BAB 2 LANDASAN TEORI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 LANDASAN TEORI"

Transkripsi

1 BAB 2 LANDASAN TEORI Bab ini membahas tentang teori penunjang dan penelitian sebelumnya yang berhubungan dengan penerapan metode Adaptive Neuro Fuzzy Inference System (ANFIS) untuk prediksi harga saham syariah di Indonesia. 2.1 Saham Syariah Saham syariah merupakan bukti kepemilikan suatu perusahaan yang memenuhi kereteria syariah atau prinsip-prinsip syariah dan tidak termasuk saham preferen. Saham preferen adalah saham memiliki hak-hak istimewa yang bertentangan dengan syariat bagi hasil dimana perusahaan tidak memiliki hak suara tetapi mendapatakan deviden yang sudah pasti (Sholihin, 2010). Saham yang sesuai syariah Islam adalah saham yang setiap pemiliknya memiliki hak yang sama dan proporsional dengan jumlah lembar saham yang dimilikinya (Sholihin, 2010). Prinsip-prinsip dalam transaksi saham syariah adalah sebagai berikut (Kurniawan, 2008): a. Pembiayaan dan investasi hanya dapat dilakukan pada asset atau kegiatan usaha yang halal. b. Pembiayaan dan investasi harus pada mata uang yang sama dengan pembukuan kegiatan usaha. c. Aqad yang terjadi antara investor dan emiten, tindakan maupun informasi yang diberikan emiten serta mekanisme pasar tidak boleh menimbulkan kondisi keraguan (gharar) yang dapat menyebabkan kerugian.

2 8 d. Investor dan emiten tidak boleh mengambil resiko melebihi kemampuan (maisyir) dan menimbulkan kerugian yang sebenarnya bisa dihindari. e. Investor, emiten, bursa efek dan self regulating organization lainnya tidak boleh melakukan hal-hal yang menyebabkan gangguan yang disengaja atas mekanisme pasar, baik dari sisi permintaan maupun penawaran. Gharar dalam bahasa Arab diterjemahkan resiko atau ketidakpastian. Analisis resiko saham yang memiliki ketidakpastian dapat digolongkan menjadi tiga (Kurniawan, 2008), yaitu: a. Risk, yaitu analisis yang memiliki preseden historis dan dapat dilakukan estimasi probabilitas untuk tiap hasil yang mungkin muncul. b. Structural uncertainties, yaitu analisis yang kemungkinan terjadinya suatu hasil bersifat unik, tidak memiliki preseden di masa lalu, tetapi tetap terjadi dalam logika kausalitas. c. Unknownables, yaitu gharar yang menunjukan kejadian yang secara ekstrim kemunculannya tidak terbayangkan sebelumnya. Dengan demikian kasus gharar akan banyak terjadi pada unknownables. Resiko dibedakan menjadi dua tipe yaitu resiko pasif, seperti game of chance, yang hanya mengandalkan keberuntungan. Kedua, resiko responsive yang memungkinkan adanya probabilitas hasil keluaran dengan hubungan kausalitas yang logis atau game of skill. Kesediaan menangung resiko merupakan hal yang tidak terhindarkan, tetapi resiko yang dihadapi adalah resiko yang melibatkan pengetahuan, sebagai game of skill bukan game of chance. Jika game of skill dibolehkan maka konsekuentsi logisnya adalah keharusan penguasaan manajemen resiko. Upaya pengelolaan resiko dalam manajemen investasi melalui diversifikasi dan pemanfaatan financial engineering instrument semacam derivatives, dapat diselidiki lebih lanjut untuk pencegahan gharar ini (Kurniawan, 2008).

3 9 2.2 Analisis Harga Saham Analisis harga saham adalah suatu proses memprediksi pergerakan harga suatu saham. Ada dua pendekatan dasar dalam menganalisis atau memilih saham, yaitu analisis fundamental dan analisis teknikal (Sulistiawan, 2008). Analisis fundamental adalah analisis saham yang menggunakan data-data fundamental dan faktor-faktor eksternal yang berhubungan dengan badan usaha. Data fundamental yang dimaksud adalah data keuangan, data pangsa pasar, siklus bisnis dan lain sebagainya. Data faktor eksternal yang berhubungan dengan badan usaha adalah kebijakan pemerintah, tingkat bunga, inflasi, dan sejenisnya. Di sisi lain, analisis teknikal merupakan upaya untuk memprediksi harga saham dengan mengamati perubahan harga saham tersebut (kondisi pasar) berdasarkan runtun waktu di masa lalu. Berlainan dengan pendekatan fundamental, analisis teknikal tidak memperhatikan faktor-faktor fundamental yang mungkin mempengaruhi harga saham. Pemikiran yang mendasari analisis teknikal adalah pola harga saham yang mencerminkan informasi yang relevan dimana informasi tersebut ditunjukkan oleh perubahan harga saham di waktu yang lalu, dan mempunyai pola tertentu, dan pola tersebut terus berulang (Sulistiawan, 2008). Analisis teknikal digunakan untuk mencari pola harga saham yang berulang dan dapat diidentifikasi. Salah satu teori analisis terkenal menyatakan bahwa pergerakan harga dari suatu sekuritas mengandung semua informasi mengenai semua sekuritas tersebut. Untuk lebih mendekati pasar, para analis teknikal modern membuat grafik yang dapat menampilkan harga pembukaan, penutupan, tertinggi, dan terendah. Baik analisis teknikal maupun analisis fundamental dapat dikombinasikan dengan metode-metode penelitian lainnya untuk menghasilkan prediksi yang lebih akurat seperti metode rata-rata bergerak (moving averages), Oscillator, dan Stochastic RSI, fuzzy, neural network, algoritma genetic, dan metode hybrid (Sulistiawan, 2007). Bila data runtun waktu yang ada dibuat dalam bentuk plot (grafik), maka akan terlihat berbagai macam plot. Secara garis besar, pola data runtun waktu dapat dikelompokkan 3 plot (Nachrowi, et al, 2004), yaitu:

4 10 a. Level konstan Pola konstan menunjukkan data bergerak di sekitar nilai rata-rata, dengan variasi jarak yang terkadang jauh dan terkadang dekat. Akan tetapi secara umum data tidak menunjukkan adanya perubahan tren, baik meningkat maupun menurun. Salah satu contoh pola konstan ditunjuk oleh Saham United Traktor pada bulan Mei-Juli Plot tersebut menyatakan pola data yang mempunyai tingkat konstan dengan fluktuasi yang random. Saham United Tractor Bulan Mei-Juni 2002 Harga Penutupan /5/ /5/ /5/ /6/ /6/2002 Tanggal Gambar 2.1 Harga Saham United Traktors Mei-Juni 2002 b. Tren Linier Pola data yang menunjukkan adanya peusahaan rata-rata, tetapi nilai variannya tetap, merupakan karakteristik dari pola tren. Pola harga penutupan saham Telkom tanggal 1-15 Mei 2009 merupakan contoh data runtun waktu yang mempunyai gerakan tren dimana pola tersebut menunjukkan adanya tren yang linier dan fluktuasi random. Saham Telkom Tanggal 1-15 Mei 2009 Harga Penutupan 8,500 8,000 7,500 7,000 6,500 1/5/2009 5/5/2009 7/5/ /5/ /5/ /5/2009 Tanggal Gambar 2.2 Harga Saham Telkom 1-15 Mei 2009

5 11 c. Model Kombinasi Dalam prakteknya, kita sering menjumpai data runtun waktu yang bentuknya tidak seperti salah satu jenis data tersebut. Oleh sebab itu, kita perlu membuat justifikasi perkiraan data yang akan kita analisis. Biasanya, pola data yang ini dapat merupakan kombinasi dari pola-pola tersebut. 2.3 Normalisasi Data Normalisasi data berfungsi untuk membuat data yang akan diproses berada pada range tertentu sehingga dalam pemrosesan nantinya angka yang diolah tidak terlalu besar sehingga mempercepat proses perhitungan. Pada penelitian ini data pelatihan akan dinormalisasi dalam range 0,1 sampai 0,9. Adapun rumus untuk melakukan normalisasi data pada range 0,1 sampai 0,9 adalah sebagai berikut (Siang, 2005): y = 0,8 (x a) b a + 0,1 (2.1) dimana: y = nilai normaliasai x = nilai data saham a = nilai minimum dari data saham b = nilai maximum dari data saham Setelah data masukan yang telah dinormalisasi diproses dan didapatkan hasil prediksi maka data hasil prediksi tersebut akan didenormalisasi kembali dengan menggunakan persamaan berikut: (y 0,1)(b a) + 0,8a x = 0,8 (2.2) dimana: y = nilai hasil prediksi x = nilai hasil denormalisasi a = nilai minimum dari data saham b = nilai maximum dari data saham

6 Fuzzy System Sistem fuzzy atau Fuzzy Inference System (FIS) adalah adalah sistem kendali logika fuzzy yang dapat melakukan penalaran dengan prinsip serupa seperti manusia melakukan penalaran dengan nalurinya dan pengetahuannya (Effendi, 2009). Logika fuzzy adalah logika mengandung unsur ketidakpastian. Pada logika biasa atau logika tegas (crisp) hanya terdapat 2 anggota himpunan nilai yakni salah atau benar, 0 atau 1. Sedangkan logika fuzzy mengenal nilai antara benar dan salah. Kebenaran dalam logika fuzzy dapat dinyatakan dalam derajat kebenaran atau fungsi keanggotaan dalam interval 0 hingga 1 (Widodo, 2005). Aturan/ Kaidah-Kaidah Input Fuzzifikasi Penalaran Defuzzifikasi Output Gambar 2.3 Proses Fuzzy Inference System (Effendi, 2009) Pada Fuzzy Inference System terdapat beberapa proses mulai dari pemasukan data hingga penarikan kesimpulan. Proses tersebut terdiri dari proses fuzzifikasi, inferensi (penalaran) dengan memanfaatkan aturan-aturan fuzzy (fuzzy rule), dan defuzzifikasi. Gambaran umum bagan Fuzzy Inference System dapat dilihat pada Gambar Fuzzifikasi Fuzzifikasi adalah pemetaan nilai input yang merupakan nilai tegas ke dalam fungsi keanggotaan himpunan fuzzy, untuk kemudian diolah di dalam mesin penalaran (Effendi, 2009). Fungsi keanggotaan (membership function) dari himpunan fuzzy dapat disajikan dengan dua cara yaitu numerik dan fungsional. Secara numerik himpunan fuzzy disajikan dalam bentuk gabungan derajat keanggotaan tiap tiap elemen pada semesta pembicaraan yang dinyatakan sebagai berikut: F = µf(ui) / ui (2.3)

7 13 Secara fungsional himpunan fuzzy disajikan dalam bentuk persamaan matematis sehingga untuk mengetahui derajat keanggotaan dari masing-masing elemen dalam semesta pembicaraan memerlukan suatu perhitungan (Suratno, 2011). Pembentukan derajat keanggotaan dapat dilakukan dengan memetakan data secara langsung pada fungsi keanggotaan atau dengan menggunakan data cluster yang kemudian dipetakan pada fungsi keanggotaan Fungsi keanggotaan Fungsi keanggotaan digunakan untuk mendapatkan derajat keanggotaan dari suatu data terhadap himpunan semestaya. Adapun Fungsi keanggotaan yang biasa digunakan dalam logika fuzzy adalah sebagai berikut: 1. Fungsi Keanggotaan Segitiga Fungsi keanggotaan segitiga memiliki tampilan kurva berbentuk segitiga yang ditunjukkan oleh Gambar Derajat keanggotaan x Gambar 2.4 Kurva Segitiga (Irawan, 2007) Fungsi keanggotaan kurva segitiga dapat dinyatakan sebagai berikut: 0; x a triangle(x; a, b, c) = {(x a)/(b a); a x b 1; x b (2.4) 2. Fungsi Keanggotaan Trapesium Fungsi keanggotaan trapesium memiliki tampilan kurva berbentuk trapesium yang ditunjukkan oleh Gambar 2.5. Fungsi keanggotaan trapesium dapat dinyatakan sebagai berikut:

8 14 trapesium(x; a, b, c, d) = { 0; x a atau x d x a a x b b a ; 1 b x c d x d c ; x d (2.5) 1 mf1 Derajat keanggotaan x Gambar 2.5 Kurva Trapesium (Irawan, 2007) 3. Fungsi Keanggotaan Generalized Bell (GBell) Bentuk dari fungsi keanggotaan generalized bell ditentukan oleh tiga parameter {a,b,c} seperti ditunjukkan pada Gambar 2.6. Gambar 2.6 Kurva Generalized Bell (Irawan, 2007) Fungsi keanggotaan Generalized Bell (GBell) dapat dinyatakan sebagai berikut: bell(x; a, b, c) = 1 (2.6) 1 + x c 2b a

9 15 Keterangan : b : nilai bias yang biasanya bernilai positif agar kurva menghadap ke bawah. Jika b negatif, maka fungsi keanggotaan akan menjadi upside-down bell. c : nilai mean kurva. a : standar deviasi yang terbentuk. 4. Fungsi Keanggotaan Gaussian (Gauss) Bentuk dari fungsi keanggotaan gaussian ditentukan oleh dua parameter {c, } seperti ditunjukkan oleh Gambar 2.7. Gambar 2.7 Kurva Gaussian (Irawan, 2007) Fungsi keanggotaan gaussian dapat dinyatakan sebagai berikut: gauss(x;, c) = e (x c)2 2σ 2 (2.7) Keterangan: c: merupakan pusat dari fungsi keanggotaan gaussian, σ: menentukan lebar fungsi keanggotaan. Fungsi keanggotaan segitiga dan trapesium telah banyak digunakan secara luas karena memiliki rumus yang sederhana dan efisiensi dalam komputasi. Namun karena fungsi keanggotaan terdiri dari segmen-segmen garis lurus, fungsi keanggotaan segitiga dan trapesium tidak halus (smooting) pada titik-titik tertentu. Untuk mendapatkan fungsi keanggotaan yang lebih halus dan bersifat continue dapat digunakan fungsi keanggotaan lainnya seperti fungsi keanggotaan Generalized Bell

10 16 (GBell) dan Gaussian. Fungsi keanggotaan Generalized Bell (GBell) dan Gaussian menyediakan fungsi yang lebih halus dan cocok digunakan oleh sistem pembelajaran seperti neural networks. Fungsi keanggotaan Gbell dan Gaussian juga sering digunakan dalam bidang probabilistik dan statistik (Melin, et al, 2002) Fuzzy clustering Fuzzy clustering merupakan pengelompokan data atau data cluster yang memiliki karakteristik yang hampir sama secara matematis dalam sebuah kelompok atau kelas tertentu. Membership function yang akan digunakan pada fuzzy clustering dimodelkan dari data-data yang telah ada. Proses pembentukan membership function ini disebut modeling (Fariska, 2010). Metode fuzzy clustering yang biasa digunakan untuk memodelkan data adalah Fuzzy C-Means (FCM) dan Fuzzy Subclustering. Fuzzy Subclustering merupakan metode pengelompokan data secara tidak terawasi dimana jumlah cluster tidak perlu didefenisikan terlebih dahulu. Berbeda dengan Fuzzy Subclustering, FCM merupakan metode pengelompokan data secara terawasi dimana jumlah cluster harus ditentukan terlebih dahulu sebelum melakukan pengelompokan data. Konsep dasar FCM pertama kali adalah menentukan pusat cluster pada kondisi awal pusat cluster ini masih belum akurat. Setiap data memiliki derajat keanggotaan untuk tiap cluster dengan cara memperbaiki pusat cluster dan nilai keanggotaan tiap data secara berulang, maka akan dapat dilihat bahwa pusat cluster akan bergerak menuju lokasi yang tepat (Fariska, 2010). Sen-Chi Yu (2008) dan Rukli (2013) mengemukakan prosedur perhitungan FCM secara lengkap, yakni: 1. Menentukan matriks X berukuran n x m, dengan n = banyak data yang akan di cluster dan m = banyak variabel (kriteria). Penentuan n dan m disesuaikan dengan kondisi data yang digunakan. 2. Tentukan banyak cluster yang akan dibentuk dimana banyak cluster lebih besar atau sama dengan 2 (c 2).

11 17 3. Tentukan bobot pangkat cluster dimana bobot pangkat bernilai lebih besar 1 (pembobot w > 1). 4. Tentukan maksimum iterasi yang diinginkan. 5. Tentukan kriteria penghentian (ε = nilai positif yang sangat kecil). 6. Bentuklah matriks partisi awal U (derajat keanggotaan dalam cluster) dengan matriks partisi awal biasanya dibuat secara acak. µ 11 (x 1 ) µ 12 (x 2 ) µ 1n (x n ) µ 21 (x 1 ) µ 22 (x 2 ) µ 2n (x n ) [ µ c1 (x 1 ) µ c2 (x 2 ) µ cn (x n )] 7. Hitung pusat cluster V untuk setiap cluster dengan menggunakan persamaan berikut: v ij = n k=1 n k=1 (μ ik) w. x kj (μ ik ) w (2.8) 8. Memperbaiki derajat keanggotaan setiap data pada setiap cluster (perbaiki matriks partisi) dengan menggunakan persamaan: c μ ik = ( [ d 2/(w 1) ik ] ) d jk j=1 1 (2.9) dimana 1/2 m d ik = d(x k v i ) = ( (x kj v ij )) j=1 (2.10)

12 18 9. Tentukanlah kriteria penghentian iterasi, yaitu perubahan matriks partisi pada iterasi sekarang dan iterasi sebelumnya dimana perubahan tersebut sebesar delta: Δ U t - U t Apabila Δ<ε maka iterasi dihentikan dan jika tidak lanjutkan menghitung kembali pusat cluster ke-k. 11. Pada akhir proses FCM akan diperoleh suatu pengelompokan data yang terdiri dari nilai center tiap cluster. Bila fungsi keanggotaan yang digunakan adalah kurva Generalized Bell (GBell), maka standar deviasi setiap cluster harus dihitung terlebih dahulu. Nilai fuzzy membership function pada setiap data dapat diperoleh dengan memasukkan data yang telah dinormalkan, nilai center dan standar deviasi cluster ke dalam persamaan kurva GBell. Informasi cluster ini nantinya akan membantu dalam pembangunan FIS model Sugeno yang bisa memodelkan hubungan data input-output dengan jumlah rule minimum. Definisi sebuah rule diasosiasikan dengan suatu cluster data (Sari, et al, 2012) Inferensi Pada tahapan ini sistem menalar nilai masukan (input) untuk menentukan nilai keluaran (output) sebagai bentuk pengambil keputusan. Sistem terdiri dari beberapa aturan dimana kesimpulan diperoleh dari kumpulan dan korelasi antaraturan (Effendi, 2009). Metode inferensi yang sering digunakan yaitu, metode Mamdani, Sugeno dan Sukamoto. Untuk melakukan proses inferensi, terdapat 3 operasi dasar yang umum digunakan yaitu max, min dan not Operasi himpunan fuzzy Operasi-operasi pada himpunan fuzzy pada dasarnya mirip dengan operasi pada himpunan klasik dimana operasi logika AND diganti dengan min, operasi logika OR diganti dengan max, sedangankan operator NOT diganti dengan operasi komplemen pada himpunan tersebut (Irawan, 2007).

13 19 Menurut Sari (2001), operasi dasar himpunan fuzzy adalah sebagai berikut: 1. Operasi dan (Intersection) A dan B merupakan himpunan fuzzy dari X, ditunjukkan sebagai derajat keanggotaan dari A B adalah hasil yang diperoleh dengan mengambil nilai keanggotaan terkecil antara elemen-elemen pada himpunan-himpunan yang bersangkutan. μ A B = min[μ A (x), μ b (x)], x X (2.11) 2. Operasi atau (Union) A atau B merupakan himpunan fuzzy dari X, ditunjukkan sebagai derajat keanggotaan dari A B adalah hasil yang diperoleh dengan mengambil nilai keanggotaan terbesar antara elemen-elemen pada himpunan-himpunan yang bersangkutan. μ A B = max[μ A (x), μ b (x)], x X (2.12) 3. Operasi Tidak (Complement) Operasi tidak A merupakan himpunan fuzzy dari X, ditunjukkan sebagai derajat keanggotaan dari A (A komplemen) adalah hasil yang diperoleh dengan mengurangkan nilai keanggotaan elemen pada himpunan yang bersangkutan dari 1. μ A (x) = 1 μ A (x) (2.13) Metode inferensi sugeno Metode ini diperkenalkan oleh Takagi-Sugeno Kang pada tahun Secara umum, bentuk model aturan metode inferensi Sugeno menggunakan bentuk aturan IF-THEN. Terdapat dua bentuk model aturan pada metode inferensi Sugeno (Sari, et al, 2012), yaitu:

14 20 1. Model Fuzzy Sugeno Orde-Nol Secara umum bentuk model fuzzy Sugeno Orde-Nol adalah: IF (x1 is A1) (x2 is A2) (x3 is A3)... (xn is An) THEN z=k dengan Ai adalah himpunan fuzzy ke-i sebagai anteseden, dan k adalah suatu konstanta (tegas) sebagai consequent. 2. Model Fuzzy Sugeno Orde-Satu Secara umum bentuk model fuzzy Sugeno Orde-Satu adalah: IF (x1 is A1)... (xn is An) THEN z = p1*x1 + + pn*xn + q dengan Ai adalah himpunan fuzzy ke-i sebagai anteseden, dan pi adalah suatu konstanta (tegas) ke-i dan q juga adalah konstanta dalam consequent. Metode inferensi Sugeno memformulasikan pendekatan sistematis menggunakan aturan fuzzy dari kumpulan data masukan-keluaran guna membentuk semua operasi dari fungsi keanggotaan menjadi kesimpulan tunggal. Metode inferensi Sugeno memiliki efisiensi komputasi dan bekerja dengan baik dengan teknik linier, teknik optimasi, teknik adaptif, serta cocok untuk analisis matematis. Metode inferensi Sugeno memiliki hasil yang tidak jauh berbeda dengan metode inferensi Mamdani Defuzzifikasi Input dari proses defuzzifikasi adalah suatu himpunan fuzzy yang diperoleh dari komposisi aturan-aturan fuzzy, sedangkan output yang dihasilkan merupakan suatu bilangan pada domain himpunan fuzzy tersebut. Sehingga jika diberikan suatu himpunan fuzzy dalam range tertentu, maka harus dapat diambil suatu nilai crsip tertentu sebagai output (Sari, et al, 2012). Metode defuzzifikasi yang digunakan dalam penelitian ini adalah weight average. Pada metode weight average ini mengambil nilai rata-rata dengan menggunakan pembobotan berupa derajat keanggotaaan, sehingga z* didefinisikan sebagai:

15 21 Z = μ(z).z μ(z) (2.14) dimana z adalah nilai crisp dan μ(z) adalah derajat keanggotaan dari nilai crisp z. 2.5 Jaringan Saraf Tiruan Jaringan saraf tiruan (JST) adalah struktur jaringan dimana keseluruhan tingkah laku masukan-keluaran ditentukan oleh sekumpulan parameter yang dimodifikasi. Salah satu struktur jaringan neural adalah multilayer perceptrons (MLP) dimana jenis jaringan ini khusus bertipe lajur maju. MLP telah diterapkan dengan sukses untuk menyelesaikan masalah-masalah yang sulit dan beragam dengan melatihnya menggunakan algoritma propagasi balik dari kesalahan atau Error Backpropagation (EBP) (Fariza,2007). Untuk meningkatkan kemampuan pembelajaran, jaringan saraf tiruan dapat bekerja dengan sistem fuzzy. Sistem fuzzy menggambarkan suatu sistem dengan pengetahuan linguistik yang mudah dimengerti. Sistem inferensi fuzzy dapat ditalar dengan algoritma propagasi balik berdasarkan pasangan data masukan-keluaran menggunakan arsitektur jaringan neural. Dengan cara ini memungkinkan sistem fuzzy dapat belajar. Gabungan sistem fuzzy dengan jaringan neural ini biasa disebut dengan sistem Neuro Fuzzy (Fariza,2007). 2.6 Prediksi Menggunakan ANFIS Sistem Neuro Fuzzy berstruktur ANFIS (Adaptive Neuro Fuzzy Inference Sistem atau biasa disebut juga Adaptive Network based Fuzzy Inference Sistem) termasuk dalam kelas jaringan neural namun berdasarkan fungsinya sama dengan Fuzzy Inference System. Pada sistem Neuro Fuzzy, proses belajar pada neural network dengan sejumlah pasangan data yang berguna untuk memperbaharui parameter-parameter Fuzzy Inference System (Fariza, 2007). Sebagai contoh, untuk model fuzzy Sugeno Orde-Satu, aturan yang umum dengan dua aturan fuzzy IF THEN sebagai berikut:

16 22 RULE 1 : IF x is A1 AND y is B1, THEN f1 = p1x + q1y + r1; RULE 2 : IF x is A2 AND y is B2, THEN f2 = p2x + q2y + r2; dengan x dan y adalah masukan tegas pada node ke i, Ai dan Bi adalah label linguistik (rendah, sedang, tinggi, dan lain-lain) yang dinyatakan dengan fungsi keanggotaan yang sesuai, sedangkan pi, qi, dan ri adalah parameter consequent (i = 1 atau 2) (Rosyadi, 2011). Data yang digunakan untuk proses pembelajaran (training) terdiri dari data masukan, parameter ANFIS, dan data test yang berada pada priode training ANFIS yang kemudian dilakukan proses pembelajaran terhadap data-data tersebut sehingga nantinya diproleh output berupa hasil prediksi. Training dengan ANFIS menggunakan algoritma belajar hybrid, dimana dilakukan penggabungan metode Least-Squares Estimator (LSE) untuk menghitung nilai consequent pada alur maju dan menggunakan Error Backpropagation (EBP) dan gradient descent pada alur mundur untuk menghitung error yang terjadi pada tiap layer (Fariza, 2007). ANFIS terdiri dari lima layer. Pada layer pertama terdiri dari proses fuzzifikasi dimana data masukan dan target dipetakan dalam derajat keanggotaannya. Pada layer kedua dan ketiga dilakukan proses inferensi yang digunakan untuk menentukan rule fuzzy menggunakan inferensi Sugeno dimana hasilnya akan diproses pada perhitungan selanjutnya. Pada layer 4 dilakukan proses pencarian nilai consequent dengan menggunakan LSE. Pada layer 5 dilakukan proses summary dari dua keluaran pada layer 4. Pada ANFIS, Fuzzy Inference System (FIS) terletak pada layer 1, 2, 3 dan 4 dimana FIS adalah sebagai penentu hidden node yang terdapat pada sistem neural network (Fariza, 2007). Setelah perhitungan alur maju dilakukan perhitungan alur mundur untuk menghitung nilai error tiap layer dan mengubah nilai parameter masukan menggunakan gradient descent. Proses perhitungan di atas akan berulang terus menerus sampai nilai error memenuhi nilai error maksimum yang telah ditentukan. Alur proses dari sebuah sistem ANFIS yang terdiri dari lima layer digambarkan pada Gambar 2.5.

17 23 Gambar 2.8 Blok diagram ANFIS (Rosyadi, 2011) Berikut ini adalah algoritma Adaptive Neuro Fuzzy Inference System yang digunakan untuk memprediksi data runtun waktu (Mordjaoui, et. al, 2011): 1. Melakukan inisialisasi terhadap parameter ANFIS, yaitu laju pembelajaran (lr), momentum (mc), batasan kesalahan (err), dan maksimum iterasi (Max Epoch). 2. Tahap pertama yang dilakukan adalah lajur maju yang berisi beberapa tahap untuk mencari nilai consequent dari aturan yang dibuat dan melakukan penjumlah terhadap semua masukan pada layer terakhir. Adapun tahapan lajur maju adalah sebagai berikut: a. Setiap node i pada layer satu merupakan node adaptive dengan fungsi node sebagai berikut: O 1,i = μ Ai (x), i = 1, 2 atau O 1,i = μ Bi 2 (x), i = 3, 4 (2.15) dimana: x atau y : input dari node i Ai atau Bi : sebuah label linguistik yang terhubung dengan node i. O1,i : derajat keanggotaan sebuah himpunan fuzzy dengan fungsi kurva Gbell yang terdapat pada persamaan (2.6).

18 24 b. Setiap node i pada layer kedua berupa node tetap yang keluarannya adalah hasil dari masukan. Operator yang digunakan adalah operator AND. Tiap-tiap node merepresentasikan α predikat dari aturan ke-i. Keluaran dari layer ini disebut dengan firing strength. O 2,i = w i = μa i (x)μb i (y), i = 1, 2 (2.16) c. Tiap-tiap node pada layer ketiga berupa node tetap yang merupakan hasil penghitungan rasio dari α predikat (w ), dari aturan ke-i terhadap jumlah dari keseluruhan α predikat. Dimana hasilnya dinamakan dengan normalized firing strength. O 3,i = w i = w i w 1 + w 2, i = 1, 2 (2.17) d. Tiap-tiap node pada layer keempat merupakan node adaptive terhadap suatu keluaran. O 4,i = w i f i = w i (p i x + q i y + r i ), i = 1, 2 (2.18) Dengan w adalah normalized firing strength pada layer ketiga dan {pi, qi, ri} adalah parameter-parameter pada node tersebut yang dinamakan consequent parameters. e. Menentukan consequent parameters dengan menggunakan recursive leastsquares estimator (LSE resahamif). Berikut ini adalah langkah untuk menentukan nilai consuquent dengan menggunakan LSE resahamif: i. Buat matrix A dengan ukuran n x n yang berisi nilai dari keluaran pada layer keempat dan nilai n merupakan jumlah parameter keluaran pada layer keempat. ii. Buat matrix Y dengan ukuran n x 1 yang berisi nilai dari target prediksi. P n = (A T n A n ) 1 (2.19) θ n = A n A T n Y n (2.20)

19 25 iii. Melakukan pengulangan dari n+1 sampai data terakhir untuk mendapatkan nilai consequent. P n+1 = P n P T na n+1 a n+1 P n T (2.21) 1 + a n+1 P n a n+1 T θ n+1 = θ n + P n+1 a n+1 (Y n+1 a n+1 θ n ) (2.22) f. Pada layer kelima memiliki sebuah node yang tetap yang mempunyai tugas untuk menjumlahkan nilai dari semua masukan. O 5,i = w if i i = i w if i (2.23) i w i g. Berdasarkan arsitektur ANFIS yang terdapat Gambar 2.8 ketika nilai dari parameter consequent telah ditetapkan, maka nilai output juga dapat ditetapkan sebagai persamaan linear yang merupakan kombinasi dari parameter consequent. Nilai simbul arsitektur dinotasikan dengan f. f = w 1 w 1 + w 2 f 1 + w 2 w 1 + w 2 f 2 f = w 1(p 1 x + q 1 y + r 1 ) + w 2(p 1 x + q 1 y + r 1 ) (2.24) f = (w 1x)p 1 + (w 1y)q 1 + (w 1)r 1 + (w 2x)p 1 + (w 2y)q 1 + (w 2)r 2 3. Setelah tahap lajur maju selesai, maka selanjutnya dilakukan tahap laju mundur dengan menggunakan Error Backbropagation (EBP) untuk mengecek setiap error pada setiap layer dan menggunakan gradient descent untuk mengubah nilai parameter masukan pada layer pertama. EBP menggunakan metode ordered derivative untuk mencari error pada setiap layer. a. Menghitung nilai error pada layer kelima. E 5,i = E p O 5,i = 2(y p y p ) (2.25)

20 26 dimana: yp = target prediksi yp * = hasil prediksi b. Menghitung nilai error pada layer keempat. E 4,j = ( E p O 5,i ) ( f 5,i O 4,j ) = ℇ 5,i ( f 5,i O 4,j ) = ℇ 5,i (1) (2.26) c. Menghitung nilai error pada layer ketiga. E 3,j = ( E p O 5,i ) ( f 5,i O 4,j ) ( f 4,j O 3,j ) = E 4,j ( f 4,j O 3,j ) (2.27) d. Menghitung nilai error pada layer kedua. n E 2,j = ( + E ) ( f 3,j ) = E O 3,j O 3,j ( f 3,j ) 2,k O 2,k k=1 n k=1 (2.28) e. Menghitung nilai error pada layer pertama. m n E 1,ij = ( + E ) ( f 2,k ) = E O 2,j O 2,j ( f 2,k ) (2.29) 1,j O 1,ij k=1 k=1 f. Mengitung nilai error antara layer pertama dengan parameter masukan. m E a,ij = ( + E ) ( f 1,ik, ) O 1,ik a ij k=1 m E c,ij = ( + E ) ( f 1,ik, ) O 1,ik c ij k=1 (2.30) (2.31)

21 27 g. Mengubah nilai parameter masukan pada layer pertama dengan menggunakan gradient descent. dimana: a : Mean c : Deviasi : Laju pembelajaran a ij = ηe a,ij x i (2.32) c ij = ηe c,ij x i (2.33) a ij = a lama ij + a ij (2.34) c ij = c lama ij + c ij (2.35) 4. Menghitung jumlah kuadrat error (SSE) pada layer ke L data ke-p, 1 p N. N(L) E p = (d p k X p L,k ) 2 k=1 (2.36) 5. Ulangi proses iterasi hingga nilai epoch < Max Epoch dan Ep > batasan kesalahan (err). 6. Setelah melakukan training, dilakukan perhitungan kesalahan hasil prediksi dengan menggunakan MAPE (Mean Absolute Percentage Error), berikut adalah formula yang digunakan: Error = ( a b a ) n 100% (2.37) dimana: a = data sebenarnya b = data prediksi n = banyak data

22 Teknik Prediksi Harga Saham Terdahulu Penelitian mengenai prediksi harga saham di Indonesia telah banyak dilakukan dengan berbagai algoritma guna mendapatkan hasil prediksi yang lebih akurat. Chairisni, Sutedjo, dan Setiadi (2005) menggunakan Algoritma Hybrid Neural Network untuk memprediksi harga saham. Adapun langkah-angkah prediksi saham menggunakan Algoritma Hybrid Neural Network yang mereka lakukan (Chairisni, et. al, 2005) adalah sebagai berikut: 1. Melakukan penyaringan data dengan menggunakan algoritma Self Organising Maps Kohonen (SOM) ke dalam pola-pola untuk menyederhanakan proses pembelajaran jaringan Backpropagation. 2. SOM memilik 5 neuron yang terhubung ke lapisan output (cluster) yang berjumlah 20 pola neuron. Lima neuron input yang digunakan adalah harga pembukaan, harga tertinggi, harga terendah, harga penutupan dan volume perdagangan. Dari 20 pola output yang terbentukakan dipilih neuron pemenang, yaitu neuron yang paling mendekati vektor input. 3. Dari neuron pemenang tersebut, diambil harga penutupan pada vektor tersebut sebagai harga saham prediksi. 4. Algoritma Backpropagation pada algoritma hybrid, digunakan untuk memberikan keakuratan dalam prediksi harga saham menggunakan faktor pembimbing g(n) yang dihasilkan dari pembelajaran Algoritma SOM. 5. Jumlah neuron pada lapisan input sama dengan yang digunakan pada SOM yaitu sebanyak 5 buah dengan representasi yang sama. Terdapat 15 lapisan neuron dan 1 neuron pada lapisan output. Semua lapisan menggunakan fungsi sigmoid unipolar sebagai fungsi aktivasi. 6. Faktor pembimbing g(n) yang dihasilkan oleh algoritma SOM digunakan untuk menentukan titik lokasi data pembelajaran pada sliding windows.

23 29 7. Berdasarkan titik tersebut beberapa data pada masa lampau dipelajari dan dengan menggunakan nilai data yang telah ditentukan (nilai data harga penutupan pada titik tersebut), maka algoritma Backpropagation Network dapat melakukan pembelajaran. Proses pembelajaran tersebut terus berulang dan berhenti sampai dengan batasan yang ditentukan. Pada tahun 2008, Setiawan melakukan penelitian mengenai prediksi harga saham menggunakan Jaringan Syaraf Tiruan Multilayer Feedforward Network dengan Algoritma Backpropagation. Langkah-langkah yang dilakukan oleh Setiawan dalam penelitiannya adalah sebagai berikut: 1. Inisialisasi nilai bobot dan bias yang dapat diatur dengan sembarang angka (acak) antara -0.5 dan 0.5, dan inisialisasi learning rate, maksimal iterasi dan toleransi error. 2. Lakukan iterasi selama stopping condition masih belum terpenuhi. Untuk menentukan stopping condition. Jika iterasi sudah melebihi maksimal iterasi maka pelatihan dihentikan. Jika menggunakan toleransi error dengan metode MAPE, bila nilai MAPE kurang dari atau sama dengan toleransi error maka pelatihan dihentikan. 3. Setiap unit input menerima sinyal input dan menyebarkannya pada seluruh hidden unit. 4. Setiap hidden unit akan menghitung sinyal-sinyal input dengan bobot dan nilai bias. Hasil perhitunan tersebut kemudian akan diproses dengan menggunakan fungsi aktivasi yang telah ditentukan sebelumnya sehingga diperoleh sinyal output dari hidden unit tersebut. 5. Setiap unit output akan menghitung sinyal-sinyal dari hidden unit dengan bobot dan nilai bias. Kemudian dengan menggunakan fungsi aktivasi yang telah ditentukan diperoleh sinyal output dari unit output tersebut.

24 30 6. Hitung kesalahan antara target output dengan output hasil menggunakan metode Mean Absolute Persentage Error. Jika masih belum memenuhi syarat, dilakukan penghitungan faktor koreksi error (δk). 7. Setiap hidden unit akan menghitung bobot yang dikirimkan output unit. Kemudian hasilnya dikalikan dengan turunan dari fungsi aktivasi untuk mendapatkan faktor koreksi error. 8. Setiap unit output akan memperbaharui bobotnya dari setiap hidden unit. Demikian pula setiap hidden unit akan memperbaharui bobotnya dari setiap unit input. 9. Memeriksa stopping condition. Pada tahun 2008, Panji melakukan penelitian mengenai multifraktalitas dan studi komparatif prediksi indeks dengan metode Arima dan Neural Network (studi komparatif pada indeks LQ45 periode ). Adapun langkah-langkah metode ARIMA dalam penelitian tersebut sebagai berikut: 1. Melakukan pemeriksaan kestasioneran data dengan menggunakan ADF (augmented dickey-fuller). 2. Melakukan proses differencing (pembedaan) apabila data tidak stasioner. 3. Melakukan penentuan nilai derajat autoregressive (AR), tingkat proses differencing, dan derajat moving average (MA) dalam ARIMA. 4. Melakukan estimasi parameter pada metode ARIMA, lalu melakukan proses prediksi. 5. Menghitung tingkat error dengan mengunakan MAD (Mean Absolute Deviation), MSE (Mean Squared Error), dan MPE (Mean Percentage Error). Pada tahun 2010, Fariska melakukan penelitian mengenai prediksi Multi Atribut dengan Menggunakan Fuzzy Clustering dengan langkah-langkah penelitian sebagai berikut:

25 31 1. Menentukan nilai perulangan, derajat, jumlah kelas, fungsi objektif, jumlah baris data, dan jumlah kolom data. 2. Menentukan nilai U awal. 3. Melakukan pengulangan sampai batas nilai pengulangan dan error yang telah ditentukan untuk mencari nilai center dan U baru. 4. Melakukan pengempokkan data berdasarkan hasil U baru yang telah diperoleh pada perulangan sebelumnya. 5. Mencari mean, standar deviasi, dan derajat keanggotaan. 6. Melakukan prediksi menggunakan metode Fuzzy Sugeno. Adapun beberapa penelitian sebelumnya yang telah dilakukan untuk memprediksi harga saham berdasarkan data masa lalunya dapat dilihat pada Table 2.1. Tabel 2.1 Penelitian Sebelumnya No Judul Pengarang Tahun Kelebihan Kekurangan 1. Prediksi Harga Saham Dengan Menggunakan Algoritma Hybrid Neural Network 2. Prediksi Harga Saham Menggunakan Jaringan Syaraf Tiruan Multilayer Feedforward Network Dengan Algoritma Backpropagation Chairisni Lubis, Eddy Sutedjo, Bowo Setiadi Wahyudi Setiawan 2005 Algoritma Hybrid lebih akurat dibandingkan dengan algoritma Backpro dan algoritma SOM Kohonen. Nilai kesalahan rata-rata Algoritma Hybrid 0,02% untuk saham Gudang Garam Tbk Hasil prediksi jangka panjang cukup akurat dengan tingkat error MAPE mencapai 2.7% untuk prediksi data saham tahun n/a Teknik yang digunakan terbatas pada jumlah iterasinya.

26 32 Tabel 2.1 Penelitian Sebelumnya (Lanjutan) No Judul Pengarang Tahun Kelebihan Kekurangan 3. Multifraktalitas dan Studi Komparatif Prediksi Indeks dengan Metode ARIMA dan Neural Network (Studi Komparatif pada Indeks LQ45 Periode ) 4. Peramalan Multi Atribut Dengan Menggunakan Fuzzy Clustering (Studi Kasus: Stock Price) Muhammad Panji M. Andy Fariska 2008 Untuk pengujian jangka panjang, hasil training saham LQ45 dengan JST lebih baik dari pada dengan metode ARIMA. Namun untuk hasil testing, ARIMA lebih unggul dari JST Hasil peramalan terbaik dilakukan pada data bertipe random Belum adanya uji coba dengan jumlah data dalam priode waktu jangka pendek n/a

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Bab ini membahas tentang teori penunjang dan penelitian sebelumnya yang berhubungan dengan penerapan metode Adaptive Neuro Fuzzy Inference System (ANFIS) untuk prediksi Beban Daya

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Bab ini membahas tentang teori penunjang dan penelitian sebelumnya yang berhubungan dengan penerapan metode Adaptive Neuro Fuzzy Inference System (ANFIS) untuk prediksi pendapatan

Lebih terperinci

Peningkatan Akurasi Dalam Prakiraan Beban Listrik Jangka Pendek Menggunakan Data Temperatur

Peningkatan Akurasi Dalam Prakiraan Beban Listrik Jangka Pendek Menggunakan Data Temperatur Peningkatan Akurasi Dalam Prakiraan Beban Listrik Jangka Pendek Menggunakan Data Temperatur Imaad Al-Mutawakkil*, Dian Yayan Sukma** Jurusan Teknik Elektro Fakultas Teknik Universitas Riau Kampus Binawidya

Lebih terperinci

METODOLOGI PENELITIAN

METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN A. Kerangka Pemikiran Perusahaan dalam era globalisasi pada saat ini, banyak tumbuh dan berkembang, baik dalam bidang perdagangan, jasa maupun industri manufaktur. Perusahaan

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Variabel Penelitian Penelitian ini menggunakan satu definisi variabel operasional yaitu ratarata temperatur bumi periode tahun 1880 sampai dengan tahun 2012. 3.2 Jenis dan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Permintaan, Persediaan dan Produksi 2.1.1 Permintaan Permintaan adalah banyaknya jumlah barang yang diminta pada suatu pasar tertentu dengan tingkat harga tertentu pada tingkat

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya

Institut Teknologi Sepuluh Nopember Surabaya Aplikasi Sistem Inferensi Fuzzy Metode Sugeno dalam Memperkirakan Produksi Air Mineral dalam Kemasan Oleh Suwandi NRP 1209201724 Dosen Pembimbing 1. Prof. Dr M. Isa Irawan, MT 2. Dr Imam Mukhlash, MT Institut

Lebih terperinci

Penerapan Adaptive Neuro Fuzzy Inference System Dalam Memprediksi Volume Pemakaian Air Bersih

Penerapan Adaptive Neuro Fuzzy Inference System Dalam Memprediksi Volume Pemakaian Air Bersih Penerapan Adaptive Neuro Fuzzy Inference System Dalam Memprediksi Volume Pemakaian Air Bersih Niska Ramadani Dosen Universitas Dehasen Bengkulu niskaramadani@gmail.com ABSTRAK Pertumbuhan penduduk harus

Lebih terperinci

Penerapan Jaringan Saraf Tiruan Metode Backpropagation Menggunakan VB 6

Penerapan Jaringan Saraf Tiruan Metode Backpropagation Menggunakan VB 6 Penerapan Jaringan Saraf Tiruan Metode Backpropagation Menggunakan VB 6 Sari Indah Anatta Setiawan SofTech, Tangerang, Indonesia cu.softech@gmail.com Diterima 30 November 2011 Disetujui 14 Desember 2011

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Logika Fuzzy Fuzzy secara bahasa diartikan sebagai kabur atau samar yang artinya suatu nilai dapat bernilai benar atau salah secara bersamaan. Dalam fuzzy dikenal derajat keanggotan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Logika Fuzzy Logika fuzzy merupakan suatu metode pengambilan keputusan berbasis aturan yang digunakan untuk memecahkan keabu-abuan masalah pada sistem yang sulit dimodelkan

Lebih terperinci

Erwien Tjipta Wijaya, ST.,M.Kom

Erwien Tjipta Wijaya, ST.,M.Kom Erwien Tjipta Wijaya, ST.,M.Kom PENDAHULUAN Logika Fuzzy pertama kali dikenalkan oleh Prof. Lotfi A. Zadeh tahun 1965 Dasar Logika Fuzzy adalah teori himpunan fuzzy. Teori himpunan fuzzy adalah peranan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Jaringan Syaraf Tiruan Artificial Neural Network atau Jaringan Syaraf Tiruan (JST) adalah salah satu cabang dari Artificial Intelligence. JST merupakan suatu sistem pemrosesan

Lebih terperinci

LOGIKA FUZZY. Kelompok Rhio Bagus P Ishak Yusuf Martinus N Cendra Rossa Rahmat Adhi Chipty Zaimima

LOGIKA FUZZY. Kelompok Rhio Bagus P Ishak Yusuf Martinus N Cendra Rossa Rahmat Adhi Chipty Zaimima Sistem Berbasis Pengetahuan LOGIKA FUZZY Kelompok Rhio Bagus P 1308010 Ishak Yusuf 1308011 Martinus N 1308012 Cendra Rossa 1308013 Rahmat Adhi 1308014 Chipty Zaimima 1308069 Sekolah Tinggi Manajemen Industri

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Bab landasan teori bertujuan untuk memberikan penjelasan mengenai metode atau pun teori yang digunakan dalam laporan tugas akhir ini, sehingga dapat membangun pemahaman yang sama antara

Lebih terperinci

BAB III PEMBAHASAN. FRBFNN, Arsitektur FRBFNN, aplikasi FRBFNN untuk meramalkan kebutuhan

BAB III PEMBAHASAN. FRBFNN, Arsitektur FRBFNN, aplikasi FRBFNN untuk meramalkan kebutuhan BAB III PEMBAHASAN Pada bab ini berisi mengenai FRBFNN, prosedur pembentukan model FRBFNN, Arsitektur FRBFNN, aplikasi FRBFNN untuk meramalkan kebutuhan listrik di D.I Yogyakarta. A. Radial Basis Function

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Clustering Clustering atau analisis cluster adalah proses pengelompokan satu set benda- benda fisik atau abstrak ke dalam kelas objek yang sama (Han, 2006). Baskoro (2010) menyatakan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini penulis akan menjelaskan mengenai landasan teori yang digunakan pada penelitian ini. Penjabaran ini bertujuan untuk memberikan pemahaman lebih mendalam kepada penulis

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN BAB 3 METODOLOGI PENELITIAN 3.1. Data Yang Digunakan Dalam melakukan penelitian ini, penulis membutuhkan data input dalam proses jaringan saraf tiruan backpropagation. Data tersebut akan digunakan sebagai

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Data runtun waktu dari fenomena real seperti data finansial biasanya bersifat nonstasioner. Tipe data runtun waktu finansial biasanya dicirikan oleh pola-pola seperti

Lebih terperinci

IMPLEMENTASI JARINGAN SYARAF TIRUAN MULTI LAYER FEEDFORWARD DENGAN ALGORITMA BACKPROPAGATION SEBAGAI ESTIMASI NILAI KURS JUAL SGD-IDR

IMPLEMENTASI JARINGAN SYARAF TIRUAN MULTI LAYER FEEDFORWARD DENGAN ALGORITMA BACKPROPAGATION SEBAGAI ESTIMASI NILAI KURS JUAL SGD-IDR Seminar Nasional Teknologi Informasi dan Multimedia 205 STMIK AMIKOM Yogyakarta, 6-8 Februari 205 IMPLEMENTASI JARINGAN SYARAF TIRUAN MULTI LAYER FEEDFORWARD DENGAN ALGORITMA BACKPROPAGATION SEBAGAI ESTIMASI

Lebih terperinci

FUZZY LOGIC CONTROL 1. LOGIKA FUZZY

FUZZY LOGIC CONTROL 1. LOGIKA FUZZY 1. LOGIKA FUZZY Logika fuzzy adalah suatu cara tepat untuk memetakan suatu ruang input ke dalam suatu ruang output. Teknik ini menggunakan teori matematis himpunan fuzzy. Logika fuzzy berhubungan dengan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Bab ini berisi tentang pemahaman dari logika fuzzy dan data mining. Pada bab ini juga akan dijelaskan bagian-bagian yang perlu diketahui dalam logika fuzzy dan data mining, sehingga

Lebih terperinci

Perbandingan Regresi Linear, Backpropagation Dan Fuzzy Mamdani Dalam Prediksi Harga Emas

Perbandingan Regresi Linear, Backpropagation Dan Fuzzy Mamdani Dalam Prediksi Harga Emas TEKNOLOGI DI INDUSTRI (SENIATI) 016 ISSN : 085-418 Perbandingan Regresi Linear, Backpropagation Dan Fuzzy Mamdani Dalam Prediksi Harga Emas Nur Nafi iyah Program Studi Teknik Informatika Universitas Islam

Lebih terperinci

Jurnal Coding, Sistem Komputer Untan Volume 04, No. 3 (2016), hal ISSN: X

Jurnal Coding, Sistem Komputer Untan Volume 04, No. 3 (2016), hal ISSN: X SISTEM PENDUKUNG KEPUTUSAN PREDIKSI CURAH HUJAN DENGAN METODE ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (Studi Kasus: Kota Pontianak) [1] Ruspina Ningsih, [2] Beni Irawan, [3] Fatma Agus Setyaningsih [1][3]

Lebih terperinci

T 2 Aplikasi Model Neuro Fuzzy Untuk Prediksi Tingkat Inflasi Di Indonesia

T 2 Aplikasi Model Neuro Fuzzy Untuk Prediksi Tingkat Inflasi Di Indonesia T 2 Aplikasi Model Neuro Fuzzy Untuk Prediksi Tingkat Inflasi Di Indonesia Aidatul Fitriah 1, Agus Maman Abadi 2 1) Program Studi Matematika, FMIPA Universitas Negeri Yogyakarta 2) Jurusan Pendidikan Matematika,

Lebih terperinci

BAB II LANDASAN TEORI. Dalam kondisi yang nyata, beberapa aspek dalam dunia nyata selalu atau biasanya

BAB II LANDASAN TEORI. Dalam kondisi yang nyata, beberapa aspek dalam dunia nyata selalu atau biasanya BAB II LANDASAN TEORI A. Logika Fuzzy Dalam kondisi yang nyata, beberapa aspek dalam dunia nyata selalu atau biasanya berada di luar model matematis dan bersifat inexact. Konsep ketidakpastian inilah yang

Lebih terperinci

T 11 Aplikasi Model Backpropagation Neural Network Untuk Perkiraan Produksi Tebu Pada PT. Perkebunan Nusantara IX

T 11 Aplikasi Model Backpropagation Neural Network Untuk Perkiraan Produksi Tebu Pada PT. Perkebunan Nusantara IX T 11 Aplikasi Model Backpropagation Neural Network Untuk Perkiraan Produksi Tebu Pada PT. Perkebunan Nusantara IX Oleh: Intan Widya Kusuma Program Studi Matematika, FMIPA Universitas Negeri yogyakarta

Lebih terperinci

PERAMALAN BEBAN LISTRIK JANGKA PENDEK DI BALI MENGGUNAKAN PENDEKATAN ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)

PERAMALAN BEBAN LISTRIK JANGKA PENDEK DI BALI MENGGUNAKAN PENDEKATAN ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS) PERAMALAN BEBAN LISTRIK JANGKA PENDEK DI BALI MENGGUNAKAN PENDEKATAN ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS) L K Widyapratiwi 1, I P A Mertasana 2, I G D Arjana 2 1 Mahasiswa Teknik Elektro, Fakultas

Lebih terperinci

BAB III METODELOGI PENELITIAN. media cacing dengan metode adaptive neuro fuzzy inference system (ANFIS)

BAB III METODELOGI PENELITIAN. media cacing dengan metode adaptive neuro fuzzy inference system (ANFIS) BAB III METODELOGI PENELITIAN 3.1 Studi Literatur Untuk memehami cara rancang bangun pengontrol suhu dan kelembaban media cacing dengan metode adaptive neuro fuzzy inference system (ANFIS) dibutuhkan studi

Lebih terperinci

JURNAL SAINS DAN SENI ITS Vol. 4, No.2, (2015) ( X Print) A-31

JURNAL SAINS DAN SENI ITS Vol. 4, No.2, (2015) ( X Print) A-31 JURNAL SAINS DAN SENI ITS Vol 4, No2, (2015) 2337-3520 (2301-928X Print) A-31 Perbandingan Performansi Metode Peramalan Fuzzy Time Series yang Dimodifikasi dan Jaringan Syaraf Tiruan Backpropagation (Studi

Lebih terperinci

BAB II LANDASAN TEORI. papernya yang monumental Fuzzy Set (Nasution, 2012). Dengan

BAB II LANDASAN TEORI. papernya yang monumental Fuzzy Set (Nasution, 2012). Dengan BAB II LANDASAN TEORI 2.. Logika Fuzzy Fuzzy set pertama kali diperkenalkan oleh Prof. Lotfi Zadeh, 965 orang Iran yang menjadi guru besar di University of California at Berkeley dalam papernya yang monumental

Lebih terperinci

Implementasi Jaringan Syaraf Tiruan Backpropagation dan Steepest Descent untuk Prediksi Data Time Series

Implementasi Jaringan Syaraf Tiruan Backpropagation dan Steepest Descent untuk Prediksi Data Time Series Implementasi Jaringan Syaraf Tiruan Backpropagation dan Steepest Descent untuk Prediksi Data Time Series Oleh: ABD. ROHIM (1206 100 058) Dosen Pembimbing: Prof. Dr. M. Isa Irawan, MT Jurusan Matematika

Lebih terperinci

PERKIRAAN BEBAN LISTRIK JANGKA PENDEK DENGAN METODE ADAPTIVE NEURO FUZZY INFERENCE SYSTEM

PERKIRAAN BEBAN LISTRIK JANGKA PENDEK DENGAN METODE ADAPTIVE NEURO FUZZY INFERENCE SYSTEM ISSN : 1978-6603 PERKIRAAN BEBAN LISTRIK JANGKA PENDEK DENGAN METODE ADAPTIVE NEURO FUZZY INFERENCE SYSTEM Sarjon Defit Fakultas Ilmu Komputer Universitas Putra Indonesia YPTK Padang, Sumatera Barat Telp.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Forecasting Forecasting (peramalan) adalah seni dan ilmu untuk memperkirakan kejadian di masa yang akan datang. Hal ini dapat dilakukan dengan melibatkan data historis dan memproyeksikannya

Lebih terperinci

PERBANDINGAN ALGORITMA PARTICLE SWARM OPTIMIZATION DAN REGRESI PADA PERAMALAN WAKTU BEBAN PUNCAK

PERBANDINGAN ALGORITMA PARTICLE SWARM OPTIMIZATION DAN REGRESI PADA PERAMALAN WAKTU BEBAN PUNCAK Jurnal POROS TEKNIK, Volume 6, No. 2, Desember 2014 : 55-10 PERBANDINGAN ALGORITMA PARTICLE SWARM OPTIMIZATION DAN REGRESI PADA PERAMALAN WAKTU BEBAN PUNCAK Nurmahaludin (1) (1) Staff Pengajar Jurusan

Lebih terperinci

Kata kunci: Sistem pendukung keputusan metode Sugeno, tingkat kepribadian siswa

Kata kunci: Sistem pendukung keputusan metode Sugeno, tingkat kepribadian siswa SISTEM PENDUKUNG KEPUTUSAN METODE SUGENO DALAM MENENTUKAN TINGKAT KEPRIBADIAN SISWA BERDASARKAN PENDIDIKAN (STUDI KASUS DI MI MIFTAHUL ULUM GONDANGLEGI MALANG) Wildan Hakim, 2 Turmudi, 3 Wahyu H. Irawan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 JARINGAN SARAF SECARA BIOLOGIS Jaringan saraf adalah salah satu representasi buatan dari otak manusia yang selalu mencoba untuk mensimulasikan proses pembelajaran pada otak

Lebih terperinci

IMPLEMENTASI JARINGAN SYARAF TIRUAN METODE BACKPROPAGATION UNTUK MEMPREDIKSI HARGA SAHAM

IMPLEMENTASI JARINGAN SYARAF TIRUAN METODE BACKPROPAGATION UNTUK MEMPREDIKSI HARGA SAHAM IMPLEMENTASI JARINGAN SYARAF TIRUAN METODE BACKPROPAGATION UNTUK MEMPREDIKSI HARGA SAHAM Ayu Trimulya 1, Syaifurrahman 2, Fatma Agus Setyaningsih 3 1,3 Jurusan Sistem Komputer, Fakultas MIPA Universitas

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.6. Jaringan Syaraf Tiruan Jaringan syaraf tiruan atau neural network merupakan suatu sistem informasi yang mempunyai cara kerja dan karakteristik menyerupai jaringan syaraf pada

Lebih terperinci

Aplikasi yang dibuat adalah aplikasi untuk menghitung. prediksi jumlah dalam hal ini diambil studi kasus data balita

Aplikasi yang dibuat adalah aplikasi untuk menghitung. prediksi jumlah dalam hal ini diambil studi kasus data balita BAB III ANALISA DAN PERANCANGAN SISTEM 3.1. Analisa dan Kebutuhan Sistem Analisa sistem merupakan penjabaran deskripsi dari sistem yang akan dibangun kali ini. Sistem berfungsi untuk membantu menganalisis

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Logika Fuzzy Zadeh (1965) memperkenalkan konsep fuzzy sebagai sarana untuk menggambarkan sistem yang kompleks tanpa persyaratan untuk presisi. Dalam jurnalnya Hoseeinzadeh et

Lebih terperinci

BAB 2 KONSEP DASAR PENGENAL OBJEK

BAB 2 KONSEP DASAR PENGENAL OBJEK BAB 2 KONSEP DASAR PENGENAL OBJEK 2.1 KONSEP DASAR Pada penelitian ini, penulis menggunakan beberapa teori yang dijadikan acuan untuk menyelesaikan penelitian. Berikut ini teori yang akan digunakan penulis

Lebih terperinci

BAB II: TINJAUAN PUSTAKA

BAB II: TINJAUAN PUSTAKA BAB II: TINJAUAN PUSTAKA Bab ini akan memberikan penjelasan awal mengenai konsep logika fuzzy beserta pengenalan sistem inferensi fuzzy secara umum. 2.1 LOGIKA FUZZY Konsep mengenai logika fuzzy diawali

Lebih terperinci

BAB III METODE EGARCH, JARINGAN SYARAF TIRUAN DAN NEURO-EGARCH

BAB III METODE EGARCH, JARINGAN SYARAF TIRUAN DAN NEURO-EGARCH BAB III METODE EGARCH, JARINGAN SYARAF TIRUAN DAN NEURO-EGARCH 3.1 Variabel Penelitian Penelitian ini menggunakan satu definisi variabel operasional yaitu data saham Astra Internasional Tbk tanggal 2 Januari

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Tingkat kesehatan bank dapat diketahui dengan melihat peringkat

BAB IV HASIL DAN PEMBAHASAN. Tingkat kesehatan bank dapat diketahui dengan melihat peringkat BAB IV HASIL DAN PEMBAHASAN A. Analisis Tingkat Kesehatan Bank Tingkat kesehatan bank dapat diketahui dengan melihat peringkat komposit bank tersebut. Menurut peraturan Bank Indonesia No. 13/1/PBI/2011

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA A. Penjurusan di SMA Sepanjang perkembangan Pendidikan formal di Indonesia teramati bahwa penjurusan di SMA telah dilaksanakan sejak awal kemerdekaan yaitu tahun 1945 sampai sekarang,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Himpunan Himpunan adalah setiap daftar, kumpulan atau kelas objek-objek yang didefenisikan secara jelas, objek-objek dalam himpunan-himpunan yang dapat berupa apa saja: bilangan, orang,

Lebih terperinci

Perbaikan Metode Prakiraan Cuaca Bandara Abdulrahman Saleh dengan Algoritma Neural Network Backpropagation

Perbaikan Metode Prakiraan Cuaca Bandara Abdulrahman Saleh dengan Algoritma Neural Network Backpropagation 65 Perbaikan Metode Prakiraan Cuaca Bandara Abdulrahman Saleh dengan Algoritma Neural Network Backpropagation Risty Jayanti Yuniar, Didik Rahadi S. dan Onny Setyawati Abstrak - Kecepatan angin dan curah

Lebih terperinci

BAB III PEMBAHASAN. harga minyak mentah di Indonesia dari bulan Januari 2007 sampai Juni 2017.

BAB III PEMBAHASAN. harga minyak mentah di Indonesia dari bulan Januari 2007 sampai Juni 2017. BAB III PEMBAHASAN Data yang digunakan dalam bab ini diasumsikan sebagai data perkiraan harga minyak mentah di Indonesia dari bulan Januari 2007 sampai Juni 2017. Dengan demikian dapat disusun model Fuzzy

Lebih terperinci

Pengembangan Aplikasi Prediksi Pertumbuhan Ekonomi Indonesia dengan Jaringan Syaraf Tiruan Backpropagation

Pengembangan Aplikasi Prediksi Pertumbuhan Ekonomi Indonesia dengan Jaringan Syaraf Tiruan Backpropagation Erlangga, Sukmawati Nur Endah dan Eko Adi Sarwoko Pengembangan Aplikasi Prediksi Pertumbuhan Ekonomi Indonesia dengan Jaringan Syaraf Tiruan Backpropagation Erlangga, Sukmawati Nur Endah dan Eko Adi Sarwoko

Lebih terperinci

BAB 3 PERANCANGAN SISTEM. Bab ini menguraikan analisa penelitian terhadap metode Backpropagation yang

BAB 3 PERANCANGAN SISTEM. Bab ini menguraikan analisa penelitian terhadap metode Backpropagation yang BAB 3 PERANCANGAN SISTEM Bab ini menguraikan analisa penelitian terhadap metode Backpropagation yang diimplementasikan sebagai model estimasi harga saham. Analisis yang dilakukan adalah menguraikan penjelasan

Lebih terperinci

Pengantar Kecerdasan Buatan (AK045218) Logika Fuzzy

Pengantar Kecerdasan Buatan (AK045218) Logika Fuzzy Logika Fuzzy Pendahuluan Alasan digunakannya Logika Fuzzy Aplikasi Himpunan Fuzzy Fungsi keanggotaan Operator Dasar Zadeh Penalaran Monoton Fungsi Impilkasi Sistem Inferensi Fuzzy Basis Data Fuzzy Referensi

Lebih terperinci

ARTIFICIAL INTELLIGENCE MENENTUKAN KUALITAS KEHAMILAN PADA WANITA PEKERJA

ARTIFICIAL INTELLIGENCE MENENTUKAN KUALITAS KEHAMILAN PADA WANITA PEKERJA ARTIFICIAL INTELLIGENCE MENENTUKAN KUALITAS KEHAMILAN PADA WANITA PEKERJA Rima Liana Gema, Devia Kartika, Mutiana Pratiwi Universitas Putra Indonesia YPTK Padang email: rimalianagema@upiyptk.ac.id ABSTRAK

Lebih terperinci

Implementasi Adaptive Neuro-Fuzzy Inference System (Anfis) untuk Peramalan Pemakaian Air di Perusahaan Daerah Air Minum Tirta Moedal Semarang

Implementasi Adaptive Neuro-Fuzzy Inference System (Anfis) untuk Peramalan Pemakaian Air di Perusahaan Daerah Air Minum Tirta Moedal Semarang Scientific Journal of Informatics Vol. 3, No. 1, Mei 2016 p-issn 2407-7658 http://journal.unnes.ac.id/nju/index.php/sji e-issn 2460-0040 Implementasi Adaptive Neuro-Fuzzy Inference System (Anfis) untuk

Lebih terperinci

BAB 1 PENDAHULUAN. Logika fuzzy memberikan solusi praktis dan ekonomis untuk mengendalikan

BAB 1 PENDAHULUAN. Logika fuzzy memberikan solusi praktis dan ekonomis untuk mengendalikan BAB 1 PENDAHULUAN 1.1. Latar Belakang Logika fuzzy memberikan solusi praktis dan ekonomis untuk mengendalikan sistem yang kompleks. Logika fuzzy memberikan rangka kerja yang kuat dalam memecahkan masalah

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dielaskan mengenai teori-teori yang berhubungan dengan penelitian ini, sehingga dapat diadikan sebagai landasan berpikir dan akan mempermudah dalam hal pembahasan

Lebih terperinci

PREDIKSI HARGA SAHAM SYARIAH MENGGUNAKAN METODE ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS) SKRIPSI UMI HANI

PREDIKSI HARGA SAHAM SYARIAH MENGGUNAKAN METODE ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS) SKRIPSI UMI HANI PREDIKSI HARGA SAHAM SYARIAH MENGGUNAKAN METODE ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS) SKRIPSI UMI HANI 081402032 PROGRAM STUDI S1 TEKNOLOGI INFORMASI FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI

Lebih terperinci

Penerapan Metode Fuzzy Mamdani Pada Rem Otomatis Mobil Cerdas

Penerapan Metode Fuzzy Mamdani Pada Rem Otomatis Mobil Cerdas Penerapan Metode Fuzzy Mamdani Pada Rem Otomatis Mobil Cerdas Zulfikar Sembiring Jurusan Teknik Informatika, Fakultas Teknik, Universitas Medan Area zoelsembiring@gmail.com Abstrak Logika Fuzzy telah banyak

Lebih terperinci

BAB IV ANALISA DAN PERANCANGAN

BAB IV ANALISA DAN PERANCANGAN BAB IV ANALISA DAN PERANCANGAN Pada bagian ini berisi analisa peramalan konsumsi BBM Provinsi Riau, yang mana data konsumsi BBM, jumlah kendaran bermotor dan jumlah penduduk merupakan faktor yang mempengaruhi

Lebih terperinci

VOL. 01 NO. 02 [JURNAL ILMIAH BINARY] ISSN :

VOL. 01 NO. 02 [JURNAL ILMIAH BINARY] ISSN : PENERAPAN JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI JUMLAH PRODUKSI AIR MINUM MENGGUNAKAN ALGORITMA BACKPROPAGATION (STUDI KASUS : PDAM TIRTA BUKIT SULAP KOTA LUBUKLINGGAU) Robi Yanto STMIK Bina Nusantara

Lebih terperinci

Peramalan Data IHSG Menggunakan Metode Backpropagation

Peramalan Data IHSG Menggunakan Metode Backpropagation Peramalan Data IHSG Menggunakan Metode Backpropagation Seng Hansun Program Studi Teknik Informatika, Universitas Multimedia Nusantara, Tangerang, Indonesia hansun@umn.ac.id Diterima 31 Agustus 2012 Disetujui

Lebih terperinci

ABSTRACT. Kata kunci: Fuzzy Tsukamoto, Jaringan Syaraf Tiruan, Backpropagation 1. LATAR BELAKANG MASALAH

ABSTRACT. Kata kunci: Fuzzy Tsukamoto, Jaringan Syaraf Tiruan, Backpropagation 1. LATAR BELAKANG MASALAH PERBANDINGAN PREDIKSI HARGA SAHAM DENGAN MENGGUNAKAN METODE JARINGAN SYARAF TIRUAN DAN FUZZY TSUKAMOTO COMPARISON OF SHARE PRICE PREDICTION USING ARTIFICIAL NEURAL NETWORK AND FUZZY TSUKAMOTO ABSTRACT

Lebih terperinci

Jurnal Informatika Mulawarman Vol 5 No. 1 Februari

Jurnal Informatika Mulawarman Vol 5 No. 1 Februari Jurnal Informatika Mulawarman Vol 5 No. 1 Februari 2010 50 Penerapan Jaringan Syaraf Tiruan Untuk Memprediksi Jumlah Pengangguran di Provinsi Kalimantan Timur Dengan Menggunakan Algoritma Pembelajaran

Lebih terperinci

BAB II DASAR TEORI Jaringan Syaraf Tiruan. Universitas Sumatera Utara

BAB II DASAR TEORI Jaringan Syaraf Tiruan. Universitas Sumatera Utara BAB II DASAR TEORI Landasan teori adalah teori-teori yang relevan dan dapat digunakan untuk menjelaskan variabel-variabel penelitian. Landasan teori ini juga berfungsi sebagai dasar untuk memberi jawaban

Lebih terperinci

BAB IV JARINGAN SYARAF TIRUAN (ARTIFICIAL NEURAL NETWORK)

BAB IV JARINGAN SYARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) BAB IV JARINGAN SYARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) Kompetensi : 1. Mahasiswa memahami konsep Jaringan Syaraf Tiruan Sub Kompetensi : 1. Dapat mengetahui sejarah JST 2. Dapat mengetahui macam-macam

Lebih terperinci

BAB 2 LANDASAN TEORI. hyperspectral, neuro fuzzy dan soft computing, teori himpunan fuzzy meliputi himpunan

BAB 2 LANDASAN TEORI. hyperspectral, neuro fuzzy dan soft computing, teori himpunan fuzzy meliputi himpunan BAB 2 LANDASAN TEORI Dalam bab ini diuraikan beberapa landasan teori yang terkait, mencakup konsep hyperspectral, neuro fuzzy dan soft computing, teori himpunan fuzzy meliputi himpunan fuzzy, sistem inferensi

Lebih terperinci

Fuzzy Logic. Untuk merepresentasikan masalah yang mengandung ketidakpastian ke dalam suatu bahasa formal yang dipahami komputer digunakan fuzzy logic.

Fuzzy Logic. Untuk merepresentasikan masalah yang mengandung ketidakpastian ke dalam suatu bahasa formal yang dipahami komputer digunakan fuzzy logic. Fuzzy Systems Fuzzy Logic Untuk merepresentasikan masalah yang mengandung ketidakpastian ke dalam suatu bahasa formal yang dipahami komputer digunakan fuzzy logic. Masalah: Pemberian beasiswa Misalkan

Lebih terperinci

PREDIKSI CURAH HUJAN TAHUNAN MENGGUNAKAN ANFIS DENGAN PENGELOMPOKAN DATA (Studi Kasus Pada Stasiun Meteorologi Bandara Jalaluddin Gorontalo)

PREDIKSI CURAH HUJAN TAHUNAN MENGGUNAKAN ANFIS DENGAN PENGELOMPOKAN DATA (Studi Kasus Pada Stasiun Meteorologi Bandara Jalaluddin Gorontalo) PREDIKSI CURAH HUJAN TAHUNAN MENGGUNAKAN ANFIS DENGAN PENGELOMPOKAN DATA (Studi Kasus Pada Stasiun Meteorologi Bandara Jalaluddin Gorontalo) Ifan Wiranto, Wahab Musa, Wrastawa Ridwan Jurusan Teknik Elektro

Lebih terperinci

ANALISIS & DESAIN SISTEM FUZZY. Menggunakan TOOLBOX MATLAB

ANALISIS & DESAIN SISTEM FUZZY. Menggunakan TOOLBOX MATLAB ANALISIS & DESAIN SISTEM FUZZY Menggunakan TOOLBOX MATLAB ANALISIS & DESAIN SISTEM FUZZY Menggunakan TOOLBOX MATLAB Sri Kusumadewi Analisis & Desain Sistem Fuzzy Menggunakan Toolbox Matlab Oleh: Sri Kusumadewi

Lebih terperinci

ANALISIS PENAMBAHAN NILAI MOMENTUM PADA PREDIKSI PRODUKTIVITAS KELAPA SAWIT MENGGUNAKAN BACKPROPAGATION

ANALISIS PENAMBAHAN NILAI MOMENTUM PADA PREDIKSI PRODUKTIVITAS KELAPA SAWIT MENGGUNAKAN BACKPROPAGATION ANALISIS PENAMBAHAN NILAI MOMENTUM PADA PREDIKSI PRODUKTIVITAS KELAPA SAWIT MENGGUNAKAN BACKPROPAGATION Eka Irawan1, M. Zarlis2, Erna Budhiarti Nababan3 Magister Teknik Informatika, Universitas Sumatera

Lebih terperinci

Prediksi Pergerakan Harga Harian Nilai Tukar Rupiah (IDR) Terhadap Dollar Amerika (USD) Menggunakan Metode Jaringan Saraf Tiruan Backpropagation

Prediksi Pergerakan Harga Harian Nilai Tukar Rupiah (IDR) Terhadap Dollar Amerika (USD) Menggunakan Metode Jaringan Saraf Tiruan Backpropagation 1 Prediksi Pergerakan Harga Harian Nilai Tukar Rupiah (IDR) Terhadap Dollar Amerika (USD) Menggunakan Metode Jaringan Saraf Tiruan Backpropagation Reza Subintara Teknik Informatika, Ilmu Komputer, Universitas

Lebih terperinci

JURNAL GAUSSIAN, Volume 1, Nomor 1, Tahun 2012, Halaman Online di:

JURNAL GAUSSIAN, Volume 1, Nomor 1, Tahun 2012, Halaman Online di: JURNAL GAUSSIAN, Volume 1, Nomor 1, Tahun 2012, Halaman 31-40 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian ANALISIS DATA RUNTUN WAKTU DENGAN METODE ADAPTIVE NEURO FUZZY INFERENCE SYSTEM

Lebih terperinci

PENERAPAN JARINGAN SYARAF TIRUAN DALAM MEMPREDIKSI TINGKAT PENGANGGURAN DI SUMATERA BARAT

PENERAPAN JARINGAN SYARAF TIRUAN DALAM MEMPREDIKSI TINGKAT PENGANGGURAN DI SUMATERA BARAT PENERAPAN JARINGAN SYARAF TIRUAN DALAM MEMPREDIKSI TINGKAT PENGANGGURAN DI SUMATERA BARAT Havid Syafwan Program Studi Manajemen Informatika, Amik Royal, Kisaran E-mail: havid_syafwan@yahoo.com ABSTRAK:

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Himpunan Himpunan adalah kata benda yang berasal dari kata himpun. Kata kerjanya adalah menghimpun. Menghimpun adalah kegiatan yang berhubungan dengan berbagai objek apa saja.

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 19 BAB III METODOLOGI PENELITIAN 3.1. Kerangka Pemikiran Kerangka pemikiran untuk penelitian ini seperti pada Gambar 9. Penelitian dibagi dalam empat tahapan yaitu persiapan penelitian, proses pengolahan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Bab ini membahas tentang teori penunjang dan penelitian sebelumnya yang berhubungan dengan penerapan metode backpropagation untuk prediksi trend forex euro terhadap dollar Amerika.

Lebih terperinci

Bab III TEORI DAN PENGONTOR BERBASIS LOGIKA FUZZI

Bab III TEORI DAN PENGONTOR BERBASIS LOGIKA FUZZI Bab III TEORI DAN PENGONTOR BERBASIS LOGIKA FUZZI III.1 Teori Logika fuzzi III.1.1 Logika fuzzi Secara Umum Logika fuzzi adalah teori yang memetakan ruangan input ke ruang output dengan menggunakan aturan-aturan

Lebih terperinci

Penggunaan Model ELFIS dan Sistem Neuro Fuzzy Untuk Memprediksi Pasar Saham

Penggunaan Model ELFIS dan Sistem Neuro Fuzzy Untuk Memprediksi Pasar Saham Penggunaan Model ELFIS dan Sistem Neuro Fuzzy Untuk Memprediksi Pasar Saham Alexander Sukono - 13513023 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

LOGIKA SAMAR (FUZZY LOGIC)

LOGIKA SAMAR (FUZZY LOGIC) LOGIKA SAMAR (FUZZY LOGIC) 2. Himpunan Samar 2.. Himpunan Klasik dan Himpunan Samar Himpunan klasik merupakan himpunan dengan batasan yang tegas (crisp) (Jang, Sun, dan Mizutani, 24). Sebagai contoh :

Lebih terperinci

KASUS PENERAPAN LOGIKA FUZZY. Fuzzy tsukamoto, mamdani, sugeno

KASUS PENERAPAN LOGIKA FUZZY. Fuzzy tsukamoto, mamdani, sugeno KASUS PENERAPAN LOGIKA FUZZY Fuzzy tsukamoto, mamdani, sugeno CARA KERJA LOGIKA FUZZY MELIPUTI BEBERAPA TAHAPAN BERIKUT : 1. Fuzzyfikasi 2. Pembentukan basis pengetahuan fuzzy (rule dalam bentuk if..then).

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA DAFTAR ISI PERNYATAAN... i ABSTRAK... ii KATA PENGANTAR... iii UCAPAN TERIMA KASIH... iv DAFTAR ISI... v DAFTAR TABEL... ix DAFTAR GAMBAR... x DAFTAR LAMPIRAN... xi BAB I PENDAHULUAN... 1 1.1 Latar Belakang...

Lebih terperinci

PREDIKSI CURAH HUJAN DI KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK

PREDIKSI CURAH HUJAN DI KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK PREDIKSI CURAH HUJAN DI KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK Yudhi Andrian 1, Erlinda Ningsih 2 1 Dosen Teknik Informatika, STMIK Potensi Utama 2 Mahasiswa Sistem Informasi, STMIK

Lebih terperinci

BAB 2 LANDASAN TEORI. fuzzy logic dengan aplikasi neuro computing. Masing-masing memiliki cara dan proses

BAB 2 LANDASAN TEORI. fuzzy logic dengan aplikasi neuro computing. Masing-masing memiliki cara dan proses 8 BAB 2 LANDASAN TEORI 2.1 Teori Neuro Fuzzy Neuro-fuzzy sebenarnya merupakan penggabungan dari dua studi utama yaitu fuzzy logic dengan aplikasi neuro computing. Masing-masing memiliki cara dan proses

Lebih terperinci

Himpunan Fuzzy. Sistem Pakar Program Studi : S1 sistem Informasi

Himpunan Fuzzy. Sistem Pakar Program Studi : S1 sistem Informasi Himpunan Fuzzy Sistem Pakar Program Studi : S1 sistem Informasi Outline Himpunan CRISP Himpunan Fuzzy Himpunan CRISP Pada himpunan tegas (crisp), nilai keanggotaan suatu item dalam suatu himpunan A, yang

Lebih terperinci

BAB VIIB BACKPROPAGATION dan CONTOH

BAB VIIB BACKPROPAGATION dan CONTOH BAB VIIB BACKPROPAGATION dan CONTOH 7B. Standar Backpropagation (BP) Backpropagation (BP) merupakan JST multi-layer. Penemuannya mengatasi kelemahan JST dengan layer tunggal yang mengakibatkan perkembangan

Lebih terperinci

DENIA FADILA RUSMAN

DENIA FADILA RUSMAN Sidang Tugas Akhir INVENTORY CONTROL SYSTEM UNTUK MENENTUKAN ORDER QUANTITY DAN REORDER POINT BAHAN BAKU POKOK TRANSFORMER MENGGUNAKAN METODE FUZZY (STUDI KASUS : PT BAMBANG DJAJA SURABAYA) DENIA FADILA

Lebih terperinci

MODUL 8 APLIKASI NEURAL NETWORK DAN FUZZY LOGIC PADA PERKIRAAN CUACA

MODUL 8 APLIKASI NEURAL NETWORK DAN FUZZY LOGIC PADA PERKIRAAN CUACA MODUL 8 APLIKASI NEURAL NETWORK DAN FUZZY LOGIC PADA PERKIRAAN CUACA Muhammad Ilham 10211078 Program Studi Fisika, Institut Teknologi Bandung, Indonesia Email: muhammad_ilham@students.itb.ac.id Asisten:

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Semua negara mempunyai mata uang sebagai alat tukar. Pertukaran uang dengan barang yang terjadi disetiap negara tidak akan menimbulkan masalah mengingat nilai uang

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Sistem Pendukung Keputusan Sistem Pendukung Keputusan dapat diartikan sebagai sebuah sistem yang dimaksudkan untuk mendukung para pengambil keputusan dalam situasi tertentu. Sistem

Lebih terperinci

BACK PROPAGATION NETWORK (BPN)

BACK PROPAGATION NETWORK (BPN) BACK PROPAGATION NETWORK (BPN) Arsitektur Jaringan Digunakan untuk meminimalkan error pada output yang dihasilkan oleh jaringan. Menggunakan jaringan multilayer. Arsitektur Jaringan Proses belajar & Pengujian

Lebih terperinci

MODEL PENENTUAN GURU BERPRESTASI BERBASIS ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS)

MODEL PENENTUAN GURU BERPRESTASI BERBASIS ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS) MODEL PENENTUAN GURU BERPRESTASI BERBASIS ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS) Wanti Rahayu 1 1 Mahasiswa Universitas Indraprasta PGRI Email : 1 wanti.reiku@gmail.com Abstrak- Guru merupakan aspek

Lebih terperinci

Sistem Inferensi Fuzzy

Sistem Inferensi Fuzzy Sistem Inferensi Fuzzy METODE SUGENO 27 Sistem Inferensi Fuzzy Metode Tsukamoto Metode Sugeno! Diperkenalkan oleh Takagi-Sugeno-Kang, tahun 1985.! Bagian output (konsekuen) sistem tidak berupa himpunan

Lebih terperinci

PENALARAN FUZZY SISTEM PAKAR DEPARTEMEN ILMU KOMPUTER INSTITUT PERTANIAN BOGOR 2012

PENALARAN FUZZY SISTEM PAKAR DEPARTEMEN ILMU KOMPUTER INSTITUT PERTANIAN BOGOR 2012 PENALARAN FUZZY SISTEM PAKAR DEPARTEMEN ILMU KOMPUTER INSTITUT PERTANIAN BOGOR 2012 PENALARAN FUZZY Digunakan untuk menghasilkan suatu keputusan tunggal / crisp saat defuzzifikasi Penggunaan akan bergantung

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai teori-teori yang akan digunakan untuk menunjang dalam proses pembuatan tugas akhir ini.

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai teori-teori yang akan digunakan untuk menunjang dalam proses pembuatan tugas akhir ini. BAB II LANDASAN TEORI Pada bab ini akan dibahas mengenai teori-teori yang akan digunakan untuk menunjang dalam proses pembuatan tugas akhir ini. 2.1 CLUSTERING Clustering adalah proses pengelompokkan suatu

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 7 BAB 2 TINJAUAN PUSTAKA 2.1 Jaringan Syaraf Biologi Otak manusia memiliki struktur yang sangat kompleks dan memiliki kemampuan yang luar biasa. Otak terdiri dari neuron-neuron dan penghubung yang disebut

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Metode Peramalan Peramalan (forecasting) adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang akan datang. Sedangkan ramalan adalah situasi atau kondisi yang

Lebih terperinci

ANALISIS JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI JUMLAH RESERVASI KAMAR HOTEL DENGAN METODE BACKPROPAGATION (Studi Kasus Hotel Grand Zuri Padang)

ANALISIS JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI JUMLAH RESERVASI KAMAR HOTEL DENGAN METODE BACKPROPAGATION (Studi Kasus Hotel Grand Zuri Padang) ANALISIS JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI JUMLAH RESERVASI KAMAR HOTEL DENGAN METODE BACKPROPAGATION (Studi Kasus Hotel Grand Zuri Padang) 1 Musli Yanto, 2 Sarjon Defit, 3 Gunadi Widi Nurcahyo

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 2 BAB 2 TINJAUAN PUSTAKA 2.1. Logika Fuzzy Logika fuzzy adalah suatu cara untuk memetakan suatu ruang masukan ke dalam suatu ruang keluaran. Logika fuzzy ditemukan oleh Prof.Lotfi A. Zadeh dari Universitas

Lebih terperinci

FUZZY MULTI-CRITERIA DECISION MAKING

FUZZY MULTI-CRITERIA DECISION MAKING Media Informatika, Vol. 3 No. 1, Juni 2005, 25-38 ISSN: 0854-4743 FUZZY MULTI-CRITERIA DECISION MAKING Sri Kusumadewi, Idham Guswaludin Jurusan Teknik Informatika, Fakultas Teknologi Industri, Universitas

Lebih terperinci