BAB 1 PENDAHULUAN. Logika fuzzy memberikan solusi praktis dan ekonomis untuk mengendalikan

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 1 PENDAHULUAN. Logika fuzzy memberikan solusi praktis dan ekonomis untuk mengendalikan"

Transkripsi

1 BAB 1 PENDAHULUAN 1.1. Latar Belakang Logika fuzzy memberikan solusi praktis dan ekonomis untuk mengendalikan sistem yang kompleks. Logika fuzzy memberikan rangka kerja yang kuat dalam memecahkan masalah pengontrolan. Logika fuzzy tidak membutuhkan model matematis yang kompleks untuk mengoperasikannya, yang dibutuhkan adalah pemahaman praktis dan teoritis dari perilaku sistem secara keseluruhan. Untuk menghitung derajat yang tak terbatas jumlahnya antara benar dan salah, maka dikembangkan ide penggolongan himpunan fuzzy. Pada logika tegas, sebuah individu dipastikan sebagai anggota salah satu himpunan saja, sedangkan pada himpunan fuzzy sebuah individu dapat masuk pada dua himpunan berbeda. Seberapa besar eksistensinya dalam himpunan tersebut dapat dilihat dari nilai keanggotaannya. Secara umum fungsi keanggotaan suatu himpunan fuzzy dapat ditentukan dengan fungsi model segitiga (triangle), trapesium (trapeziodal), kurva-s (sigmoid), maupun varian dari kurva bell, seperti kurva phi, kurva beta, dan kurva gauss. Masing-masing bentuk fungsi diatas memiliki sifat yang berbeda-beda. 1

2 2 Untuk mengatasi permasalahan himpunan dengan batas yang tidak tegas, L.A. Zadeh mengaitkan himpunan tersebut dengan fungsi yang menyatakan nilai keanggotaan pada suatu himpunan yang tak kosong sembarang dengan mengaitkan pada interval [0,1] (Zadeh, 1965). Himpunan tersebut disebut himpunan fuzzy dan fungsi ini disebut fungsi keanggotaan (membership function) dan nilai fungsi disebut sebagai derajat keanggotaan. Dalam fuzzy sistem, fungsi keanggotaan memainkan peranan yang sangat penting untuk merepresentasikan masalah dan menghasilkan keputusan akurat. Pengambilan keputusan dalam teknik fuzzy dilakukan dalam beberapa tahapan yaitu : pembentukan himpunan fuzzy (fuzzification), penentuan membership function, rule evaluation dan defuzzification. Rule evaluation merupakan konsep bagian utama dari fuzzy yang menjadi dasar untuk menentukan sistem menjadi pintar atau tidak. Untuk mengatasi hal tersebut beberapa teknik sudah diterapkan antara lain : Mengidentifikasi fungsi keanggotaan berdasarkan frekuensi dari fuzzy set yang dipilih (Tamaki et al., 1999), menerapkan fungsi keanggotaan dalam penentuan identifikasi kualitas yang lebih baik (Boy et al., 2012), menerapkan fungsi keanggotaan logika fuzzy untuk memperoleh derajat keanggotaan suatu nilai pada pemilihan telephone (Hamdani, 2011), menerapkan Metode Fuzzy Mamdani dalam penentuan jumlah produksi yang optimum (Djunaidi et al, 2005). Dalam fuzzy terdapat beberapa model sistem inferensi, antara lain : metode Mamdani, metode Tsukamoto dan metode Sugeno (TSK). Model-model ini dapat digunakan karena penalaran menggunakan aturan IF-Then, namun

3 3 demikian bahwa ketiga model ini juga memiliki perbedaan khususnya pada hasil (deffuzzyfikasi) dimana metode Tsukamoto dan Mamdani menghasilkan output berupa himpunan fuzzy, sementara Sugeno menghasilkan output berupa himpunan konstanta atau persamaan linier. Penalaran metode fuzzy Mamdani merupakan metodologi yang paling mudah dipahami pembuatan metode ini berdasarkan karya ilmiah dari Lotfi Zadeh tentang algoritma fuzzy untuk sistem yang kompleks dan digunakan dalam proses pengambilan keputusan. Metode Mamdani adalah suatu jenis inferensi sistem fuzzy dimana himpunan fuzzy yang merupakan konsekuensi dari setiap aturan dikombinasikan dengan menggunakan operator aggregasi dan menghasilkan himpunan fuzzy yang kemudian di defuzzifikasikan untuk menghasilkan keluaran tertentu dari suatu sistem. Berdasarkan uraian diatas maka pada penelitian ini penulis akan menganalisa pada bagian membership function dengan membandingkan hasil fungsi derajat keanggotaan yang dibentuk model trapesium dan model sigmoid dan diterapkan pada fuzzy inferensi sistem Sugeno Orde-Satu untuk mendapatkan pencapaian target maksimum Perumusan Masalah Didalam logika fuzzy nilai keanggotaan adalah faktor yang sangat penting karena nilai tersebut sebagai faktor pengendali keberadaan elemen dalam suatu himpunan yang menunjukkan pemetaan terhadap titk-titik input data kedalam nilai keanggotaan yang memiliki interval 0 sampai 1. Fungsi keanggotaan merupakan dasar penting karena nilai keanggotaan menentukan posisi output dari sebuah

4 4 himpunan dalam fuzzy, jika posisi nilai keanggotaan tersebut tidak berada pada posisi yang benar maka akan menimbulkan permasalahan pada output suatu sistem yang menyebabkan keakuratan data tidak tercapai dan pencapaian target maksimum tidak terpenuhi Batasan Masalah Agar permasalahan dapat diselesaikan dengan sistematis ilmiah, objektif dan terarah maka perlu dibatasi, adapun batasan masalahnya adalah sebagai berikut : 3. Dari beberapa fungsi keanggotaan yang ada, pada penelitian ini penulis membatasi untuk menganalisis nilai keanggotaan dengan fungsi keanggotaan trapesium dan fungsi keanggotaan sigmoid. 4. Dari beberapa metode inferensi fuzzy yang ada, pada penelitian ini penulis membatasi dengan menggunakan metode inferensi fuzzy Sugeno Orde Satu. 5. Dalam analisis penulis akan menganalisis kualitas pelayanan sekolah pada Sekolah Menengah Atas Methodist 1 Medan, dimana data yang diambil dalam studi kasus ini merupakan data tahun Aplikasi dirancang dengan menggunakan Microsoft Visual Basic Tujuan Penelitian Tujuan dari penelitian ini adalah untuk membandingkan tingkat kerumitan dan keakuratan keberadaan elemen dalam suatu himpunan serta analisis fungsi keanggotaan yang tepat dengan menggunakan metode trapesium dan metode sigmoid pada sistem inferensi fuzzy Sugeno.

5 Manfaat Penelitian Adapun manfaat yang diharapkan bisa didapat dari penelitian ini adalah: 1. Untuk menambah pengetahuan mengenai fuzzy terutama pada fungsi keanggotaan representasi kurva trapesium dan representasi kurva sigmoid serta inferensi model Sugeno. 2. Menguji dan menganalisa perbedaan nilai derajat keanggotaan yang dihasilkan dari metode trapesium dan metode sigmoid sehingga dapat digunakan untuk membantu dalam masalah pengambilan keputusan pencapaian target yang maksimum.

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Sekarang ini hampir semua perusahaan yang bergerak di bidang industri dihadapkan pada suatu masalah yaitu adanya tingkat persaingan yang semakin kompetitif. Hal ini

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini penulis akan menjelaskan mengenai landasan teori yang digunakan pada penelitian ini. Penjabaran ini bertujuan untuk memberikan pemahaman lebih mendalam kepada penulis

Lebih terperinci

BAB II: TINJAUAN PUSTAKA

BAB II: TINJAUAN PUSTAKA BAB II: TINJAUAN PUSTAKA Bab ini akan memberikan penjelasan awal mengenai konsep logika fuzzy beserta pengenalan sistem inferensi fuzzy secara umum. 2.1 LOGIKA FUZZY Konsep mengenai logika fuzzy diawali

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Bab landasan teori bertujuan untuk memberikan penjelasan mengenai metode atau pun teori yang digunakan dalam laporan tugas akhir ini, sehingga dapat membangun pemahaman yang sama antara

Lebih terperinci

Penerapan Metode Fuzzy Mamdani Pada Rem Otomatis Mobil Cerdas

Penerapan Metode Fuzzy Mamdani Pada Rem Otomatis Mobil Cerdas Penerapan Metode Fuzzy Mamdani Pada Rem Otomatis Mobil Cerdas Zulfikar Sembiring Jurusan Teknik Informatika, Fakultas Teknik, Universitas Medan Area zoelsembiring@gmail.com Abstrak Logika Fuzzy telah banyak

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Beras merupakan salah satu kebutuhan pokok manusia yang sangat penting dalam kelangsungan hidupnya. Untuk memenuhi kebutuhan beras, setiap manusia mempunyai cara-cara

Lebih terperinci

BAB I PENDAHULUAN. Universitas Sumatera Utara

BAB I PENDAHULUAN. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakang Logika fuzzy pertama kali dikembangkan oleh Zadeh di pertengahan tahun 1960 untuk mewakili nilai yang tidak pasti, namun efektif untuk menggambarkan perilaku sistem

Lebih terperinci

Erwien Tjipta Wijaya, ST.,M.Kom

Erwien Tjipta Wijaya, ST.,M.Kom Erwien Tjipta Wijaya, ST.,M.Kom PENDAHULUAN Logika Fuzzy pertama kali dikenalkan oleh Prof. Lotfi A. Zadeh tahun 1965 Dasar Logika Fuzzy adalah teori himpunan fuzzy. Teori himpunan fuzzy adalah peranan

Lebih terperinci

Penerapan FuzzyTsukamotodalam Menentukan Jumlah Produksi

Penerapan FuzzyTsukamotodalam Menentukan Jumlah Produksi Penerapan FuzzyTsukamotodalam Menentukan Jumlah Produksi Berdasarkan Data Persediaan dan Jumlah Permintaan Ria Rahmadita Surbakti 1), Marlina Setia Sinaga 2) Jurusan Matematika FMIPA UNIMED riarahmadita@gmail.com

Lebih terperinci

BAB IV KONSEP FUZZY LOGIC DAN PENERAPAN PADA SISTEM KONTROL. asing. Dalam pengalaman keseharian kita, permasalahan yang berkaitan dengan fuzzy

BAB IV KONSEP FUZZY LOGIC DAN PENERAPAN PADA SISTEM KONTROL. asing. Dalam pengalaman keseharian kita, permasalahan yang berkaitan dengan fuzzy BAB IV KONSEP FUZZY LOGIC DAN PENERAPAN PADA SISTEM KONTROL 4.1 Pengenalan konsep fuzzy logic Konsep mengenai fuzzy logic bukanlah merupakan sesuatu yang baru dan asing. Dalam pengalaman keseharian kita,

Lebih terperinci

ARTIFICIAL INTELLIGENCE MENENTUKAN KUALITAS KEHAMILAN PADA WANITA PEKERJA

ARTIFICIAL INTELLIGENCE MENENTUKAN KUALITAS KEHAMILAN PADA WANITA PEKERJA ARTIFICIAL INTELLIGENCE MENENTUKAN KUALITAS KEHAMILAN PADA WANITA PEKERJA Rima Liana Gema, Devia Kartika, Mutiana Pratiwi Universitas Putra Indonesia YPTK Padang email: rimalianagema@upiyptk.ac.id ABSTRAK

Lebih terperinci

FUZZY LOGIC CONTROL 1. LOGIKA FUZZY

FUZZY LOGIC CONTROL 1. LOGIKA FUZZY 1. LOGIKA FUZZY Logika fuzzy adalah suatu cara tepat untuk memetakan suatu ruang input ke dalam suatu ruang output. Teknik ini menggunakan teori matematis himpunan fuzzy. Logika fuzzy berhubungan dengan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Logika Fuzzy Logika fuzzy merupakan suatu metode pengambilan keputusan berbasis aturan yang digunakan untuk memecahkan keabu-abuan masalah pada sistem yang sulit dimodelkan

Lebih terperinci

Analisis Pengaruh Pemilihan Fuzzy Membership Function Terhadap Output Sebuah Sistem Fuzzy Logic

Analisis Pengaruh Pemilihan Fuzzy Membership Function Terhadap Output Sebuah Sistem Fuzzy Logic Analisis Pengaruh Pemilihan Fuzzy Membership Function Terhadap Output Sebuah Sistem Fuzzy Logic Luh Kesuma Wardhani, Elin Haerani Jurusan Teknik Informatika Fakultas Sains dan Teknologi UIN SUSKA Riau

Lebih terperinci

Himpunan Tegas (Crisp)

Himpunan Tegas (Crisp) Logika Fuzzy Logika Fuzzy Suatu cara untuk merepresentasikan dan menangani masalah ketidakpastian (keraguan, ketidaktepatan, kekuranglengkapan informasi, dan kebenaran yang bersifat sebagian). Fuzzy System

Lebih terperinci

Metode Fuzzy. Analisis Keputusan TIP FTP UB

Metode Fuzzy. Analisis Keputusan TIP FTP UB Metode Fuzzy Analisis Keputusan TIP FTP UB Pokok Bahasan Pendahuluan Logika Klasik dan Proposisi Himpunan Fuzzy Logika Fuzzy Operasi Fuzzy Contoh Pendahuluan Penggunaan istilah samar yang bersifat kualitatif

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Logika Fuzzy Fuzzy secara bahasa diartikan sebagai kabur atau samar yang artinya suatu nilai dapat bernilai benar atau salah secara bersamaan. Dalam fuzzy dikenal derajat keanggotan

Lebih terperinci

Fuzzy Expert Sistem. Departemen Ilmu Komputer Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor 2015

Fuzzy Expert Sistem. Departemen Ilmu Komputer Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor 2015 Fuzzy Expert Sistem Departemen Ilmu Komputer Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor 2015 Ketentuan Praktikum Lembar Kerja Praktikum ini dibuat sebagai panduan bagi mahasiswa

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Permintaan, Persediaan dan Produksi 2.1.1 Permintaan Permintaan adalah banyaknya jumlah barang yang diminta pada suatu pasar tertentu dengan tingkat harga tertentu pada tingkat

Lebih terperinci

Sebelumnya... Penalaran pada Sistem Pakar. Ketidakpastian dalam Sistem Pakar. Contoh forward chaining & backward chaining

Sebelumnya... Penalaran pada Sistem Pakar. Ketidakpastian dalam Sistem Pakar. Contoh forward chaining & backward chaining Sebelumnya... Penalaran pada Sistem Pakar Contoh forward chaining & backward chaining Ketidakpastian dalam Sistem Pakar Teori Peluang Teori Bayes Jaringan Bayes Faktor Kepastian Kecerdasan Buatan Pertemuan

Lebih terperinci

Tahap Sistem Pakar Berbasis Fuzzy

Tahap Sistem Pakar Berbasis Fuzzy Company LOGO Penalaran Mamdani dan Tsukamoto Pada pendekatan Fuzzy Inference System Departemen Ilmu Komputer Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor 2011 www.company.com

Lebih terperinci

JOBSHEET SISTEM CERDAS REASONING 2. Fuzzifikasi

JOBSHEET SISTEM CERDAS REASONING 2. Fuzzifikasi JOBSHEET SISTEM CERDAS REASONING 2 Fuzzifikasi S1 PENDIDIKAN TEKNIK ELEKTRO JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS NEGERI MALANG 2016 PRAKTIKUM SISTEM CERDAS - REASONING JOBSHEET 2 - FUZZIFIKASI

Lebih terperinci

BAB 2 2. LANDASAN TEORI

BAB 2 2. LANDASAN TEORI BAB 2 2. LANDASAN TEORI Bab ini akan menjelaskan mengenai logika fuzzy yang digunakan, himpunan fuzzy, penalaran fuzzy dengan metode Sugeno, dan stereo vision. 2.1 Logika Fuzzy Logika fuzzy adalah suatu

Lebih terperinci

DENIA FADILA RUSMAN

DENIA FADILA RUSMAN Sidang Tugas Akhir INVENTORY CONTROL SYSTEM UNTUK MENENTUKAN ORDER QUANTITY DAN REORDER POINT BAHAN BAKU POKOK TRANSFORMER MENGGUNAKAN METODE FUZZY (STUDI KASUS : PT BAMBANG DJAJA SURABAYA) DENIA FADILA

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Himpunan Himpunan adalah setiap daftar, kumpulan atau kelas objek-objek yang didefenisikan secara jelas, objek-objek dalam himpunan-himpunan yang dapat berupa apa saja: bilangan, orang,

Lebih terperinci

KECERDASAN BUATAN (Artificial Intelligence) Materi 8. Entin Martiana

KECERDASAN BUATAN (Artificial Intelligence) Materi 8. Entin Martiana Logika Fuzzy KECERDASAN BUATAN (Artificial Intelligence) Materi 8 Entin Martiana 1 Kasus fuzzy dalam kehidupan sehari-hari Tinggi badan saya: Andi menilai bahwa tinggi badan saya termasuk tinggi Nina menilai

Lebih terperinci

Praktikum sistem Pakar Fuzzy Expert System

Praktikum sistem Pakar Fuzzy Expert System Praktikum sistem Pakar Fuzzy Expert System Ketentuan Praktikum 1. Lembar Kerja Praktikum ini dibuat sebagai panduan bagi mahasiswa untuk praktikum pertemuan ke - 8 2. Mahasiswa akan mendapatkan penjelasan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Himpunan Himpunan adalah kata benda yang berasal dari kata himpun. Kata kerjanya adalah menghimpun. Menghimpun adalah kegiatan yang berhubungan dengan berbagai objek apa saja.

Lebih terperinci

Pengantar Kecerdasan Buatan (AK045218) Logika Fuzzy

Pengantar Kecerdasan Buatan (AK045218) Logika Fuzzy Logika Fuzzy Pendahuluan Alasan digunakannya Logika Fuzzy Aplikasi Himpunan Fuzzy Fungsi keanggotaan Operator Dasar Zadeh Penalaran Monoton Fungsi Impilkasi Sistem Inferensi Fuzzy Basis Data Fuzzy Referensi

Lebih terperinci

LOGIKA FUZZY. Dr. Ade Gafar Abdullah JPTE-UPI

LOGIKA FUZZY. Dr. Ade Gafar Abdullah JPTE-UPI LOGIKA FUZZY Dr. Ade Gafar Abdullah JPTE-UPI Introduction Logika fuzzy adalah cabang dari sistem kecerdasan buatan (Artificial Intelegent) yang mengemulasi kemampuan manusia dalam berfikir ke dalam bentuk

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Pada masa sekarang ini hampir semua perusahaan dihadapkan pada suatu masalah yaitu adanya tingkat persaingan yang semakin kompetitif. Hal ini mengharuskan perusahaan

Lebih terperinci

Bab III TEORI DAN PENGONTOR BERBASIS LOGIKA FUZZI

Bab III TEORI DAN PENGONTOR BERBASIS LOGIKA FUZZI Bab III TEORI DAN PENGONTOR BERBASIS LOGIKA FUZZI III.1 Teori Logika fuzzi III.1.1 Logika fuzzi Secara Umum Logika fuzzi adalah teori yang memetakan ruangan input ke ruang output dengan menggunakan aturan-aturan

Lebih terperinci

DAFTAR ISI LEMBAR JUDUL... LEMBAR PERSEMBAHAN... LEMBAR PERNYATAAN... LEMBAR PENGESAHAN TUGAS AKHIR... ABSTRAK... ABSTRACT... KATA PENGANTAR...

DAFTAR ISI LEMBAR JUDUL... LEMBAR PERSEMBAHAN... LEMBAR PERNYATAAN... LEMBAR PENGESAHAN TUGAS AKHIR... ABSTRAK... ABSTRACT... KATA PENGANTAR... DAFTAR ISI Halaman LEMBAR JUDUL... LEMBAR PERSEMBAHAN... LEMBAR PERNYATAAN... LEMBAR PENGESAHAN TUGAS AKHIR... ABSTRAK... ABSTRACT... KATA PENGANTAR... BIODATA ALUMNI... DAFTAR ISI... DAFTAR TABEL... DAFTAR

Lebih terperinci

PENGENDALIAN KECEPATAN KENDARAAN RODA EMPAT DENGAN MENGGUNAKAN FUZZY INFERENCE SYSTEM METODE MAMDANI

PENGENDALIAN KECEPATAN KENDARAAN RODA EMPAT DENGAN MENGGUNAKAN FUZZY INFERENCE SYSTEM METODE MAMDANI Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 03, No. (204), hal 39-46. PENGENDALIAN KECEPATAN KENDARAAN RODA EMPAT DENGAN MENGGUNAKAN FUZZY INFERENCE SYSTEM METODE MAMDANI Yoakim Marinus

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA A. Penjurusan di SMA Sepanjang perkembangan Pendidikan formal di Indonesia teramati bahwa penjurusan di SMA telah dilaksanakan sejak awal kemerdekaan yaitu tahun 1945 sampai sekarang,

Lebih terperinci

Analisis Fungsi Implikasi Max-Min dan Max-Prod Dalam Pengambilan Keputusan

Analisis Fungsi Implikasi Max-Min dan Max-Prod Dalam Pengambilan Keputusan 128 ISSN: 2354-5771 Analisis Fungsi Implikasi Max-Min dan Max-Prod Dalam Pengambilan Keputusan Raheliya Br Ginting STT Poliprofesi Meda E-mail: itink_ribu@yahoo.com Abstrak Pengambilan keputusan harus

Lebih terperinci

Kata kunci: Sistem pendukung keputusan metode Sugeno, tingkat kepribadian siswa

Kata kunci: Sistem pendukung keputusan metode Sugeno, tingkat kepribadian siswa SISTEM PENDUKUNG KEPUTUSAN METODE SUGENO DALAM MENENTUKAN TINGKAT KEPRIBADIAN SISWA BERDASARKAN PENDIDIKAN (STUDI KASUS DI MI MIFTAHUL ULUM GONDANGLEGI MALANG) Wildan Hakim, 2 Turmudi, 3 Wahyu H. Irawan

Lebih terperinci

REVIEW PENERAPAN FUZZY LOGIC SUGENO DAN MAMDANI PADA SISTEM PENDUKUNG KEPUTUSAN PRAKIRAAN CUACA DI INDONESIA

REVIEW PENERAPAN FUZZY LOGIC SUGENO DAN MAMDANI PADA SISTEM PENDUKUNG KEPUTUSAN PRAKIRAAN CUACA DI INDONESIA Seminar Nasional Sistem Informasi Indonesia, 6 November 2017 REVIEW PENERAPAN FUZZY LOGIC SUGENO DAN MAMDANI PADA SISTEM PENDUKUNG KEPUTUSAN PRAKIRAAN CUACA DI INDONESIA Anisa Citra Mutia, Aria Fajar Sundoro,

Lebih terperinci

BAB II LANDASAN TEORI. papernya yang monumental Fuzzy Set (Nasution, 2012). Dengan

BAB II LANDASAN TEORI. papernya yang monumental Fuzzy Set (Nasution, 2012). Dengan BAB II LANDASAN TEORI 2.. Logika Fuzzy Fuzzy set pertama kali diperkenalkan oleh Prof. Lotfi Zadeh, 965 orang Iran yang menjadi guru besar di University of California at Berkeley dalam papernya yang monumental

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya

Institut Teknologi Sepuluh Nopember Surabaya Aplikasi Sistem Inferensi Fuzzy Metode Sugeno dalam Memperkirakan Produksi Air Mineral dalam Kemasan Oleh Suwandi NRP 1209201724 Dosen Pembimbing 1. Prof. Dr M. Isa Irawan, MT 2. Dr Imam Mukhlash, MT Institut

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Logika Fuzzy Zadeh (1965) memperkenalkan konsep fuzzy sebagai sarana untuk menggambarkan sistem yang kompleks tanpa persyaratan untuk presisi. Dalam jurnalnya Hoseeinzadeh et

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dijelaskan landasan teori yang berhubungan dengan himpunan fuzzy, teori garis lurus, dan pengenalan citra dental radiograph. 2.1 Teori Himpunan Fuzzy Pada bagian

Lebih terperinci

PENERAPAN METODE FUZZY TSUKAMOTO UNTUK MEMPREDIKSI HASIL PRODUKSI KELAPA SAWIT (STUDI KASUS : PT. AMAL TANI PERKEBUNAN TANJUNG PUTRI BAHOROK)

PENERAPAN METODE FUZZY TSUKAMOTO UNTUK MEMPREDIKSI HASIL PRODUKSI KELAPA SAWIT (STUDI KASUS : PT. AMAL TANI PERKEBUNAN TANJUNG PUTRI BAHOROK) PENERAPAN METODE FUZZY TSUKAMOTO UNTUK MEMPREDIKSI HASIL PRODUKSI KELAPA SAWIT (STUDI KASUS : PT. AMAL TANI PERKEBUNAN TANJUNG PUTRI BAHOROK) Andrian Juliansyah ( 1011287) Mahasiswa Program Studi Teknik

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini berisi tentang teori mengenai permasalahan yang akan dibahas

BAB II LANDASAN TEORI. Pada bab ini berisi tentang teori mengenai permasalahan yang akan dibahas BAB II LANDASAN TEORI Pada bab ini berisi tentang teori mengenai permasalahan yang akan dibahas dalam pembuatan tugas akhir ini. Secara garis besar teori penjelasan akan dimulai dari definisi logika fuzzy,

Lebih terperinci

BAB II LANDASAN TEORI. Dalam kondisi yang nyata, beberapa aspek dalam dunia nyata selalu atau biasanya

BAB II LANDASAN TEORI. Dalam kondisi yang nyata, beberapa aspek dalam dunia nyata selalu atau biasanya BAB II LANDASAN TEORI A. Logika Fuzzy Dalam kondisi yang nyata, beberapa aspek dalam dunia nyata selalu atau biasanya berada di luar model matematis dan bersifat inexact. Konsep ketidakpastian inilah yang

Lebih terperinci

Logika Himpunan Fuzzy

Logika Himpunan Fuzzy Logika Himpunan Fuzzy 1 Fungsi Keanggotaan untuk crisp logic True False 1 0 80F Panas Temperature f temperature >= 25C, Panas (1 atau Benar); f temperature < 25C, tidak Panas (0 atau Salah). Fungsi keanggotaan

Lebih terperinci

Logika Fuzzy. Farah Zakiyah Rahmanti 2016

Logika Fuzzy. Farah Zakiyah Rahmanti 2016 Logika Fuzzy Farah Zakiyah Rahmanti 2016 Topik Bahasa Alami Crisp Logic VS Fuzzy Logic Fungsi Keanggotaan (Membership Function) Fuzzifikasi (Fuzzyfication) Inferensi (Inference) Komposisi (Composition)

Lebih terperinci

Sebelumnya... Penalaran pada Sistem Pakar. Ketidakpastian dalam Sistem Pakar. Contoh forward chaining & backward chaining

Sebelumnya... Penalaran pada Sistem Pakar. Ketidakpastian dalam Sistem Pakar. Contoh forward chaining & backward chaining Sebelumnya... Penalaran pada Sistem Pakar Contoh forward chaining & backward chaining Ketidakpastian dalam Sistem Pakar Teori Peluang Teori Bayes Jaringan Bayes Faktor Kepastian Kecerdasan Buatan Pertemuan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab II ini dibahas teori-teori pendukung yang digunakan untuk pembahasan selanjutnya yaitu tentang Persamaan Nonlinier, Metode Newton, Aturan Trapesium, Rata-rata Aritmatik dan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Fuzzy set pertama kali diperkenalkan oleh Prof. Lotfi Zadeh pada tahun 1965 yang merupakan guru besar di University of California Berkeley pada papernya yang berjudul

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1. Sistem Pendukung Keputusan DSS adalah suatu sistem informasi yang datanya diproses dalam bentuk pembuatan keputusan bagi pemakai akhir. Karena berorientasi pada pemakai akhir,

Lebih terperinci

SPK PENENTUAN TINGKAT KEPUASAN KONSUMEN PADA RESTORAN XYZ

SPK PENENTUAN TINGKAT KEPUASAN KONSUMEN PADA RESTORAN XYZ SPK PENENTUAN TINGKAT KEPUASAN KONSUMEN PADA RESTORAN XYZ P.A Teknik Informatika Universitas Ahmad Dahlan Yogyakarta Kampus 3 UAD, Jl. Prof. Soepomo rochmahdyah@yahoo.com Abstrak Perkembangan teknologi

Lebih terperinci

Himpunan Fuzzy. Sistem Pakar Program Studi : S1 sistem Informasi

Himpunan Fuzzy. Sistem Pakar Program Studi : S1 sistem Informasi Himpunan Fuzzy Sistem Pakar Program Studi : S1 sistem Informasi Outline Himpunan CRISP Himpunan Fuzzy Himpunan CRISP Pada himpunan tegas (crisp), nilai keanggotaan suatu item dalam suatu himpunan A, yang

Lebih terperinci

BAB I PENDAHULUAN. penyakit menular yang terutama menyerang anak-anak (Widoyono, 2008: 59).

BAB I PENDAHULUAN. penyakit menular yang terutama menyerang anak-anak (Widoyono, 2008: 59). A. Latar Belakang BAB I PENDAHULUAN Penyakit demam berdarah dengue (DBD) merupakan salah satu masalah kesehatan masyarakat di Indonesia yang jumlah penderitanya cenderung meningkat dan penyebarannya semakin

Lebih terperinci

KECERDASAN BUATAN (Artificial Intelligence) Materi 8. Entin Martiana

KECERDASAN BUATAN (Artificial Intelligence) Materi 8. Entin Martiana Logika Fuzzy KECERDASAN BUATAN (Artificial Intelligence) Materi 8 Entin Martiana 1 Kasus fuzzy dalam kehidupan sehari-hari Tinggi badan saya: Andi menilai bahwa tinggi badan saya termasuk tinggi Nina menilai

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Logika Fuzzy Logika fuzzy meringankan bagaimana orang-orang berpikir. Hal ini upaya kita untuk memodelkan pengertian kita terhadap kata-kata dalam pengambilan keputusan. Sehingga

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Perkembangan perekonomian yang terjadi saat ini menjadikan persaingan bisnis semakin kompetitif, konsumen semakin kritis dalam memilih produk berkualitas tinggi sehingga

Lebih terperinci

MENENTUKAN HARGA MOBIL BEKAS TOYOTA AVANZA MENGGUNAKAN METODE TSUKAMOTO

MENENTUKAN HARGA MOBIL BEKAS TOYOTA AVANZA MENGGUNAKAN METODE TSUKAMOTO MENENTUKAN HARGA MOBIL BEKAS TOYOTA AVANZA MENGGUNAKAN METODE TSUKAMOTO Ganjar Ramadhan Jurusan Teknik Informatika, Universitas Islam Negeri Syarif Hidayatullah Jakarta Email : ganjar.ramadhan05@yahoo.com

Lebih terperinci

SIDANG TUGAS AKHIR IMPLEMENTASI FUZZY RULES UNTUK PERENCANAAN DAN PENENTUAN PRIORITAS DI PDAM KOTA SURABAYA. oleh: WINDA ZULVINA

SIDANG TUGAS AKHIR IMPLEMENTASI FUZZY RULES UNTUK PERENCANAAN DAN PENENTUAN PRIORITAS DI PDAM KOTA SURABAYA. oleh: WINDA ZULVINA SIDANG TUGAS AKHIR IMPLEMENTASI FUZZY RULES UNTUK PERENCANAAN DAN PENENTUAN PRIORITAS PEMELIHARAAN PERALATAN PRODUKSI DI PDAM KOTA SURABAYA oleh: WINDA ZULVINA 5206100040 Dosen Pembimbing : Mahendrawathi

Lebih terperinci

( ) ( ;,, ) Π(,, ) ( ;, ) ( ;, ) ( ) BAB I PENDAHULUAN A. Latar Belakang Masalah Provinsi Daerah Istimewa Yogyakarta merupakan salah satu kota tujuan wisata yang cukup menarik minat para wisatawan baik

Lebih terperinci

LOGIKA SAMAR (FUZZY LOGIC)

LOGIKA SAMAR (FUZZY LOGIC) LOGIKA SAMAR (FUZZY LOGIC) 2. Himpunan Samar 2.. Himpunan Klasik dan Himpunan Samar Himpunan klasik merupakan himpunan dengan batasan yang tegas (crisp) (Jang, Sun, dan Mizutani, 24). Sebagai contoh :

Lebih terperinci

SISTEM PENDUKUNG KEPUTUSAN PENERIMAAN BEASISWA BIDIK MISI DI POLITEKNIK NEGERI JEMBER MENGGUNAKAN LOGIKA FUZZY

SISTEM PENDUKUNG KEPUTUSAN PENERIMAAN BEASISWA BIDIK MISI DI POLITEKNIK NEGERI JEMBER MENGGUNAKAN LOGIKA FUZZY SISTEM PENDUKUNG KEPUTUSAN PENERIMAAN BEASISWA BIDIK MISI DI POLITEKNIK NEGERI JEMBER MENGGUNAKAN LOGIKA FUZZY oleh: 1 I Putu Dody Lesmana, 2 Arfian Siswo Bintoro 1,2 Jurusan Teknologi Informasi, Politeknik

Lebih terperinci

SIMULASI MENENTUKAN WAKTU MEMASAK BUAH KELAPA SAWIT MENGGUNAKAN FUZZY MAMDANI

SIMULASI MENENTUKAN WAKTU MEMASAK BUAH KELAPA SAWIT MENGGUNAKAN FUZZY MAMDANI SIMULASI MENENTUKAN WAKTU MEMASAK BUAH KELAPA SAWIT MENGGUNAKAN FUZZY MAMDANI Nofriadi * 1), Havid Syafwan 2) 1) Program Studi Sistem Informasi, STMIK Royal Kisaran Jl. Prof. M. Yamin 173 Kisaran, Sumatera

Lebih terperinci

Logika fuzzy pertama kali dikembangkan oleh Lotfi A. Zadeh melalui tulisannya pada tahun 1965 tentang teori himpunan fuzzy.

Logika fuzzy pertama kali dikembangkan oleh Lotfi A. Zadeh melalui tulisannya pada tahun 1965 tentang teori himpunan fuzzy. LOGIKA FUZZY UTHIE Pendahuluan Logika fuzzy pertama kali dikembangkan oleh Lotfi A. Zadeh melalui tulisannya pada tahun 1965 tentang teori himpunan fuzzy. Lotfi Asker Zadeh adalah seorang ilmuwan Amerika

Lebih terperinci

PENALARAN FUZZY SISTEM PAKAR DEPARTEMEN ILMU KOMPUTER INSTITUT PERTANIAN BOGOR 2012

PENALARAN FUZZY SISTEM PAKAR DEPARTEMEN ILMU KOMPUTER INSTITUT PERTANIAN BOGOR 2012 PENALARAN FUZZY SISTEM PAKAR DEPARTEMEN ILMU KOMPUTER INSTITUT PERTANIAN BOGOR 2012 PENALARAN FUZZY Digunakan untuk menghasilkan suatu keputusan tunggal / crisp saat defuzzifikasi Penggunaan akan bergantung

Lebih terperinci

LOGIKA FUZZY MENGGUNAKAN MATLAB

LOGIKA FUZZY MENGGUNAKAN MATLAB LOGIKA FUZZY MENGGUNAKAN MATLAB T.SUTOJO,Ssi,M.Kom 5.10 Fuzzy Logic Toolbox Matlab menyediakan fungsi-fungsi khusus untuk perhitungan logika Fuzzy dimulai dari perhitungan fungsi keanggotaan sampai dengan

Lebih terperinci

METODOLOGI PENELITIAN

METODOLOGI PENELITIAN 7 terboboti dari daerah output fuzzy. Metode ini paling dikenal dan sangat luas dipergunakan. First of Maxima (FoM) dan Last of Maxima (LoM) Pada First of Maxima (FoM), defuzzifikasi B( y) didefinisikan

Lebih terperinci

APLIKASI MODEL FUZZY DALAM PREDIKSI PRODUKSI TELUR AYAM PETELUR DI KABUPATEN SLEMAN

APLIKASI MODEL FUZZY DALAM PREDIKSI PRODUKSI TELUR AYAM PETELUR DI KABUPATEN SLEMAN APLIKASI MODEL FUZZY DALAM PREDIKSI PRODUKSI TELUR AYAM PETELUR DI KABUPATEN SLEMAN SKRIPSI Diajukan Kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta Untuk Memenuhi Sebagian

Lebih terperinci

NURAIDA, IRYANTO, DJAKARIA SEBAYANG

NURAIDA, IRYANTO, DJAKARIA SEBAYANG Saintia Matematika Vol. 1, No. 6 (2013), pp. 543 555. ANALISIS TINGKAT KEPUASAN KONSUMEN BERDASARKAN PELAYANAN, HARGA DAN KUALITAS MAKANAN MENGGUNAKAN FUZZY MAMDANI (Studi Kasus pada Restoran Cepat Saji

Lebih terperinci

BAB II KAJIAN PUSTAKA. mengikuti sertifikasi, baik pendidikan gelar (S-1, S-2, atau S-3) maupun nongelar (D-

BAB II KAJIAN PUSTAKA. mengikuti sertifikasi, baik pendidikan gelar (S-1, S-2, atau S-3) maupun nongelar (D- BAB II KAJIAN PUSTAKA A. Kualifikasi Akademik Ditjendikti - kemendiknas, (2010) menyatakan bahwa kualifikasi akademik adalah ijazah pendidikan tinggi yang dimiliki oleh guru pada saat yang bersangkutan

Lebih terperinci

Mahasiswa mampu memformulasikan permasalahan yang mengandung fakta dengan derajad ketidakpastian tertentu ke dalam pendekatan Sistem Fuzzy.

Mahasiswa mampu memformulasikan permasalahan yang mengandung fakta dengan derajad ketidakpastian tertentu ke dalam pendekatan Sistem Fuzzy. Chapter 7 Tujuan Instruksional Khusus Mahasiswa mampu memformulasikan permasalahan yang mengandung fakta dengan derajad ketidakpastian tertentu ke dalam pendekatan. Mahasiswa mampu melakukan perhitungan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 5 BAB 2 LANDASAN TEORI 2.1 Logika Fuzzy Logika fuzzy adalah cabang dari sistem kecerdasan buatan (Artificial Inteligent) yang mengemulasi kemampuan manusia dalam berfikir ke dalam bentuk algoritma yang

Lebih terperinci

Analisis Rule Inferensi Mamdani dalam Menentukan Beasiswa Peningkatan Prestasi Akademik ( PPA)

Analisis Rule Inferensi Mamdani dalam Menentukan Beasiswa Peningkatan Prestasi Akademik ( PPA) Analisis Rule Inferensi Mamdani dalam Menentukan Beasiswa Peningkatan Prestasi Akademik ( PPA) Khairul Saleh, M. Kom, Universitas Asahan; address, telp/fax of institution/affiliation Jurusan Teknik Informatika,

Lebih terperinci

Contoh Kasus. Bagus Ilhami HIdayat

Contoh Kasus. Bagus Ilhami HIdayat Contoh Kasus Suatu perusahaan tekstil akan memproduksi pakaian dengan jenis XYZ. Dari 1 bulan terakhir, permintaan terbesar mencapai 5000 potong per hari, dan permintaan terkecil mencapai 1000 potong per

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai teori-teori yang akan digunakan untuk menunjang dalam proses pembuatan tugas akhir ini.

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai teori-teori yang akan digunakan untuk menunjang dalam proses pembuatan tugas akhir ini. BAB II LANDASAN TEORI Pada bab ini akan dibahas mengenai teori-teori yang akan digunakan untuk menunjang dalam proses pembuatan tugas akhir ini. 2.1 CLUSTERING Clustering adalah proses pengelompokkan suatu

Lebih terperinci

UNIVERSITAS BINA NUSANTARA PERANCANGAN PROGRAM APLIKASI AUTOMATIC FUZZY RULES EXTRACTOR UNTUK MENGESTIMASI VARIABEL RESERVOIR ABSTRAK

UNIVERSITAS BINA NUSANTARA PERANCANGAN PROGRAM APLIKASI AUTOMATIC FUZZY RULES EXTRACTOR UNTUK MENGESTIMASI VARIABEL RESERVOIR ABSTRAK UNIVERSITAS BINA NUSANTARA Program Ganda Teknik Informatika Matematika Skripsi Sarjana Program Ganda Semester Genap 2004/2005 PERANCANGAN PROGRAM APLIKASI AUTOMATIC FUZZY RULES EXTRACTOR UNTUK MENGESTIMASI

Lebih terperinci

Fuzzy Set Logika Fuzzy Fuzzy System

Fuzzy Set Logika Fuzzy Fuzzy System Fuzzy Set Logika Fuzzy Fuzzy System 1 Crisp Set Crisp set membedakan anggota dan non anggota dengan batasan pasti Misalkan A sebuah crisp set dan x anggota A maka : A [x]=1 Jika y bukan anggota A maka

Lebih terperinci

PENERAPAN INFERENSI FUZZY UNTUK KENDALI SUHU RUANGAN PADA PENDINGIN RUANGAN (AC)

PENERAPAN INFERENSI FUZZY UNTUK KENDALI SUHU RUANGAN PADA PENDINGIN RUANGAN (AC) PENERAPAN INFERENSI FUZZY UNTUK KENDALI SUHU RUANGAN PADA PENDINGIN RUANGAN (AC) Kartina Diah KW,ST1), Zulfa Noviardi2) 1,2) Jurusan Teknik Komputer Politeknik Caltex Riau Pekanbaru Jl. Umban Sari No.1

Lebih terperinci

PENDAPATAN MASYARAKAT DENGAN ADANYA KAMPUS MENGGUNAKAN FUZZY TSUKAMOTO

PENDAPATAN MASYARAKAT DENGAN ADANYA KAMPUS MENGGUNAKAN FUZZY TSUKAMOTO PENDAPATAN MASYARAKAT DENGAN ADANYA KAMPUS MENGGUNAKAN FUZZY TSUKAMOTO Asrianda 1 asrianda@unimal.ac.id Abstrak Bertambahnya permintaan mahasiswa atas kebutuhan makan seharihari, berkembangnya usaha warung

Lebih terperinci

REVIEW JURNAL LOGIKA FUZZY

REVIEW JURNAL LOGIKA FUZZY REVIEW JURNAL LOGIKA FUZZY Disusun oleh : Gita Adinda Permata 1341177004309 PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER UNIVERSITAS NEGERI SINGAPERBANGSA KARAWANG KATA PENGANTAR Assalamualaikum

Lebih terperinci

BAB III METODE FUZZY MAMDANI

BAB III METODE FUZZY MAMDANI 29 BAB III METODE FUZZY MAMDANI Fuzzy Inference System merupakan sebuah kerangka kerja perhitungan berdasarkan konsep teori himpunan fuzzy dan pemikiran fuzzy yang digunakan dalam penarikan kesimpulan

Lebih terperinci

Penentuan Jumlah Produksi Kue Bolu pada Nella Cake Padang dengan Sistem Inferensi Fuzzy Metode Sugeno

Penentuan Jumlah Produksi Kue Bolu pada Nella Cake Padang dengan Sistem Inferensi Fuzzy Metode Sugeno Penentuan Kue Bolu pada Nella Cake Padang dengan Sistem Inferensi Fuzzy Metode Sugeno Shenna Miranda #1, Minora Longgom Nasution *2, Muhammad Subhan #3 #1 Student of Mathematics department State University

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Tingkat kesehatan bank dapat diketahui dengan melihat peringkat

BAB IV HASIL DAN PEMBAHASAN. Tingkat kesehatan bank dapat diketahui dengan melihat peringkat BAB IV HASIL DAN PEMBAHASAN A. Analisis Tingkat Kesehatan Bank Tingkat kesehatan bank dapat diketahui dengan melihat peringkat komposit bank tersebut. Menurut peraturan Bank Indonesia No. 13/1/PBI/2011

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Kelapa Sawit Kelapa sawit adalah tumbuhan industri/ perkebunan yang berguna sebagai penghasil minyak masak, minyak industri, maupun bahan bakar. Pohon Kelapa Sawit terdiri dari

Lebih terperinci

PENENTUAN JUMLAH PRODUKSI TELEVISI MERK X MENGGUNAKAN METODE FUZZY MAMDANI

PENENTUAN JUMLAH PRODUKSI TELEVISI MERK X MENGGUNAKAN METODE FUZZY MAMDANI PENENTUAN JUMLAH PRODUKSI TELEVISI MERK X MENGGUNAKAN METODE FUZZY MAMDANI Ahmad Mufid Program Studi Sistem Komputer Fakultas Teknik Universitas Sultan Fatah (UNISFAT) Jl. Sultan Fatah No. 83 Demak Telpon

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Logika Fuzzy Logika Fuzzy pertama kali dikembangkan oleh Lotfi A. Zadeh pada tahun1965. Teori ini banyak diterapkan di berbagai bidang, antara lain representasipikiran manusia

Lebih terperinci

LOGIKA FUZZY PADA PROSES PELET PAKAN IKAN

LOGIKA FUZZY PADA PROSES PELET PAKAN IKAN LOGIKA FUZZY PADA PROSES PELET PAKAN IKAN Agung Saputra 1), Wisnu Broto 2), Ainil Syafitri 3) Prodi Elektro Fakultas Teknik Univ. Pancasila, Srengseng Sawah Jagakarsa, Jakarta, 12640 Email: 1) agungsap2002@yahoo.com

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Permintaan 2.1.1 Pengertian Permintaan Permintaan adalah banyaknya jumlah barang yang diminta pada suatu pasar tertentu dengan tingkat harga tertentu pada tingkat pendapatan tertentu

Lebih terperinci

PENENTUAN JUMLAH PRODUKSI DENGAN APLIKASI METODE FUZZY MAMDANI

PENENTUAN JUMLAH PRODUKSI DENGAN APLIKASI METODE FUZZY MAMDANI PENENTUAN JUMLAH PRODUKSI DENGAN APLIKASI METODE FUZZY MAMDANI Much. Djunaidi Jurusan Teknik Industri Universitas Muhammadiyah Surakarta Jl. Ahmad Yani Tromol Pos 1 Pabelan Surakarta email: joned72@yahoo.com

Lebih terperinci

manusia diantaranya penyakit mata konjungtivitis, keratitis, dan glaukoma.

manusia diantaranya penyakit mata konjungtivitis, keratitis, dan glaukoma. 6 BAB II TINJAUAN PUSTAKA 2.1 Gambaran Tentang Mata Mata merupakan organ tubuh manusia yang paling sensitif apabila terkena benda asing misal asap dan debu. Debu akan membuat mata kita terasa perih atau

Lebih terperinci

PENILAIAN KINERJA DOSEN DENGAN MENGGUNAKAN METODE SUGENO

PENILAIAN KINERJA DOSEN DENGAN MENGGUNAKAN METODE SUGENO PENILAIAN KINERJA DOSEN DENGAN MENGGUNAKAN METODE SUGENO Magdalena Simanjuntak Program Studi Teknik Informatika, STMIK Kaputama E-mail : magdalena.simanjuntak84@gmail.com ABSTRACT This study aimed to analyze

Lebih terperinci

ANALISIS & DESAIN SISTEM FUZZY. Menggunakan TOOLBOX MATLAB

ANALISIS & DESAIN SISTEM FUZZY. Menggunakan TOOLBOX MATLAB ANALISIS & DESAIN SISTEM FUZZY Menggunakan TOOLBOX MATLAB ANALISIS & DESAIN SISTEM FUZZY Menggunakan TOOLBOX MATLAB Sri Kusumadewi Analisis & Desain Sistem Fuzzy Menggunakan Toolbox Matlab Oleh: Sri Kusumadewi

Lebih terperinci

SISTEM PENDUKUNG KEPUTUSAN DALAM MENENTUKAN BEASISWA BERPRESTASI MENGGUNAKAN METODE FUZZY (STUDI KASUS: INSTANSI XYZ)

SISTEM PENDUKUNG KEPUTUSAN DALAM MENENTUKAN BEASISWA BERPRESTASI MENGGUNAKAN METODE FUZZY (STUDI KASUS: INSTANSI XYZ) SISTEM PENDUKUNG KEPUTUSAN DALAM MENENTUKAN BEASISWA BERPRESTASI MENGGUNAKAN METODE FUZZY (STUDI KASUS: INSTANSI XYZ) Dimas Wahyu Wibowo 1, Eka Larasati Amalia 2 1,2 Teknik Informatika, Politeknik Negeri

Lebih terperinci

IMPLEMENTASI FUZZY LOGIC DALAM MENENTUKAN PENDUDUK MISKIN (STUDI KASUS PADA BADAN PUSAT STATISTIK KOTA PAGARALAM)

IMPLEMENTASI FUZZY LOGIC DALAM MENENTUKAN PENDUDUK MISKIN (STUDI KASUS PADA BADAN PUSAT STATISTIK KOTA PAGARALAM) IMPLEMENTASI FUZZY LOGIC DALAM MENENTUKAN PENDUDUK MISKIN (STUDI KASUS PADA BADAN PUSAT STATISTIK KOTA PAGARALAM) Junius_Effendi* Email : Cyberpga@ymail.com ABSTRAK Penelitian ini dilakukan untuk memperlajari

Lebih terperinci

PENGEMBANGAN SISTEM PAKAR FUZZY

PENGEMBANGAN SISTEM PAKAR FUZZY FUZZY EXPERT SYSTEM FUZZY INFERENCE SYSTEM FUZZY REASONING Toto Haryanto MATA KULIAH SISTEM PAKAR DEPARTEMEN ILMU KOMPUTER INSTITUT PERTANIAN BOGOR PENGEMBANGAN SISTEM PAKAR FUZZY Domain Masalah Fuzzifikasi

Lebih terperinci

ANALISIS FUNGSI KEANGGOTAAN DALAM FUZZY INFERENCE SYSTEM. Arta Trisades Pinem S2 Teknik Informatika Universitas Sumatera Utara ABSTRAK

ANALISIS FUNGSI KEANGGOTAAN DALAM FUZZY INFERENCE SYSTEM. Arta Trisades Pinem S2 Teknik Informatika Universitas Sumatera Utara ABSTRAK Jurnal ilmiah INTEGRITAS Vol.1 No. 4 Desember 201 ANALISIS FUNGSI KEANGGOTAAN DALAM FUZZY INFERENCE SYSTEM Arta Trisades Pinem S2 Teknik Informatika Universitas Sumatera Utara ABSTRAK Dalam merancang pengendali

Lebih terperinci

Aplikasi Prediksi Harga Bekas Sepeda Motor Yamaha. Menggunakan Fuzzy Logic

Aplikasi Prediksi Harga Bekas Sepeda Motor Yamaha. Menggunakan Fuzzy Logic Aplikasi Prediksi Harga Bekas Sepeda Motor Yamaha Menggunakan Fuzzy Logic 1. Pendahuluan Jual beli motor merupakan suatu kegiatan transaksi yang mungkin sering kita temukan di kehidupan sehari-hari. Untuk

Lebih terperinci

Team project 2017 Dony Pratidana S. Hum Bima Agus Setyawan S. IIP

Team project 2017 Dony Pratidana S. Hum Bima Agus Setyawan S. IIP Hak cipta dan penggunaan kembali: Lisensi ini mengizinkan setiap orang untuk menggubah, memperbaiki, dan membuat ciptaan turunan bukan untuk kepentingan komersial, selama anda mencantumkan nama penulis

Lebih terperinci

Sist Sis em t Fuzzy Fuzz Sistem Pakar

Sist Sis em t Fuzzy Fuzz Sistem Pakar Sistem Fuzzy Sistem Pakar Pendahuluan Manusia cenderung menggunakan bahasa dalam bentuk sesuatu yang dapat dipahami secara umum, bukan dalam bentuk bahasa matematika yang mementingkan akurasi. Misalkan,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Himpunan Himpunan adalah suatu kumpulan atau koleksi objek-objek yang mempunyai kesamaan sifat tertentu. Objek ini disebut elemen-elemen atau anggota-anggota dari himpunan (Frans

Lebih terperinci