.1 Proses Pengerjaan Proses pengerjaan adalah suatu tahap untuk membuat komponen-komponen pada mesin press serbuk kayu. Pengerjaan dominan dalam pembuatan komponen tersebut

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1. TINJAUAN PUSTAKA Potato peeler atau alat pengupas kulit kentang adalah alat bantu yang digunakan untuk mengupas kulit kentang, alat pengupas kulit kentang yang

Lebih terperinci

BAB IV PERHITUNGAN DAN PERANCANGAN ALAT. Data motor yang digunakan pada mesin pelipat kertas adalah:

BAB IV PERHITUNGAN DAN PERANCANGAN ALAT. Data motor yang digunakan pada mesin pelipat kertas adalah: BAB IV PERHITUNGAN DAN PERANCANGAN ALAT 4.1 Perhitungan Rencana Pemilihan Motor 4.1.1 Data motor Data motor yang digunakan pada mesin pelipat kertas adalah: Merek Model Volt Putaran Daya : Multi Pro :

Lebih terperinci

BAB III PERENCANAAN DAN GAMBAR

BAB III PERENCANAAN DAN GAMBAR BAB III PERENCANAAN DAN GAMBAR 3.1 Diagram Aliran Diagram aliran merupakan suatu gambaran dasar yang digunakan dasar dalam bertindak. Seperti pada proses perencanaan diperlukan suatu diagram alir yang

Lebih terperinci

BAB II DASAR TEORI P =...(2.1)

BAB II DASAR TEORI P =...(2.1) 4 BAB II DASAR TEORI 2.1 Motor Motor adalah suatu komponen utama dari sebuah kontruksi permesinan yang berfungsi sebagai penggerak. Gerakan yang dihasilkan oleh motor adalah sebuah putaran poros. Komponen

Lebih terperinci

BAB III PERENCANAAN DAN GAMBAR

BAB III PERENCANAAN DAN GAMBAR BAB III PERENCANAAN DAN GAMBAR 3.1 Diagram Alur Proses Perencanaan Proses perencanaan mesin modifikasi camshaft ditunjukkan pada diagram alur pada Gambar 3.1: Mulai Pengamatan dan pengumpulan data Perencanaan

Lebih terperinci

RANCANG BANGUN MESIN PENGIRIS BAWANG ( TRANSMISI )

RANCANG BANGUN MESIN PENGIRIS BAWANG ( TRANSMISI ) RANCANG BANGUN MESIN PENGIRIS BAWANG ( TRANSMISI ) PROYEK AKHIR Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Ahli Madya Disusun Oleh : TRIANTO NIM I 8111039 PROGRAM DIPLOMA TIGA TEKNIK MESIN

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian pengelasan secara umum a. Pengelasan Menurut Harsono,1991 Pengelasan adalah ikatan metalurgi pada sambungan logam paduan yang dilakukan dalam keadaan lumer atau cair.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Proses Produksi Proses produksi adalah tahap-tahap yang harus dilewati dalam memproduksi barang atau jasa. Ada proses produksi membutuhkan waktu yang lama, misalnya

Lebih terperinci

BAB IV PROSES, HASIL, DAN PEMBAHASAN. panjang 750x lebar 750x tinggi 800 mm. mempermudah proses perbaikan mesin.

BAB IV PROSES, HASIL, DAN PEMBAHASAN. panjang 750x lebar 750x tinggi 800 mm. mempermudah proses perbaikan mesin. BAB IV PROSES, HASIL, DAN PEMBAHASAN A. Desain Mesin Desain konstruksi Mesin pengaduk reaktor biogas untuk mencampurkan material biogas dengan air sehingga dapat bercampur secara maksimal. Dalam proses

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 Tumpuan Rol

BAB II DASAR TEORI. Gambar 2.1 Tumpuan Rol BAB II DASAR TEORI 2.1 Pengertian Rangka Rangka adalah struktur datar yang terdiri dari sejumlah batang-batang yang disambung-sambung satu dengan yang lain pada ujungnya, sehingga membentuk suatu rangka

Lebih terperinci

RANCANG BANGUN MESIN PENGHANCUR BONGGOL JAGUNG UNTUK CAMPURAN PAKAN TERNAK SAPI KAPASITAS PRODUKSI 30 kg/jam

RANCANG BANGUN MESIN PENGHANCUR BONGGOL JAGUNG UNTUK CAMPURAN PAKAN TERNAK SAPI KAPASITAS PRODUKSI 30 kg/jam RANCANG BANGUN MESIN PENGHANCUR BONGGOL JAGUNG UNTUK CAMPURAN PAKAN TERNAK SAPI KAPASITAS PRODUKSI 30 kg/jam LAPORAN AKHIR Diajukan untuk Memenuhi Syarat Menyelesaikan Pendidikan Diploma III Jurusan Teknik

Lebih terperinci

BAB II DASAR TEORI 2.1 Konsep Perencanaan 2.2 Motor 2.3 Reducer

BAB II DASAR TEORI 2.1 Konsep Perencanaan 2.2 Motor 2.3 Reducer BAB II DASAR TEORI 2.1 Konsep Perencanaan Konsep perencanaan komponen yang diperhitungkan sebagai berikut: a. Motor b. Reducer c. Daya d. Puli e. Sabuk V 2.2 Motor Motor adalah komponen dalam sebuah kontruksi

Lebih terperinci

BAB III PERENCANAAN DAN GAMBAR

BAB III PERENCANAAN DAN GAMBAR BAB III PERENCANAAN DAN GAMBAR 3.1 Skema Dan Prinsip Kerja Alat Prinsip kerja mesin pemotong krupuk rambak kulit ini adalah sumber tenaga motor listrik ditransmisikan kepulley 2 dan memutar pulley 3 dengan

Lebih terperinci

BAB III PERENCANAAN DAN GAMBAR

BAB III PERENCANAAN DAN GAMBAR BAB III PERENCANAAN DAN GAMBAR 3.1 Perencanaan Rangka Mesin Peniris Minyak Proses pembuatan mesin peniris minyak dilakukan mulai dari proses perancangan hingga finishing. Mesin peniris minyak dirancang

Lebih terperinci

BAB II DASAR TEORI 2.1. Prinsip kerja Mesin Penghancur Kedelai 2.2. Gerenda Penghancur Dan Alur

BAB II DASAR TEORI 2.1. Prinsip kerja Mesin Penghancur Kedelai 2.2. Gerenda Penghancur Dan Alur BAB II DASAR TEORI 2.1. Prinsip kerja Mesin Penghancur Kedelai Mesin penghancur kedelai dengan penggerak motor listrik 0,5 Hp, mengapa lebih memilih memekai motor listrik 0,5 Hp karena industri yang di

Lebih terperinci

RANCANG BANGUN MESIN PENIRIS MINYAK (SISTEM TRANSMISI )

RANCANG BANGUN MESIN PENIRIS MINYAK (SISTEM TRANSMISI ) RANCANG BANGUN MESIN PENIRIS MINYAK (SISTEM TRANSMISI ) PROYEK AKHIR Diajukan sebagai salah satu syarat untuk memperoleh gelar Ahli Madya Oleh: MUHAMMAD HUSNAN EFENDI NIM I8613023 PROGRAM DIPLOMA III TEKNIK

Lebih terperinci

BAB III PROSES PERANCANGAN DAN GAMBAR

BAB III PROSES PERANCANGAN DAN GAMBAR BAB III PROSES PERANCANGAN DAN GAMBAR 31Skema dan Prinsip kerja Prinsip kerja mesin penggiling serbuk jamu ini adalah sumber tenaga motor listrik di transmisikan ke diskmill menggunakan dan pulley dan

Lebih terperinci

BAB IV PROSES PENGERJAAN DAN PENGUJIAN

BAB IV PROSES PENGERJAAN DAN PENGUJIAN BAB IV PROSES PENGERJAAN DAN PENGUJIAN Pada bab ini akan dibahas mengenai pembuatan dan pengujian alat yang selanjutnya akan di analisa, hal ini dimaksudkan untuk memperoleh data yang dibutuhkan dan untuk

Lebih terperinci

BAB IV PEMBUATAN DAN PENGUJIAN

BAB IV PEMBUATAN DAN PENGUJIAN BAB IV PEMBUATAN DAN PENGUJIAN 4.1. Proses Pembuatan Proses pembuatan adalah tahap-tahap yang dilakukan untuk mencapai suatu hasil. Dalam proses pembuatan ini dijelaskan bagaimana proses bahan-bahanyang

Lebih terperinci

RANCANG BANGUN MESIN PENGIRIS BAWANG BAGIAN PERHITUNGAN RANGKA

RANCANG BANGUN MESIN PENGIRIS BAWANG BAGIAN PERHITUNGAN RANGKA RANCANG BANGUN MESIN PENGIRIS BAWANG BAGIAN PERHITUNGAN RANGKA PROYEK AKHIR Diajukan sebagai salah satu syarat untuk memperoleh gelar Ahli Madya Disusun oleh : EKO SULISTIYONO NIM. I 8111022 PROGRAM DIPLOMA

Lebih terperinci

BAB IV PERHITUNGAN DAN PEMBAHASAN

BAB IV PERHITUNGAN DAN PEMBAHASAN BAB IV PERHITUNGAN DAN PEMBAHASAN 4.1. Perencanaan Tabung Luar Dan Tabung Dalam a. Perencanaan Tabung Dalam Direncanakan tabung bagian dalam memiliki tebal stainles steel 0,6, perencenaan tabung pengupas

Lebih terperinci

BAB III PERANCANGAN DAN PERHITUNGAN

BAB III PERANCANGAN DAN PERHITUNGAN 19 BAB III PERANCANGAN DAN PERHITUNGAN 31 Diagram Alur Proses Perancangan Proses perancangan mesin pengupas serabut kelapa seperti terlihat pada diagram alir berikut ini: Mulai Pengamatan dan Pengumpulan

Lebih terperinci

BAB IV PEMBUATAN DAN PENGUJIAN

BAB IV PEMBUATAN DAN PENGUJIAN BAB IV PEMBUATAN DAN PENGUJIAN 4.1. Proses Pembuatan Proses pembuatan adalah tahap-tahap yang dilakukan untuk mencapai suatu hasil. Dalam proses pembuatan ini dijelaskan bagaimana proses bahan-bahanyang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Pengertian Proses Produksi Proses produksi adalah tahap-tahap yang harus dilewati dalam memproduksi barang atau jasa. Sedangkan pengertian produksi adalah suatu kegiatan untuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA. perancangan yaitu tahap identifikasi kebutuhan, perumusan masalah, sintetis, analisis,

BAB II TINJAUAN PUSTAKA. perancangan yaitu tahap identifikasi kebutuhan, perumusan masalah, sintetis, analisis, BAB II TINJAUAN PUSTAKA.1 Perancangan Mesin Pemisah Biji Buah Sirsak Proses pembuatan mesin pemisah biji buah sirsak melalui beberapa tahapan perancangan yaitu tahap identifikasi kebutuhan, perumusan masalah,

Lebih terperinci

RANCANG BANGUN ALAT UJI JOMINY MENURUT ASTM A255

RANCANG BANGUN ALAT UJI JOMINY MENURUT ASTM A255 RANCANG BANGUN ALAT UJI JOMINY MENURUT ASTM A255 PROYEK AKHIR Diajukan untuk memenuhi persyaratan guna memperoleh gelar Ahli Madya (A.Md) Program Studi DIII Teknik Mesin Disusun oleh: AHMAD SABEKTI I 8

Lebih terperinci

A. Dasar-dasar Pemilihan Bahan

A. Dasar-dasar Pemilihan Bahan BAB II TINJAUAN PUSTAKA A. Dasar-dasar Pemilihan Bahan Di dalam merencanakan suatu alat perlu sekali memperhitungkan dan memilih bahan-bahan yang akan digunakan, apakah bahan tersebut sudah sesuai dengan

Lebih terperinci

RANCANG BANGUN MESIN PEMOTONG KERUPUK RAMBAK KULIT (SISTEM TRANSMISI)

RANCANG BANGUN MESIN PEMOTONG KERUPUK RAMBAK KULIT (SISTEM TRANSMISI) RANCANG BANGUN MESIN PEMOTONG KERUPUK RAMBAK KULIT (SISTEM TRANSMISI) PROYEK AKHIR Diajukan sebagai salah satu syarat untuk memperoleh gelar Ahli Madya Oleh: BUDDHI PUTRANTA NIM I8613006 PROGRAM DIPLOMA

Lebih terperinci

MESIN PENGAYAK PASIR (RANGKA)

MESIN PENGAYAK PASIR (RANGKA) MESIN PENGAYAK PASIR (RANGKA) PROYEK AKHIR Diajukan sebagai salah satu syarat untuk memperoleh gelar Ahli Madya Oleh: RAHMAD WAHYU NUGROHO NIM I8613029 PROGRAM DIPLOMA TIGA TEKNIK MESIN FAKULTAS TEKNIK

Lebih terperinci

BAB III PERANCANGAN DAN PERHITUNGAN

BAB III PERANCANGAN DAN PERHITUNGAN BAB III PERANCANGAN DAN PERHITUNGAN 3.1 Diagram Alir Proses Perancangan Proses perancangan konstruksi mesin pengupas serabut kelapa ini terlihat pada Gambar 3.1. Mulai Survei alat yang sudah ada dipasaran

Lebih terperinci

RANCANG BANGUN MESIN COPY CAMSHAFT (SISTEM RANGKA)

RANCANG BANGUN MESIN COPY CAMSHAFT (SISTEM RANGKA) RANCANG BANGUN MESIN COPY CAMSHAFT (SISTEM RANGKA) PROYEK AKHIR Diajukan sebagai salah satu syarat untuk memperoleh gelar Ahli Madya Oleh: AFRIKO JADI PRAYOGA PUTRA PRATAMA NIM I8613002 PROGRAM DIPLOMA

Lebih terperinci

BAB III PERENCANAAN DAN GAMBAR

BAB III PERENCANAAN DAN GAMBAR BAB III PERENCANAAN DAN GAMBAR 3.1 Flow Chart Pembuatan Mesin Pemotong Umbi Mulai Studi Literatur Perencanaan dan Desain Perhitungan Penentuan dan Pembelian Komponen Proses Pengerjaan Proses Perakitan

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN Gambar 14. HASIL DAN PEMBAHASAN Gambar mesin sortasi buah manggis hasil rancangan dapat dilihat dalam Bak penampung mutu super Bak penampung mutu 1 Unit pengolahan citra Mangkuk dan sistem transportasi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Serabut Kelapa Sebagai Negara kepulauan dan berada di daerah tropis dan kondisi agroklimat yang mendukung, Indonesia merupakan Negara penghasil kelapa terbesar di dunia. Menurut

Lebih terperinci

MESIN PERUNCING TUSUK SATE

MESIN PERUNCING TUSUK SATE MESIN PERUNCING TUSUK SATE NASKAH PUBLIKASI Disusun : SIGIT SAPUTRA NIM : D.00.06.0048 JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SURAKARTA 013 MESIN PERUNCING TUSUK SATE Sigit Saputra,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Cara Kerja Alat Cara kerja Mesin pemisah minyak dengan sistem gaya putar yang di control oleh waktu, mula-mula makanan yang sudah digoreng di masukan ke dalam lubang bagian

Lebih terperinci

BAB IV PROSES PRODUKSI

BAB IV PROSES PRODUKSI BAB IV PROSES PRODUKSI 4.1 Proses Pengerjaan Proses pengerjaan adalah suatu tahap untuk membuat komponen-komponen pada mesin pemotong kerupuk rambak kulit. Pengerjaan paling dominan dalam pembuatan komponen

Lebih terperinci

RANCANG BANGUN MESIN PENCACAH RUMPUT GAJAH (PULI DAN SABUK) PROYEK AKHIR Diajukan sebagai salah satu syarat untuk memperoleh gelar Ahli Madya

RANCANG BANGUN MESIN PENCACAH RUMPUT GAJAH (PULI DAN SABUK) PROYEK AKHIR Diajukan sebagai salah satu syarat untuk memperoleh gelar Ahli Madya RANCANG BANGUN MESIN PENCACAH RUMPUT GAJAH (PULI DAN SABUK) PROYEK AKHIR Diajukan sebagai salah satu syarat untuk memperoleh gelar Ahli Madya Oleh: ERICK SEPTA WAHYUDI NIM. I8612018 PROGRAM DIPLOMA TIGA

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Dasar-dasar Pemilihan Bahan Setiap perencanaan rancang bangun memerlukan pertimbanganpertimbangan bahan agar bahan yang digunakan sesuai dengan yang direncanakan. Hal-hal penting

Lebih terperinci

BAB II LANDASAN TEORI. khususnya permesinan pengolahan makanan ringan seperti mesin pengiris ubi sangat

BAB II LANDASAN TEORI. khususnya permesinan pengolahan makanan ringan seperti mesin pengiris ubi sangat BAB II LANDASAN TEORI.. Pengertian Umum Kebutuhan peralatan atau mesin yang menggunakan teknologi tepat guna khususnya permesinan pengolahan makanan ringan seperti mesin pengiris ubi sangat diperlukan,

Lebih terperinci

RANCANG BANGUN BAGIAN RANGKA PADA MESIN PERONTOK PADI PROYEK AKHIR

RANCANG BANGUN BAGIAN RANGKA PADA MESIN PERONTOK PADI PROYEK AKHIR RANCANG BANGUN BAGIAN RANGKA PADA MESIN PERONTOK PADI PROYEK AKHIR Diajukan untuk memenuhi persyaratan guna Memperoleh gelar Ahli Madya (A.Md) Program Studi DIII Teknik Mesin Disusun oleh: BOB ADAM I8612014

Lebih terperinci

PEMBUATAN ALAT PRAKTIKUM PERAWATAN POMPA GEAR

PEMBUATAN ALAT PRAKTIKUM PERAWATAN POMPA GEAR PEMBUATAN ALAT PRAKTIKUM PERAWATAN POMPA GEAR PROYEK AKHIR Diajukan untuk memenuhi persyaratan guna memperoleh gelar Ahli Madya (A.Md) Program Studi DIII Teknik Mesin Disusun oleh: AGUNG PAMBUDI I 8 1

Lebih terperinci

RANCANG BANGUN MESIN EXSTRACTOR CASSAVA

RANCANG BANGUN MESIN EXSTRACTOR CASSAVA RANCANG BANGUN MESIN EXSTRACTOR CASSAVA PROYEK AKHIR Diajukan untuk memenuhi persyaratan guna memperoleh gelar Ahli Madya (A.Md) Program Studi DIII Teknik Mesin Disusun oleh : ARIYANTO I8106019 PROGRAM

Lebih terperinci

BAB II DASAR TEORI Sistem Transmisi

BAB II DASAR TEORI Sistem Transmisi BAB II DASAR TEORI Dasar teori yang digunakan untuk pembuatan mesin pemotong kerupuk rambak kulit adalah sistem transmisi. Berikut ini adalah pengertian-pengertian dari suatu sistem transmisi dan penjelasannya.

Lebih terperinci

RANCANG BANGUN BAGIAN TRANSMISI MESIN KATROL ELEKTRIK (PULI DAN SABUK)

RANCANG BANGUN BAGIAN TRANSMISI MESIN KATROL ELEKTRIK (PULI DAN SABUK) RANCANG BANGUN BAGIAN TRANSMISI MESIN KATROL ELEKTRIK (PULI DAN SABUK) PROYEK AKHIR Diajukan sebagai salah satu syarat untuk memperoleh gelar Ahli Madya Disusun oleh : LAKSANA RAHADIAN SETIADI NIM. I8612030

Lebih terperinci

BAB III PERENCANAAN DAN GAMBAR

BAB III PERENCANAAN DAN GAMBAR BAB III PERENCANAAN DAN GAMBAR 3.1 Diagram Alir Proses Perencanaan Proses perencanaan mesin pembuat es krim dari awal sampai akhir ditunjukan seperti Gambar 3.1. Mulai Studi Literatur Gambar Sketsa Perhitungan

Lebih terperinci

TUGAS MATA KULIAH PERANCANGAN ELEMEN MESIN

TUGAS MATA KULIAH PERANCANGAN ELEMEN MESIN TUGAS MATA KULIAH PERANCANGAN ELEMEN MESIN Dosen : Subiyono, MP MESIN PENGUPAS SERABUT KELAPA SEMI OTOMATIS DISUSUN OLEH : NAMA : FICKY FRISTIAR NIM : 10503241009 KELAS : P1 JURUSAN PENDIDIKAN TEKNIK MESIN

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.. Gambaran Umum Mesin pemarut adalah suatu alat yang digunakan untuk membantu atau serta mempermudah pekerjaan manusia dalam hal pemarutan. Sumber tenaga utama mesin pemarut adalah

Lebih terperinci

RANCANG BANGUN MESIN PRESS SERBUK KAYU (RANGKA)

RANCANG BANGUN MESIN PRESS SERBUK KAYU (RANGKA) RANCANG BANGUN MESIN PRESS SERBUK KAYU (RANGKA) PROYEK AKHIR Diajukan sebagai salah satu syarat untuk memperoleh gelar Ahli Madya (A. Md) Disusun oleh: WAHYU TRI ARDHIYANTO NIM. I 8613038 PROGRAM DIPLOMA

Lebih terperinci

RANCANG BANGUN MESIN EXSTRACTOR CASSAVA

RANCANG BANGUN MESIN EXSTRACTOR CASSAVA RANCANG BANGUN MESIN EXSTRACTOR CASSAVA PROYEK AKHIR Diajukan untuk memenuhi persyaratan guna memperoleh gelar Ahli Madya (A.Md) Program Studi DIII Teknik Mesin Disusun oleh : ANDY AHMAT FAUZI I 8106003

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Poros Poros merupakan bagian yang terpenting dari suatu mesin. Hampir semua mesin meneruskan tenaga dan putarannya melalui poros. Setiap elemen mesin yang berputar, seperti roda

Lebih terperinci

BAB II DASAR TEORI 2.1. Sistem Transmisi Motor Listrik

BAB II DASAR TEORI 2.1. Sistem Transmisi Motor Listrik BAB II DASAR TEORI 2.1. Sistem Transmisi Transmisi bertujuan untuk meneruskan daya dari sumber daya ke sumber daya lain, sehingga mesin pemakai daya tersebut bekerja menurut kebutuhan yang diinginkan.

Lebih terperinci

BAB II DASAR TEORI. 2.1 Pengertian rangka

BAB II DASAR TEORI. 2.1 Pengertian rangka BAB II DASAR TEORI 2.1 Pengertian rangka Rangka adalah struktur datar yang terdiri dari sejumlah batang-batang yang disambung-sambung satu dengan yang lain pada ujungnya, sehingga membentuk suatu rangka

Lebih terperinci

BAB III TEORI PERHITUNGAN. Data data ini diambil dari eskalator Line ( lampiran ) Adapun data data eskalator tersebut adalah sebagai berikut :

BAB III TEORI PERHITUNGAN. Data data ini diambil dari eskalator Line ( lampiran ) Adapun data data eskalator tersebut adalah sebagai berikut : BAB III TEORI PERHITUNGAN 3.1 Data data umum Data data ini diambil dari eskalator Line ( lampiran ) Adapun data data eskalator tersebut adalah sebagai berikut : 1. Tinggi 4 meter 2. Kapasitas 4500 orang/jam

Lebih terperinci

BAB II TINJAUAN PUSTAKA. digunakan untuk mencacah akan menghasikan serpihan. Alat pencacah ini

BAB II TINJAUAN PUSTAKA. digunakan untuk mencacah akan menghasikan serpihan. Alat pencacah ini BAB II TINJAUAN PUSTAKA A. Definisi Alat Pencacah plastik Alat pencacah plastik polipropelen ( PP ) merupakan suatu alat yang digunakan untuk mencacah akan menghasikan serpihan. Alat pencacah ini memiliki

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Kajian Singkat Alat Alat pembuat mie merupakan alat yang berfungsi menekan campuran tepung, telur dan bahan-bahan pembuatan mie yang telah dicampur menjadi adonan basah kemudian

Lebih terperinci

BAB IV PROSES PEMBUATAN MESIN

BAB IV PROSES PEMBUATAN MESIN BAB IV PROSES PEMBUATAN MESIN 4.1 Proses Produksi Produksi adalah suatu proses memperbanyak jumlah produk melalui tahapantahapan dari bahan baku untuk diubah dengan cara diproses melalui prosedur kerja

Lebih terperinci

PERANCANGAN DAN PEMBUATAN MESIN PENGADUK ADONAN ROTI TAWAR (BAGIAN STATIS) LAPORAN PROYEK AKHIR. Oleh :

PERANCANGAN DAN PEMBUATAN MESIN PENGADUK ADONAN ROTI TAWAR (BAGIAN STATIS) LAPORAN PROYEK AKHIR. Oleh : PERANCANGAN DAN PEMBUATAN MESIN PENGADUK ADONAN ROTI TAWAR (BAGIAN STATIS) LAPORAN PROYEK AKHIR Oleh : Eko Susilo NIM 011903101118 PROGRAM STUDI DIPLOMA III TEKNIK JURUSAN TEKNIK MESIN PROGRAM STUDI TEKNIK

Lebih terperinci

BAB II DASAR TEORI. 1. Roda Gigi Dengan Poros Sejajar.

BAB II DASAR TEORI. 1. Roda Gigi Dengan Poros Sejajar. BAB II DASAR TEORI 2.1 Roda Gigi Roda gigi digunakan untuk mentransmisikan daya besar dan putaran yang tepat. Roda gigi memiliki gigi di sekelilingnya, sehingga penerusan daya dilakukan oleh gigi-gigi

Lebih terperinci

PERANCANGAN PALANG PARKIR OTOMATIS MODEL TEKUK 180 DERAJAT

PERANCANGAN PALANG PARKIR OTOMATIS MODEL TEKUK 180 DERAJAT PERANCANGAN PALANG PARKIR OTOMATIS MODEL TEKUK 180 DERAJAT PROYEK AKHIR Diajukan sebagai salah satu syarat untuk memperoleh gelar Ahli Madya Disusun oleh : JOURDAN ADBEL PICARRIO PURNOMO NIM. I 8111030

Lebih terperinci

BAB III PERENCANAAN DAN GAMBAR

BAB III PERENCANAAN DAN GAMBAR BAB III PERENCANAAN DAN GAMBAR 3.1 Diagram Alir Proses Perancangan Berikut proses perancangan alat pencacah rumput gajah seperti terlihat pada diagram alir: Mulai Pengamatan dan Pengumpulan Perencanaan

Lebih terperinci

BAB III PERENCANAAN DAN PERHITUNGAN

BAB III PERENCANAAN DAN PERHITUNGAN BAB III PERENCANAAN DAN PERHITUNGAN 3.1. Diagram Alur Perencanaan Proses perencanaan pembuatan mesin pengupas serabut kelapa dapat dilihat pada diagram alur di bawah ini. Gambar 3.1. Diagram alur perencanaan

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN

BAB IV ANALISA DAN PERHITUNGAN BAB IV ANALISA DAN PERHITUNGAN Pada rancangan uncoiler mesin fin ini ada beberapa komponen yang perlu dilakukan perhitungan, yaitu organ penggerak yang digunakan rancangan ini terdiri dari, motor penggerak,

Lebih terperinci

RANCANG BANGUN MESIN PEMBUAT TUSUK SATE (TRANSMISI)

RANCANG BANGUN MESIN PEMBUAT TUSUK SATE (TRANSMISI) RANCANG BANGUN MESIN PEMBUAT TUSUK SATE (TRANSMISI) PROYEK AKHIR Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Ahli Madya Disusun Oleh : BAMBANG SETIATMOKO NIM I 8111014 PROGRAM DIPLOMA TIGA

Lebih terperinci

BAB III PERANCANGAN. = 280 mm = 50,8 mm. = 100 mm mm. = 400 gram gram

BAB III PERANCANGAN. = 280 mm = 50,8 mm. = 100 mm mm. = 400 gram gram BAB III PERANCANGAN 3.. Perencanaan Kapasitas Perajangan Kapasitas Perencanaan Putaran motor iameter piringan ( 3 ) iameter puli motor ( ) Tebal permukaan ( t ) Jumlah pisau pada piringan ( I ) iameter

Lebih terperinci

LAPORAN PROYEK AKHIR RANCANG BANGUN SEPEDA BAMBU. Design and Manufacture of Bamboo Bicycle

LAPORAN PROYEK AKHIR RANCANG BANGUN SEPEDA BAMBU. Design and Manufacture of Bamboo Bicycle LAPORAN PROYEK AKHIR RANCANG BANGUN SEPEDA BAMBU Design and Manufacture of Bamboo Bicycle Diajukan untuk memenuhi persyaratan guna memperoleh gelar Ahli Madya (A.Md) Program Studi DIII Teknik Mesin Disusun

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1. Analisis Perhitungan Sebelum mendesain mesin pemotong kerupuk hal utama yang harus diketahui adalah mencari tegangan geser kerupuk yang akan dipotong. Percobaan yang dilakukan

Lebih terperinci

RANCANG (BAGIAN. commit to user. Diajukan. Ahli Madya

RANCANG (BAGIAN. commit to user. Diajukan. Ahli Madya RANCANG BANGUN MESIN PEMBELAH BAMBU (BAGIAN PROSES PRODUKSI) PROYEK AKHIR Diajukan sebagai salah satu syarat untuk memperoleh gelar Ahli Madya Oleh : WAHYU PRASETYA NIM I 8112045 PROGRAM DIPLOMA TIGA TEKNIK

Lebih terperinci

BAB II DASAR TEORI. 2.1 Prinsip Dasar Mesin Pencacah Rumput

BAB II DASAR TEORI. 2.1 Prinsip Dasar Mesin Pencacah Rumput BAB II DASAR TEORI 2.1 Prinsip Dasar Mesin Pencacah Rumput Mesin ini merupakan mesin serbaguna untuk perajang hijauan, khususnya digunakan untuk merajang rumput pakan ternak. Pencacahan ini dimaksudkan

Lebih terperinci

BAB II PENDEKATAN PEMECAHAN MASALAH. harus mempunyai sebuah perencanaan yang matang. Perencanaan tersebut

BAB II PENDEKATAN PEMECAHAN MASALAH. harus mempunyai sebuah perencanaan yang matang. Perencanaan tersebut BAB II PENDEKATAN PEMECAHAN MASALAH Proses pembuatan rangka pada mesin pemipih dan pemotong adonan mie harus mempunyai sebuah perencanaan yang matang. Perencanaan tersebut meliputi gambar kerja, bahan,

Lebih terperinci

PEMBUATAN ALAT PRAKTIKUM PERAWATAN KOMPRESOR TORAK GANDA

PEMBUATAN ALAT PRAKTIKUM PERAWATAN KOMPRESOR TORAK GANDA digilib.uns.ac.id PEMBUATAN ALAT PRAKTIKUM PERAWATAN KOMPRESOR TORAK GANDA PROYEK AKHIR Diajukan untuk memenuhi persyaratan guna memperoleh gelar Ahli Madya (A.Md) Program Studi DIII Teknik Mesin Disusun

Lebih terperinci

RANCANG BANGUN MESIN PEMECAH BIJI KEMIRI DENGAN SISTEM BENTUR

RANCANG BANGUN MESIN PEMECAH BIJI KEMIRI DENGAN SISTEM BENTUR RANCANG BANGUN MESIN PEMECAH BIJI KEMIRI DENGAN SISTEM BENTUR Sumardi 1* Jurusan Teknik Mesin Politeknik Negeri Lhokseumawe Jl. Banda Aceh Medan Km. 280 Buketrata Lhokseumawe 24301 Email: Sumardi63@gmail.com

Lebih terperinci

RANCANG BANGUN MESIN PENIRIS MINYAK PADA ABON SAPI

RANCANG BANGUN MESIN PENIRIS MINYAK PADA ABON SAPI RANCANG BANGUN MESIN PENIRIS MINYAK PADA ABON SAPI PROYEK AKHIR Diajukan untuk memenuhi persyaratan guna Memperoleh gelar Ahli Madya (A.Md) Disusun Oleh : DANANG SATRIO I8110013 PROGRAM DIPLOMA III TEKNIK

Lebih terperinci

RANCANG BANGUN BAGIAN PENGADUK PADA MESIN PENCETAK PAKAN PELLET IKAN

RANCANG BANGUN BAGIAN PENGADUK PADA MESIN PENCETAK PAKAN PELLET IKAN RANCANG BANGUN BAGIAN PENGADUK PADA MESIN PENCETAK PAKAN PELLET IKAN PROYEK AKHIR Diajukan sebagai salah satu syarat untuk memperoleh gelar Ahli Madya (A. Md) Oleh : MUHAMMAD HASYIM S NIM. I 8612034 PROGRAM

Lebih terperinci

RANCANG BANGUN BAGIAN RODA GIGI DAN POROS DRUM PENGGULUNG PADA MESIN KATROL ELEKTRIK

RANCANG BANGUN BAGIAN RODA GIGI DAN POROS DRUM PENGGULUNG PADA MESIN KATROL ELEKTRIK RANCANG BANGUN BAGIAN RODA GIGI DAN POROS DRUM PENGGULUNG PADA MESIN KATROL ELEKTRIK PROYEK AKHIR Diajukan sebagai salah satu syarat untuk memperoleh gelar Ahli Madya Disusun oleh : BAGUS ANGGEGANA ADP

Lebih terperinci

Gambar 2.1. Struktur buah kelapa muda

Gambar 2.1. Struktur buah kelapa muda BAB II TINJAUAN PUSTAKA 21 Kelapa Muda Kelapa muda (cocos nucifera), merupakan buah dari pohon kelapa yang sengaja dipetik lebih cepat (sebelum buah kelapa itu tua atau jatuh sendiri dari pohonnya) dengan

Lebih terperinci

2.1 Pengertian Umum Mesin Pemipil Jagung. 2.2 Prinsip Kerja Mesin Pemipil Jagung BAB II DASAR TEORI

2.1 Pengertian Umum Mesin Pemipil Jagung. 2.2 Prinsip Kerja Mesin Pemipil Jagung BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Pengertian Umum Mesin Pemipil Jagung Mesin pemipil jagung merupakan mesin yang berfungsi sebagai perontok dan pemisah antara biji jagung dengan tongkol dalam jumlah yang banyak dan

Lebih terperinci

RANGKA SEPEDA MOTOR LISTRIK GENERASI II

RANGKA SEPEDA MOTOR LISTRIK GENERASI II RANGKA SEPEDA MOTOR LISTRIK GENERASI II PROYEK AKHIR Diajukan sebagai salah satu syarat untuk memperoleh gelar Ahli Madya Disusun oleh : ADHIMAS BAGUS PAMUNGKAS NIM. I 8611002 PROGRAM STUDI DIPLOMA III

Lebih terperinci

PROGRAM DIPLOMA III TEKNIK MESIN OTOMOTIF FAKULTAS TEKNIK UNIVERSITAS SEBELAS MARET SURAKARTA commit 2016 to user

PROGRAM DIPLOMA III TEKNIK MESIN OTOMOTIF FAKULTAS TEKNIK UNIVERSITAS SEBELAS MARET SURAKARTA commit 2016 to user RANCANG BANGUN MESIN DOWEL UNTUK PEMBUATAN KAYU SILINDER DENGAN DIAMETER 10 SAMPAI 20 MM UNTUK INDUSTRI GAGANG SAPU DAN SANGKAR BURUNG ( Proses Produksi ) PROYEK AKHIR Diajukan untuk memenuhi persyaratan

Lebih terperinci

c = b - 2x = ,75 = 7,5 mm A = luas penampang v-belt A = b c t = 82 mm 2 = 0, m 2

c = b - 2x = ,75 = 7,5 mm A = luas penampang v-belt A = b c t = 82 mm 2 = 0, m 2 c = b - 2x = 13 2. 2,75 = 7,5 mm A = luas penampang v-belt A = b c t = mm mm = 82 mm 2 = 0,000082 m 2 g) Massa sabuk per meter. Massa belt per meter dihitung dengan rumus. M = area panjang density = 0,000082

Lebih terperinci

PEMBUATAN ALAT PRAKTIKUM PERAWATAN KOMPRESOR TORAK GANDA

PEMBUATAN ALAT PRAKTIKUM PERAWATAN KOMPRESOR TORAK GANDA digilib.uns.ac.id PEMBUATAN ALAT PRAKTIKUM PERAWATAN KOMPRESOR TORAK GANDA PROYEK AKHIR Diajukan untuk memenuhi persyaratan guna memperoleh gelar Ahli Madya (A.Md) Program Studi DIII Teknik Mesin Disusun

Lebih terperinci

BAB III PERENCANAAN DAN GAMBAR

BAB III PERENCANAAN DAN GAMBAR A III PERENCANAAN DAN GAMAR 3.1 Diagram Alir Proses Perancangan Diagram alir adalah suatu gambaran utama yang dipergunakan untuk dasar dalam bertindak. Seperti halnya pada perancangan diperlukan suatu

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pandangan Umum 2.1.1 Definisi Paving-Block Paving-block merupakan produk bahan bangunan dari semen yang digunakan sebagai salah satu alternatif penutup atau pengerasan permukaan

Lebih terperinci

RANCANG BANGUN MESIN ROL STRIP PLAT (RANGKA) PROYEK AKHIR

RANCANG BANGUN MESIN ROL STRIP PLAT (RANGKA) PROYEK AKHIR RANCANG BANGUN MESIN ROL STRIP PLAT (RANGKA) PROYEK AKHIR Diajukan untuk memenuhi persyaratan guna Memperoleh gelar Ahli Madya (A.Md) Program Studi D III Teknik Mesin Disusun oleh : YUSUF ABDURROCHMAN

Lebih terperinci

PERANCANGAN MESIN PENGUPAS KULIT KENTANG KAPASITAS 3 KG/PROSES

PERANCANGAN MESIN PENGUPAS KULIT KENTANG KAPASITAS 3 KG/PROSES PERANCANGAN MESIN PENGUPAS KULIT KENTANG KAPASITAS 3 KG/PROSES TARTONO 202030098 PROGRAM STUDI TEKNIK MESIN, FAKULTAS TEKNIK, UNIVERSITAS MUHAMMADIYAH YOGYAKARTA Kampus Terpadu UMY, Jl. Lingkar Selatan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian Gasket Gasket adalah perapat statis untuk menahan cairan, benda padat, dan gas pada seluruh jenis mesin, bejana dan sistem perpipaan. Gasket normalnya ditempatkan

Lebih terperinci

BAB IV PROSES PEMBUATAN DAN PENGUJIAN

BAB IV PROSES PEMBUATAN DAN PENGUJIAN BAB IV PROSES PEMBUATAN DAN PENGUJIAN 4.1 Proses Pengerjaan Proses pengerjaan adalah suatu tahap untuk membuat komponen-komponen pada mesin pengayak pasir. Komponen komponen yang akan dibuat adalah komponen

Lebih terperinci

II. TINJAUAN PUSTAKA. adonan sebelum dipotong tipis-tipis, dikeringkan dibawah sinar matahari dan

II. TINJAUAN PUSTAKA. adonan sebelum dipotong tipis-tipis, dikeringkan dibawah sinar matahari dan 4 II. TINJAUAN PUSTAKA A. Pengertian Kerupuk Kerupuk adalah makanan ringan yang dibuat dari adonan tepung tapioka dicampur bahan perasa seperti udang atau ikan. Kerupuk dibuat dengan mengukus adonan sebelum

Lebih terperinci