Penerapan Prinsip Usaha dan Energi Pada Gerakan Wahana Roller Coaster. Disusun oleh : PINGKY TRIVERA ARISKHA XI IPA 2 / 23

Ukuran: px
Mulai penontonan dengan halaman:

Download "Penerapan Prinsip Usaha dan Energi Pada Gerakan Wahana Roller Coaster. Disusun oleh : PINGKY TRIVERA ARISKHA XI IPA 2 / 23"

Transkripsi

1 Penerapan Prinsip Usaha dan Energi Pada Gerakan Wahana Roller Coaster Disusun oleh : PINGKY TRIVERA ARISKHA XI IPA 2 / 23 SMA NEGERI 1 MANYAR Tahun Pelajaran 2013

2 Kata Pengantar Puji dan syukur kami panjatkan kehadirat Tuhan Yang Maha Esa, karena dengan rahmat dan karunianya saya dapat menyusun makalah ini tanpa suatu halangan apapun. Makalah ini saya susun untuk memenuhi nilai tugas mata pelajaran fisika. Di samping itu, saya berharap agar makalah ini dapat bermanfaat bagi semua orang khususnya para pelajar agar dapat mengetahui atau menambah wawasan tentang Penerapan Prinsip Usaha dan Energi Pada Gerakan Wahana Roller Coaster Makalah ini dapat saya susun karena adanya pihak yang telah berjasa membantu kami. Oleh karena itu, di kesempatan kali ini kami ingin berterimakasih kepada: 1. Bu Suryaningsih selaku Pembina mata pelajaran fisika yang telah sangat berjasa membantu saya menyusun makalah ini. 2. Orang Tua saya yang selalu memberikan dukungan dan motivasi kepada kami, 3. Teman - Teman kelas XI IPA 2 yang juga selalu memberikan saya semangat untuk menyusun makalah ini. Saya menyadari bahwa tanpa dukungan dari semua pihak di atas tadi, saya tidak dapat menyelesaikan makalah ini. Akhir kata saya mengucapkan terimakasih kepada pembaca yang sudah membaca makalah ini, semoga bermanfaat bagi kita semua. Amin. Penulis.

3 BAB I PENDAHULUAN 1.1 Latar Belakang Salah satu contoh aplikasi usaha dan energi adalah gerakan Roller Coaster pada lintasan lingkaran vertikal sebagaimana tampak pada gambar di atas. Kita menganggap bahwa Roler coaster bergerak hanya dengan bantuan gaya gravitasi, sehingga agar bisa bergerak pada lintasan lingkaran vertikal, roler coaster harus digiring sampai ketinggian h1. Kita mengunakan model ideal, di mana gaya gesekan, baik gesekan udara maupun gesekan pada permukaan lintasan diabaikan. Pada ketinggian titik A, Roller coaster memiliki EP maksimum sedangkan EK-nya nol, karena roller coaster belum bergerak. Ketika tiba di titik B, Roller coaster memiliki laju maksimum, sehingga pada posisi ini EK-nya bernilai maksimum. Karena pada titik B laju Roller coaster maksimum maka ia terus bergerak ke titik C. Benda tidak berhenti pada titik C tetapi sedang bergerak dengan laju tertentu, sehingga pada titik ini Roller coaster masih memiliki sebagian EK. Sebagian Energi Kinetik telah berubah menjadi Energi Potensial karena roller coaster berada pada ketinggian maksimum dari lintasan lingkaran. Roller coaster terus bergerak kembali ke titik C. Pada titik C, semua Energi Kinetik Roller coaster kembali bernilai maksimum, sedangkan EP-nya bernilai nol. Energi Mekanik bernilai tetap sepanjang lintasan karena kita menganggap bahwa tidak ada gaya gesekan, maka Roller coaster akan terus bergerak lagi ke titik C dan seterusnya. Roller coaster adalah wahana permainan berupa kereta yang dipacu dengan kecepatan tinggi pada jalur rel khusus, biasanya terletak di atas tanah yang memiliki ketinggian yang berbeda-beda. Rel ini ditopang oleh rangka baja yang disusun sedemikian rupa. Wahana ini pertama kali ada di Disney Land Amerika Serikat. Bentuk permainan ini ternyata mempunyai sejarah yang cukup panjang. Prinsip permainannya sudah dikenal pada abad ke 16, di Rusia. Dimana pada musim dingin, bukit yang membeku dengan bermodalkan balok kayu dijadikan tempat

4 berselancar. Dimusim panas papan seluncur dilengkapi dengan roda. Kemudian ide ini dibawa oleh tentera Napoleon ke Eropa barat (Perancis), hingga disana dikenal dengan nama Montagnes Russes (Gunung Rusia). Roller coaster pertama (konstruksi angka 8) yang bentuknya seperti sekarang ini dibuka di Coney Island (Brooklyn, New York, Amerika), tahun 1884,dengan nama Gravity Pleasure Switch Back Railway. Dalam wahana ini penumpang naik kendaraan yang tidak bermesin. Kendaraan ini dinaikkan ke puncak bukit pertama dengan menggunakan semacam ban berjalan (conveyor belt). Lintasan naiknya dibuat tidak terlalu curam karena kita tahu semakin curam lintasan, semakin besar daya motor penggerak ban berjalannya (biaya yang dikeluarkan lebih mahal). Puncak bukit pertama dibuat lebih tinggi dari puncak bukit selanjutnya ataupun dari tinggi loop. Tujuannya agar kendaraan mempunyai energi potensial yang cukup besar sehingga mampu melintasi seluruh lintasan dengan baik. Ketika meluncur dari bukit pertama, penumpang dilepas dan jatuh bebas dipercepat. Agar efek jatuh bebas ini dapat lebih dirasakan, lintasan luncuran dibuat berbentuk seperti sebuah parabola (lintasan benda dibawah medan gravitasi). Gerakan turun dipercepat ini membuat jantung dan alat alat tubuh sedikit terangkat dari tempat semula (inersia). Efek inersia inilah yang memberikan sensasi sensasi tertentu seperti semangat rasanya mau terbang, timbul rasa mual dsb. Memasuki loop, penumpang dihadapkan pada loop yang berbentuk seperti tetes cair. Loop tidak dibuat seperti lingkaran penuh karena pada titik terendah loop lingkaran penumpang akan mengalami bobot 6 kali bobot semula. Dengan bobot demikian besar, darah tidak mampu mengalir ke otak, mata berkunang kunang dan orang akan pingsan. Dengan lintasan berbentuk tetes cair, bobot maksimum yang dirasakan penumpang sekitar 3,7 bobot semula. Bobot sebesar ini tidak terlalu berbahaya bagi penumpang. Dipuncak loop penumpang berada pada posisi terbalik. Penumpang tidak akan jatuh karena gaya sentrifugal (arah ke atas) yang dirasakan mampu mengimbangi gaya berat akibat tarikan gravitasi bumi. Gaya sentrifugal yang dirasakan penumpang bukan hanya pada loop saja, tetapi juga pada belokan belokan tajam yang dibuat sepanjang lintasan. Ketika penumpang berbelok kekanan, penumpang akan terlempar ke kiri. Sebaliknya ketika

5 berbelok ke kiri penumpang akan berbelok ke kanan. Orang akan terpental lebih keras jika berpegang erat erat pada batang pengaman, karena itu agar lebih nyaman banyak penumpang membiarkan tangan mereka bebas sambil berteriak teriak. 1.2 Rumusan masalah 1. Bagaimana Penerapan Prinsip Usaha dan Energi Pada Gerakan Wahana Roller Coaster? 2. Apakah Penerapan Prinsip Usaha dan Energi Pada Gerakan Wahana Roller Coaster? 1.3 Tujuan 1. Mengetahui Penerapan Prinsip Usaha dan Energi Pada Gerakan Wahana Roller Coaster 2. Menjelaskan Penerapan Prinsip Usaha dan Energi Pada Gerakan Wahana Roller Coaster 1.4 Manfaat Manfaat Teoritis Dari hasil penelitian ini, dapat dijadikan acuan bagi masyarakat akan pengaruh energi terhadap wahana roller coaster Manfaat Praktis Bagi Siswa Manfaat yang diperoleh bagi Siswa sebagai berikut : a. Menambah pengetahuan bagi siswa b. Memberikan pemahaman kepada siswa akan pengaruh energi terhadap wahana roller coaster Bagi Peneliti Sebagai tambahan refrensi bagi semua pihak yang bermaksud melakukan penelitian di masa yang akan datang.

6 Bab II Kajian Pustaka 2.1 Landasan Teori 2.2 Pengertian Usaha Usaha atau biasa kita kenal kerja yang dilambangkan dengan huruf W (Workbahasa inggris), digambarkan sebagai sesuatu yang dihasilkan oleh Gaya (F) ketika Gaya bekerja pada benda hingga benda bergerak dalam jarak tertentu. Hal yang paling sederhana adalah apabila Gaya (F) bernilai konstan (baik besar maupun arahnya) dan benda yang dikenai Gaya bergerak pada lintasan lurus dan searah dengan arah Gaya tersebut. Secara matematis, usaha yang dilakukan oleh gaya yang konstan didefinisikan sebagai hasil kali perpindahan dengan gaya yang searah dengan perpindahan. 2.3 Satuan dan Dimensi Usaha Untuk mencari satuan dan dimensi usaha, dapat diturunkan dari rumus (6.1). Jika digunakan Satuan Sistem Internasional maka, gaya F dalam newton (kg m/s2) dan perpindahan s dinyatakan dalam meter (m). Satuan usaha = satuan gaya x satuan perpindahan satuan usaha = kg m/s2 x m = kg m2/s2 = joule Satu Joule adalah besar usaha yang dilakukan oleh gaya satu newton untuk memindahkan benda sejauh satu meter Untuk mencari dimensinya: dimensi usaha = dimensi gaya x dimensi perpindahan

7 [ W ] = [ F ]. [ s ] = MLT -2. L = ML 2 T Pengertian Energi Segala sesuatu yang kita lakukan dalam kehidupan sehari-hari membutuhkan energi. Untuk bertahan hidup kita membutuhkan energi yang diperoleh dari makanan. Setiap kendaraan membutuhkan energi untuk bergerak dan energi itu diperoleh dari bahan bakar. Hewan juga membutuhkan energi untuk hidup, sebagaimana manusia dan tumbuhan Energi merupakan salah satu konsep yang paling penting dalam fisika. Konsep yang sangat erat kaitannya dengan usaha adalah konsep energi. Secara sederhana, energi merupakan kemampuan melakukan usaha. Definisi yang sederhana ini sebenarnya kurang tepat atau kurang valid untuk beberapa jenis energi (misalnya energi panas atau energi cahaya tidak dapat melakukan kerja). Definisi tersebut hanya bersifat umum. Secara umum, tanpa energi kita tidak dapat melakukan kerja. Sebagai contoh, jika kita mendorong sepeda motor yang mogok, usaha alias kerja yang kita lakukan menggerakan sepeda motor tersebut. Pada saat yang sama, energi kimia dalam tubuh kita menjadi berkurang, karena sebagian energi kimia dalam tubuh berubah menjadi energi kinetik sepeda motor. Usaha dilakukan ketika energi dipindahkan dari satu benda ke benda lain. Contoh ini juga menjelaskan salah satu konsep penting dalam sains, yakni kekekalan energi. Jumlah total energi pada sistem dan lingkungan bersifat kekal alias tetap. Energi tidak pernah hilang, tetapi hanya dapat berubah bentuk dari satu bentuk energi menjadi bentuk energi lain. Dalam kehidupan sehari-hari terdapat banyak jenis energi. Energi kimia pada bahan bakar membantu kita menggerakan kendaraan, demikian juga energi kimia pada makanan membantu makhluk hidup bertahan hidup dan melakukan kerja. Dengan adanya energi listrik, kita bisa menonton TV atau menyalakan komputer sehingga bisa bermain game sepuasnya. Ini hanya beberapa contoh dari sekian banyak jenis energi dalam kehidupan kita. Misalnya ketika kita menyalakan lampu neon, energi listrik berubah menjadi energi cahaya. Energi listrik juga bisa berubah menjadi

8 energi panas (setrika listrik), energi gerak (kipas angin) dan sebagainya. Banyak sekali contoh dalam kehidupan kita, dirimu bisa memikirkan contoh lainnya. Secara umum, energi bermanfaat bagi kita ketika energi mengalami perubahan bentuk, misalnya energi listrik berubah menjadi energi gerak (kipas angin), atau energi kimia berubah menjadi energi gerak (mesin kendaraan). Pada kesempatan ini kita akan mempelajari dua jenis energi yang sebenarnya selalu kita jumpai dalam kehidupan sehari-hari, yakni energi potensial dan energi kinetik translasi. Energi potensial dapat berubah bentuk menjadi energi kinetik ketika benda bergerak lurus dan sebaliknya energi kinetik juga bisa berubah bentuk menjadi energi potensial. Total kedua energi ini disebut energi mekanik, yang besarnya tetap alias kekal. 2.5 Sifat Sifat Energi Dalam Fisika energi dihubungkan dengan gerak, yaitu kemapuan untuk melakukan kerja mekanik. Energi dialam adalah besaran yang kekal, dengan sifat-sifat sebagai berikut : a) Transformasi energi energi dapat diubah menjadi energi bentuk lain, tidak dapat hilang misal energi pembakaran berubah menjadi energi penggerak mesin b) Transfer energi energi dapat dipindahkan dari suatu benda kebenda lain atau dari sistem ke sistem lain, misal kita memasak air, energi dari api pindah ke air menjadi energi panas, energi panas atau kalor dipindah lagi keuap menjadi energi uap c) Kerja energi dapat dipindah ke sistem lain melalui gaya yang menyebabkan pergeseran, yaitu kerja mekanik d) Energi tidak dapat dibentuk dari nol dan tidak dapat dimusnahkan. Sumber-sumber energi yang banyak digunakan dalam kehidupan sehari-hari misalnya: energi minyak bumi, energi batubara, energi air terjun, energi nuklir dan energi kimia. 2.6 Macam Macam Energi a. Energi Potensial

9 Energi potensial adalah energi yang dimiliki suatu benda akibat adanya pengaruh tempat atau kedudukan dari benda tersebut. Energi potensial disebut juga dengan energi diam karena benda yang dalam keaadaan diam dapat memiliki energi. Jika benda tersebut bergerak, maka benda itu mengalami perubahan energi potensial menjadi energi gerak. Contoh yang paling umum dari energi potensial adalah energi potensial gravitasi. Buah mangga yang lezat dan ranum memiliki energi potensial gravitasi ketika sedang menggelayut pada tangkainya. Energi potensial gravitasi dimiliki benda karena posisi relatifnya terhadap bumi. Setiap benda yang memiliki energi potensial gravitasi dapat melakukan kerja apabila benda tersebut bergerak menuju permukaan bumi (misalnya buah mangga jatuh dari pohon). b. Energi Kinetik Setiap benda yang bergerak memiliki energi. Kendaraan beroda yang bergerak dengan laju tertentu di jalan raya juga memiliki energi kinetik. Ketika dua buah kendaraan yang sedang bergerak saling bertabrakan, maka bisa dipastikan kendaraan akan digiring ke bengkel untuk diperbaiki. Kerusakan akibat tabrakan terjadi karena kedua mobil yang pada mulanya bergerak melakukan usaha/kerja satu terhadap lainnya. Ketika tukang bangunan memukul paku menggunakan martil, martil yang digerakan tukang bangunan melakukan kerja pada paku. Setiap benda yang bergerak memberikan gaya pada benda lain dan memindahkannya sejauh jarak tertentu. Benda yang bergerak memiliki kemampuan untuk melakukan kerja, karenanya dapat dikatakan memiliki energi. Energi pada benda yang bergerak disebut energi kinetik. Kata kinetik berasal dari bahasa yunani, kinetikos, yang artinya gerak. ketika benda bergerak, benda pasti memiliki kecepatan. Dengan demikian, kita dapat menyimpulkan bahwa energi kinetik merupakan energi yang dimiliki benda karena gerakannya atau kecepatannya. c. Energi Kimia Energi Kimia adalah energi yang timbul akibat dari adanya reaksi Kimia. Contohnya adalah Energi Kimia yang ada pada bahan bakar kendaraan. Energi tersebut digunakan untuk menggerakkan kendaraan. Selain itu, juga kita lihat dan perhatikan energi kimia yang terjadi di dalam tubuh kita. Energi dalam tubuh kita berasal dari hasil pembakaran bahan-bahan

10 makanan yang kita makan. Energi inilah yang memberikan kemampuan pada tubuh kita untuk mampu bergerak d. Energi Listrik Energi Listrik adalah energi yang dimiliki oleh arus listrik. Energi listrik adalah energi yang paling banyak digunakan dalam kehidupan kita. Selain untuk penerangan, juga sebagai penggerak dari barang-barang teknologi yang ada di sekitar kita. e. Energi Bunyi Energi Bunyi adalah energi yang dimiliki oleh bunyi. Di dalam bunyi, tersimpan energi yang besar. Kalau orang berteriak dengan keras di dekat telinga kita, maka telinga kita akan terasa sakit. Begitu pun ketika adanya pesawat yang terbang jet yang rendah akan mengakibatkan kaca jendela rumah bisa pecah. f. Energi Cahaya Energi Cahaya adalah Energi yang dimiliki oleh cahaya. Contohnya adalah penggunaan laser untuk mengiris bagian tubuh yang akan dioperasi ataupun memotong besi baja. g. Energi Panas Atau Energi Kalor Energi Panas merupakan energi dalam bentuk panas. Energi Panas juga disebut dengan Energi Kalor. Energi panas dapat berasal dari matahari, api, dan benda-benda lain yang dapat memancarkan panas h. Hukum Kekekalan Energi Mekanik Bunyi dari hukum kekekalan energi yaitu "Energi tidak dapat diciptakan dan juga tidak dapat dimusnahkan". Jadi perubahan bentuk suatu energi dari bentuk yang satu ke bentuk yang lain tidak merubah jumlah atau besar energi secara keseluruhan. 2.7 Daya dan Efiensi Daya didefinisikan sebagai besar usaha persatuan waktu. Kalau kita perhatikan lampu pijar, maka energi listrik yang diberikan kepada lampu lebih besar dari energi cahaya yang dihasilkan lampu. Perbandingan antara daya keluaran (output) dengan daya masukan (input) dikali 100%, disebut efisiensi. Efisiensi tidak mempunyai satuan maupun dimensi 2.8 Contoh usaha dan Energi dalam Penerapan di Kehidupan Sehari Hari

11 1. Suatu benda yang memiliki ketinggihan tertentu dan pegas ditekan atau direnggakan. Jika semua dilepas maka akan melakukan usaha 2. Seseorang yang sedang berlari 3. Mobil saat melaju 4. Benda yang berputar 5. Kereta yang sedang bergerak 6. Matahari, api atau bentuk enrgi 7. Bola yang jatuh 2.9 Pengertian Roller Coaster Roller coaster adalah wahana permainan berupa kereta yang dipacu dengan kecepatan tinggi pada jalur rel khusus, biasanya terletak di atas tanah yang memiliki ketinggian yang berbeda-beda. Rel ini ditopang oleh rangka baja yang disusun sedemikian rupa. Wahana ini pertama kali ada di Disney Land Amerika Serikat. Bentuk permainan ini ternyata mempunyai sejarah yang cukup panjang. Prinsip permainannya sudah dikenal pada abad ke 16, di Rusia. Dimana pada musim dingin, bukit yang membeku dengan bermodalkan balok kayu dijadikan tempat berselancar. Dimusim panas papan seluncur dilengkapi dengan roda. Kemudian ide ini dibawa oleh tentera Napoleon ke Eropa barat (Perancis), hingga disana dikenal dengan nama Montagnes Russes (Gunung Rusia). Roller coaster pertama (konstruksi angka 8) yang bentuknya seperti sekarang ini dibuka di Coney Island (Brooklyn, New York, Amerika), tahun 1884,dengan nama Gravity Pleasure Switch Back Railway. Gerakan Roller Coaster pada lintasan lingkaran vertikal. Kita menganggap bahwa Roler coaster bergerak hanya dengan bantuan gaya gravitasi, sehingga agar bisa bergerak pada lintasan lingkaran vertikal, roler coaster harus digiring sampai ketinggian h1. Kita mengunakan model ideal, di mana gaya gesekan, baik gesekan udara maupun gesekan pada permukaan lintasan diabaikan 2.10 Macam macam roller coaster

12 Bab III Pembahasan 3.1 Prinsip Usaha dan Energi Penerapan Pada Wahana Roller Coaster (dicari gambarnya di Ilmu fisika dan penelitian evaluasi pendidikan) Energi Potensial Energi potensial, EP, yakni energi yang dikandung roller coaster dikarenakan oleh posisinya: bernilai maksimum di posisi puncak lintasan. bernilai nol di posisi lembah (posisi terendah) lintasan. Energi potensial diubah menjadi energi kinetik ketika roller coaster bergerak menurun Energi Kinetik Energi Kinetik, Ek, yakni energi yang dihasilkan oleh roller coaster karena geraknya (dalam hal ini kecepatan). Bernilai nol di posisi puncak lintasan. Bernilai maksimum di posisi lembah (posisi terendah) lintasan. 12

13 Energi kinetik di ubah menjadi energi potensial ketika roller coaster bergerak menaik Gaya Gravitasi Pada roller coaster, kamu tentu mengalami gaya gravitasi yakni gaya(interaksi) yang disebabkan oleh tarikan massa bumi terhadap massa tubuh (karena massa bumi jauh lebih besar di bandingkan dengan massa tubuh) Hukum Kekekalan Energi Mekanik Dalam proses perubahan energi Ek menjadi Ep dan Ep menjadi Ek ini, sebagian energi diubah menjadi energi panas (kalor) karena adanya gesekan (friksi). Misal, roda roller coaster dengan rel lintasan. Energi total sistem tidak bertambah atau berkurang. Energi hanya berubah bentuk (misal: Ek, Ep, kalor). Ep dan Ek pada Roller Coaster 1. Di titik A, roller coaster memiliki EPmaks dan EK nol, karena roller coaster belum bergerak. 2. Di titik B. roller coaster memiliki laju maks maka ia terus bergerak ke titik C. 3. Di titik C benda tidak berhenti tapi sedang bergerak dengan laju tertentu, sehingga pada titik ini roller coaster berada pada ketinggian maks dari lintasan lingkaran. Roller coaster terus bergerak kembali ke titik C. Pada titik C, semua EK Roller coaster kembali bernilai maks sedangkan EP-nya nol. 13

14 Energi Mekanik bernilai tetap sepanjang lintasan karena kita menganggap bahwa tidak ada gaya gesekan, maka Roller coaster akan terus bergerak lagi ke titik C dan seterusnya 3.2 Hukum Kekekalan Energi Mekanik dalam Lintasan Roller Coaster Disini akan difokuskan pada jenis gerakan yang mungkin terdapat dalam lintasan roller coaster Hukum Kekekalan Energi Mekanik pada Gerak parabola Hukum kekekalan energi mekanik juga berlaku ketika benda melakukan gerakan parabola. Ketika benda hendak bergerak (benda masih diam), Energi Mekanik yang dimiliki benda sama dengan nol. Ketika diberikan kecepatan awal sehingga benda melakukan gerakan parabola, EK bernilai maksimum (kecepatan benda besar) sedangakn EP bernilai minimum (jarak vertikal alias h kecil). Semakin ke atas, kecepatan benda makin berkurang sehingga EK makin kecil, tetapi EP makin besar karena kedudukan benda makin tinggi dari permukaan tanah. Ketika mencapai titik tertinggi, EP bernilai maksimum (h maksimum), sedangkan EK bernilai minimum (hanya ada komponen kecepatan pada arah vertikal).ketika kembali ke permukaan tanah, EP makin berkurang sedangkan EK makin besar dan EK bernilai maksimum ketika benda menyentuh tanah. Jumlah energi mekanik selama benda bergerak bernilai tetap, hanya selama gerakan terjadi perubahan energi kinetik menjadi energi potensial (ketika benda bergerak ke atas) dan sebaliknya ketika benda bergerak ke bawah terjadi perubahan energi potensial menjadi energi kinetik Hukum Kekekalan Energi Mekanik pada Bidang Miring 14

15 Misalnya sebuah benda diletakan pada bidang miring sebagaimana tampak pada gambar di atas. pada analisis ini kita menganggap permukaan bidang miring sangat licin sehingga tidak ada gaya gesek yang menghambat gerakan benda. Kita juga mengabaikan hambatan udara. Ini adalah model ideal. Apabila benda kita letakan pada bagian paling atas bidang miring, ketika benda belum dilepaskan, benda tersebut memiliki EP maksimum. Pada titik itu EK-nya = 0 karena benda masih diam. Total Energi Mekanik benda = Energi Potensial (EM = EP). Perhatikan bahwa pada benda tersebut bekerja gaya berat yang besarnya adalah mg cos teta. Ketika benda kita lepaskan, maka benda pasti meluncur ke bawah akibat tarikan gaya berat. Ketika benda mulai bergerak meninggalkan posisi awalnya dan bergerak menuju ke bawah, EP mulai berkurang dan EK mulai bertambah. EK bertambah karena gerakan benda makin cepat akibat adanya percepatan gravitasi yang nilainya tetap yakni g cos teta. Ketika benda tiba pada separuh lintasannya, jumlah EP telah berkurang menjadi separuh, sedangkan EK bertambah setengahnya. Total Energi Mekanik = ½ EP + ½ EK. Semakin ke bawah, jumlah EP makin berkurang sedangkan jumlah EK semakin meningkat. Ketika tiba pada akhir lintasan (kedudukan akhir di mana h 2 = 0), semua EP berubah menjadi EK. Dengan kata lain, pada posisi akhir lintasan benda, EP = 0 dan EK bernilai maksimum. Total Energi Mekanik = Energi Kinetik. 15

16 3.2.3 Hukum Kekekalan Energi Mekanik pada Bidang Lengkung Ketika benda berada pada bagian A dan benda masih dalam keadaan diam, Energi Potensial benda maksimum, karena benda berada pada ketinggian maksimum (h maks ). Pada benda tersebut bekerja gaya berat yang menariknya ke bawah. Ketika dilepaskan, benda akan meleuncur ke bawah. Ketika mulai bergerak ke bawah, h semakin kecil sehingga EP benda makin berkurang. Semakin ke bawah, kecepatan benda semakin makin besar sehingga EK bertambah. Ketika berada pada posisi B, kecepatan benda mencapai nilai maksimum, sehingga EK benda bernilai maksimum. Sebaliknya, EP = 0 karena h = 0. Karena kecepatan benda maksimum pada posisi ini, benda masih terus bergerak ke atas menuju titik C. Semakin ke atas, EK benda semakin berkurang sedangkan EP benda semakin bertambah. Ketika berada pada titik C, EP benda kembali seperti semula (EP bernilai maksimum) dan posisi benda berhenti bergerak sehingga EK = 0. Jumlah Energi Mekanik tetap sama sepanjang lintasan Hukum Kekekalan Energi Mekanik pada Bidang Lingkaran Salah satu contoh aplikasi Hukum Kekekalan Energi Mekanik pada gerak melingkar adalah gerakan Roller Coaster pada lintasan lingkaran 16

17 vertikal sebagaimana tampak pada gambar di atas. Kita menganggap bahwa Roler coaster bergerak hanya dengan bantuan gaya gravitasi, sehingga agar bisa bergerak pada lintasan lingkaran vertikal, roler coaster harus digiring sampai ketinggian h 1. Kita mengunakan model ideal, di mana gaya gesekan, baik gesekan udara maupun gesekan pada permukaan lintasan diabaikan. Pada ketinggian titik A, Roller coaster memiliki EP maksimum sedangkan EK-nya nol, karena roller coaster belum bergerak. Ketika tiba di titik B, Roller coaster memiliki laju maksimum, sehingga pada posisi ini EK-nya bernilai maksimum. Karena pada titik B laju Roller coaster maksimum maka ia terus bergerak ke titik C. Benda tidak berhenti pada titik C tetapi sedang bergerak dengan laju tertentu, sehingga pada titik ini Roller coaster masih memiliki sebagian EK. Sebagian Energi Kinetik telah berubah menjadi Energi Potensial karena roller coaster berada pada ketinggian maksimum dari lintasan lingkaran. Roller coaster terus bergerak kembali ke titik C. Pada titik C, semua Energi Kinetik Roller coaster kembali bernilai maksimum, sedangkan EP-nya bernilai nol. Energi Mekanik bernilai tetap sepanjang lintasan. Karena kita menganggap bahwa tidak ada gaya gesekan, maka Roller coaster akan terus bergerak lagi ke titik C dan seterusnya Energi Mekanik pada Gerak Roller Coaster Sebuah kelereng dengan massa m dilepaskan dengan kecepatan awal v 0. Kelereng tersebut bergerak mengikuti bidang dalam sebuah lingkaran seperti gerak roller coaster. Jika tidak ada gaya gesek yang menghambat kelereng tersebut, energi mekanik yang dimiliki oleh kelereng pada setiap kedudukannya adalah sama sehingga berlaku persamaan E m1 = E m2 E p1 + E k1 = E p2 + E k2 Pada kedudukan terendah, dianggap energi potensial E p1 =0, maka: mgh 1 + ½ mv = mgh 2 + ½ mv v = 2 gh 2 + v 2 Dengan h 2 = 2R sehingga v = 4gR + v 2 17

18 Berapa besar kecepatan minimum v 1 agar kelereng dapat berputar melalui lintasan melingkar? Oleh karena gaya bersifat sebagai gaya sentripetal, maka: Agar v 1 minimum, v 2 harus minmum atau N 2 =0 (kelereng tidak menekan dinding). Dengan mendistribusikan nilai v 2 2 pada persamaan v 1 maka akan didapatkan persamaan sebagai berikut: Dengan: g = percepatan gravitasi bumi (ms -2 ) R = jari-jari lintasan (m) Jadi, kecepatan minimum kelereng pada kedudukan terendah agar dapat melakukan linkaran penuh adalah. Jika kecepatan pada kedudukan terendah kurang dari, kelereng tidak akan mampu melakukan lingkaran penuh. Teori ini dapat digunakan dalam melakukan analisis gerak roller coaster menggunakan konsep energi potensial dan hukum kekekalan energi. Jika kecepatan roller coaster pada kedudukan terendah tidak mencapai, jangan harap roller coaster tersebut mampu mencapai kedudukan tertingginya. 3.3 Prinsip hukum fisika yang berhubungan Penerapan Pada Roller Coaster Dinamika Roller Coaster Gerak Roller Coaster mengalami percepatan. Yakni perubahan kecepatan terhadap waktu yakni: kecepatan bertambah terhadap waktu ketika bergerak menurun. 18

19 perlambatan (percepatan negatif) yakni kecepatan berkurang terhadap waktu ketika bergerak menaik. Perubahan kecepatan juga terjadi di saat roller coaster berubah arah Kelajuan, Percepatan dan Kecepatan Kelajuan termasuk besaran skalar (besaran skalar = besaran yang hanya mempunyai besar saja). Untuk menyatakan laju atau kelajuan suatu benda, kita tidak membutuhkan arah. Sebaliknya, kecepatan termasuk besaran vektor (besaran vektor = besaran yang mempunyai besar dan arah). Ketika menyatakan kecepatan, kita perlu menyertakan besar dan arah. Kelajuan dan kelajuan sesaat memiliki makna yang sama. Ketika menyebutkan kata kelajuan, yang kita maksudkan sebenarnya kelajuan sesaat. Kelajuan atau kelajuan sesaat merupakan perbandingan antara jarak yang sangat kecil dengan selang waktu yang sangat singkat. Dengan kata lain, kelajuan sesaat merupakan jarak yang sangat kecil yang ditempuh selama selang waktu yang sangat singkat. Sebaliknya kelajuan rata-rata merupakan perbandingan antara jarak tempuh total dengan selang waktu total yang diperlukan untuk menempuh jarak tersebut. Kecepatan dan kecepatan sesaat memiliki makna yang sama. Ketika menyebutkan kata kecepatan, yang kita maksudkan sebenarnya kecepatan sesaat. Kecepatan atau kecepatan sesaat merupakan perbandingan antara Perpindahan yang sangat kecil dengan selang waktu yang sangat singkat. Sebaliknya kecepatan rata-rata merupakan perbandingan antara perpindahan total dengan selang waktu total selama terjadi perpindahan. 19

20 Suatu benda dikatakan mengalami percepatan jika kecepatan benda berubah. Kecepatan benda berubah, bisa berarti besar kecepatan alias kelajuan benda berubah atau arah kecepatan benda berubah. Misalnya sebuah mobil mula-mula diam (kelajuannya = 0). Setelah beberapa saat, kelajuannya bertambah menjadi 40 km/jam. Ketika kelajuan mobil bertambah dari 0 menjadi 40 km/jam, mobil tersebut dikatakan mengalami percepatan atau mobil dipercepat. Mungkinkah kelajuan benda konstan tetapi benda tersebut mengalami percepatan? bisa dalam hal ini arah kecepatan yang selalu berubah. Mengenai hal ini akan dibahas dalam gerak melingkar. Ketika kelajuan benda berkurang, kadang kita mengatakan benda tersebut mengalami perlambatan. Misalnya mula-mula kelajuan mobil = 40 km/jam. Setelah beberapa saat, kelajuan mobil berubah menjadi 0 km/jam. Ketika kelajuan mobil berubah dari 40 km/jam menjadi 0 km/jam, mobil tersebut dikatakan mengalami perlambatan atau mobil diperlambat. Percepatan rata-rata = perubahan kecepatan yang terjadi selama selang waktu total terjadinya perubahan. Sedangkan percepatan sesaat = perubahan kecepatan yang terjadi selama selang waktu yang sangat singkat. Percepatan atau percepatan sesaat juga bisa diartikan sebagai percepatan rata-rata selama selang waktu yang sangat singkat. Penerapan pada Roller Coaster Gerak Roller Coaster mengalami percepatan, yakni perubahan kecepatan terhadap waktu yakni kecepatan bertambah terhadap waktu, ketika bergerak menurun. Roller coaster mengalami perlambatan (percepatan negatip) yakni kecepatan berkurang terhadap waktu ketika bergerak menaik. Perubahan kecepatan juga terjadi saat roller coaster berubah arah Momentum Gaya Pada Roller Coaster Roller coaster meluncur dan berputar menurut sumbu putaran tertentu. Benda yang berotasi pasti ada momen gaya yang bekerja pada benda itu. Momen gaya merupakan salah satu bentuk usaha dengan salah satu titik sebagai titik acuan. Misalnya anak yang bermain jungkat-jungkit, dengan titik acuan adalah poros jungkat-jungkit. Pada katrol yang berputar karena bergesekan dengan tali yang ditarik dan dihubungkan dengan beban. Momen gaya adalah hasil kali gaya dan jarak terpendek arah garis kerja terhadap titik 20

21 tumpu. Momen gaya sering disebut dengan momen putar atau torsi, diberi lambang τ (baca: tau). Satuan dari momen gaya atau torsi ini adalah N.m yang setara dengan joule. Momen gaya yang menyebabkan putaran benda searah putaran jarum jam disebut momen gaya positif. Sedangkan yang menyebabkan putaran benda berlawanan arah putaran jarum jam disebut momen gaya negatif. Pada mekanika dinamika untuk translasi dan rotasi banyak kesamaankesamaan besaran yang dapat dibandingkan simbol besarannya. Perbandingan dinamika translasi dan rotasi Analogi antara besaran translasi dan besaran rotasi Gaya Sentripetal Pada Roller Coaster Gaya sentripetal adalah gaya yang berusaha menarik objek mengarah ke titik pusat (sumbu). Ketika roller coaster bergerak melalui lintasan memutar, gaya sentripental mempertahankan roller coaster agar tetap bergerak memutar. Kita telah mempelajari percepatan dari benda yang melakukan gerak melingkar beraturan selalu menuju kepusat lingkaran dan besarnya 21

22 Oleh karena itu,kita dapat menyatakan bahwa total gaya yang bekerja pada benda yang bergerak melingkar beraturan arahnya selalu selalu berubah setiap waktu dan menuju pusat. Kita dapat menyatakan besarnya gaya sentipetal(sesuai hukum II Newton, bahwa F = m.a) menjadi Persamaan tersebut hanya digunakan untuk benda yang bergerak pada lintasan melingkar. Namun,bagaimanakah benda dapat memperoleh gerak melingkar? Benda mulai bergerak di intasan melingkar jika besar percepatan benda(akibat gaya sentripetal yang arahnya tegak lurus terhadap vektor kecepatan)merupakan perbandingan besar kuadrat kelajuan tangensial dan jari-jari dari lintasan melingkar(v 2 /r). Gaya yang tejadi dalam gerak melingkar dimanfaatkan dalam perancangan roller coaster. Rel roller coaster dirancang untuk menimbulkan gaya reaksi agar roller coaster dapat meluncur pada lintasan yang melingkar(walaupun sebenarnya lintasan tidak melingkar penuh) untuk mengurangi efek gaya grafitasi pada penumpang. Gerak melingkar akibat gaya gesekan sangatlah menarik karena arah gaya gesekan harus dijaga pada arah tertentu dengan menggunakan cara khusus. Contohnya,sopir yang ingin mengikuti lintasan,akan memutar stirnya ketika memasuki tikungan dan tanpa sadar memanfaatkan komponen dari gaya gesekan terhadap pusat dari lintasan melingkar. Komponen gaya gesekan tersebut menyebabkan percepatan dan besarnya sebagai berikut. Dengan kata lain,jika besar gaya gesekan sama dengan F=m(v 2 ),maka mobil tersebut akan tetap pada lintasan. Jika gaya gesek mobil tidak cukup besar(walaupun geraknya masih gerak melingkar),maka jari-jari dari gerak melingkarnya menjadi R 2 karena diluar lintasan maka kita sebut R 2 ) karena percepatan sentripetal mobil tidak mencukupi. Oleh karena itu,mobil tersebut akan masuk ke lintasan 2 (diluar lintasan). Ketika gaya gesekan mobil semakin mengecil akibat kurangnya kecepatan sudut mengikuti 22

23 awal,fungsi stir tidak efektif dan mobil akan tergelincir sehingga mobil mengikuti lintasan 3(diluar lintasan 1 dan lintasan 2) Gaya Sentrifugal Bentuk alur lintasan roller coaster yang menikung, menjadikan pada pengendara bekerja gaya sentrifugal. Tergantung di tikungan mana ia berada, gaya sentrifugal dapat menyebabkan berat pengendara bertambah (G>1)atau berkurang (G<1). Gaya sentrifugal yang dirasakan penumpang bukan hanya pada loop saja, tetapi juga pada setiap tikungan yang dibuat sepanjang lintasan. Ketika penumpang berbelok kekanan, penumpang akan terlempar ke kiri. Sebaliknya ketika berbelok ke kiri penumpang akan berbelok ke kanan. Orang akan terpental lebih keras jika berpegang erat erat pada batang pengaman, karena itu agar lebih nyaman banyak penumpang membiarkan tangan mereka bebas Gaya sentrifugal sebenarnya tidak ada. Sentrifugal hanya merupakan efek semu yang ditimbulkan ketika sebuah benda melakukan gerak melingkar, tetapi sentrifugal sendiri bukan merupakan gaya. Sentrifugal berarti menjahui pusat. Latar belakang munculnya gagasan mengenai gaya sentrifugal Ketika sebuah benda atau partikel melakukan gerak melingkar, pada benda atau partikel tersebut bekerja gaya sentripetal yang arahnya menuju pusat lingkaran. Banyak sekali orang yang tergoda untuk menambahkan sebuah gaya yang arahnya menjahui pusat lingkaran, di mana peran gaya ini adalah mengimbangi gaya sentripetal. Besar gaya sentrifugal sama dengan besar gaya sentripetal, sedangkan arah gaya sentrifugal berlawanan dengan gaya sentripetal. Hal ini dimaksudkan agar benda yang melakukan gerak melingkar berada dalam keadaan setimbang. Gaya yang arahnya menjahui pusat tersebut dinamakan gaya sentrifugal. Alasan mengenai tidak adanya gaya sentrifugal Jika ada gaya sentrifugal yang bekerja pada benda yang melakukan gerak melingkar, maka hukum I Newton dilanggar. Menurut Hukum I Newton, jika terdapat gaya total pada suatu benda maka benda tersebut berada dalam keadaan diam atau bergerak dengan laju tetap sepanjang garis lurus. Ketika sebuah benda melakukan gerak melingkar, pada benda tersebut bekerja gaya sentripetal yang arahnya menuju pusat lingkaran. Apabila 23

24 terdapat gaya sentrifugal yang arahnya menjahui pusat, maka akan terdapat gaya total yang menyebabkan benda bergerak sepanjang garis lurus. Kenyataan yang terjadi, benda tetap melakukan gerak melingkar. Dengan demikian bisa disimpulkan bahwa tidak ada gaya sentrifugal. Sebagai contoh, ketika kita memutar lengan kita terhadap bahu kita, kita akan merasakan aliran darah menjauh dari badan/dada menuju ke jari-jari kita. Lawan dari gaya sentrifugal adalah gaya sentripetal, yaitu gaya yang diperlukan agar benda tetap bisa bergerak melingkar. Kalau arah gaya sentrifugal itu keluar lingkaran, maka arah gaya sentripetal ini adalah ke dalam lingkaran (sehingga arah dari kedua gaya ini akan saling bertolak belakang) Bentuk alur lintasan roller coaster yang menikung, menjadikan pada pengendara bekerja gaya sentrifugal. Tergantung di tikungan mana ia berada, gaya sentrifugal dapat menyebabkan berat pengendara bertambah (G>1)atau berkurang (G<1). Gaya sentrifugal yang dirasakan penumpang bukan hanya pada loop saja, tetapi juga pada setiap tikungan yang dibuat sepanjang lintasan. Ketika penumpang berbelok kekanan, penumpang akan terlempar ke kiri. Sebaliknya ketika berbelok ke kiri penumpang akan berbelok ke kanan. Orang akan terpental lebih keras jika berpegang erat erat pada batang pengaman, karena itu agar lebih nyaman banyak penumpang membiarkan tangan mereka bebas Ketika roller coaster melaju turun (lihat kurva yang rendah), gaya berat akan searah dengan gaya centrifugal, yang menyebabkan gaya keseluruhan bertambah (gaya yang searah akan dijumlahkan), sehingga anda seperti merasa tertekan ke bawah (G>1). 24

25 Sebaliknya ketika roller coaster melaju naik (lihat kurva yang tinggi), gaya berat akan berlawanan arah dengan gaya centrifugal, sehingga gaya keseluruhan akan menjadi kecil (gaya yang searah akan dikurangi). Ini menyebabkan ada gaya yang seolah-olah menarik anda keatas (G<1) Gaya Gravitasi Setiap planet memiliki gaya untuk mempertahankan bentuknya atau yang disebut gaya gravitasi, hal ini yang memungkinkan setiap material yang ada di permukaan titap berada di planet tersebut. Tetapi dalam konsep roller coaster gaya gravitasi ini merupakan aspek yang perlu diperhatikan karena digunakan untuk menentukan konsep pembuatan track, beban maksimal kereta, dan lainnya. Kita terapkan hukum II Newton untuk gaya gravitasi dan untuk percepatan a, kita ganti dengan percepatan gravitasi (g). ingat kembali pelajaran Gerak Jatuh Bebas. Benda yang jatuh hanya dipengaruhi oleh percepatan gravitasi. Dengan demikian Gaya Gravitasi yang pada sebuah benda, F G, yang besarnya disebut berat, dapat ditulis sebagai : F G = mg Arah gaya ini ke bawah, menuju ke pusat bumi. Persamaan ini sama dengan w = mg, seperti yang sudah kita pelajari di atas, karena berat adalah gaya gravitasi yang bekerja pada sebuah benda. Ketika benda berada dalam keadaan diam di permukaan bumi, gaya gravitasi yang ada pada benda tersebut tidak hilang. Untuk membuktikaan hal ini, kita bisa mengukur benda tersebut dengan neraca pegas dan membandingkannya dengan hasil perhitungan kita (F G = m g atau w = mg). Lalu mengapa benda tidak bergerak? Dari hukum II Newton, gaya total untuk benda yang diam adalah nol. Jika demikian, pasti ada gaya lain yang bekerja pada benda tersebut, untuk mengimbangi gaya gravitasi. Gaya apakah itu? Gaya Normal Ketika kita meletakan sebuah kotak di atas meja, berat kotak tersebut menekan meja ke bawah dan sebaliknya meja membalas dengan memberikan gaya ke atas (lihat gambar di bawah). Gaya yang diberikan oleh meja bisa disebut gaya kontak, karena gaya tersebut terjadi karena adanya sentuhan antara kotak dan meja. Sebuah gaya kontak yang tegak lurus terhadap 25

26 permukaan kontak disebut Gaya Normal (normal berarti tegak lurus), dan mempunyai Lambang F N atau bisa ditulis N Gaya Gesek Gaya gesek adalah gaya yang melawan gerakan dari dua permukaan yang bersentuhan. Gaya gesek mengubah energi kinetis menjadi panas atau suara. Dalam konsep roller coaster gaya gesek berpengaruh kecil dalam pengaplikasiannya, tetapi hal kecil ini tidak boleh diabaikan begitu saja karena menyangkut keselamatan penumpang. di mana adalah koefisien gesekan, adalah gaya normal pada benda yang ditinjau gaya geseknya, adalah gaya gesek. Gaya ini memiliki arah yang berlawanan dengan arah gerak benda 3.4 Bagian Bagian Wahana Roller Coaster 3.5 Cara Kerja Wahana Roller Coaster 26

BAHAN AJAR PENERAPAN HUKUM KEKEKALAN ENERGI MEKANIK DALAM KEHIDUPAN SEHARI-HARI

BAHAN AJAR PENERAPAN HUKUM KEKEKALAN ENERGI MEKANIK DALAM KEHIDUPAN SEHARI-HARI BAHAN AJAR PENERAPAN HUKUM KEKEKALAN ENERGI MEKANIK DALAM KEHIDUPAN SEHARI-HARI Analisis gerak pada roller coaster Energi kinetik Energi yang dipengaruhi oleh gerakan benda. Energi potensial Energi yang

Lebih terperinci

BAHAN AJAR FISIKA KELAS XI SMA SEMESTER 1 BERDASARKAN KURIKULUM 2013 USAHA DAN ENERGI. Disusun Oleh : Nama : Muhammad Rahfiqa Zainal NIM :

BAHAN AJAR FISIKA KELAS XI SMA SEMESTER 1 BERDASARKAN KURIKULUM 2013 USAHA DAN ENERGI. Disusun Oleh : Nama : Muhammad Rahfiqa Zainal NIM : BAHAN AJAR FISIKA KELAS XI SMA SEMESTER 1 BERDASARKAN KURIKULUM 2013 USAHA DAN ENERGI Disusun Oleh : Nama : Muhammad Rahfiqa Zainal NIM : 1201437 Prodi : Pendidikan Fisika (R) JURUSAN FISIKA FAKULTAS MATEMATIKA

Lebih terperinci

Hukum Kekekalan Energi Mekanik

Hukum Kekekalan Energi Mekanik Hukum Kekekalan Energi Mekanik Konsep Hukum Kekekalan Energi Dalam kehidupan kita sehari-hari terdapat banyak jenis energi. Selain energi potensial dan energi kinetik pada benda-benda biasa (skala makroskopis),

Lebih terperinci

Materi dan Soal : USAHA DAN ENERGI

Materi dan Soal : USAHA DAN ENERGI Materi dan Soal : USAHA DAN ENERGI Energi didefinisikan sebagai besaran yang selalu kekal. Energi tidak dapat diciptakan dan dimusnahkan. Energi hanya dapat berubah dari satu bentuk ke bentuk lainnya.

Lebih terperinci

Berlibur Bersama Fisika

Berlibur Bersama Fisika Berlibur Bersama Fisika Wuiii untung saja ada gaya sentrifugal, kalau tidak saya bisa jatuh waktu melewati loop (lintasan melingkar) roller coaster. Saya gosok telinga saya, apa benar yang saya dengar,

Lebih terperinci

USAHA, ENERGI & DAYA

USAHA, ENERGI & DAYA USAHA, ENERGI & DAYA (Rumus) Gaya dan Usaha F = gaya s = perpindahan W = usaha Θ = sudut Total Gaya yang Berlawanan Arah Total Gaya yang Searah Energi Kinetik Energi Potensial Energi Mekanik Daya Effisiensi

Lebih terperinci

KERJA DAN ENERGI. 4.1 Pendahuluan

KERJA DAN ENERGI. 4.1 Pendahuluan IV KERJA DAN ENERGI Kompetensi yang ingin dicapai setelah mempelajari bab ini adalah kemampuan memahami, menganalisis dan mengaplikasikan konsep-konsep kerja dan energi pada kehidupan sehari-hari ataupun

Lebih terperinci

1. Pengertian Usaha berdasarkan pengertian seharihari:

1. Pengertian Usaha berdasarkan pengertian seharihari: USAHA DAN ENERGI 1. Pengertian Usaha berdasarkan pengertian seharihari: Kata usaha dalam pengertian sehari-hari ini tidak dapat dinyatakan dengan suatu angka atau ukuran dan tidak dapat pula dinyatakan

Lebih terperinci

Usaha Energi Gerak Kinetik Potensial Mekanik

Usaha Energi Gerak Kinetik Potensial Mekanik BAB 5 USAHA DAN ENERGI Tujuan Pembelajaran Setelah mempelajari materi pada bab ini, diharapkan Anda mampu menganalisis, menginterpretasikan dan menyelesaikan permasalahan yang terkait dengan konsep usaha,

Lebih terperinci

Uraian Materi. W = F d. A. Pengertian Usaha

Uraian Materi. W = F d. A. Pengertian Usaha Salah satu tempat seluncuran air yang popular adalah di taman hiburan Canada. Anda dapat merasakan meluncur dari ketinggian tertentu dan turun dengan kecepatan tertentu. Energy potensial dikonversikan

Lebih terperinci

Contoh Soal dan Pembahasan Dinamika Rotasi, Materi Fisika kelas 2 SMA. Pembahasan. a) percepatan gerak turunnya benda m.

Contoh Soal dan Pembahasan Dinamika Rotasi, Materi Fisika kelas 2 SMA. Pembahasan. a) percepatan gerak turunnya benda m. Contoh Soal dan Dinamika Rotasi, Materi Fisika kelas 2 SMA. a) percepatan gerak turunnya benda m Tinjau katrol : Penekanan pada kasus dengan penggunaan persamaan Σ τ = Iα dan Σ F = ma, momen inersia (silinder

Lebih terperinci

USAHA DAN ENERGI 1 USAHA DAN ENERGI. Usaha adalah hasil kali komponen gaya dalam arah perpindahan dengan perpindahannya.

USAHA DAN ENERGI 1 USAHA DAN ENERGI. Usaha adalah hasil kali komponen gaya dalam arah perpindahan dengan perpindahannya. USAHA DAN ENERGI 1 U S A H A USAHA DAN ENERGI Usaha adalah hasil kali komponen gaya dalam arah perpindahan dengan perpindahannya. Jika suatu gaya F menyebabkan perpindahan sejauh sebesar W, yaitu W = F

Lebih terperinci

BAB USAHA DAN ENERGI I. SOAL PILIHAN GANDA

BAB USAHA DAN ENERGI I. SOAL PILIHAN GANDA 1 BAB USAHA DAN ENERGI I. SOAL PILIHAN GANDA 01. Usaha yang dilakukan oleh suatu gaya terhadap benda sama dengan nol apabila arah gaya dengan perpindahan benda membentuk sudut sebesar. A. 0 B. 5 C. 60

Lebih terperinci

BAB MOMENTUM DAN IMPULS

BAB MOMENTUM DAN IMPULS BAB MOMENTUM DAN IMPULS I. SOAL PILIHAN GANDA 0. Dalam sistem SI, satuan momentum adalah..... A. N s - B. J s - C. W s - D. N s E. J s 02. Momentum adalah.... A. Besaran vektor dengan satuan kg m B. Besaran

Lebih terperinci

Uji Kompetensi Semester 1

Uji Kompetensi Semester 1 A. Pilihlah jawaban yang paling tepat! Uji Kompetensi Semester 1 1. Sebuah benda bergerak lurus sepanjang sumbu x dengan persamaan posisi r = (2t 2 + 6t + 8)i m. Kecepatan benda tersebut adalah. a. (-4t

Lebih terperinci

SOAL LATIHAN PG IPA: ENERGI, USAHA, & DAYA 1. Energi yang dipunyai benda karena letaknya disebut... 2. Usaha yang dilakukan gaya 10 newton terhadap benda 20 kg supaya benda berpindah sejauh 5 meter adalah...

Lebih terperinci

KINEMATIKA. Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT.

KINEMATIKA. Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT. KINEMATIKA Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT. KINEMATIKA LAJU: Besaran Skalar. Bila benda memerlukan waktu t untuk menempuh jarak d, maka laju rata-rata adalah

Lebih terperinci

Latihan I IMPULS MOMENTUM DAN ROTASI

Latihan I IMPULS MOMENTUM DAN ROTASI Latihan I IMPULS MOMENTUM DAN ROTASI 1. Bola bergerak jatuh bebas dari ketinggian 1 m lantai. Jika koefisien restitusi = ½ maka tinggi bola setelah tumbukan pertama A. 50 cm B. 25 cm C. 2,5 cm D. 12,5

Lebih terperinci

BAB 3 DINAMIKA GERAK LURUS

BAB 3 DINAMIKA GERAK LURUS BAB 3 DINAMIKA GERAK LURUS A. TUJUAN PEMBELAJARAN 1. Menerapkan Hukum I Newton untuk menganalisis gaya-gaya pada benda 2. Menerapkan Hukum II Newton untuk menganalisis gerak objek 3. Menentukan pasangan

Lebih terperinci

Tarikan/dorongan yang bekerja pada suatu benda akibat interaksi benda tersebut dengan benda lain. benda + gaya = gerak?????

Tarikan/dorongan yang bekerja pada suatu benda akibat interaksi benda tersebut dengan benda lain. benda + gaya = gerak????? DINAMIKA PARTIKEL GAYA Tarikan/dorongan yang bekerja pada suatu benda akibat interaksi benda tersebut dengan benda lain Macam-macam gaya : a. Gaya kontak gaya normal, gaya gesek, gaya tegang tali, gaya

Lebih terperinci

KERJA DAN ENERGI. r r. kx untuk pegas yang teregang atau ditekan, di mana. du dx. F x

KERJA DAN ENERGI. r r. kx untuk pegas yang teregang atau ditekan, di mana. du dx. F x 9 30 KERJA DAN ENERGI 1. Kerja dilakukan pada benda oleh gaya ketika benda tersebut bergerak melalui jarak, d. Jika arah gaya konstan F membuat sudut θ dengan arah gerak, kerja yang dilakukan oleh gaya

Lebih terperinci

J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA. TKS-4101: Fisika. Hukum Newton. Dosen: Tim Dosen Fisika Jurusan Teknik Sipil FT-UB

J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA. TKS-4101: Fisika. Hukum Newton. Dosen: Tim Dosen Fisika Jurusan Teknik Sipil FT-UB J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA TKS-4101: Fisika Hukum Newton Dosen: Tim Dosen Fisika Jurusan Teknik Sipil FT-UB 1 Mekanika Kinematika Mempelajari gerak materi tanpa melibatkan

Lebih terperinci

Pelatihan Ulangan Semester Gasal

Pelatihan Ulangan Semester Gasal Pelatihan Ulangan Semester Gasal A. Pilihlah jawaban yang benar dengan menuliskan huruf a, b, c, d, atau e di dalam buku tugas Anda!. Perhatikan gambar di samping! Jarak yang ditempuh benda setelah bergerak

Lebih terperinci

BAB iv HUKUM NEWTON TENTANG GERAK & PENERAPANNYA

BAB iv HUKUM NEWTON TENTANG GERAK & PENERAPANNYA BAB iv HUKUM NEWTON TENTANG GERAK & PENERAPANNYA CAKUPAN MATERI A. Hukum Pertama Newton B. Hukum Kedua Newton C. Hukum Ketiga Newton D. Gaya Berat, Gaya Normal & Gaya Gesek E. Penerapan Hukum Newton Hukum

Lebih terperinci

BAB 4 USAHA DAN ENERGI

BAB 4 USAHA DAN ENERGI 113 BAB 4 USAHA DAN ENERGI Sumber: Serway dan Jewett, Physics for Scientists and Engineers, 6 th edition, 2004 Energi merupakan konsep yang sangat penting, dan pemahaman terhadap energi merupakan salah

Lebih terperinci

Gaya merupakan besaran yang menentukan sistem gerak benda berdasarkan Hukum Newton. Beberapa fenomena sistem gerak benda jika dianalisis menggunakan

Gaya merupakan besaran yang menentukan sistem gerak benda berdasarkan Hukum Newton. Beberapa fenomena sistem gerak benda jika dianalisis menggunakan Gaya merupakan besaran yang menentukan sistem gerak benda berdasarkan Hukum Newton. Beberapa fenomena sistem gerak benda jika dianalisis menggunakan konsep gaya menjadi lebih rumit, alternatifnya menggunakan

Lebih terperinci

SP FISDAS I. acuan ) , skalar, arah ( ) searah dengan

SP FISDAS I. acuan ) , skalar, arah ( ) searah dengan SP FISDAS I Perihal : Matriks, pengulturan, dimensi, dan sebagainya. Bisa baca sendiri di tippler..!! KINEMATIKA : Gerak benda tanpa diketahui penyebabnya ( cabang dari ilmu mekanika ) DINAMIKA : Pengaruh

Lebih terperinci

BAB VI USAHA DAN ENERGI

BAB VI USAHA DAN ENERGI BAB VI USAHA DAN ENERGI 6.1. Pengertian Usaha Pengertian usaha dalam kehidupan sehari-hari berbeda dengan pengertian usaha dalam fisika. Untuk memahami perbedaan pengertian tersebut di bawah ini diberikan

Lebih terperinci

BAB 5 Drs. Pristiadi Utomo, M.Pd.

BAB 5 Drs. Pristiadi Utomo, M.Pd. BAB 5 Drs. Pristiadi Utomo, M.Pd. BAB 5 ENERGI, USAHA, DAN DAYA STANDAR KOMPETENSI : Menganalisis gejala alam dan keteraturannya dalam cakupan mekanika benda titik KOMPETENSI DASAR Setelah pembelajaran,

Lebih terperinci

Kegiatan Belajar 7 MATERI POKOK : USAHA DAN ENERGI

Kegiatan Belajar 7 MATERI POKOK : USAHA DAN ENERGI Kegiatan Belajar 7 MATERI POKOK : USAHA DAN ENERGI A. URAIAN MATERI: 1. Usaha/Kerja (Work) Dalam ilmu fisika, usaha mempunyai arti jika sebuah benda berpindah tempat sejauh d karena pengaruh yang searah

Lebih terperinci

MAKALAH MOMEN INERSIA

MAKALAH MOMEN INERSIA MAKALAH MOMEN INERSIA A. Latar belakang Dalam gerak lurus, massa berpengaruh terhadap gerakan benda. Massa bisa diartikan sebagai kemampuan suatu benda untuk mempertahankan kecepatan geraknya. Apabila

Lebih terperinci

1 kalori = 4,2 joule atau 1 joule = 0,24 kalori

1 kalori = 4,2 joule atau 1 joule = 0,24 kalori A. ENERGI Energi berasal dari bahasa Yunani energia yang berarti kegiatan atau aktivitas. Energi adalah kemampuan untuk melakukan usaha / kerja. Dalam satuan SI, energi dinyatakan dalam Joule (J). satuan

Lebih terperinci

SOAL REMEDIAL KELAS XI IPA. Dikumpul paling lambat Kamis, 20 Desember 2012

SOAL REMEDIAL KELAS XI IPA. Dikumpul paling lambat Kamis, 20 Desember 2012 NAMA : KELAS : SOAL REMEDIAL KELAS XI IPA Dikumpul paling lambat Kamis, 20 Desember 2012 1. Sebuah partikel mula-mula dmemiliki posisi Kemudian, partikel berpindah menempati posisi partikel tersebut adalah...

Lebih terperinci

Bab. Peta Konsep. Gambar 13.1 Mendorong mobil. Usaha. membahas melakukan

Bab. Peta Konsep. Gambar 13.1 Mendorong mobil. Usaha. membahas melakukan Bab 13 Usaha dan Energi Sumber: image.google.com Gambar 13.1 Mendorong mobil Mendorong mobil merupakan salah satu kegiatan yang membutuhkan tenaga. Ketika kamu mendorong mobil hingga bergerak, kamu telah

Lebih terperinci

MODUL FISIKA SMA Kelas 10

MODUL FISIKA SMA Kelas 10 SMA Kelas 0 A. Pengaruh Gaya Terhadap Gerak Benda Dinamika adalah ilmu yang mempelajari gerak suatu benda dengan meninjau penyebabnya. Buah kelapa jatuh dan pohon kelapa dan bola menggelinding di atas

Lebih terperinci

BAB USAHA DAN ENERGI

BAB USAHA DAN ENERGI BAB USAHA DAN ENERGI. Seorang anak mengangkat sebuah kopor dengan gaya 60 N. Hitunglah usaha yang telah dilakukan anak tersebut ketika: (a anak tersebut diam di tempat sambail menyangga kopor di atas kepalanya.

Lebih terperinci

BAB I PENDAHULUAN. hukum newton, baik Hukum Newton ke I,II,ataupun III. materi lebih dalam mata kuliah fisika dasar 1.Oleh karena itu,sangatlah perlu

BAB I PENDAHULUAN. hukum newton, baik Hukum Newton ke I,II,ataupun III. materi lebih dalam mata kuliah fisika dasar 1.Oleh karena itu,sangatlah perlu BAB I PENDAHULUAN 1.1 LATAR BELAKANG Dalam kehidupan sehari hari,banyak aktivitas maupun kegiatan kita tertuang dalam fisika. Salah satu materi yang sering berkaitan adalah penerapan hukum newton, baik

Lebih terperinci

CONTOH SOAL & PEMBAHASAN

CONTOH SOAL & PEMBAHASAN CONTOH SOAL & PEMBAHASAN 1. Sebuah balok ditarik gaya F = 120 N yang membentuk sudut 37 o terhadap arah horizontal. Jika balok bergeser sejauh 10 m, tentukan usaha yang dilakukan pada balok! Soal No. 2

Lebih terperinci

Satuan dari momen gaya atau torsi ini adalah N.m yang setara dengan joule.

Satuan dari momen gaya atau torsi ini adalah N.m yang setara dengan joule. Gerak Translasi dan Rotasi A. Momen Gaya Momen gaya merupakan salah satu bentuk usaha dengan salah satu titik sebagai titik acuan. Misalnya anak yang bermain jungkat-jungkit, dengan titik acuan adalah

Lebih terperinci

Struktur Materi Usaha, Energi, dan Daya

Struktur Materi Usaha, Energi, dan Daya Struktur Materi Usaha, Energi, dan Daya KOMPUTERISASI PEMBELAJARAN FISIKA NURUL MUSFIRAH 15B80057 Usaha, Energi, dan Daya (Kelas XI SMA) 1 K o m p u t e r i s a s i P e m b e l a j a r a n F i s i k a

Lebih terperinci

Fisika Umum (MA101) Kinematika Rotasi. Dinamika Rotasi

Fisika Umum (MA101) Kinematika Rotasi. Dinamika Rotasi Fisika Umum (MA101) Topik hari ini: Kinematika Rotasi Hukum Gravitasi Dinamika Rotasi Kinematika Rotasi Perpindahan Sudut Riview gerak linear: Perpindahan, kecepatan, percepatan r r = r f r i, v =, t a

Lebih terperinci

USAHA DAN ENERGI. W = F.s Satuan usaha adalah joule (J), di mana: 1 joule = (1 Newton).(1 meter) atau 1 J = 1 N.m

USAHA DAN ENERGI. W = F.s Satuan usaha adalah joule (J), di mana: 1 joule = (1 Newton).(1 meter) atau 1 J = 1 N.m USAHA DAN ENERGI Usaha (W) yang dilakukan pada sebuah benda oleh suatu gaya tetap (tetap dalam besar dan arah) didefinisikan sebagai perkalian antara besar pergeseran (s) dengan komponen gaya (F) yang

Lebih terperinci

TKS-4101: Fisika MENERAPKAN KONSEP USAHA DAN ENERGI J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA

TKS-4101: Fisika MENERAPKAN KONSEP USAHA DAN ENERGI J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA TKS-4101: Fisika MENERAPKAN KONSEP USAHA DAN ENERGI Dosen: Tim Dosen Fisika Jurusan Teknik Sipil FT-UB 1 Indikator : 1. Konsep usaha sebagai hasil

Lebih terperinci

PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA

PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA 1. Soal Olimpiade Sains bidang studi Fisika terdiri dari dua (2) bagian yaitu : soal isian singkat (24 soal) dan soal pilihan

Lebih terperinci

BAHAN AJAR. Hubungan Usaha dengan Energi Potensial

BAHAN AJAR. Hubungan Usaha dengan Energi Potensial BAHAN AJAR Hubungan Usaha dengan Energi Potensial Untuk bertahan hidup kita membutuhkan energi yang diperoleh dari makanan. Setiap kendaraan membutuhkan energi untuk bergerak dan energi itu diperoleh dari

Lebih terperinci

DINAMIKA PARTIKEL KEGIATAN BELAJAR 1. Hukum I Newton. A. Gaya Mempengaruhi Gerak Benda

DINAMIKA PARTIKEL KEGIATAN BELAJAR 1. Hukum I Newton. A. Gaya Mempengaruhi Gerak Benda KEGIATAN BELAJAR 1 Hukum I Newton A. Gaya Mempengaruhi Gerak Benda DINAMIKA PARTIKEL Mungkin Anda pernah mendorong mobil mainan yang diam, jika dorongan Anda lemah mungkin mobil mainan belum bergerak,

Lebih terperinci

momen inersia Energi kinetik dalam gerak rotasi momentum sudut (L)

momen inersia Energi kinetik dalam gerak rotasi momentum sudut (L) Dinamika Rotasi adalah kajian fisika yang mempelajari tentang gerak rotasi sekaligus mempelajari penyebabnya. Momen gaya adalah besaran yang menyebabkan benda berotasi DINAMIKA ROTASI momen inersia adalah

Lebih terperinci

FISIKA XI SMA 3

FISIKA XI SMA 3 FISIKA XI SMA 3 Magelang @iammovic Standar Kompetensi: Menerapkan konsep dan prinsip mekanika klasik sistem kontinu dalam menyelesaikan masalah Kompetensi Dasar: Merumuskan hubungan antara konsep torsi,

Lebih terperinci

MEKANIKA UNIT. Pengukuran, Besaran & Vektor. Kumpulan Soal Latihan UN

MEKANIKA UNIT. Pengukuran, Besaran & Vektor. Kumpulan Soal Latihan UN Kumpulan Soal Latihan UN UNIT MEKANIKA Pengukuran, Besaran & Vektor 1. Besaran yang dimensinya ML -1 T -2 adalah... A. Gaya B. Tekanan C. Energi D. Momentum E. Percepatan 2. Besar tetapan Planck adalah

Lebih terperinci

DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR

DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR Fisika Kelas XI SCI Semester I Oleh: M. Kholid, M.Pd. 43 P a g e 6 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR Kompetensi Inti : Memahami, menerapkan, dan

Lebih terperinci

Jawaban Soal OSK FISIKA 2014

Jawaban Soal OSK FISIKA 2014 Jawaban Soal OSK FISIKA 4. Sebuah benda bergerak sepanjang sumbu x dimana posisinya sebagai fungsi dari waktu dapat dinyatakan dengan kurva seperti terlihat pada gambar samping (x dalam meter dan t dalam

Lebih terperinci

Sebuah benda yang diberi gaya sebesar 6 N selama 5 menit mengalami perpindahan sejauh 15 m, tentukanlah: a. usaha yang dilakukan benda b.

Sebuah benda yang diberi gaya sebesar 6 N selama 5 menit mengalami perpindahan sejauh 15 m, tentukanlah: a. usaha yang dilakukan benda b. Jawab: P = Fv = (5 N) (2 m/s) = 10 N m/s = 10 watt. Jadi, daya benda tersebut adalah 10 watt. Menguji Diri Sebuah benda yang diberi gaya sebesar 6 N selama 5 menit mengalami perpindahan sejauh 15 m, tentukanlah:

Lebih terperinci

Pilihlah jawaban yang paling benar!

Pilihlah jawaban yang paling benar! Pilihlah jawaban yang paling benar! 1. Besarnya momentum yang dimiliki oleh suatu benda dipengaruhi oleh... A. Bentuk benda B. Massa benda C. Luas penampang benda D. Tinggi benda E. Volume benda. Sebuah

Lebih terperinci

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu A. TEORI SINGKAT A.1. TEORI SINGKAT OSILASI Osilasi adalah gerakan bolak balik di sekitar suatu titik kesetimbangan. Ada osilasi yang memenuhi hubungan sederhana dan dinamakan gerak harmonik sederhana.

Lebih terperinci

USAHA DAN ENERGI. W = = F. s

USAHA DAN ENERGI. W = = F. s I. USAHA USAHA DAN ENERGI Usaha alias Kerja yang dilambangkan dengan huruf W (Work-bahasa inggris), digambarkan sebagai sesuatu yang dihasilkan oleh Gaya (F) ketika Gaya bekerja pada benda hingga benda

Lebih terperinci

LATIHAN USAHA, ENERGI, IMPULS DAN MOMENTUM

LATIHAN USAHA, ENERGI, IMPULS DAN MOMENTUM LATIHAN USAHA, ENERGI, IMPULS DAN MOMENTUM A. Menjelaskan hubungan usaha dengan perubahan energi dalam kehidupan sehari-hari dan menentukan besaran-besaran terkait. 1. Sebuah meja massanya 10 kg mula-mula

Lebih terperinci

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dalam gerak translasi gaya dikaitkan dengan percepatan linier benda, dalam gerak rotasi besaran yang dikaitkan dengan percepatan

Lebih terperinci

BAB III GERAK LURUS. Gambar 3.1 Sistem koordinat kartesius

BAB III GERAK LURUS. Gambar 3.1 Sistem koordinat kartesius BAB III GERAK LURUS Pada bab ini kita akan mempelajari tentang kinematika. Kinematika merupakan ilmu yang mempelajari tentang gerak tanpa memperhatikan penyebab timbulnya gerak. Sedangkan ilmu yang mempelajari

Lebih terperinci

BAB 4 USAHA DAN ENERGI

BAB 4 USAHA DAN ENERGI BAB 4 USAHA DAN ENERGI 113 BAB 4 USAHA DAN ENERGI Sumber: Serway dan Jewett, Physics for Scientists and Engineers, 6th edition, 2004 Energi merupakan konsep yang sangat penting, dan pemahaman terhadap

Lebih terperinci

PREDIKSI UAS 1 FISIKA KELAS X TAHUN 2013/ Besaran-besaran berikut yang merupakan besaran pokok adalah a. Panjang, lebar,luas,volume

PREDIKSI UAS 1 FISIKA KELAS X TAHUN 2013/ Besaran-besaran berikut yang merupakan besaran pokok adalah a. Panjang, lebar,luas,volume PREDIKSI UAS 1 FISIKA KELAS X TAHUN 2013/2014 A. PILIHAN GANDA 1. Besaran-besaran berikut yang merupakan besaran pokok adalah a. Panjang, lebar,luas,volume d. Panjang, lebar, tinggi, tebal b. Kecepatan,waktu,jarak,energi

Lebih terperinci

BAB iv HUKUM NEWTON TENTANG GERAK & PENERAPANNYA

BAB iv HUKUM NEWTON TENTANG GERAK & PENERAPANNYA BAB iv HUKUM NEWTON TENTANG GERAK & PENERAPANNYA CAKUPAN MATERI A. Hukum Pertama Newton B. Hukum Kedua Newton C. Hukum Ketiga Newton D. Gaya Berat, Gaya Normal & Gaya Gesek Satuan Pendidikan E. Penerapan

Lebih terperinci

USAHA (KERJA) DAN ENERGI. untuk mengetahui keadaan gerak suatu benda yang menghubungkan

USAHA (KERJA) DAN ENERGI. untuk mengetahui keadaan gerak suatu benda yang menghubungkan USAHA (KERJA) DAN ENERGI Konsep fisika dalam dinamika yang juga dapat digunakan untuk mengetahui keadaan gerak suatu benda yang menghubungkan pengaruh luar (gaya) dengan keadaan gerak benda, selain hukum

Lebih terperinci

dengan g adalah percepatan gravitasi bumi, yang nilainya pada permukaan bumi sekitar 9, 8 m/s².

dengan g adalah percepatan gravitasi bumi, yang nilainya pada permukaan bumi sekitar 9, 8 m/s². Hukum newton hanya memberikan perumusan tentang bagaimana gaya mempengaruhi keadaan gerak suatu benda, yaitu melalui perubahan momentumnya. Sedangkan bagaimana perumusan gaya dinyatakan dalam variabelvariabel

Lebih terperinci

FIsika USAHA DAN ENERGI

FIsika USAHA DAN ENERGI KTSP & K-3 FIsika K e l a s XI USAHA DAN ENERGI Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami konsep usaha dan energi.. Menjelaskan hubungan

Lebih terperinci

TUJUAN :Mahasiswa memahami konsep ilmu fisika, penerapan besaran dan satuan, pengukuran serta mekanika fisika.

TUJUAN :Mahasiswa memahami konsep ilmu fisika, penerapan besaran dan satuan, pengukuran serta mekanika fisika. MATA KULIAH : FISIKA DASAR TUJUAN :Mahasiswa memahami konsep ilmu fisika, penerapan besaran dan satuan, pengukuran serta mekanika fisika. POKOK BAHASAN: Pendahuluan Fisika, Pengukuran Dan Pengenalan Vektor

Lebih terperinci

BAB 3 DINAMIKA. Tujuan Pembelajaran. Bab 3 Dinamika

BAB 3 DINAMIKA. Tujuan Pembelajaran. Bab 3 Dinamika 25 BAB 3 DINAMIKA Tujuan Pembelajaran 1. Menerapkan Hukum I Newton untuk menganalisis gaya pada benda diam 2. Menerapkan Hukum II Newton untuk menganalisis gaya dan percepatan benda 3. Menentukan pasangan

Lebih terperinci

K 1. h = 0,75 H. y x. O d K 2

K 1. h = 0,75 H. y x. O d K 2 1. (25 poin) Dari atas sebuah tembok dengan ketinggian H ditembakkan sebuah bola kecil bermassa m (Jari-jari R dapat dianggap jauh lebih kecil daripada H) dengan kecepatan awal horizontal v 0. Dua buah

Lebih terperinci

HUKUM KEKEKALAN ENERGI MEKANIK

HUKUM KEKEKALAN ENERGI MEKANIK HUKUM KEKEKALAN ENERGI MEKANIK Nama Kelompok : Kelas : Anggota Kelompok : Mata Pelajaran : Fisika Semester/ tahun Ajaran : Alokasi Waktu : 50 menit A. Petunjuk Belajar. Baca buku-buku Fisika kelas XI SMA

Lebih terperinci

Pilihan ganda soal dan impuls dan momentum 15 butir. 5 uraian soal dan impuls dan momentum

Pilihan ganda soal dan impuls dan momentum 15 butir. 5 uraian soal dan impuls dan momentum Pilihan ganda soal dan impuls dan momentum 15 butir. 5 uraian soal dan impuls dan momentum A. Pilihlah salah satu jawaban yang paling tepat! 1. Sebuah mobil bermassa 2.000 kg sedang bergerak dengan kecepatan

Lebih terperinci

Usaha dan Energi. Edisi Kedua. Untuk SMA kelas XI. (Telah disesuaikan dengan KTSP)

Usaha dan Energi. Edisi Kedua. Untuk SMA kelas XI. (Telah disesuaikan dengan KTSP) Usaha dan Energi Edisi Kedua Untuk SMA kelas XI (Telah disesuaikan dengan KTSP) Lisensi Dokumen : Copyright 2008 2009 GuruMuda.Com Seluruh dokumen di GuruMuda.Com dapat digunakan dan disebarkan secara

Lebih terperinci

Antiremed Kelas 10 FISIKA

Antiremed Kelas 10 FISIKA Antiremed Kelas 0 FISIKA Dinamika, Partikel, dan Hukum Newton Doc Name : K3AR0FIS040 Version : 04-09 halaman 0. Gaya (F) sebesar N bekerja pada sebuah benda massanya m menyebabkan percepatan m sebesar

Lebih terperinci

Treefy Education Pelatihan OSN Online Nasional Jl Mangga III, Sidoarjo, Jawa WhatsApp:

Treefy Education Pelatihan OSN Online Nasional Jl Mangga III, Sidoarjo, Jawa  WhatsApp: Treefy Education PEMBAHASAN LATIHAN 1 1.a) Bayangkan bola berada di puncak pipa. Ketika diberikan sedikit dorongan, bola akan bergerak dan menabrak tanah dengan kecepatan. Gerakan tersebut merupakan proses

Lebih terperinci

Antiremed Kelas 11 Fisika

Antiremed Kelas 11 Fisika Antiremed Kelas 11 Fisika Usaha dan Energi - Latihan Campuran Halaman 1 01. Pernyataan berikut ini dapat digunakan untuk memperbesar energi potensial suatu benda, yaitu... (A) memperkecil kecepatan benda

Lebih terperinci

ENERGI DAN MOMENTUM. Staf Pengajar Fisika Departemen Fisika, FMIPA, IPB

ENERGI DAN MOMENTUM. Staf Pengajar Fisika Departemen Fisika, FMIPA, IPB ENERGI DAN MOMENTUM Staf Pengajar Fisika Departemen Fisika, FMIPA, IPB KONSEP KERJA-ENERGI Merupakan konsep alternatif untuk menyelesaikan persoalan gerak Dikembangkan dari konsep gaya dan gerak Merupakan

Lebih terperinci

Antiremed Kelas 11 FISIKA

Antiremed Kelas 11 FISIKA Antiremed Kelas FISIKA Persiapan UAS - Latihan Soal Doc. Name: K3ARFIS0UAS Version : 205-02 halaman 0. Jika sebuah partikel bergerak dengan persamaan posisi r= 5t 2 +, maka kecepatan rata -rata antara

Lebih terperinci

BAB VI Usaha dan Energi

BAB VI Usaha dan Energi BAB VI Usaha dan Energi 6.. Usaha Pengertian usaha dalam kehidupan sehari-hari adalah mengerahkan kemampuan yang dimilikinya untuk mencapai. Dalam fisika usaha adalah apa yang dihasilkan gaya ketika gaya

Lebih terperinci

d r 5. KERJA DAN ENERGI F r r r 5.1 Kerja yang dilakukan oleh gaya konstan

d r 5. KERJA DAN ENERGI F r r r 5.1 Kerja yang dilakukan oleh gaya konstan 5. KERJA DAN ENERGI 5. Kerja yang dilakukan oleh gaya konstan F r θ d r Kerja hasil kali besar perpindahan dengan komponen gaya yang sejajar dengan perpindahan r r W = F d = F// d = Fd cosθ Kerja (Joule)

Lebih terperinci

Kegiatan Belajar 3 MATERI POKOK : JARAK, KECEPATAN DAN PERCEPATAN

Kegiatan Belajar 3 MATERI POKOK : JARAK, KECEPATAN DAN PERCEPATAN Kegiatan Belajar 3 MATERI POKOK : JARAK, KECEPATAN DAN PERCEPATAN A. URAIAN MATERI: Suatu benda dikatakan bergerak jika benda tersebut kedudukannya berubah setiap saat terhadap titik acuannya (titik asalnya).

Lebih terperinci

BAHAN AJAR FISIKA KELAS XI IPA SEMESTER GENAP MATERI : DINAMIKA ROTASI

BAHAN AJAR FISIKA KELAS XI IPA SEMESTER GENAP MATERI : DINAMIKA ROTASI BAHAN AJAR FISIKA KELAS XI IPA SEMESTER GENAP MATERI : DINAMIKA ROTASI Momen gaya : Simbol : τ Momen gaya atau torsi merupakan penyebab benda berputar pada porosnya. Momen gaya terhadap suatu poros tertentu

Lebih terperinci

UJIAN AKHIR SEMESTER 1 SEKOLAH MENENGAH TAHUN AJARAN 2014/2015 Fisika

UJIAN AKHIR SEMESTER 1 SEKOLAH MENENGAH TAHUN AJARAN 2014/2015 Fisika Nama : Kelas : 8 UJIAN AKHIR SEMESTER 1 SEKOLAH MENENGAH TAHUN AJARAN 2014/2015 Mata Pelajaran : Fisika Waktu : 07.45-09.15 No.Induk : Hari/Tanggal : Selasa, 09 Desember 2014 Petunjuk Umum: Nilai : 1.

Lebih terperinci

SOAL UN FISIKA DAN PENYELESAIANNYA 2005

SOAL UN FISIKA DAN PENYELESAIANNYA 2005 2. 1. Seorang siswa melakukan percobaan di laboratorium, melakukan pengukuran pelat tipis dengan menggunakan jangka sorong. Dari hasil pengukuran diperoleh panjang 2,23 cm dan lebar 36 cm, maka luas pelat

Lebih terperinci

Kinematika Sebuah Partikel

Kinematika Sebuah Partikel Kinematika Sebuah Partikel oleh Delvi Yanti, S.TP, MP Bahan Kuliah PS TEP oleh Delvi Yanti Kinematika Garis Lurus : Gerakan Kontiniu Statika : Berhubungan dengan kesetimbangan benda dalam keadaan diam

Lebih terperinci

3. Sebuah sinar laser dipancarkan ke kolam yang airnya tenang seperti gambar

3. Sebuah sinar laser dipancarkan ke kolam yang airnya tenang seperti gambar 1. Pembacaan jangka sorong di samping yang benar adalah. cm a. 1,05 c. 2, 05 b. 1,45 d. 2, 35 2. Adi berangkat ke sekolah pukul 06.15. Jarak rumah Ardi dengan sekolah 1.8 km. Sekolah dimulai pukul 07.00.

Lebih terperinci

K13 Revisi Antiremed Kelas 10 Fisika

K13 Revisi Antiremed Kelas 10 Fisika K13 evisi Antiremed Kelas 10 Fisika Persiapan PTS Semester Genap Doc. Name: K13A10FIS0PTS Version: 017-03 Halaman 1 01. Pada benda bermassa m, bekerja gaya F yang menimbulkan percepatan a. Jika gaya dijadikan

Lebih terperinci

4. Sebuah mobil bergerak dengan kecepatan konstan 72 km/jam. Jarak yang ditempuh selama selang waktu 20 sekon adalah...

4. Sebuah mobil bergerak dengan kecepatan konstan 72 km/jam. Jarak yang ditempuh selama selang waktu 20 sekon adalah... Kelas X 1. Tiga buah vektor yakni V1, V2, dan V3 seperti gambar di samping ini. Jika dua kotak mewakili satu satuan vektor, maka resultan dari tiga vektor di atas adalah. 2. Dua buah vektor A dan, B masing-masing

Lebih terperinci

UJIAN SEKOLAH 2016 PAKET A. 1. Hasil pengukuran diameter dalam sebuah botol dengan menggunakan jangka sorong ditunjukkan pada gambar berikut!

UJIAN SEKOLAH 2016 PAKET A. 1. Hasil pengukuran diameter dalam sebuah botol dengan menggunakan jangka sorong ditunjukkan pada gambar berikut! SOAL UJIAN SEKOLAH 2016 PAKET A 1. Hasil pengukuran diameter dalam sebuah botol dengan menggunakan jangka sorong ditunjukkan pada gambar berikut! 2 cm 3 cm 0 5 10 Dari gambar dapat disimpulkan bahwa diameter

Lebih terperinci

dengan lintasan melingkar dan kecepatan sudut (ω) di setiap titik pada benda tersebut besarnya

dengan lintasan melingkar dan kecepatan sudut (ω) di setiap titik pada benda tersebut besarnya Setelah proses pembelajaran, diharapkan siswa dapat: 1. Menganalisis gerak melingkar tidak beraturan 2. Membedakan gerak melingkar beraturan, dan gerak melingkar berubah beraturan 3. Merumuskan gerak melingkar

Lebih terperinci

LATIHAN SOAL MENJELANG UJIAN TENGAH SEMESTER STAF PENGAJAR FISIKA TPB

LATIHAN SOAL MENJELANG UJIAN TENGAH SEMESTER STAF PENGAJAR FISIKA TPB LATIHAN SOAL MENJELANG UJIAN TENGAH SEMESTER STAF PENGAJAR FISIKA TPB Soal No. 1 Seorang berjalan santai dengan kelajuan 2,5 km/jam, berapakah waktu yang dibutuhkan agar ia sampai ke suatu tempat yang

Lebih terperinci

Antiremed Kelas 10 Fisika

Antiremed Kelas 10 Fisika Antiremed Kelas Fisika Persiapan UAS Fisika Doc. Name:ARFISUAS Doc. Version: 26-7 halaman. Perhatikan tabel berikut! No Besaran Satuan Dimensi Gaya Newton [M][L][T] 2 2 Usaha Joule [M][L] [T] 3 Momentum

Lebih terperinci

6. Berapakah energi kinetik seekor nyamuk bermassa 0,75 mg yang sedang terbang dengan kelajuan 40 cm/s? Jawab:

6. Berapakah energi kinetik seekor nyamuk bermassa 0,75 mg yang sedang terbang dengan kelajuan 40 cm/s? Jawab: 1. Sebuah benda dengan massa 5kg meluncur pada bidang miring licin yang membentuk sudut 60 0 terhadap horizontal. Jika benda bergeser sejauh 5 m, berapakh usaha yang dilakukan oleh gaya berat jawab: 2.

Lebih terperinci

HUKUM NEWTON B A B B A B

HUKUM NEWTON B A B B A B Hukum ewton 75 A A 4 HUKUM EWTO Sumber : penerbit cv adi perkasa Pernahkah kalian melihat orang mendorong mobil yang mogok? Perhatikan pada gambar di atas. Ada orang ramai-ramai mendorong mobil yang mogok.

Lebih terperinci

GAYA GESEK. Gaya Gesek Gaya Gesek Statis Gaya Gesek Kinetik

GAYA GESEK. Gaya Gesek Gaya Gesek Statis Gaya Gesek Kinetik GAYA GESEK (Rumus) Gaya Gesek Gaya Gesek Statis Gaya Gesek Kinetik f = gaya gesek f s = gaya gesek statis f k = gaya gesek kinetik μ = koefisien gesekan μ s = koefisien gesekan statis μ k = koefisien gesekan

Lebih terperinci

BAB 3 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR

BAB 3 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR 80 BAB 3 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR Benda tegar adalah benda yang dianggap sesuai dengan dimensi ukuran sesungguhnya dengan jarak antar partikel penyusunnya tetap. Ketika benda tegar

Lebih terperinci

Soal SBMPTN Fisika - Kode Soal 121

Soal SBMPTN Fisika - Kode Soal 121 SBMPTN 017 Fisika Soal SBMPTN 017 - Fisika - Kode Soal 11 Halaman 1 01. 5 Ketinggian (m) 0 15 10 5 0 0 1 3 5 6 Waktu (s) Sebuah batu dilempar ke atas dengan kecepatan awal tertentu. Posisi batu setiap

Lebih terperinci

MODUL MATA PELAJARAN IPA

MODUL MATA PELAJARAN IPA KERJASAMA DINAS PENDIDIKAN KOTA SURABAYA DENGAN FAKULTAS MIPA UNIVERSITAS NEGERI SURABAYA MODUL MATA PELAJARAN IPA Hukum Newton untuk kegiatan PELATIHAN PENINGKATAN MUTU GURU DINAS PENDIDIKAN KOTA SURABAYA

Lebih terperinci

BAB 1 Keseimban gan dan Dinamika Rotasi

BAB 1 Keseimban gan dan Dinamika Rotasi BAB 1 Keseimban gan dan Dinamika Rotasi titik berat, dan momentum sudut pada benda tegar (statis dan dinamis) dalam kehidupan sehari-hari.benda tegar (statis dan Indikator Pencapaian Kompetensi: 3.1.1

Lebih terperinci

Dari gamabar diatas dapat dinyatakan hubungan sebagai berikut.

Dari gamabar diatas dapat dinyatakan hubungan sebagai berikut. Pengertian Gerak Translasi dan Rotasi Gerak translasi dapat didefinisikan sebagai gerak pergeseran suatu benda dengan bentuk dan lintasan yang sama di setiap titiknya. gerak rotasi dapat didefinisikan

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN : Pertama / 2 x 45 menit : Ceramah dan diskusi o Memberikan contoh penerapan hukum Newton dengan menggunakan berbagai media. o Melakukan percobaan yang berhubungan dengan hukum-hukum Newton. Formulasi

Lebih terperinci

Dinamika. DlNAMIKA adalah ilmu gerak yang membicarakan gaya-gaya yang berhubungan dengan gerak-gerak yang diakibatkannya.

Dinamika. DlNAMIKA adalah ilmu gerak yang membicarakan gaya-gaya yang berhubungan dengan gerak-gerak yang diakibatkannya. Dinamika Page 1/11 Gaya Termasuk Vektor DlNAMIKA adalah ilmu gerak yang membicarakan gaya-gaya yang berhubungan dengan gerak-gerak yang diakibatkannya. GAYA TERMASUK VEKTOR, penjumlahan gaya = penjumlahan

Lebih terperinci

Tujuan Pembelajaran :

Tujuan Pembelajaran : Tujuan Pembelajaran : 1. Menunjukan bentuk-bentuk energi dan contohnya dalam kehidupan sehari-hari. Mengaplikasikan konsep energi dan perubahannya dalam kehidupan sehari-hari 3. Merancang percobaan sederhana

Lebih terperinci