PENGOPTIMUMAN EKSTRAKSI FLAVONOID DAUN SALAM (Syzygium polyanthum) DAN ANALISIS SIDIK JARI DENGAN KROMATOGRAFI LAPIS TIPIS JULIA DEVY OKTAVIA

Ukuran: px
Mulai penontonan dengan halaman:

Download "PENGOPTIMUMAN EKSTRAKSI FLAVONOID DAUN SALAM (Syzygium polyanthum) DAN ANALISIS SIDIK JARI DENGAN KROMATOGRAFI LAPIS TIPIS JULIA DEVY OKTAVIA"

Transkripsi

1 PENGOPTIMUMAN EKSTRAKSI FLAVONOID DAUN SALAM (Syzygium polyanthum) DAN ANALISIS SIDIK JARI DENGAN KROMATOGRAFI LAPIS TIPIS JULIA DEVY OKTAVIA DEPARTEMEN KIMIA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2011

2 ABSTRAK JULIA DEVY OKTAVIA. Pengoptimuman Ekstraksi Flavonoid Daun Salam (Syzygium polyanthum) dan Analisis Sidik Jari dengan Kromatografi Lapis Tipis. Dibimbing oleh LATIFAH KOSIM DARUSMAN dan WULAN TRI WAHYUNI. Daun salam diketahui mengandung senyawa flavonoid yang berfungsi sebagai antioksidan. Penelitian ini bertujuan mencari kondisi optimum ekstraksi flavonoid daun salam dengan meragamkan metode ekstraksi, polaritas pelarut, dan waktu ekstraksi. Metode ekstraksi yang digunakan adalah maserasi dan sonikasi, polaritas pelarut yang digunakan adalah nisbah antara dan air, serta waktu ekstraksi untuk sonikasi berada dalam rentang 5 hingga 15 menit, sedangkan untuk maserasi berada dalam rentang 6 hingga 24 jam. Kadar flavonoid total dan aktivitas antioksidan menjadi parameter keberhasilan ekstraksi. Penelitian dirancang menggunakan rancangan kombinasi D-Optimal dengan bantuan perangkat lunak DX8.0.6 versi uji coba. Berdasarkan analisis statistik, kondisi optimum ekstraksi ditentukan dengan melihat kebaikan model. Kondisi optimum tersebut diperoleh saat kondisi ekstraksi sonikasi dengan pelarut 96% selama 15 menit yang memiliki aktivitas antioksidan dengan nilai IC 50 13,1593 µg/ml dan kadar flavonoid total 0,0127 mg QE/mg ekstrak. Komposisi ekstrak terbaik berdasarkan uji fitokimia di antaranya merupakan golongan senyawa antosianidin, flavonol, flavon, dan kalkon. Profil sidik jari ekstrak terbaik yang memiliki bioaktivitas paling tinggi dideteksi dengan kromatografi lapis tipis. Analisis sidik jari ekstrak tersebut dilakukan menggunakan kloroform sebagai fase gerak terbaik yang menghasilkan 8 pita. ABSTRACT JULIA DEVY OKTAVIA. Optimization in Flavonoid Extraction of Salam Leaves (Syzygium polyanthum) and Fingerprint Analysis Using Thin Layer Chromatography. Supervised by LATIFAH KOSIM DARUSMAN and WULAN TRI WAHYUNI. Salam leaves contain flavonoids having a function as antioxidants. The aim of this study is to find optimum condition for flavonoid extraction from salam leaves by varying the extraction methods, solvent polarity, and extraction time. The extraction was conducted by maceration and sonication methods, with methanol and water ratio as indication of solvent polarity. Extraction by maseration was run for 6 to 24 hours, while sonication was run for 6 to 15 minutes. Total flavonoid content and antioxidant activity were the parameters for measuring the selection of extraction process. The study was designed using a combination design of D-Optimal with software DX8.0.6 for trial version. Based on statistical analysis, the optimum conditions of extraction was determined with the goodness of the model. The optimum condition was the sonication extraction in 96% methanol for 15 minutes. This condition has the best the antioxidant activity with IC 50 value of 13,1593 mg/ml and total flavonoid content of 0,0127 mg QE/mg extract. The composition of the best extract based on phitochemical assay were anthocyanidins, flavonol, flavone, and khalkon. The fingerprint profiles of the best extract that has highest bioactivity was detected by thin layer chromatography analysis. Fingerprint analysis of the extract was performed using chlorofom as the best eluent which resulting 8 bands.

3 2 PENGOPTIMUMAN EKSTRAKSI FLAVONOID DAUN SALAM (Syzygium polyanthum) DAN ANALISIS SIDIK JARI DENGAN KROMATOGRAFI LAPIS TIPIS JULIA DEVY OKTAVIA Skripsi sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains pada Departemen Kimia DEPARTEMEN KIMIA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2011

4 3 Judul : Pengoptimuman Ekstraksi Flavonoid Daun Salam (Syzygium polyanthum) dan Analisis Sidik Jari dengan Kromatografi Lapis Tipis Nama : Julia Devy Oktavia Nim : G Disetujui Pembimbing I Pembimbing II Prof. Dr. Ir. Latifah K. Darusman, MS NIP Wulan Tri Wahyuni, S.Si, M.Si Diketahui Ketua Departemen Kimia Prof. Dr. Ir. Tun Tedja Irawadi, MS NIP Tanggal lulus :

5 4 PRAKATA Puji dan syukur kehadirat Allah SWT atas rahmat dan karunia-nya yang berlimpah sehingga penulis dapat menyelesaikan karya ilmiah ini. Penelitian ini dilaksanakan dari bulan Maret hingga bulan Agustus 2011, bertempat di Laboratorium Kimia Analitik, Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor dan Laboratorium Uji Pusat Studi Biofarmaka, Insstitut Pertanian Bogor. Penulis mengucapkan terima kasih kepada Prof. Dr. Latifah K. Darusman, MS dan Wulan Tri Wahyuni, M.Si selaku pembimbing yang senantiasa memberikan arahan, dorongan semangat, kepada penulis selama melaksanakan penelitian dan penyusunan karya ilmiah ini. Terima kasih kepada Rudi Heryanto, M.Si yang telah memberikan masukan dan saran penggunaan rancangan percobaan dan mengajarkan penggunaan piranti lunak DX8.0.6 versi uji coba yang digunakan dalam penelitian ini. Terima kasih kepada bagian Kimia Analitik yang telah melibatkan dalam tema penentuan senyawa penciri dalam tanaman obat. Penulis juga mengucapkan terima kasih kepada analis Laboratorium Kimia Analitik maupun Laboratorium Uji Pusat Studi Biofarmaka (Ibu Nunung, Ibu Salina, dan Ibu Nunuk) serta staf laboran (Pak Eman, Pak Dede, dan Mas Endi) atas bantuan dan masukan yang sangat berarti selama penelitian berlangsung. Terima kasih tak terhingga penulis ucapkan kepada mama, ayah, serta seluruh keluarga atas doa dan kasih sayangnya, serta teman-teman sekalian atas dorongan semangat, masukan, dan saran kepada penulis. Penulis berharap, karya ilmiah ini dapat bermanfaat bagi perkembangan ilmu pengetahuan. Bogor, Agustus 2011 Julia Devy Oktavia

6 5 RIWAYAT HIDUP Penulis dilahirkan di Jakarta pada tanggal 14 Juli 1990 dari ayah Migda Oktavia dan ibu Tuti Kurniasih. Penulis adalah anak pertama dari 1 bersaudara. Tahun 2007 penulis lulus dari SMA Negeri 5 Jakarta dan pada tahun yang sama penulis lulus seleksi masuk IPB melalui jalur Undangan Seleksi Masuk IPB (USMI), dan diterima di Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam. Selama mengikuti perkuliahan, penulis aktif sebagai staf Pengembangan Sumber Daya Mahasiswa (PSDM) Ikatan Mahasiswa Kimia (Imasika) pada tahun dan menjadi ketua departemen PSDM Imasika pada tahun Penulis juga aktif sebagai asisten praktikum Elektroanalisis dan Teknik Pemisahan pada tahun , asisten praktikum Kimia Analitik II pada tahun , asisten praktikum Kimia Dasar pada tahun Bulan Juli- Agustus 2010 penulis melaksanakan Praktik Lapangan di Balai Pengujian Mutu Barang Ekspor-Impor (BPMBEI) dengan judul Analisis Residu Kloramfenikol dalam Madu Menggunakan Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS).

7 vi DAFTAR ISI Halaman DAFTAR ISI... vi DAFTAR TABEL... vii DAFTAR GAMBAR... vii DAFTAR LAMPIRAN... viii PENDAHULUAN TINJAUAN PUSTAKA Salam (Syzygium polyanthum)... 2 Flavonoid... 2 Ekstraksi Senyawa Metabolit Sekunder... 3 Radikal Bebas dan Antioksidan... 4 Aktivitas Antioksidan Metode DPPH... 4 Kromatografi Lapis Tipis (KLT)... 5 Rancangan Percobaan... 6 BAHAN DAN METODE Bahan dan Alat... 7 Ruang Lingkup... 7 Pengumpulan dan Persiapan Contoh... 7 Penentuan Kadar Air... 7 Ekstraksi Flavonoid Total dengan Bantuan Rancangan Percobaan D-Optimal... 7 Uji Golongan Flavonoid... 8 Penentuan Antosianidin... 8 Penentuan Flavonoid Lain... 8 Penentuan Kadar Flavonoid Total... 8 Uji Aktivitas Antioksidan... 9 Pemilihan Fase Gerak Terbaik menggunakan Kromatografi Lapis Tipis (KLT)... 9 HASIL DAN PEMBAHASAN Perlakuan Pendahuluan... 9 Kadar Air Simplisia Daun Salam Ekstraksi Flavonoid Daun Salam Kadar Flavonoid Daun Salam Aktivitas Antioksidan Daun Salam Kondisi Optimum Ekstraksi Flavonoid Uji Fitokimia Senyawa Golongan Flavonoid Penentuan Campuran Fase Gerak dari Fase Gerak Tunggal Penentuan Fase Gerak Optimum dengan Simplex Centroid Design... 17

8 vii Analisis Sidik Jari pada Kondisi Optimum SIMPULAN DAN SARAN Simpulan Saran DAFTAR PUSTAKA LAMPIRAN DAFTAR TABEL Halaman 1 Uji kualitatif golongan flavonoid Rancangan kombinasi hasil D- Optimal untuk metode maserasi Rancangan kombinasi hasil D-Optimal untuk metode sonikasi Rancangan komposisi fase gerak Hasil IC 50 dan kadar flavonoid total untuk rancangan kombinasi pada metode maserasi Hasil IC 50 dan kadar flavonoid total untuk rancangan kombinasi pada metode sonikasi DAFTAR GAMBAR Halaman 1 Tanaman salam Kerangka dasar senyawa flavonoid Reaksi penangkapan radikal bebas DPPH dengan antioksidan Ruangan pengembang dan pelat kromatografi lapis tipis Model simplex centroid design with axial Grafik hasil persen rendemen ekstraksi maserasi Grafik hasil persen rendemen ekstraksi sonikasi

9 viii 8 Plot permukaan respon dan kontur IC 50 pada polaritas pelarut dan waktu ekstraksi Plot permukaan respon dan kontur kadar flavonoid pada polaritas pelarut dan waktu ekstraksi Jumlah spot pada elusi KLT ekstrak terbaik daun salam untuk fase gerak dengan deteksi UV 366 nm Jumlah pita hasil KLT ekstrak daun salam dengan deteksi UV 366 nm Plot kontur desain campuran simplex centroid untuk jumlah pita optimasi fase gerak Kromatogram KLT dengan fase gerak pada titik optimum (kloroform) dengan deteksi pada UV 366 nm DAFTAR LAMPIRAN Halaman 1 Diagram alir penelitian Hasil penentuan kadar air Penentuan kadar flavonoid ekstrak daun salam Data uji aktivitas antioksidan Kondisi optimum hasil keluaran rancangan kombinasi D-Optimal Data ANOVA kadar flavonoid total pada kondisi ekstraksi optimum Data ANOVA nilai IC 50 pada kondisi ekstraksi optimum Hasil uji golongan flavonoid pada ekstrak sonikasi 7 dengan pelarut Hasil pemisahan ekstrak terbaik daun salam dengan berbagai pelarut tunggal Hasil elusi ekstrak terbaik daun salam dengan campuran fase gerak kloroform, n-butanol, dan etil asetat pada deteksi UV 366 nm Data ANOVA penentuan komposisi fase gerak optimum Pola sidik jari KLT pada ekstrak 96% dengan waktu... 33

10 1 PENDAHULUAN Meningkatnya penyakit degeneratif seperti kanker disebabkan karena terjadinya suatu kondisi stress oksidatif, yaitu kondisi saat antioksidan yang ada di dalam tubuh tidak mampu menetralisir peningkatan konsentrasi radikal bebas, sehingga dapat menimbulkan kerusakan pada komponen sel seperti DNA, lipid, dan protein (Chen et al. 1996). Untuk itu, manusia membutuhkan antioksidan yang berasal dari luar tubuh. Penggunaan antioksidan sintetik mulai dibatasi karena dari hasil penelitian yang telah dilakukan diketahui antioksidan sintetik seperti propil galat, butilhidroksianisol (BHA), butyl-hidroksitoluena (BHT), dan tersier-butil-hidrokuinon (TBHQ) memberikan efek buruk terhadap kesehatan dan dapat bersifat toksik (Chen et al 1992; Kahl & Kappus 1993; Miyake & Shibamoto 1997). Oleh karena itu antioksidan alami menjadi alternatif yang sangat dibutuhkan. Kemampuan flavonoid sebagai antioksidan telah banyak diteliti belakangan ini (Pourmorad et al. 2006; Sunarni et al. 2007; Setiawan 2008; Zuhra et al. 2008; Akbar 2010; Borges 2010). Sebagai antioksidan, flavonoid memiliki kemampuan mengubah atau mereduksi radikal bebas dan juga sebagai anti radikal bebas (Zuhra 2008). Salam (Syzygium polyanthum) merupakan salah satu sumber flavonoid yang berpotensi sebagai antioksidan. Daun salam mengandung beberapa komponen utama, yaitu minyak atsiri (sitral dan eugenol), tanin dan flavonoid (Dalimartha 2003). Daun salam berkhasiat untuk pengobatan diabetes melitus, inflamasi, dan diare (Lelono 2009). Kandungan flavonoid dalam daun salam mendorong dilakukannya suatu usaha yang dapat mengoptimalkan pemanfaatan tanaman tersebut. Potensi salam sebagai antioksidan yang dapat menangkap molekul radikal bebas telah diketahui dalam penelitian Lelono (2009), yaitu aktivitas antioksidan kulit batang salam meningkat dengan meningkatnya kandungan fenol total dari kulit batang salam. Aktivitas radikal bebas tertinggi terdapat pada ekstrak -air dengan nilai IC 50 sebesar 0,18 mg/ml. Terdapat beberapa teknik ekstraksi yang dapat digunakan untuk mengisolasi senyawa aktif dari bahan alam, di antaranya ekstraksi maserasi, sonikasi, soxhlet, refluks, dan distilasi (Velickovic 2007). Namun, banyak bahan alam yang tidak stabil secara termal dan dapat terdegradasi selama proses ekstraksi seperti pada ekstraksi soxhlet. Metode ekstraksi seperti maserasi membutuhkan waktu yang lama sehingga menjadi tidak efisien. Untuk itu, perlu dikembangkan metode ekstraksi lain yang bertujuan menjadikan proses ekstraksi lebih efisien dan mempersingkat waktu ekstraksi, salah satunya adalah ekstraksi sonikasi yang memanfaatkan gelombang ultrasonik. Efektivitas ekstraksi sangat bergantung pada kondisi-kondisi percobaan yang digunakan seperti waktu ekstraksi, nisbah sampel-pelarut, dan jenis pelarut. Oleh karena itu perlu dilakukan optimisasi pada kondisi percobaan untuk mendapatkan hasil yang optimal. Pengaruh perbedaan metode ekstraksi, pelarut, dan waktu ekstraksi terhadap kadar flavonoid dan aktivitas antioksidan ekstrak diamati pada penelitian ini. Pengoptimuman kondisi ekstraksi disusun dengan bantuan desain eksperimental. Banyaknya komponen kimia yang terdapat pada tanaman obat memungkinkan sulitnya untuk menjamin keamanan, kendali mutu, dan konsistensi produknya dibandingkan dengan obat sintetis (Reich & Schibli 2008). Dalam kendali mutu dan uji stabilitas produk tanaman obat, analisis sidik jarimenggunakan kromatografi merupakan teknik yang dapat digunakan untuk mengevaluasi dan membandingkan komponen-komponen kimia yang terdapat pada produk tersebut. Pola sidik jari kromatografi menunjukkan profil keseluruhan komponen karena dapat merepresentasikan keragaman komponen yang ada dalam tanaman obat tanpa memperhatikan jenisnya (Liang et al. 2004). Pada penelitian ini sidik jari ekstrak flavonoid dengan bioaktivitar terbaik diperiksa dengan menggunakan kromatografi lapis tipis (KLT). Penelitian ini bertujuan mencari kondisi optimum ekstraksi flavonoid daun salam (Syzygium polyanthum) dengan memvariasikan metode ekstraksi, polaritas pelarut, dan waktu ekstraksi. Aktivitas antioksidan dan kadar flavonoid total menjadi parameter pengukur keberhasilan ekstraksi. Profil sidik jari ekstrak yang memiliki bioaktivitas paling tinggi diperiksa dengan KLT.

11 2 TINJAUAN PUSTAKA Salam (Syzygium polyanthum) Syzygium polyanthum [Wight.] Walp., sinonim Eugenia polyantha Wight., dan E. lucidula miq., memiliki nama daerah salam (Indonesia, Sunda, Jawa, Madura); gowok (Sunda); manting (Jawa); kastolam (Kangean); dan meselangan, ubar serai (Melayu). Salam diklasifikasikan ke dalam divisi Spermatophyta, subdivisi Angiospermae, kelas Dicotyledoneae, ordo Myrtales, family Myrtaceae, genus Syzygium, spesies Syzygium polyanthum (Wight) Walp (Sumono 2008). Salam merupakan tanaman asli Indonesia dan tumbuh di wilayah iklim tropis dan subtropis, termasuk di Asia Tenggara dan Cina. Secara morfologi (Gambar 1), salam merupakan pohon bertajuk rimbun dengan tinggi mencapai 25 m, berakar tunggang, dan berbatang bulat dengan permukaan yang licin. Daun tunggal, berbentuk lonjong hingga elips, letak berhadapan, panjang tangkai 0,5-1 cm, ujung meruncing, pangkal runcing, tepi rata, panjang 5-15 cm, lebar 3-8 cm, pertulangan menyirip, permukaan atas licin berwarna hijau tua, dan permukaan bawah berwarna hijau muda. Bunga majemuk, tersusun dalam malai yang keluar dari ujung ranting, berwarna putih dan baunya harum. Buah buni, berbentuk bulat, diameter 8-9 mm, saat masih muda berwarna hijau, saat matang berubah warna menjadi merah gelap, dan rasanya agak sepat. Biji berbentuk bulat, penampang sekitar 1 cm, dan berwarna coklat (Sumono 2008). Gambar 1 Tanaman salam. (Sumono 2008) Efek farmakologi daun salam diperoleh dari daun, kulit batang, akar, dan buah salam. Kandungan kimia tanaman salam dilaporkan di antaranya minyak atsiri (0,05%) yang terdiri dari sitral dan eugenol (Sumono 2008), serta mengandung tanin tidak kurang dari 21,7% dan flavonoid dengan fluoretin dan kuersitrin sebagai golongan utama (BPOM 2004). Kuersitrin merupakan senyawa golongan flavonoid yang diketahui sebagai senyawa penciri pada daun salam (Depkes RI 2008). Berdasarkan penelitian Muflihat (2008), dari uji fitokimia yang dilakukan diketahui bahwa ekstrak air daun salam mengandung flavonoid, saponin dan tanin. Ekstrak air bersifat kurang toksik dengan nilai LC 50 sebesar 2174,23 ppm. Ekstrak etanol daun salam mengandung alkaloid, flavanoid, saponin, dan tanin serta memiliki potensi bioaktif dan dapat dimanfaatkan sebagai obat karena memiliki nilai LC 50 <1000 ppm, yaitu sebesar 114,55 ppm. Studiawan (2004) menyatakan dalam penelitiannya bahwa ekstrak etanol daun salam dapat menurunkan kadar glukosa darah pada tikus dengan metode aloksan karena daun salam mengandung flavonoid yang dapat menangkap radikal hidroksil, sehingga menghambat aksi diabetik dari aloksan. Ekstrak -air kulit batang salam menunjukkan kandungan fenolik total tertinggi (856 mg ekuivalen asam galat (GAE)/g dan 161 mg ekuivalen katekin (CE)/g) dan total kapasitas antioksidan 449 mg ekuivalen asam askorbat (AAE)/g (Lelono 2009). Flavonoid Flavonoid termasuk senyawa fenolik alam yang potensial sebagai antioksidan dan mempunyai bioktivitas sebagai obat. Flavonoid merupakan kandungan khas tumbuhan hijau. Flavonoid dalam tubuh manusia berfungsi sebagai antioksidan sehingga sangat baik untuk pencegahan kanker. Senyawa flavonoid adalah senyawasenyawa polifenol yang memiliki 15 atom karbon (C 6 -C 3 -C 6 ), terdiri dari dua cincin benzena yang dihubungkan menjadi satu oleh rantai linier yang terdiri dari tiga atom karbon (Gambar 2). Flavonoid mengandung sistem aromatik yang terkonjugasi. Kebanyakan senyawa terkonjugasi pada umumnya berwarna cerah sehingga menunjukkan pita serapan yang kuat pada dearah spektrum sinar ultraviolet dan spektrum sinar tampak (Harborne 1996). Gambar 2 Kerangka dasar senyawa flavonoid. Flavonoid dalam tumbuhan terdapat sebagai bentuk O-glikosida dan C-glikosida.

12 3 Bentuk flavonoid O-glikosida, satu gugus hidroksil (-OH) flavonoid (lebih) terikat pada satu gula (lebih) dengan ikatan hemiasetal yang tidak tahan asam, biasanya pada posisi 3 atau 7. Bentuk C-glikosida memiliki gula yang terikat pada atom karbon flavonoid dan dalam hal ini gula terikat langsung pada inti benzena dengan ikatan karbon-karbon yang tahan asam, dan hanya ditemukan pada atom C nomor 6 dan 8 dalam inti flavonoid. Glukosa merupakan gula yang paling umum terlibat, selain itu juga terdapat galaktosa, ramnosa, xilosa, dan arabinosa (Markham 1988). Sejumlah gugus hidroksil yang tak terganti atau suatu gula menyebabkan flavonoid bersifat polar sehingga larut dalam pelarut polar seperti etanol,, butanol, aseton, dimetilsulfoksida, dimetilformamida, dan lain-lain. Pengaruh glikosilasi (gula terikat pada flavonoid) menyebabkan flavonoid menjadi kurang reaktif sehingga lebih mudah larut dalam pelarut polar seperti air dan dengan demikian campuran pelarut di atas dengan air merupakan pelarut yang lebih baik untuk glikosida flavonoid (Harborne 1996; Markham 1988). Tabel 1 Uji kualitatif golongan flavonoid Golongan Warna Pereaksi Flavonoid hasil reaksi CH₃COONa Antosianidin Merah FeCl₃ Antosianidin Biru Na₂CO₃ CH₃COOPb NaOH 0,1 N H₂SO₄ pekat Antosianidin Kalkon Auron Flavon Kalkon dan Auron Flavonol dan Flavon Flavonol dan Flavon Flavonol Kalkon Sumber: Harborne (1996) Ungu, biru, atau hijau Kuning Kuning Jingga Merah Jinggakrem Merahungu Jinggakrem Merah Perbedaan kelas antara golongan senyawa flavonoid adalah adanya tambahan oksigen yang terikat pada cincin heterosiklik dan gugus hidroksil. Aglikon flavonoid dikelompokkan ke dalam beberapa golongan, di antaranya flavon, flavonol, flavonon, isoflavon, khalkon, auron, antosianidin. Flavonoid dalam tumbuhan terdapat sebagai campuran. Penggolongan jenis flavonoid didasarkan pada sifat kelarutan dan reaksi warna (Tabel 1). Ekstraksi Senyawa Metabolit Sekunder Ekstraksi merupakan suatu proses selektif yang dilakukan untuk mengambil zat-zat yang terkandung dalam suatu campuran dengan menggunakan pelarut yang sesuai. Metode pemisahan ini bekerja berdasarkan prinsip kelarutan like dissolve like, yaitu pelarut polar akan melarutkan zat polar, dan sebaliknya (Khopkar 2002). Proses ini merupakan langkah awal yang penting dalam penelitian tanaman obat, karena preparasi ekstrak kasar tanaman merupakan titik awal untuk isolasi dan pemurnian komponen kimia yang terdapat pada tanaman. Pemisahan zat dari suatu campuran relatif mudah dilakukan jika zat tersebut larut dalam pelarut yang digunakan, sedangkan zat lain tidak ikut larut. Dengan demikian, hasil ekstraksi yang diperoleh bergantung pada kandungan ekstrak yang terdapat dalam sampel dan jenis pelarut yang digunakan (Khopkar 2002). Berdasarkan fase yang terlibat terdapat 2 jenis ekstraksi, yaitu ekstraksi car-cair dan ekstraksi padat-cair. Proses ekstraksi padatcair sangat dipengaruhi oleh waktu ekstraksi, suhu yang digunakan, pengadukan, dan banyaknya pelarut yang digunakan (Harborne 1996). Perlakuan pendahuluan untuk bahan padat dapat dilakukan dengan beberapa cara di antaranya dengan pengeringan bahan baku sampai kadar air tertentu dan penggilingan untuk mempermudah proses ekstraksi dengan memperbesar kontak antara bahan dan pelarut (Harborne 1996). Kontak yang intensif menyebabkan komponen aktif pada campuran akan berpindah ke dalam pelarut (Gamse 2002). Pemilihan pelarut merupakan faktor yang menentukan dalam ekstraksi. Pelarut yang digunakan dalam ekstraksi harus dapat menarik komponen aktif dari campuran. Halhal yang harus diperhatikan dalam memilih pelarut adalah selektivitas, sifat pelarut, kemampuan untuk mengekstraksi, tidak bersifat racun, mudah diuapkan, dan harganya relatif murah (Gamse 2002). Perendaman suatu bahan dalam pelarut dapat meningkatkan permeabilitas dinding sel dalam 3 tahapan, yaitu masuknya pelarut ke dalam

13 4 dinding sel tanaman dan membengkakkan sel, kemudian senyawa yang terdapat dalam dinding sel akan terlepas dan masuk ke dalam pelarut, diikuti oleh difusi senyawa yang terekstraksi oleh pelarut keluar dari dinding sel tanaman (Supriadi 2008). Umumnya pelarut ditambahkan sekurang-kurangnya sampai seluruh contoh tepat terendam. Salah satu prosedur klasik untuk memperoleh kandungan senyawa organik dari jaringan tumbuhan ialah maserasi. Metode maserasi digunakan untuk mengekstrak komponen, baik yang tidak tahan panas, maupun yang tahan panas. Metode ini dilakukan hanya dengan merendam sampel dalam suatu pelarut dengan lama waktu tertentu, biasanya selama 24 jam tanpa menggunakan pemanasan. Kelebihan metode maserasi di antaranya sederhana, tidak menggunakan peralatan yang rumit, relatif murah, serta dapat menghindari kerusakan komponen senyawa yang tidak tahan panas. Kelemahan dari metode ini di antaranya membutuhkan waktu yang lama dan penggunaan pelarut yang tidak efisien (Meloan 1999). Metode ekstraksi sonikasi memanfaatkan gelombang ultrasonik dengan frekuensi rendah khz yang dapat mempercepat waktu kontak antara sampel dan pelarut meskipun pada suhu ruang. Hal ini menyebabkan proses perpindahan massa senyawa bioaktif dari dalam sel tanaman ke pelarut menjadi lebih cepat. Sonikasi mengandalkan energi gelombang yang menyebabkan proses kavitasi, yaitu proses pembentukan gelembung-gelembung kecil akibat adanya transmisi gelombang ultrasonik untuk membantu difusi pelarut ke dalam dinding sel tanaman (Ashley et al. 2001). Radikal Bebas dan Antioksidan Radikal bebas adalah substansi reaktif yang dibentuk dalam sel-sel tubuh sebagai hasil proses metabolisme. Radikal bebas merupakan molekul atau atom yang tidak stabil karena memiliki satu atau lebih elektron tidak berpasangan pada orbital terluarnya. Radikal bebas sangat berbahaya karena sangat reaktif dalam mencari pasangan elektronnya, bereaksi dengan cepat pada biomolekul melalui banyak jenis reaksi, antara lain penangkapan hidrogen, donor elektron, dan penggunaan elektron bersama. Radikal bebas akan melepaskan elektron pada molekul sekitarnya untuk menghasilkan pasangan elektron untuk menjadi molekul yang stabil. Reaksi ini akan berlangsung terus-menerus dalam tubuh dan bila tidak dihentikan akan menimbulkan berbagai penyakit seperti kanker, penuaan dini, serta penyakit degeneratif lainnya (Ng 2000; Pourmorad 2006). Untuk itu, tubuh memerlukan suatu substansi penting yang mampu menangkap radikal bebas tersebut sehingga tidak dapat menginduksi suatu penyakit. Antioksidan dinyatakan sebagai senyawa yang secara nyata dapat memperlambat oksidasi, walaupun dengan konsentrasi yang lebih rendah dibandingkan dengan substrat yang dapat dioksidasi. Antioksidan dapat menangkap berbagai jenis oksigen yang secara biologis bersifat reaktif (O 2 -, H 2 O 2, - OH, -HOCl, dsb), dengan cara mengubah pembentukan molekul radikal bebas atau dengan melengkapi kekurangan elektron radikal bebas yang dapat menimbulkan stress oksidatif (Pietta 2000). Oleh karena itu, antioksidan merupakan substansi yang diperlukan tubuh untuk menetralisir radikal bebas dan mencegah kerusakan yang ditimbulkan oleh radikal bebas tersebut. Berdasarkan sumbernya antioksidan dibagi dalam dua kelompok, yaitu antioksidan sintetik (antioksidan yang diperoleh dari hasil sintesa reaksi kimia) dan antioksidan alami (antioksidan hasil ekstraksi bahan alami). Antioksidan sintetik yang diizinkan dalam pangan di antaranya Butylated Hydroxyanisol (BHA), Butylated Hydroxytoluene (BHT), propil galat, dan tokoferol (Leclerrcq et al. 2000). Menurut Shahidi & Naczk (1995), senyawa antioksidan alami tumbuhan umumnya adalah senyawa fenolik atau polifenolik yang dapat berupa golongan flavonoid, turunan asam sinamat, kumarin, tokoferol dan asam-asam organik polifungsional. Ditambahkan oleh Pratt (1992), golongan flavonoid yang memiliki aktivitas antioksidan meliputi flavon, flavonol, isoflavon, katekin, flavonol dan kalkon. Aktivitas Antioksidan Metode DPPH Metode DPPH digunakan secara luas untuk menguji kemampuan senyawa dalam menangkap radikal bebas atau donor hidrogen. DPPH merupakan radikal bebas yang stabil pada suhu kamar dan sering digunakan untuk mengevaluasi aktivitas antioksidan beberapa senyawa atau ekstrak bahan alam. DPPH berperan sebagai radikal bebas yang diredam oleh antioksidan dari

14 5 bahan uji. DPPH akan bereaksi dengan antioksidan tersebut membentuk 1,3-difenil-2- pikrilhidrazin (Gambar 3). Reaksi ini menyebabkan terjadinya perubahan warna yang dapat diukur dengan spektrometer UVvis, sehingga aktivitas peredaman radikal bebas oleh sampel dapat ditentukan. Pengukuran diukur secara stoikiometri sesuai dengan jumlah elektron atau atom hidrogen yang ditangkap oleh molekul DPPH akibat adanya zat antioksidan. Aktivitas antioksidan dinyatakan dengan nilai IC 50 yaitu konsentrasi ekstrak yang dibutuhkan untuk menurunkan konsentrasi DPPH sebesar 50% (Blois 1958). violet (254 nm), ini berfungsi untuk memudahkan visualisasi spot yang dihasilkan. Fase gerak bekerja berdasarkan prinsip kapilaritas terhadap fase diam. Fase gerak menggerakkan komponen sampel pada berbagai laju karena perbedaan tingkatan interaksi dari setiap komponen dengan matriks dan kelarutannya dalam pelarut (Gambar 4). Lokalisasi setiap komponen pada pelat berfungsi untuk mengukur jarak migrasi komponen dari tempat asalnya. Pergerakan zat relatif terhadap garis depan pelarut dalam sistem kromatografi lapis tipis dapat didefinisikan sebagai nilai Rf, yaitu perbandingan jarak tempuh zat dengan jarak tempuh senyawa dengan jarak yang ditempuh pelarut. Nilai Rf khas untuk suatu senyawa tertentu (Khopkar 2002). Gambar 3 Reaksi penangkapan radikal bebas DPPH dengan antioksidan. (Windono et al. 2001) Radikal DPPH merupakan sebuah radikal bebas yang stabil dan memberikan serapan pada panjang gelombang sekitar 520 nm, serta memiliki warna ungu yang ditunjukkan oleh pita absorbans ketika dilarutkan dalam etanol atau. DPPH akan berubah menjadi bentuk tereduksi dan kehilangan warna ungunya ketika dicampurkan dengan zat yang mampu bertindak sebagai donor atom hidrogen (Molyneux 2004). Kromatografi Lapis Tipis (KLT) Kromatografi lapis tipis, dikenal sebagai kromatografi planar, merupakan teknik yang digunakan untuk memisahkan campuran komponen berdasarkan distribusi komponen tersebut di antara dua fase, yaitu fase diam dan fase gerak. Pemisahan dilakukan pada lapisan tipis fase diam ( µm), pada umumnya silika gel yang terdapat pada pelat. Pelat tersebut dapat terbuat dari kaca, plastik, atau aluminium dengan ukuran beberapa sentimeter. Bahan pengikat inert seperti gipsum dicampurkan ke dalam fase diam selama pembuatan pelat untuk mempetahankan agar fase diam tetap berada pada pelat dan untuk menjamin kepaduan antar-partikel. Fase diam untuk KLT seringkali juga mengandung substansi yang dapat berpendar (fluoresens) dalam sinar ultra Gambar 4 Ruangan pengembang dan pelat kromatografi lapis tipis. (Rouessac & Rouessac 1994) Analisis Sidik Jari Analisis sidik jari merupakan analisis yang dapat dimanfaatkan untuk evaluasi dan kontrol kualitas multikomponen dari tanaman obat. Komponen kimia dalam tanaman obat sangat bergantung pada musim panen, sumber tanaman, proses pengeringan, dan faktor lainnya, sehingga perlu dilakukan penentuan komponen kimia dalam tanaman obat untuk menjamin kepercayaan dalam penelitian klinis dan farmakologis, mengetahui bioaktivitas dan kemungkinan efek samping dari komponen aktif, dan untuk meningkatkan kontrol kualitas produk (Liang et al. 2004). Analisis ini memberikan informasi komponen kimia dalam bentuk spektrogram, kromatogram, dan grafik lainnya yang diperoleh dari teknik analitik untuk menentukan identitas, kualitas, dan keaslian tanaman obat (Borges et al. 2007). Beberapa teknik kromatografi seperti kromatografi lapis tipis (KLT), kromatografi cair kinerja tinggi (KCKT), kromatografi gas (KG), dan elektroforesis kapiler dapat digunakan dalam analisis sidik jari. Kromatografi lapis tipis (KLT) direkomendasikan sebagai teknik yang efektif untuk identifikasi tanaman obat. Beberapa

15 6 kelebihan dengan menggunakan KLT, yaitu cepat, mudah digunakan pada penapisan awal dengan penilaian semikuantitatif daripada teknik kromatografi lainnya, sederhana, murah, persiapan sampel yang mudah serta dapat mendeteksi dalam jumlah yang besar (Liang et al. 2004). Namun terdapat beberapa keterbatasan dalam ketepatan dan keterulangan dibandingkan dengan analisis kolom. Rancangan Percobaan Rancangan percobaan adalah proses perencanaan studi untuk memenuhi tujuan tertentu. Konsep dalam rancangan percobaan yaitu menggunakan satu set percobaan yang dipilih dengan baik yang bertujuan untuk mengoptimumkan proses dengan melakukan masing-masing percobaan dan untuk menarik kesimpulan tentang interaksi dari objek yang dipelajari (Triefenbach 2008). Rancangan percobaan merupakan suatu pendekatan dalam pengembangan dan pengoptimuman. Metode ini layak mendapatkan formulasi yang diinginkan secepat mungkin dengan menghindari percobaan yang tidak perlu. Efek dari setiap faktor pada respon masing-masing formulasi dapat dievaluasi dan faktor-faktor kritis dapat diidentifikasi berdasarkan analisis statistik (Bolourtchian 2008). Metodologi respon permukaan (RSM) adalah kumpulan teknik matematis dan statistik yang berguna untuk merancang percobaan, membangun model, dan menganalisis pengaruh beberapa faktor independen. RSM menyediakan alat yang efektif untuk menyelidiki aspek-aspek yang memengaruhi respon yang diinginkan jika terdapat banyak faktor dan interaksi dalam percobaan (Yin et al. 2009). Rancangan campuran adalah kelas rancangan permukaan respon dengan jumlah dari semua komponen adalah satu. Rancangan campuran merupakan rancangan yang digunakan pada percobaan dengan campuran bahan. Dalam rancangan ini, faktornya adalah komponen atau bahan dari campuran sehingga taraf dari masing-masing faktor tidak saling bebas (Montgomery 1991). Dalam campuran percobaan, faktor-faktor independen adalah komponen campuran dan respon tergantung pada proporsi relatif masing-masing bahan, hal ini melibatkan perubahan komposisi campuran dan mengeksplorasi dalam mengetahui pengaruh sifat-sifat campuran (Bolourtchian 2008). Rancangan campuran dapat digunakan untuk larutan ekstraksi dan fase gerak kromatografi untuk keperluan optimisasi (Borges 2007). Rancangan campuran dapat digambarkan dalam sistem koordinat simplex yang terdiri atas simplex lattice, simplex centroid, dan extreme vartices. Simplex centroid diperkenalkan oleh Scheffe pada tahun 1963 untuk memberikan ulasan percobaan dari respon permukaan di bagian tengah bidang. Salah satu cara untuk menggambarkan model adalah mempertimbangkan struktur dari percobaan tiga faktor. Titik tengah ditempatkan dalam model dengan menemukan rata-rata tingkatan dari semua faktor yang terlibat. Rancangan tiga komponen dapat digambarkan dengan segitiga sama sisi dengan dua dimensi (Soares et al. 2007) dapat dilihat pada Gambar 5. Penelitian mengenai pengoptimuman fase gerak menggunakan simplex centroid design (SCD) telah dilakukan oleh Borges et al. (2007), serta Soares et al. (2007). (0,0,1) C (0,1,0) B Gambar 5 Model simplex centroid design with axial. Rancangan kombinasi merupakan rancangan campuran ganda. Rancangan kombinasi memungkinkan penggabungan antara komponen campuran dan faktor proses. Terdapat dua jenis rancangan untuk membuat rancangan kombinasi. Rancangan optimal termasuk ke dalam kelas rancangan percobaan yang optimal berhubungan dengan beberapa kriteria statistik. Rancangan optimal memungkinkan parameter yang akan diestimasi dengan variasi minimum. Rancangan D-Optimal (D-Optimal design) merupakan salah satu bentuk rancangan yang disediakan oleh algoritma komputer. Rancangan ini dapat disesuaikan untuk memenuhi rancangan campuran klasik, menghasilkan estimasi yang tidak ortogonal dan efek estimasi dapat berkorelasi (Bolourtchian 2008). Kelebihan menggunakan rancangan optimal, yaitu dapat mengurangi biaya percobaan karena memungkinkan model statistik yang akan diestimasi dengan

16 7 menjalankan percobaan yang lebih sedikit, dapat menampung beberapa jenis faktor seperti proses, campuran, dan faktor diskrit. BAHAN DAN METODE Bahan dan Alat Bahan-bahan yang digunakan antara lain daun salam dari daerah Cikabayan,, akuades, etil asetat, FeCl 3, HCl 1 N, H 2 SO 4 pekat, amil alkohol, kloroform, CH 3 COONa, Na 2 CO 3, CH 3 COOPb, NaOH 0.1 N, DPPH, n- butanol, etanol, asam asetat, diklorometana, etil asetat, standar kuersetin, AlCl 3 2%. Alat yang digunakan adalah peralatan gelas, neraca analitik XT 220A (Precisa), cawan porselin, oven (Momert), maserator, eksikator, ultrasonic batch processor 38 khz, pelat KLT GF 254 (Merck), penguap putar R- 114 (Buchi), freeze dryer, pipet mikro, microplate reader, Camag Linomat V, Camag reprostar 3, Camag aplikator, piranti lunak DX8.0.6 versi uji coba. Ruang Lingkup Metode penelitian yang akan dilakukan mengikuti diagram alir pada Lampiran 1 yang meliputi penentuan kadar air serbuk daun salam yang telah dikeringudarakan dan dikeringkan dengan oven pada suhu 50 ⁰C, kemudian dilakukan ekstraksi flavonoid serbuk daun salam tersebut dengan meragamkan metode ekstraksi, polaritas pelarut, dan waktu ekstraksi menggunakan bantuan rancangan percobaan D-Optimal Design melalui piranti lunak DX8.0.6 versi uji coba, selanjutnya ekstrak kasar yang dihasilkan dihitung rendemennya dan diuji aktivitas antioksidannya, kemudian dilakukan penentuan kadar flavonoid total terhadap ekstrak tersebut. Ekstrak dengan bioaktivitas terbaik, yaitu ekstrak yang memiliki kadar flavonoid dan aktivitas antioksidan tertinggi selanjutnya dilakukan analisis sidik jari dengan kromatografi lapis tipis (KLT). Pemilihan fase gerak terbaik untuk analisis sidik jari dilakukan dengan memilih 3 dari 6 pelarut yang menunjukkan pita terbanyak pada pelat hasil elusi ekstrak daun salam. Selanjutnya ketiga pelarut tersebut dirancang menggunakan rancangan campuran Simplex Centroid Design (SCD) with axial menghasilkan 10 perbandingan komposisi pelarut. Komposisi pelarut terbaik adalah pelarut yang menunjukkan keterpisahan pita terbaik pada pelat KLT. Pengumpulan dan Persiapan Contoh Contoh daun salam dikeringudarakan untuk mendapatkan kadar air yang relatif rendah. Setelah itu, digiling sehingga didapatkan serbuk daun salam. Penentuan Kadar Air (AOAC 1984) Cawan porselin dikeringkan dalam oven pada suhu 105 ⁰C selama 30 menit. Cawan porselin yang telah dikeringkan selanjutnya didinginkan dalam eksikator selama 30 menit dan ditimbang bobot kosongnya. Sampel daun salam ditimbang sebanyak 3 g dan dimasukkan ke dalam cawan porselin tersebut, selanjutnya sampel beserta cawan dimasukkan dalam oven bersuhu 105 ⁰C selama 3 jam. Setelah itu, cawan porselin tersebut didinginkan dalam eksikator selama 30 menit dan ditimbang. Prosedur dilakukan berulang kali hingga didapat bobot tetap dengan selisih kurang dari 1 mg. Penentuan kadar air dilakukan sebanyak 3 kali ulangan (triplo). Kadar air daun salam dihitung dengan rumus: Kadar air (%) = x 100 a adalah bobot daun sebelum dikeringkan (g) dan b adalah bobot daun setelah dikeringkan (g). Ekstraksi Flavonoid Total dengan Bantuan Rancangan Percobaan D-Optimal Serbuk daun salam dimasukkan ke dalam Erlenmeyer kemudian ditambahkan pelarut ke dalamnya dan diekstraksi dalam waktu tertentu, nisbah jumlah pelarut dengan bahan yang digunakan adalah 1:10. Residu kemudian ditambah lagi pelarut yang sama dan diekstraksi dengan kondisi operasi yang sama hingga tiga kali. Selanjutnya maserat disatukan dan dikeringkan dengan penguap putar dan pengering beku. Ekstrak yang diperoleh kemudian ditimbang dan ditentukan rendemennya. Ekstraksi dilakukan dengan meragamkan metode ekstraksi (maserasi dan sonikasi), polaritas pelarut (air:), serta waktu ekstraksi. Rancangan yang optimal dipilih untuk mendapatkan formulasi dengan variasi minimum. Model dirancang melalui rancangan kombinasi menggunakan perangkat lunak DX8.0.6 versi uji coba. Rancangan kombinasi yang dicobakan selengkapnya dapat dilihat pada Tabel 2 dan 3.

17 8 Tabel 2 Rancangan kombinasi hasil D- Optimal untuk metode maserasi Kondisi X : Y : Z : waktu Ekstraksi Air Metanol (jam) , ,76 0,24 10,5 8 0,76 0,24 19,5 9 0,52 0, ,52 0, ,52 0, ,52 0, ,28 0,72 10,5 14 0,28 0,72 19,5 15 0,04 0, ,04 0, ,04 0, ,04 0, ,04 0,96 24 Tabel 3 Rancangan kombinasi hasil D- Optimal untuk metode sonikasi Kondisi X : Y : Z : waktu Ekstraksi Air Metanol (menit) , ,76 0,24 7,5 8 0,76 0,24 12,5 9 0,52 0, ,52 0, ,52 0, ,52 0, ,28 0,72 7,5 14 0,28 0,72 12,5 15 0,04 0, ,04 0, ,04 0, ,04 0, ,04 0,96 15 Uji Golongan Flavonoid (Harborne 1996) Sebanyak 0.5 g ekstrak dilarutkan dengan 10 ml :HCl 1 N (1:1) dan dipanaskan dalam labu Erlenmeyer pada suhu 95 ⁰C selama 1 jam. Setelah itu, didinginkan dan disaring, lalu filtratnya diekstraksi dengan etil asetat. Fase asamnya dipanaskan kembali lalu diekstrak dengan amil alkohol. Ekstrak amil alkohol digunakan untuk penentuan antosianidin dan ekstrak etil asetat digunakan untuk penentuan adanya flavonoid yang lain. Penentuan Antosianidin Sebanyak 1 ml ekstrak amil alkohol ditambahkan 3 tetes CH 3 COONa lalu diamati, kemudian ditambahkan dengan 3 tetes FeCl 3 dan diamati kembali. Antosianidin dengan CH 3 COONa memberikan warna merah hingga ungu, dan bila ditambahkan dengan FeCl 3 menjadi warna biru. Antosianidin dengan CH 3 COONa memberikan biru muda, dan bila ditambahkan dengan FeCl 3 warna tetap biru. Sebanyak 1 ml ekstrak amil alkohol ditambahkan 3 tetes Na 2 CO 3 lalu diamati. Antosianidin memberikan warna ungu, biru, atau hijau. Penentuan Flavonoid Lain Sebanyak 1 ml ekstrak etil asetat ditambahkan 3 tetes CH 3 COOPb lalu diamati. Senyawa flavon memberikan warna jingga hingga krem, kalkon memberikan warna jingga tua dan auron memberikan warna merah. Sebanyak 1 ml ekstrak etil asetat ditambahkan 3 tetes NaOH 0,1 N lalu diamati. Senyawa flavonol dan flavon memberikan warna kuning, sedangkan kalkon dan auron memberikan warna merah hingga ungu. Sebanyak 1 ml ekstrak etil asetat ditambahkan 3 tetes H 2 SO 4 pekat lalu diamati. Senyawa flavonol dan flavon memberikan warna kuning, flavonol memberikan warna jingga hingga krem, dan kalkon memberikan warna krem hingga merah tua. Penentuan Kadar Flavonoid Total (Zongo et al. 2010) Penentuan flavonoid total dilakukan menggunakan metode kolorimetri dengan kuersetin sebagai standar. Ekstrak dilarutkan dengan etanol 75% dan 100 µl dari larutan ini kemudian dicampurkan dengan 100 µl AlCl 3 2%. Setelah 15 menit inkubasi pada suhu ruang, absorbans diukur pada 435 nm menggunakan multiwell plate reader. Tiga ulangan dibuat untuk setiap sampel yang diuji. Untuk setiap sampel, larutan blanko disiapkan dengan mengganti AlCl 3 dengan pelarut yang digunakan untuk melarutkan ekstrak. Kuersetin digunakan sebagai standar untuk kalibrasi dan kurva kalibrasi (berkisar dari 0-50 µg/ml) dihasilkan. Kandungan flavonoid total (rata-rata dari analisis tiga ulangan) ditunjukkan sebagai kuersetin ekivalen dalam mg/mg ekstrak.

18 9 Uji Aktivitas Antioksidan (Salazar-Alandra 2009) Ekstrak pekat dibuat larutan dengan konsentrasi berbeda yang berkisar antara 0, µg/ml dalam etanol dari larutan stok 1 mg/ml. Sebanyak 100 µl larutan DPPH 125 µm dalam etanol ditambahkan dengan 100 µl larutan ekstrak, sehingga volume total menjadi 200 µl. Campuran diaduk dan diinkubasi pada suhu 37 ⁰C dalam gelap selama 30 menit. Serapan kemudian diukur pada 517 nm dengan spektrofotometer. Kuersetin digunakan sebagai kontrol positif. Kapasitas penangkapan radikal DPPH dihitung dengan rumus: Aktivitas penangkapan radikal (%) = x 100 A adalah absorbans kontrol negatif (larutan DPPH dalam etanol) dan B adalah absorbans sampel (larutan DPPH dalam larutan ekstrak). Hubungan antara setiap konsentrasi dan aktivitas penangkapan radikal diplotkan, dan nilai IC 50 kemudian dihitung. Pemilihan Fase Gerak Terbaik menggunakan Kromatografi Lapis Tipis (KLT) Penotolan sampel Ekstrak pekat daun salam dilarutkan dalam pelarut yang sesuai sehingga didapatkan ekstrak dengan konsentrasi µg/ml dan ditotolkan pada pelat KLT GF 254. Pemilihan fase gerak Pemilihan fase gerak diawali menggunakan 6 pelarut tunggal, yaitu n- butanol,, asam asetat, diklorometana, etil asetat, dan kloroform. Sebanyak 10 ml dari 6 pelarut tersebut dimasukkan ke dalam bejana kromatografi dan dijenuhkan selama 20 menit. Setelah itu, pelat KLT yang telah berisi sampel dimasukkan ke dalam bejana kromatografi dan dipisahkan hingga fase gerak mencapai ± 0,5 cm dari tepi atas pelat. Selanjutnya pelat KLT diangkat, dikeringkan, dan dideteksi. Deteksi dilakukan untuk melihat pita yang muncul pada pelat KLT menggunakan UV pada panjang gelombang 254 nm dan 366 nm. Setelah itu, dipilih tiga pelarut yang menghasilkan penampakan pita terbanyak dan pemisahan ekstrak yang lebih baik. Ketiga pelarut terpilih dikombinasikan berdasarkan Simplex Centroid Design (SCD) with axial menghasilkan 10 perbandingan komposisi pelarut (Tabel 4). Selanjutnya dilakukan pemisahan komponen sampel menggunakan 10 kombinasi pelarut. Nilai Rf serta jumlah pita yang diperoleh menjadi parameter untuk menentukan eluen terbaik. Deteksi komponen Deteksi komponen dapat dilakukan menggunakan UV 366 nm. Tabel 4 Rancangan komposisi fase gerak Komposisi Fase Gerak Fase (v/v/v) Gerak A B C /2 0 1/ /2 1/2 6 1/2 1/ /3 1/3 1/3 8 1/6 2/3 1/6 9 1/6 1/6 2/3 10 2/3 1/6 1/6 Pengolahan Data Pengolahan data yang dihasilkan dilakukan dengan piranti lunak DX8 versi uji coba. Pengolahan tersebut dengan membuat model regresi. Kondisi optimum ekstraksi ditentukan dengan melihat kebaikan dari model yang dibuat. HASIL DAN PEMBAHASAN Perlakuan Pendahuluan Daun salam yang digunakan dalam penelitian ini diambil dari daerah Cikabayan. Umur tanaman salam tersebut sekitar 10 tahun. Daun salam yang diambil merupakan daun dari seluruh bagian tanaman yang dihomogenkan. Serbuk daun salam disiapkan dari simplisia daun salam yang telah dikeringudarakan hingga kadar air relatif rendah selanjutnya digiling dan dihomogenkan. Penggilingan bertujuan memperluas permukaan bahan agar pada tahap ekstraksi interaksi antara pelarut pengekstraksi dan bahan yang diekstraksi menjadi lebih efektif (Harborne 1996). Hal ini dapat mempermudah kelarutan komponen bioaktif dan meningkatkan rendemen ekstraksi.

19 10 Setelah dilakukan pengukuran kadar air, kadar air serbuk daun salam tersebut masih tinggi sehingga pengeringan dilanjutkan kembali di dalam oven pada suhu 50 ⁰C hingga kadar airnya di bawah 10%. Hal ini dilakukan untuk mencegah terjadinya perubahan kimia yang tidak diinginkan pada sampel. Suhu ini relatif aman serta mencegah terjadinya kerusakan pada senyawa metabolit sekunder tertentu, khususnya flavonoid. Flavonoid merupakan senyawa fenol yang memiliki sistem aromatik yang terkonjugasi (Harborne 1996). Sistem aromatik terkonjugasi mudah rusak pada suhu tinggi. Selain itu, beberapa golongan flavonoid memiliki ikatan glikosida dengan molekul gula. Ikatan glikosida akan mudah rusak atau putus pada suhu tinggi (Poedjiadi 1994). Kadar Air Simplisia Daun Salam Penentuan kadar air berfungsi mengetahui kandungan air pada sampel sebagai persen bahan keringnya, hal ini berguna sebagai faktor koreksi terhadap hasil rendemen ekstrak kasar flavonoid yang diperoleh. Selain itu berfungsi untuk mengetahui ketahanan sampel terhadap penyimpanan (Harjadi 1986), karena kandungan air di dalam bahan merupakan medium tumbuh bagi mikroorganisme. Kadar air yang baik adalah kurang dari 10% karena pada tingkat kadar air tersebut waktu simpan sampel akan relatif lebih lama dan terhindar dari pencemaran yang disebabkan oleh mikroba (Winarno 1992). Penentuan kadar air dilakukan pada suhu 105 ⁰C. Menurut Harjadi (1986), air yang terikat secara fisik dapat dihilangkan pada suhu ⁰C. Kadar air rerata dari serbuk daun salam kering ialah sebesar 8,80%. Kadar air tersebut memenuhi standar kadar air untuk tanaman obat yaitu kurang dari 10%. Berdasarkan nilai tersebut dapat dikatakan dalam 100 g sampel daun salam terdapat kandungan air 8,8 g (Lampiran 2). Hasil ini menunjukkan bahwa daun salam dapat disimpan dalam jangka waktu relatif lama. Kadar air pada sampel tidak selalu sama karena dipengaruhi oleh kelembaban, perlakuan terhadap sampel, serta besarnya penguapan. Ekstraksi Flavonoid Daun Salam Metode ekstraksi yang digunakan adalah maserasi dan sonikasi. Metode ekstraksi maserasi dipilih karena maserasi merupakan metode yang sering digunakan untuk mengekstraksi bahan alam. Ekstraksi dengan maserasi merupakan teknik merendam sampel dengan pelarut yang sesuai dalam waktu tertentu. Waktu yang diperlukan untuk ekstraksi maserasi relatif lebih lama. Untuk itu, pada penelitian ini dibandingkan dengan metode ekstraksi sonikasi dengan memanfaatkan energi gelombang ultrasonik yang menyebabkan proses kavitasi sehingga diharapkan senyawa yang ada pada sel tanaman akan terekstrak pada pelarut yang digunakan dan waktu menjadi lebih singkat. Ekstraksi flavonoid dilakukan dengan pelarut :air, mengacu pada metode Markham (1988). Penelitian ini meragamkan nisbah kedua pelarut tersebut, dan juga waktu ekstraksi. Kisaran waktu ekstraksi untuk maserasi ialah antara 6 hingga 24 jam, sedangkan sonikasi antara 5 hingga 15 menit. Ekstraksi dilakukan menggunakan pelarut :air. Sejumlah gugus hidroksil yang tak terganti atau suatu gula menyebabkan flavonoid bersifat polar sehingga larut dalam pelarut polar seperti. Pengaruh glikosilasi (gula terikat pada flavonoid) menyebabkan flavonoid menjadi kurang reaktif sehingga lebih mudah larut dalam pelarut polar seperti air (Harborne 1996; Markham 1988). Ekstraksi senyawa aktif dari suatu jaringan tanaman dengan berbagai jenis pelarut pada tingkat kepolaran berbeda dan waktu yang berbeda bertujuan untuk memperoleh hasil yang optimal, baik jumlah ekstrak maupun senyawa aktif yang terkandung dalam sampel. Nisbah bahan baku dan pelarut (1:10) didasarkan pada penelitian Umar (2008) yang menyatakan bahwa kadar flavonoid total tertinggi dihasilkan pada nisbah bahan baku dan pelarut (1:10). Pada nisbah tersebut pelarut cukup untuk merendam sampel, sehingga proses ekstraksi menjadi lebih efektif. Ekstraksi dilakukan dengan meragamkan tiga faktor, yaitu metode ekstraksi (maserasi dan sonikasi), pelarut ekstraksi (campuran dan air), serta waktu ekstraksi, sesuai dengan Tabel 2 dan 3. Rendemen ekstraksi yang diperoleh berkisar antara 8,83% hingga 23,69%. Rendemen tertinggi pada teknik maserasi adalah 24,56% diperoleh saat digunakan pelarut 48%, pada waktu 15 jam. Rendemen tertinggi pada teknik sonikasi adalah 19,76% diperoleh saat digunakan pelarut 48%, pada waktu 15 menit. Data rendemen selengkapnya dapat dilihat pada Gambar 6 dan 7.

20 11 rendemen (%) kondisi ekstraksi Gambar 6 Grafik rendemen ekstraksi maserasi (%) dengan ragam perlakuan pelarut ( air, 24%, 48%, 72%, 96%) dan waktu (6-24 jam) dengan meningkatnya waktu dari kanan ke kiri. rendemen (%) ,82 13,31 12,90 13,47 8,83 11,28 21,61 23,02 24,56 22,85 23,69 21,12 24,3021,11 23,35 19,75 23,5318,86 23, ,83 18,17 13,78 17,4818,89 18,7819,76 17,4817,2816,13 13,99 14,00 14,1917,90 13,79 13,80 14,84 kondisi ekstraksi Gambar 7 Grafik rendemen ekstraksi sonikasi (%) dengan ragam perlakuan pelarut ( air, 24%, 48%, 72%, 96%) dan waktu (5-15 menit) dengan meningkatnya waktu dari kanan ke kiri. 14,42 16, Proses ekstraksi berdasarkan pada prinsip kelarutan like dissolve like, yaitu pelarut polar akan melarutkan senyawa polar, dan pelarut nonpolar akan melarutkan senyawa nonpolar. Rendemen estraksi tertinggi diperoleh saat menggunakan pelarut 48% yang bersifat polar. Pelarut tersebut dapat mengekstrak senyawa polar maupun nonpolar dalam sampel sehingga menghasilkan rendemen paling tinggi di antara penggunaan pelarut lainnya. Pelarut 48% dapat mengambil senyawa flavonoid yang terikat dengan glikosida maupun flavonoid yang tidak memiliki ikatan glikosida. Lama waktu ekstraksi juga sangat mempengaruhi rendemen ekstraksi, terlihat rendemen ekstraksi tertinggi terdapat pada teknik ekstraksi maserasi yaitu sebesar 24,56%. Hal ini dikarenakan pada teknik maserasi terjadi kontak yang lebih lama dan intensif antara pelarut dan sampel yang menyebabkan komponen dalam sampel berpindah ke dalam pelarut sehingga rendemen ekstraksi semakin tinggi. Berdasarkan rancangan kombinasi D- Optimal tidak semua kondisi dari setiap teknik eksraksi memiliki ulangan. Hal ini bertujuan untuk melihat ketelitian yang dihasilkan dari kondisi yang diulang dan diharapkan dapat mewakili ketelitian yang dilakukan untuk kondisi ekstraksi lainnya. Ketelitian diperoleh dengan kisaran 82,78% hingga 99,97%. Kadar Flavonoid Daun Salam Pembuatan kurva standar flavonoid didasarkan pada metode kolorimetri (Zongo et al. 2010). Analisis ini didasarkan pada reaksi pembentukan kompleks antara flavonoid dan aluminium klorida. Gugus orto dihidroksi dan gugus hidroksi keton dari flavonoid ini membentuk kompleks dengan AlCl 3 sehingga memberikan efek batokromik (Harborne 1996) dan kemudian diukur menggunakan spektrofotometri UV-vis sebagai ekivalen kuersetin. Kuersetin digunakan sebagai standar karena senyawa ini merupakan senyawa flavonoid kuat golongan flavonol. Flavonol diketahui sebagai senyawa penciri adanya flavonoid karena keberadaanya yang banyak tersebar dalam tumbuhan. Selain itu, kebanyakan tanaman obat memperlihatkan aktivitas kandungan kuersetin yang tinggi.

21 12 Menurut metode ini, larutan standar kuersetin dengan berbagai konsentrasi diukur pada panjang gelombang 435 nm. Kurva standar yang diperoleh memiliki persamaan garis y = 0,025x + 0,043 dengan R 2 = 0,9993 yang menunjukkan konsentrasi mampu menerangkan keragaman absorbans sebesar 99,93%, dan sekitar 0,007% oleh faktor lain. Berdasarkan kurva standar, dapat ditentukan kadar flavonoid total dari sampel sesuai perlakuan yang dicobakan. Hasil selengkapnya disajikan dalam Lampiran 3. Nilai kadar flavonoid total tertinggi untuk teknik maserasi dan sonikasi masing-masing berturut-turut sebesar 0,0153 mg QE/mg ekstrak dan 0,0139 mg QE/mg ekstrak (Tabel 5 dan 6). Nilai kadar flavonoid tertinggi untuk teknik maserasi diperoleh saat digunakan pelarut 96% dengan waktu ekstraksi selama 24 jam, sedangkan untuk teknik sonikasi diperoleh saat digunakan pelarut 96% dalam waktu ekstraksi 5 menit. Apabila dibandingkan dari kedua teknik ekstraksi yang digunakan, kadar flavonoid tertinggi diperoleh dengan teknik maserasi. Perendaman suatu bahan dalam pelarut dapat meningkatkan permeabilitas dinding sel dalam 3 tahapan, yaitu masuknya pelarut ke dalam dinding sel tanaman dan membengkakkan sel, kemudian senyawa yang terdapat dalam dinding sel akan terlepas dan masuk ke dalam pelarut, diikuti oleh difusi senyawa yang terekstraksi oleh pelarut keluar dari dinding sel tanaman (Gamse 2002). Hal ini berkaitan dengan waktu kontak antara bahan dan pelarut pengekstraksi yang lebih intensif pada teknik maserasi menyebabkan komponen dalam sampel terutama flavonoid berpindah ke dalam pelarut pengekstraksi yang digunakan. Kedua teknik ekstraksi menunjukkan pelarut 96% dapat mengekstraksi flavonoid daun salam dengan baik. Hal ini dikarenakan pelarut organik polar seperti 96% selektif dalam mengekstraksi senyawa fenol seperti flavonoid yang tidak memiliki ikatan glikosida dengan molekul gula sederhana. Senyawa flavonoid ini kurang polar sehingga pelarut 96% merupakan pelarut yang baik untuk mengekstraksi flavonoid tersebut. Kadar flavonoid daun salam berdasarkan kondisi yang dicobakan dapat dilihat pada Tabel 5 dan 6. Secara keseluruhan, teknik ekstraksi maserasi memberikan kadar flavonoid lebih tinggi dibandingkan dengan teknik sonikasi. Semakin polar pelarut organik yang digunakan, semakin tinggi pula kadar flavonoid yang diperoleh. Semakin lama waktu ekstraksi yang digunakan, maka semakin tinggi pula kadar flavonoidnya. Secara keseluruhan faktor-faktor yang dicobakan berpengaruh pada kadar flavonoid. Aktivitas Antioksidan Daun Salam Aktivitas antioksidan diuji dengan metode penangkapan radikal bebas 1,1- difenil-1,2- pikrilhidrazil (DPPH). DPPH berperan sebagai radikal bebas akan bereaksi dengan antioksidan membentuk 1,3-difenil-2- pikrilhidrazin. Antioksidan akan memberikan atom hidrogennya kepada radikal DPPH untuk melengkapi kekurangan elektron dan membentuk radikal antioksidan yang lebih stabil. Reaksi ini menyebabkan DPPH kehilagan warna ungunya ketika dicampurkan dengan zat yang mampu bertindak sebagai antioksidan dan selanjutnya diukur dengan spektrometer UV-Vis pada panjang gelombang 517 nm sehingga aktivitas peredaman radikal bebas oleh sampel dapat ditentukan. Pengujian aktivitas antioksidan ekstrak daun salam dari kondisi ekstraksi secara keseluruhan memberikan nilai IC 50 kurang dari 100 ppm, nilai tersebut menunjukkan aktivitas antioksidan yang kuat pada ekstrak daun salam (Tabel 5 dan 6). IC 50 adalah bilangan yang menunjukkan konsentrasi ekstrak (mikrogram/mililiter) yang mampu menghambat proses oksidasi sebesar 50%. Semakin kecil nilai IC 50 berarti semakin tinggi aktivitas antioksidan. Secara spesifik, suatu senyawa dikategorikan sebagai antioksidan sangat kuat jika nilai IC 50 kurang dari 50 ppm, kuat jika IC 50 bernilai ppm, sedang jika IC 50 bernilai ppm, dan lemah jika IC 50 adalah ppm (Mardawati 2008). Nilai IC 50 terendah untuk metode maserasi dan sonikasi berturut-turut adalah 11,460 µg/ml dan 7,199 µg/ml. Dengan demikian ekstrak hasil ekstraksi sonikasi memiliki aktivitas antioksidan yang lebih kuat daripada ekstraksi maserasi. Teknik sonikasi memanfaatkan gelombang ultrasonik dengan frekuensi 38 khz yang dapat mempercepat waktu kontak antara sampel dan pelarut karena adanya proses kavitasi yaitu proses pembentukan gelembung-gelembung kecil akibat adanya transmisi gelombang ultrasonik untuk membantu difusi pelarut ke dalam dinding sel tanaman (Ashley et al. 2001). Hal ini menyebabkan proses perpindahan massa senyawa bioaktif dari dalam sel tanaman ke pelarut menjadi lebih cepat, sehingga dalam waktu 15 menit senyawa bioaktif dalam

22 13 Tabel 5 Hasil IC 50 dan kadar flavonoid total untuk rancangan kombinasi pada metode maserasi pelarut waktu Antioksidan kadar flavonoid (jam) IC50 (mg QE/mg (mg/l) ekstrak) air 6 61,615 0,0112 air 6 61,013 0,0062 air 10,5 73,393 0,0085 air 15 53,273 0,0090 air 24 46,097 0,0151 air 24 54,185 0, % 10,5 44,519 0, % 19,5 75,236 0, % 6 17,241 0, % 15 49,312 0, % 24 21,314 0, % 24 21,873 0, % 10,5 51,906 0, % 19,5 52,505 0, % 6 21,303 0, % 6 33,940 0, % 15 11,457 0, % 24 25,062 0, % 24 27,684 0,0122 sampel terekstraksi dengan baik ke dalam pelarut. Nilai IC 50 terendah untuk teknik maserasi diperoleh saat digunakan pelarut 96% dengan waktu ekstraksi selama 15 jam, sedangkan untuk teknik sonikasi diperoleh saat digunakan pelarut 48% dalam waktu ekstraksi 15 menit. Namun, aktivitas antioksidan daun salam masih lebih rendah apabila dibandingkan dengan standar kuersetin yang memiliki nilai IC 50 4,683 µg/ml (Lampiran 4). Aktivitas antioksidan tertinggi diperoleh dengan pelarut 48% yang bersifat polar. Pelarut ini dapat mengekstraksi glikosida flavonoid. Molekul gula mempunyai gugus hidroksil yang bersifat polar, sehingga akan mudah larut dalam pelarut dengan kepolaran yang tinggi. Kekua- Tabel 6 Hasil IC 50 dan kadar flavonoid total untuk rancangan kombinasi pada metode sonikasi pelarut waktu Antioksidan kadar flavonoid (menit) IC50 (mg/l) (mg QE/mg ekstrak) Air 5 17,598 0,0031 Air 5 16,199 0,0032 Air 7,5 36,447 0,0059 air 10 21,053 0,0033 air 15 13,875 0,0033 air 15 22,507 0, % 7,5 11,307 0, % 12,5 47,965 0, % 5 17,119 0, % 10 11,519 0, % 15 8,214 0, % 15 7,199 0, % 7.5 7,624 0, % 12,5 49,682 0, % 5 9,454 0, % 5 8,806 0, % 10 32,490 0, % 15 10,305 0, % 15 12,469 0,0126 tan aktivitas antioksidan dari flavonoid bergantung pada jumlah dan posisi gugus hidroksil yang terdapat pada molekul. Semakin banyak gugus hidroksil pada molekul menyebabkan aktivitas antioksidan molekul tersebut akan semakin besar. Aktivitas antioksidan tinggi tidak diperoleh saat menggunakan pelarut air yang bersifat sangat polar di antara pelarut lain yang dicobakan. Hal ini sesuai dengan Markham (1988) yang menyatakan bahwa campuran pelarut dan air merupakan pelarut yang baik untuk glikosida flavonoid. Aktivitas antioksidan berdasarkan kondisi yang dicobakan dapat dilihat pada Gambar 5 dan 6. Secara keseluruhan, aktivitas antioksidan teknik ekstraksi sonikasi memberikan aktivitas antioksidan lebih baik dibandingkan dengan teknik maserasi. Hal ini

23 14 (a) (b) Gambar 8 Plot permukaan respon (a) dan kontur (b) kadar flavonoid pada polaritas pelarut dan waktu ekstraksi. terlihat dengan nilai IC 50 kondisi yang dicobakan pada teknik sonikasi lebih rendah dibandingkan teknik maserasi. Campuran pelarut dan air dengan proporsi yang semakin sama menunjukkan aktivitas antioksidan yang semakin tinggi. Semakin lama waktu ekstraksi yang digunakan, maka semakin tinggi pula aktivitas antioksidannya. Secara keseluruhan, faktor-faktor yang dicobakan berpengaruh pada aktivitas antioksidan. Kondisi Optimum Ekstraksi Flavonoid Faktor kondisi ekstraksi yang akan dioptimumkan berupa teknik ekstraksi, polaritas pelarut, dan waktu ekstraksi. Pengoptimuman dilakukan menggunakan rancangan kombinasi D-Optimal dengan bantuan piranti lunak DX8.0.6 versi uji coba yang akan melihat pengaruh faktor-faktor tersebut terhadap kadar flavonoid total dan aktivitas antioksidan sebagai responnya. Berdasarkan pengolahan data statistik, ekstrak daun salam yang memiliki kadar flavonoid tertinggi dan nilai IC 50 terendah adalah kondisi ekstraksi sonikasi menggunakan pelarut 96% dalam waktu 15 menit (Lampiran 5). Kadar flavonoid dugaan pengolahan tersebut ialah sebesar 0,0125 mg QE/mg ekstrak dan nilai IC 50 8,0289 µg/ml. Pengaruh masing-masing faktor pada nilai respon dapat dijelaskan dengan model dan grafik dari rancangan D-Optimal (Gambar 8 dan 9). Keberhasilan ekstraksi ditentukan oleh respon kadar flavonoid dan aktivitas antioksidan. Nilai IC 50 diperlukan sebagai respon untuk melihat aktivitas antioksidan dari flavonoid yang berhasil diekstrak dengan berbagai kondisi ekstraksi. Berdasrkan hasil pengolahan data dengan piranti lunak DX8.0.6 versi uji coba, didapat model regresi sebagai berikut : Kadar flavonoid = 4,828. X + 8,790. XY 0,014 XZ 8,887. YZ + 1,692. XYZ 1,451. XZ 2 + 3,851. YZ 2 + 1,036. XYZ 2 IC 50 = 30, ,84 Z 16,53 Z 2 37,62 Z 3 (X= Air, Y= Metanol, Z= Waktu ekstraksi) Berdasarkan hasil uji statistika terlihat bahwa faktor polaritas pelarut dan waktu ekstraksi berpengaruh secara linear terhadap kadar flavonoid total. Berpengaruhnya faktorfaktor tersebut terhadap kadar flavonoid ditunjukkan dengan model regresi kadar flavonoid memiliki nilai p lebih kecil dari taraf α (0,05), dapat dilihat pada Lampiran 6. Hal ini menunjukkan parameter yang terlibat berpengaruh secara signifikan. Model regresi kadar flavonoid memiliki nilai koefisien determinasi R-Sq yang cukup tinggi yaitu 95,49% sehingga model yang dihasilkan dapat digunakan karena memenuhi syarat model yang baik. Berdasarkan persamaan model dapat digambarkan plot permukaan respon dan kontur dari model yang diperoleh untuk setiap respon. Gambar 8 menunjukkan bahwa penurunan polaritas pelarut dan peningkatan waktu ekstraksi menghasilkan kadar flavonoid total yang semakin tinggi. Namun, pada polaritas pelarut tersebut terdapat pengaruh keragaman waktu ekstraksi. Plot permukaan

24 15 (a) (b) Gambar 9 Plot permukaan respon (a) dan kontur (b) nilai IC 50 pada polaritas pelarut dan waktu ekstraksi. respon penentuan kadar flavonoid total menunjukkan titik belok saat waktu ekstraksi mencapai 12,5 menit. Hasil uji statistika ekstrak terbaik daun salam menunjukkan bahwa waktu merupakan satu-satunya faktor yang memengaruhi nilai IC 50. Model regresi IC 50 memiliki nilai p lebih kecil dari taraf α (0,05), dapat dilihat pada Lampiran 7. Hal ini menunjukkan parameter tersebut berpengaruh secara signifikan terhadap aktivitas antioksidan. Namun, nilai R-Sq dari model tersebut rendah, yaitu 54,18% artinya hanya sebesar 54,18% nilai IC 50 dipengaruhi oleh faktor waktu ekstraksi. Oleh karena itu, berdasarkan model tersebut diperkirakan terdapat faktor lain yang mempengaruhi nilai IC 50 yang tidak dicobakan dalam penelitian ini. Bila dibandingkan dengan analisis secara kimia, faktor-faktor seperti polaritas pelarut dan waktu ekstraksi dapat berpengaruh terhadap aktivitas antioksidan. Hal ini terkait dengan komponen kimia yang dapat terekstrak pada saat ekstraksi menggunakan pelarut tertentu berdasarkan prinsip like dissolve like (Khopkar 2002). Lama ekstraksi berpengaruh terhadap waktu kontak bahan dengan pelarut yang digunakan. Kontak yang intensif menyebabkan difusi komponen kimia yang terekstraksi oleh pelarut keluar dari dinding sel tanaman (Gamse 2002). Banyaknya komponen kimia yang dapat terekstraksi, terutama flavonoid, seharusnya dapat memberikan pengaruh terhadap aktivitas antioksidan. Senyawa flavonoid bertindak sebagai donor atom hidrogen yang dapat mengubah DPPH menjadi bentuk tereduksi dan kehilangan warna ungunya (Molyneux 2004), sehingga aktivitas antioksidan yang ditunjukkan sebagai nilai IC 50 dapat diukur menggunakan spektrofotometer UV-vis. Bedasarkan Gambar 9 dapat dilihat bahwa nilai IC 50 menunjukkan nilai yang fluktuatif. Ekstraksi pada menit awal menunjukkan nilai IC 50 yang rendah dengan berkurangnya polaritas pelarut. Nilai IC 50 menunjukkan peningkatan dengan meningkatnya waktu ekstraksi dan kembali menunjukkan penurunan pada waktu ekstraksi lebih dari 12 menit. Apabila dilihat dari plot permukaan responnya (9a), terdapat titik belok saat waktu ekstraksi mencapai 12,5 menit. Setelah melewati titik ini, peningkatan waktu ekstraksi akan menghasilkan nilai IC 50 yang lebih rendah dari sebelumnya atau menunjukkan aktivitas antioksidan yang sangat tinggi. Berdasarkan analisis ini, terlihat bahwa waktu ekstraksi sangat berpengaruh terhadap aktivitas antioksidan. Analisis sidik jari selanjutnya dilakukan pada ekstrak 96% dengan waktu ekstraksi pada kondisi yang dicobakan, yaitu pada waktu 5, 10, dan 15 menit. Hal ini bertujuan melihat pengaruh waktu ekstraksi terhadap pola sidik jari dari masing-masing ekstrak. Pola sidik jari yang dihasilkan diharapkan dapat merepresentasikan aktivitas antioksidan ekstrak. Analisis sidik jari dilakukan menggunakan KLT dengan fase gerak kloroform. Analisis ini menggunakan pola kromatogram komponen kimia dari ekstrak untuk menentukan kualitas, dan identitas tanaman obat (Borges et al. 2007) Hasil sidik jari dapat dilihat pada Lampiran 12. Kromatogram menunjukkan pada ekstrak

25 16 dengan waktu ekstraksi 5, 10, dan 15 menit berturut-turut menampilkan jumlah pita berbeda, yaitu 7, 4 dan 8 pita. Ekstrak 96% dengan waktu ekstraksi 5 menit memiliki 7 pita pada hasil sidik jari dan memiliki aktivitas antioksidan tinggi. Sedangkan pada ekstrak dengan waktu ekstraksi 10 menit, menghasilkan 4 pita dan menunjukkan aktivitas antioksidan yang rendah. Hal ini menunjukkan komponen kimia yang berhasil terekstrak merupakan senyawa golongan flavonoid sehingga menunjukkan korelasi secara linear dengan aktivitas antioksidan yang dihasilkan. Pengaruh polaritas pelarut dan waktu ekstraksi terhadap respon teramati cukup baik pada plot kontur permukaan (Gambar 8b dan Gambar 9b). Kurva tersebut menampilkan kisaran pelarut dan waktu ekstraksi optimum, yaitu teramati pada pelarut 96% selama 15 menit, dengan kadar flavonoid total sebesar 0,0116 mg QE/mg ekstrak dan nilai IC 50 13,1593 µg/ml. Metode ekstraksi sonikasi merupakan metode yang optimum daripada metode maserasi, hal ini dikarenakan pada ekstraksi sonikasi terjadi aktivitas kavitasi yang menyebabkan proses perpindahan massa pelarut menjadi lebih cepat. senyawa bioaktif dari dalam sel tanaman ke pelarut menjadi lebih cepat. Nilai kadar flavonoid dan IC 50 pada hasil keseluruhan ekstrak yang dicobakan berbeda dengan hasil optimisasi. Hal ini dikarenakan piranti lunak DX8.0.6 menganalisis secara statistik dari nilai-nilai yang mungkin dihasilkan pada kondisi optimum. Uji Fitokimia Senyawa Golongan Flavonoid Uji golongan flavonoid dapat memberikan informasi tentang keberadaan jenis golongan flavonoid yang terdapat pada ekstrak kasar secara kualitatif. Berdasarkan hasil pengujian fitokimia golongan flavonoid, ekstrak teraktif mengandung senyawa antosianidin, flavonol, flavon, dan kalkon. Hasil uji selengkapnya dapat dilihat pada Lampiran 8. Senyawa antosianidin, flavonol, dan flavon disebut sebagai senyawa flavonoid utama dikarenakan senyawa ini banyak ditemukan di alam. Hasil uji golongan flavonoid juga sesuai dengan penelitaian Pratt (1992), yang menyatakan bahwa senyawa golongan flavonoid yang memiliki aktivitas antioksidan meliputi flavon, flavonol, isoflavon, katekin, flavonol dan kalkon. Penentuan Campuran Fase Gerak dari Fase Gerak Tunggal Sebanyak 6 macam fase gerak tunggal yang mewakili sifat polar, semipolar, dan non polar digunakan sebagai eluen untuk mengelusi tahap awal ekstrak terbaik daun salam pada KLT. Pita yang terbentuk dideteksi dengan menggunakan UV 254 nm dan 366 nm. Deteksi ini dipilih karena cara deteksi tersebut spesifik untuk senyawa tertentu terutama flavonoid. UV 254 nm dapat mendeteksi alkaloid, flavonoid, dan triterpenoid sedangkan UV 366 nm dapat mendeteksi alkaloid, flavonoid, dan lignan dengan warna yang berbeda-beda (Fernand 2003). Namun, pita terlihat jelas pada UV 366 nm, hal ini dikarenakan pelat KLT yang digunakan merupakan pelat silica gel GF 254, artinya silica gel dengan fluoresens yang berpendar pada UV 254 nm, sehingga pita yang dihasilkan tidak begitu terlihat. Untuk itu, metode pendeteksian yang akan digunakan selanjutnya adalah UV 366 nm. Keenam fase gerak tersebut, tampak setiap fase gerak mampu memisahkan komponen dengan kemampuan berbeda-beda. Hal ini terlihat dari jumlah pita yang berbeda-beda pada setiap fase gerak (Gambar 10). Tiga fase gerak yang akan dijadikan sebagai penyusun komposisi fase gerak sesuai rancangan Simplex Centroid adalah fase gerak yang menghasilkan jumlah pita terbanyak dengan pemisahan yang baik Jumlah spot Gambar 10 2 Fase gerak Jumlah spot pada elusi KLT ekstrak terbaik daun salam untuk fase gerak tunggal dengan deteksi UV 366 nm. Ketiga pelarut terpilih, yaitu kloroform, n- butanol, dan etil asetat sebagai komposisi campuran fase gerak karena ketiga fase gerak tersebut menghasilkan jumlah pita lebih banyak. Hasil selengkapnya untuk ke-6 3 1

26 17 macam fase gerak tunggal ditunjukkan pada Lampiran 9. Penentuan Fase Gerak Optimum dengan Simplex Centroid Design Penggunaan Simplex Centroid Design (SCD) untuk pengoptimuman fase gerak KLT dilakukan untuk mendapatkan sidik jari yang informatif. SCD digunakan untuk mengetahui pengaruh proporsi fase gerak yang berbedabeda. Ketiga pelarut terpilih, yaitu kloroform sebagai titik A, n-butanol sebagai titik B, dan etil asetat sebagai titik C dicampurkan sehingga didapatkan berbagai komposisi pelarut sesuai dengan Tabel 4. Setelah itu, dilakukan pemisahan pada kesepuluh komposisi tersebut dan dideteksi dengan sinar UV 366 nm. Hasil selengkapnya untuk 10 komposisi fase gerak ditunjukkan pada Lampiran 10. jumlah pita A:1B:0C A:0B:1C 0A:1B:0C 1/2A:0B:1/2C komposisi fase gerak Gambar 11 Jumlah pita hasil KLT ekstrak daun salam dengan deteksi UV 366 nm. Gambar 11 menunjukkan bahwa jumlah pita yang banyak dihasilkan pada fase gerak tunggal adalah kloroform. Fase gerak optimum ditentukan berdasarkan analisis statistik dengan jumlah pita sebagai responnya. Persamaan regresi yang didapatkan dari pengolahan data adalah y = 8,14A + 5,96B + 6,87C + 0,20 AB 1,98 AC 6,34BC 31,76ABC. (A= kloroform, B= n-buatnol, C= etil asetat) Persamaan regresi tersebut memiliki nilai p lebih kecil dari taraf α (0,05), dapat dilihat pada Lampiran 11. Hal ini menunjukkan bahwa ketiga fase gerak berpengaruh terhadap penentuan komposisi fase gerak optimum. Ketiga koefisien pertama (8, 5, dan 6) memberikan peningkatan pengaruh secara linear terhadap respon. Model tersebut juga 5 0A:1/2B:1/2C 7 1/2A:1/2B:0C /3A:1/3B:1/3C 1/6A:2/3B:1/6C 1/6A:1/6B:2/3C 7 2/3A:1/6B:1/6C menunjukkan terdapat interaksi yang sinergis antara kloroform dan n-butanol. Interaksi yang berlawanan terdapat pada campuran fase gerak kloroform dan n-butanol, n-butanol dan etil asetat, serta campuran di antara ketiga fase gerak kloroform, n-butanol, dan etil asetat. Hal ini dapat dilihat dari plot kontur Simplex Centroid Design pada Gambar 12. Daerah optimum pada plot kontur desain dinyatakan dengan warna jingga. Koefisien determinasi atau R-Sq dari pengolahan data dengan deteksi UV 366 nm diperoleh sebesar 96,17%. Selanjutnya, fase gerak yang digunakan untuk analisis sidik jari ektrak terbaik daun salam adalah fase gerak tunggal kloroform. Gambar 12 Plot kontur desain campuran simplex centroid untuk jumlah pita optimasi fase gerak mn <5, 5-6, 6-7, 7-8 dengan deteksi UV 366 nm. Analisis Sidik Jari pada Kondisi Optimum Analisis sidik jari dilakukan dengan tujuan melihat pola sidik jari ekstrak flavonoid pada kondisi optimum. Pola sidik jari tersebut memberikan informasi secara kualitatif kandungan metabolit sekunder yang terdapat dalam ekstrak daun salam. Analisis sidik jari dilakukan menggunakan KLT sehingga pola yang dihasilkan berupa pita yang selanjutnya dapat diketahui nilai Rf dari masing-masing pita yang dihasilkan. Nilai Rf spesifik untuk komponen kimia dalam tanaman. Sidik jari ekstrak flavonoid terbaik daun salam dilakukan menggunakan fase gerak optimum yaitu kloroform dengan deteksi UV 366 nm. Pola kromatogram yang diperoleh menghasilkan 8 pita dengan Rf masingmasing pita berturut-turut 0,07; 0,13 0,25; 0,43; 0,62; 0,67; 0,91; dan 0,96. Pita yang dihasilkan menampilkan bercak berwarna merah dan biru muda. Menurut Markham (1988), fluoresensi biru muda dapat

27 18 menunjukkan adanya senyawa flavon, flavonon, atau flavonol, sedangkan bercak berwarna merah menunjukkan adanya senyawa antosianidin. Hal ini memperkuat hasil uji kualitatif golongan flavonoid yang dilakukan terhadap ekstrak daun salam tersebut (Lampiran 8). Pola sidik jari dapat dilihat pada Gambar 13. karena kondisi optimum teramati pada ujungujung taraf. DAFTAR PUSTAKA [AOAC] Association of Official Analytical Chemistry Official Methods of Analysis. Virginia: AOAC. Akbar HR Isolasi dan identifikasi golongan flavonoid daun dandang gendis (Clinacanthus nutans) berpotensi sebagai antioksidan [skripsi]. Bogor: Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor. Ashley K, Andrews RN, Cavazos L, Demange M Ultrasonic extraction as a sample preparation technique for elemental analysis by atomic spectrometry. J. Anal. At. Spectrom. 16: Blois MS Antioxidant determinations by the use of a stable free radical. Nature 181: Gambar 13 Kromatogram KLT dengan fase gerak pada titik optimum (kloroform) dengan deteksi pada UV 366 nm. SIMPULAN DAN SARAN Simpulan Waktu ekstraksi sangat berpengaruh dalam penentuan kondisi ekstraksi optimum berdasarkan analisis rancangan D-Optimal. Ekstrak flavonoid daun salam dengan bioaktivitas paling baik sesuai rancangan kombinasi dihasilkan pada ekstraksi sonikasi dengan pelarut 96% dalam waktu ekstraksi selama 15 menit. Kadar flavonoid dan nilai IC 50 pada kondisi tersebut diperoleh berturut-turut sebesar 0,0116 mg QE/mg ekstrak dan 13,1593 µg/ml. Fase gerak optimum yang didapat untuk analisis sidik jari ekstrak terbaik daun salam adalah kloroform dengan deteksi UV 366 nm menghasilkan 8 pita. Saran Perlu dilakukan validasi terhadap model yang telah diperoleh pada penelitian ini. Selain itu perlu dicobakan kisaran taraf yang lebih luas pada parameter yang digunakan Bolourtchian N, Hadidi N, Foroutan SM, Shafaghi B Formulation and optimization of captopril sublingual tablet using d-optimal design. Iranian Journal of Pharmaceutical Research 7 (4): Borges CN, Bruns RE, Almeida AA, dan Scarminio IS Mixture design for the fingerprint optimalization of chromatographic mobile phases and extraction solutions for Camellia sinensis. Analytical Chimica Acta 595: [BPOM] Badan Pengawasan Obat dan Maanan Monografi Ekstrak Tumbuhan Obat Indonesia Vol 1. Jakarta : BPOM. Chen C, Pearson AM, Gray JI Effects of synthetic antioxidant (BHA, BHT, and PG) on the mutagenicity of IQ-like compounds. Food Chemistry 43: Chen HM, Muramoto K, Yamauchi F, Nokihara K Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. J. Agric. Food Chem. 44 (9): [Depkes RI] Departemen Kesehatan RI

28 19 Farmakope Herbal Indonesia Edisi 1. Jakarta: Depkes RI. Fernand VE Initial characterization of crude extracts from Phyllanthus amarus Schum. And Thonm. And Quissia amara L. using normal phase thin layer chromatography [tesis]. Lousiana: Program Pascasarjana, University of Suriname. Gamse T Liquid-Liquid Extraction and Solid-Liquid Extraction. Graz University of Technology. Harborne JB Metode Fitokimia: penuntun cara modern menganalisis tumbuhan. Padmawinata K, Soediro I, penerjemah. Bandung : ITB Press. Terjemahan dari: Phytochemical Methods. Harjadi W Ilmu Kimia Analitik Dasar. Jakarta: Gramedia. Istiqomah IFA Pengoptimuman fase gerak kromatografi lapis tipis dengan rancangan campuran untuk analisis sidik jari temulawak [skripsi]. Bogor: Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor. Kahl, R., & Kappus, H. (1993). Toxicology of the synthetic antioxidants BHA and BHT in comparison with the natural antioxidant vitamin E. Zeitschrift fur Lebensmittel- Untersuchung und -Forschung, 196(4): Khopkar SM Konsep Dasar Kimia Analitik. Saptorahardjo, penerjemah. Jakarta: UI Press. Terjemahan dari: Basic Concept of Analitical Chemistry. Leclercq C, Arcella D, Turrini A Estimates of the theoretical maximum daily intake of erythorbic acid, gallates, butylated hydroxyanisole (BHA), and butylated hydroxytoluene (BHT) in Italy: a stepwise approach. Food and Chemical Toxicology 38 (2000): Lelono RAA, Tachibana S, Itoh K In vitro antioxidative activities and polyphenol content of Eugenia polyantha wight grown in Indonesia. Pak. J. Biol. Sci. 12 (24): Liang YZ, Xie P, Chan K Quality control of herbal medicines. Journal of Chromatography B 812: Markham KR Cara Mengidentifikasi Flavonoid. Padmawinata K, penerjemah. Bandung: ITB Press. Terjemahan dari: Techniques of Flavonoid Identification. Meloan CE Chemical Separation. New York: J willey Miyake T, Shibamoto T Antioxidative activities of natural compounds found in plants. J. Agric. Food. Chem. 45 (5): Molyneux P The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Journal Science Technology 26(2): Montgomery DC Design and Analysis of Experiment 3 rd Ed. New York: John Willey & Sons. Mardawati E., C.S. Achyar, dan H. Marta Kajian Aktivitas Antioksidan Ekstrak Kulit Manggis (Garcinia mangostana) dalam Rangka Pemanfaatan Limbah Kulit Manggis di Kecamatan Puspahiang Kabupaten Tasikmalaya. Laporan Akhir Penelitian Peneliti Muda (LITMUD). Lembaga Penelitian Universitas Padjajaran (UNPAD). Bandung. Muflihat DA Inhibisi ekstrak herba kumis kucing dan daun salam terhadap aktivitas xantin oksidase [skripsi]. Bogor: Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor. Ng TB, Liu F, Wang ZT Antioxidative activity of natural products from plants. Life Science 66 (8): Pietta PG. Flavonoids and Antioxidant. J. Nat. Prod. 63: Pourmorad F, Hosseinimehr SJ, Shahabimajd N Antioxidant activity,phenol, and flavonoid contents of some selected Iranian medicinal plants. African Journal of Biotechnology 5(11):

29 20 Pratt DE Natural Antioxidants From Plant Material. Di dalam: M.T. Huang CT Ho dan Lee CY, editor. Phenolic Compounds in Food and Their Effects on Health. Washington: American Society. Poedjiadi A Dasar-Dasar Biokimia. Jakarta: UI press. Reich E, Schibli A Validation of highperformance thin layer chromatographic methods for the identification of botanicals in a cgmp environment. Journal of AOAC International 91: Rouessac F, Rouessac A Chemical Analysis Modren Instrumentation Methods and Techniques 2nd. USA: John Wiley & Sons, Ltd. Salazar-Alandra R, Perez-Lopez LA, Lopez- Arroyo J, Alanis-Garza BA, Torres NW Antimicrobial and antioxidant ctivities of plants from northeast of Mexico. ecam: 1-6. Setiawan S Identifikasi golongan flavonoid daun jati belanda berpotensi antioksidan [skripsi]. Bogor: Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor. Shahidi F, Naczk M Food Phenolics. Lancester-Basel: Technomic pub. Co. Inc. Soares PK, Burns RE, Scarminio IS Statistical mixture design-principal component optimization for selective compound extraction from plant material. Journal of Separation ScienceI 30: Studiawan H Uji aktivitas penurunan kadar glukosa darah ekstrak daun Eugenia polyantha pada mencit yang diinduksi dengan aloksan. Jurnal Penelitian Medika Eksakta (5)3. Sumono A, Wulan ASD The use of bay leave (Eugenia polyantha wight) in dentistry. Dental Journal 41 (3): Sunarni T, P ramono S, Asmah R Flavonoid antioksidan penangkap radikal dari daun kepel (Stelechocarpus burahol (BI.) Hook f. & Th.). Majalah Farmasi Indonesia 18 (3): Supriadi D Optimalisasi ekstraksi kurkuminoid temulawak (Curcuma xanthorriza roxb.) [skripsi]. Bogor: Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian bogor. Triefenbach F The D-optimal approach and its implementation as a computer algorithm [thesis]. Germany: Department of Engineering and Business Sciences, South Westphalia University of Apllied Sciences. Umar Farah Optimisasi Ekstraksi Flavonoid Total Daun Jati Belanda [skripsi]. Bogor: Institut Pertanian Bogor. Velickovic DT et al Extraction of flavonois from garden (Salvia officinalis L.) and glutinous (Salvia glutinosa L.) sage by ultrasonic and classical maceration. J. Serb. Chem. Soc. 72 (1): Winarno FG Kimia Pangan dan Gizi. Jakarta: Gramedia. Windono T, Budiono R, Sumijani R, Kusuma D Radical Scavenging Capacity Against 1,1-Diphenyl-2-Picryl Hydrazyl (DPPH) of Some Indonesian Medicinal Plants. Di dalam: Biodiversity on Tradisional Biomedicine for Human Health and Welfare. Proceedings Symposium of Biomedicines; Bogor: Biopharmaca Research Center IPB. hlm Yin H, Chen Z, Ghu Z, Han Y Optimization of natural fermentative medium for selenium-enriched yeast by D- optimal mixture design. Food Science and Technology 42: Zongo, et ali Polyphenol content, antioxidant and antimicdobial activities of Ampelocissus grantii (baker) planch. (vitaceae): a medicinal plant from Burkina faso. International Journal of Phamacology 6(6): Zuhra CF, Tarigan JB, Sihotang H Aktivitas antioksidan senyawa flavonoi dari daun katuk (Sauropus androgunus (L) Merr.). Jurnal Biologi Sumatera: 7-10.

30 LAMPIRAN 21

31 22 Lampiran 1 Diagram alir penelitian Preparasi daun salam Pengeringan dan Pembuatan serbuk Serbuk daun salam Kadar air Ekstraksi Combined D-Optimal design Ragam metode Ragam polaritas pelarut Ragam waktu Ekstrak flavonoid total 1. Perhitungan rendemen 2. Uji aktivitas antioksidan 3. Penentuan kadar flavonoid total Ekstrak dengan bioaktivitas paling tingggi 1.Analisis sidik jari 2.Uji kualitatif golongan flavonoid

32 23 Lampiran 2 Hasil penentuan kadar air ulangan Bobot sampel awal (g) Bobot sampel kering (g) Kadar air (%) 1 3,0016 2,7340 8,92 2 3,0021 2,7423 8,65 3 3,0021 2,7369 8,83 rerata 8,80 Contoh perhitungan Penentuan kadar air ulangan 1 Kadar air = x 100 = x 100 = 8,92% Penentuan kadar air rerata Kadar air rerata = = = 8,80%

33 24 Lampiran 3 Penentuan kadar flavonoid ekstrak daun salam A Teknik maserasi Kondisi ekstraksi Arerata Kadar Flavonoid (ppm QE) kadar Flavonoid (mg QE/mg ekstrak) 1 0,2200 6,826 0, , ,359 0, ,2840 9,297 0, ,2290 7,174 0, ,2333 7,340 0, , ,382 0, ,2110 6,479 0, ,2510 8,023 0, ,2463 7,842 0, , ,166 0, ,2103 6,452 0, , ,849 0, , ,077 0, , ,610 0, , ,996 0, , ,568 0, ,2463 7,842 0, , ,305 0, , ,888 0,0122 Keterangan : A = absorbans QE = ekivalen kuersetin

34 25 Lanjutan Lampiran 3 B Teknik sonikasi Kondisi ekstraksi Kadar Flavonoid (mg QE/mg ekstrak) Arerata Kadar Flavonoid (ppm QE) 1 0,2290 7,174 0, ,1567 4,382 0, ,1847 5,463 0, ,1500 4,124 0, , ,668 0, ,2257 7,046 0, , ,023 0, , ,853 0, ,1907 5,695 0, ,2490 7,946 0, , ,664 0, ,1703 4,907 0, ,2190 6,788 0, ,2980 9,838 0, ,1953 5,873 0, ,1667 4,768 0, ,1967 5,927 0, ,1323 3,440 0, ,1533 4,251 0,0033 Keterangan : A = absorbans QE = ekivalen kuersetin

35 26 Lanjutan Lampiran 3 Absorbansi 1,6 1,4 1,2 1 0,8 0,6 0,4 0,2 0 y = 0,0259x + 0,0432 R² = 0, konsentrasi (ppm) Gambar Kurva standar kuersetin Contoh perhitungan : (Metode ekstraksi sonikasii, kondisi 1) Konsentrasi flavonoid (ppm QE) y = 0,0259x + 0,0432, dengan y = absorbans x = konsentrasi flavonoid (ppm QE) x = = = 7,174 ppm QE Kadar flavonoid = = = 0,0060 mg QE/mg ekstrak.

36 27 Lampiran 4 Data uji aktivitas antioksidan A Metode ekstraksi maserasi kondisi persamaan logaritma r IC50 (µg/ml) 1 y = 18,242 lnx - 6,8972 0, ,505 2 y = 13,534 lnx - 5,7723 0, ,615 3 y = 15,251 lnx - 15,894 0, ,236 4 y = 17,48 lnx - 19,036 0, ,906 5 y = 18,242 lnx - 5,8092 0, ,314 6 y = 18,702 lnx - 10,246 0, ,062 7 y = 13,972 lnx + 6,8927 0, ,873 8 y = 15,78 lnx - 14,873 0, ,013 9 y = 15,686 lnx + 3,1743 0, , y = 18,015 lnx - 19,011 0, , y = 11,44 lnx - 3,276 0, , y = 16,955 lnx - 1,8626 0, , y = 15,556 lnx - 12,106 0, , y = 14,678 lnx -13,729 0, , y = 13,53 lnx - 8,1225 0, , y = 11,966 lnx + 2,4299 0, , y = 15,167 lnx - 7,5727 0, , y = 9,4931 lnx + 2,6546 0, , y = 14,659 lnx + 1,3196 0, ,684 Kuersetin : y = 20,438ln(x) + 18,444, r = 0,9097 IC 50 = 4,683 µg/ml B Metode ekstraksi sonikasi kondisi persamaan logaritma r IC50 (µg/ml) 1 y = 11,513 lnx + 5,0343 0, ,682 2 y = 15,245 lnx + 6,2809 0, ,598 3 y = 11,004 lnx + 33,456 0, ,119 4 y = 14,757 lnx + 8,9027 0, ,199 5 y = 16,309 lnx + 13,362 0,9621 9,454 6 y = 12,015 lnx + 26,226 0,9420 7,624 7 y = 15,674 lnx + 13,439 0, ,305 8 y = 15,228 lnx + 16,827 0,9583 8,806 9 y = 10,122 lnx + 10,823 0, , y = 14,992 lnx + 20,406 0,9693 7, y = 15,661 lnx + 10,483 0, , y = 12,811 lnx - 6,0742 0, , y = 16,092 lnx + 16,112 0,9623 8, y = 18,773 lnx - 15,35 0, ,49 15 y = 15,973 lnx + 11,259 0, , y = 18,489 lnx - 7,5713 0, , y = 13,278 lnx - 10,134 0, , y = 17,34 lnx + 7,6208 0, , y = 14,046 lnx + 7,1464 0, ,053

37 28 Lampiran 5 Kondisi optimum hasil keluaran rancangan kombinasi D-Optimal A Kondisi ekstraksi maserasi B Kondisi ekstraksi sonikasi

38 29 Lampiran 6 Data ANOVA kadar flavonoid total pada kondisi ekstraksi optimum Lampiran 7 Data ANOVA nilai IC 50 pada kondisi ekstraksi optimum

39 30 Lampiran 8 Hasil uji golongan flavonoid pada ekstrak sonikasi 7 dengan pelarut dan waktu ekstraksi 15 menit Perekasi Golongan flavonoid Warna hasil reaksi Hasil CH3COONa Merah - FeCl3 Antosianidin Biru + Na2CO3 Ungu, biru, atau hijau - Kalkon Jingga + (CH3COO)2Pb Auron Merah - Flavon Jingga hingga krem + Kalkon dan Auron Merah hingga ungu - NaOH 0,1 N Flavonol dan flavon Kuning + Flavonol dan kuning - flavon H2SO4 pekat Flavonol jingga hingga krem + Kalkon Merah -

40 31 Lampiran 9 Hasil pemisahan ekstrak terbaik daun salam dengan berbagai pelarut tunggal A Deteksi UV 254 nm B Deteksi UV 366 nm Keterangan : Urutan pelat dari kiri ke kanan adalah Metanol Diklorometana Klorofrom n-butanol Asam asetat Etil asetat

41 32 Lampiran 10 Hasil elusi ekstrak terbaik daun salam dengan campuran fase gerak kloroform, n-butanol, dan etil asetat pada deteksi UV 366 nm Keterangan : 1 (0A:1/2B:1/2C), 2 (1/2A:0B:1/2C), 3 (1/2A:1/2B:0C), 4 (1/3A:1/3B:1/3C), 5 (1/6A:2/3B:1/6C), 6 (1/6A:1/6B:2/3C), 7 (2/3A:1/6B:1/6C), 8 (0A:0B:1C), 9 (1A:0B:0C), 10 (0A:1B:0C) Lampiran 11 Data ANOVA penentuan komposisi fase gerak optimum

TINJAUAN PUSTAKA. Salam (Syzygium polyanthum)

TINJAUAN PUSTAKA. Salam (Syzygium polyanthum) 2 TINJAUAN PUSTAKA Salam (Syzygium polyanthum) Syzygium polyanthum [Wight.] Walp., sinonim Eugenia polyantha Wight., dan E. lucidula miq., memiliki nama daerah salam (Indonesia, Sunda, Jawa, Madura); gowok

Lebih terperinci

Kadar Air Simplisia Daun Salam

Kadar Air Simplisia Daun Salam 10 Setelah dilakukan pengukuran kadar air, kadar air serbuk daun salam tersebut masih tinggi sehingga pengeringan dilanjutkan kembali di dalam oven pada suhu 50 ⁰C hingga kadar airnya di bawah 10%. Hal

Lebih terperinci

HASIL DAN PEMBAHASAN. Kadar air = Ekstraksi

HASIL DAN PEMBAHASAN. Kadar air = Ekstraksi 2 dikeringkan pada suhu 105 C. Setelah 6 jam, sampel diambil dan didinginkan dalam eksikator, lalu ditimbang. Hal ini dilakukan beberapa kali sampai diperoleh bobot yang konstan (b). Kadar air sampel ditentukan

Lebih terperinci

HASIL DAN PEMBAHASAN Persiapan dan Ekstraksi Sampel Uji Aktivitas dan Pemilihan Ekstrak Terbaik Buah Andaliman

HASIL DAN PEMBAHASAN Persiapan dan Ekstraksi Sampel Uji Aktivitas dan Pemilihan Ekstrak Terbaik Buah Andaliman 17 HASIL DAN PEMBAHASAN Persiapan dan Ekstraksi Sampel Sebanyak 5 kg buah segar tanaman andaliman asal Medan diperoleh dari Pasar Senen, Jakarta. Hasil identifikasi yang dilakukan oleh Pusat Penelitian

Lebih terperinci

III. METODOLOGI PENELITIAN. Metodologi penelitian meliputi aspek- aspek yang berkaitan dengan

III. METODOLOGI PENELITIAN. Metodologi penelitian meliputi aspek- aspek yang berkaitan dengan III. METODOLOGI PENELITIAN Metodologi penelitian meliputi aspek- aspek yang berkaitan dengan preparasi sampel, bahan, alat dan prosedur kerja yang dilakukan, yaitu : A. Sampel Uji Penelitian Tanaman Ara

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan dari bulan Agustus hingga bulan Desember 2013 di Laboratorium Bioteknologi Kelautan Fakultas Perikanan dan Ilmu Kelautan

Lebih terperinci

HASIL DAN PEMBAHASAN Penetapan Kadar Air Hasil Ekstraksi Daun dan Buah Takokak

HASIL DAN PEMBAHASAN Penetapan Kadar Air Hasil Ekstraksi Daun dan Buah Takokak 15 HASIL DAN PEMBAHASAN Penetapan Kadar Air Penentuan kadar air berguna untuk mengidentifikasi kandungan air pada sampel sebagai persen bahan keringnya. Selain itu penentuan kadar air berfungsi untuk mengetahui

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN 13 HASIL DAN PEMBAHASAN Ekstraksi dan Fraksinasi Sampel buah mahkota dewa yang digunakan pada penelitian ini diperoleh dari kebun percobaan Pusat Studi Biofarmaka, Institut Pertanian Bogor dalam bentuk

Lebih terperinci

HASIL DAN PEMBAHASAN. (a) (b) Gambar 4 Twin trough chamber (a) dan flat bottom chamber (b)

HASIL DAN PEMBAHASAN. (a) (b) Gambar 4 Twin trough chamber (a) dan flat bottom chamber (b) 6 pengembang yang masih segar. Pelat dideteksi dengan UV 366 nm. Stabilitas Analat pada Pelat dan dalam Larutan. Ekstrak ditotolkan pada pelat 10 x 10 cm. Ekstrak dibuat sebanyak tiga buah. Ekstrak satu

Lebih terperinci

3 METODOLOGI 3.1 Waktu dan Tempat 3.2 Bahan dan Alat

3 METODOLOGI 3.1 Waktu dan Tempat 3.2 Bahan dan Alat 3 METODOLOGI 3.1 Waktu dan Tempat Penelitian dilaksanakan pada bulan Februari 2012 sampai Juli 2012. Pengambilan sampel dilakukan di Perairan Lampung Selatan, analisis aktivitas antioksidan dilakukan di

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Maret sampai dengan Juni 2012.

BAB III METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Maret sampai dengan Juni 2012. 26 BAB III METODE PENELITIAN 3.1 Lokasi Penelitian Penelitian ini dilakukan di Laboratorium Kimia Riset Makanan dan Material Jurusan Pendidikan Kimia, Universitas Pendidikan Indonesia (UPI). Penelitian

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Gambar 14. Hasil Uji Alkaloid dengan Pereaksi Meyer; a) Akar, b) Batang, c) Kulit batang, d) Daun

BAB IV HASIL DAN PEMBAHASAN. Gambar 14. Hasil Uji Alkaloid dengan Pereaksi Meyer; a) Akar, b) Batang, c) Kulit batang, d) Daun BAB IV HASIL DAN PEMBAHASAN 4.1 Uji Fitokimia Sampel Kering Avicennia marina Uji fitokimia ini dilakukan sebagai screening awal untuk mengetahui kandungan metabolit sekunder pada sampel. Dilakukan 6 uji

Lebih terperinci

HASIL DAN PEMBAHASAN. Persentase inhibisi = K ( S1 K

HASIL DAN PEMBAHASAN. Persentase inhibisi = K ( S1 K 7 Persentase inhibisi = K ( S1 S ) 1 K K : absorban kontrol negatif S 1 : absorban sampel dengan penambahan enzim S : absorban sampel tanpa penambahan enzim Isolasi Golongan Flavonoid (Sutradhar et al

Lebih terperinci

BAHAN DAN METODE Waktu dan Tempat Alat dan Bahan Prosedur Penelitian

BAHAN DAN METODE Waktu dan Tempat Alat dan Bahan Prosedur Penelitian 9 BAHAN DAN METODE Waktu dan Tempat Penelitian dilakukan mulai bulan November 2010 sampai dengan bulan Juni 2011 di Laboratorium Kimia Analitik Departemen Kimia FMIPA dan Laboratorium Pusat Studi Biofarmaka

Lebih terperinci

HASIL DA PEMBAHASA. Kadar Air

HASIL DA PEMBAHASA. Kadar Air Pemilihan Eluen Terbaik Pelat Kromatografi Lapis Tipis (KLT) yang digunakan adalah pelat aluminium jenis silika gel G 60 F 4. Ekstrak pekat ditotolkan pada pelat KLT. Setelah kering, langsung dielusi dalam

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian dilakukan selama lima bulan dari bulan Mei hingga September 2011, bertempat di Laboratorium Kimia Hasil Hutan, Bengkel Teknologi Peningkatan

Lebih terperinci

BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN. Hasil pemeriksaan ciri makroskopik rambut jagung adalah seperti yang terdapat pada Gambar 4.1.

BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN. Hasil pemeriksaan ciri makroskopik rambut jagung adalah seperti yang terdapat pada Gambar 4.1. BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN Pada awal penelitian dilakukan determinasi tanaman yang bertujuan untuk mengetahui kebenaran identitas botani dari tanaman yang digunakan. Hasil determinasi menyatakan

Lebih terperinci

BAB III HASIL DAN PEMBAHASAN. A. Determinasi Tanaman. acuan Flora of Java: Spermatophytes only Volume 2 karangan Backer dan Van

BAB III HASIL DAN PEMBAHASAN. A. Determinasi Tanaman. acuan Flora of Java: Spermatophytes only Volume 2 karangan Backer dan Van 22 BAB III HASIL DAN PEMBAHASAN A. Determinasi Tanaman Determinasi merupakan suatu langkah untuk mengidentifikasi suatu spesies tanaman berdasarkan kemiripan bentuk morfologi tanaman dengan buku acuan

Lebih terperinci

III. METODE PENELITIAN di Laboratorium Biomassa Terpadu Universitas Lampung.

III. METODE PENELITIAN di Laboratorium Biomassa Terpadu Universitas Lampung. 16 III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada bulan Agustus 2012 sampai dengan bulan Maret 2013 di Laboratorium Biomassa Terpadu Universitas Lampung. 3.2 Alat

Lebih terperinci

IDENTIFIKASI FITOKIMIA DAN EVALUASI TOKSISITAS EKSTRAK KULIT BUAH LANGSAT (Lansium domesticum var. langsat)

IDENTIFIKASI FITOKIMIA DAN EVALUASI TOKSISITAS EKSTRAK KULIT BUAH LANGSAT (Lansium domesticum var. langsat) IDENTIFIKASI FITOKIMIA DAN EVALUASI TOKSISITAS EKSTRAK KULIT BUAH LANGSAT (Lansium domesticum var. langsat) Abstrak Kulit buah langsat diekstraksi menggunakan metode maserasi dengan pelarut yang berbeda

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 24 BAB III METODE PENELITIAN A. Jenis Penelitian Penelitian ini merupakan jenis penelitian eksperimental laboratorium. Metode yang digunakan untuk mengekstraksi kandungan kimia dalam daun ciplukan (Physalis

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini telah dilakukan dari bulan Agustus 2009 sampai dengan bulan

III. METODE PENELITIAN. Penelitian ini telah dilakukan dari bulan Agustus 2009 sampai dengan bulan III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini telah dilakukan dari bulan Agustus 2009 sampai dengan bulan Januari 2010. Daun gamal diperoleh dari Kebun Percobaan Natar, Lampung Selatan

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Instrumen Jurusan Pendidikan Kimia FPMIPA Universitas Pendidikan

BAB III METODOLOGI PENELITIAN. Instrumen Jurusan Pendidikan Kimia FPMIPA Universitas Pendidikan 21 BAB III METODOLOGI PENELITIAN 3.1 Lokasi Penelitian Penelitian ini dimulai pada bulan Maret sampai Juni 2012 di Laboratorium Riset Kimia dan Material Jurusan Pendidikan Kimia FPMIPA Universitas Pendidikan

Lebih terperinci

BAB III METODOLOGI PENELITIAN. FPMIPA Universitas Pendidikan Indonesia dan Laboratorium Kimia Instrumen

BAB III METODOLOGI PENELITIAN. FPMIPA Universitas Pendidikan Indonesia dan Laboratorium Kimia Instrumen 19 BAB III METODOLOGI PENELITIAN 3.1 Lokasi Penelitian Penelitian ini dilakukan dari bulan Maret sampai dengan bulan Juni 2012 di Laboratorium Kimia Riset Makanan dan Material Jurusan Pendidikan Kimia

Lebih terperinci

BAHAN DAN METODE Tempat dan Waktu Bahan Tanaman Uji Serangga Uji Uji Proksimat

BAHAN DAN METODE Tempat dan Waktu Bahan Tanaman Uji Serangga Uji Uji Proksimat BAHAN DAN METODE Tempat dan Waktu Penelitian ini dilakukan di Laboratorium Kimia Analitik, Departemen Kimia, Institut Pertanian Bogor (IPB), Laboratorium Fisiologi dan Toksikologi Serangga, Departemen

Lebih terperinci

I. PENDAHULUAN. rusak serta terbentuk senyawa baru yang mungkin bersifat racun bagi tubuh.

I. PENDAHULUAN. rusak serta terbentuk senyawa baru yang mungkin bersifat racun bagi tubuh. I. PENDAHULUAN 1.1. Latar Belakang Lipida merupakan salah satu unsur utama dalam makanan yang berkontribusi terhadap rasa lezat dan aroma sedap pada makanan. Lipida pada makanan digolongkan atas lipida

Lebih terperinci

BAB III METODE PENELITIAN. salam dan uji antioksidan sediaan SNEDDS daun salam. Dalam penelitian

BAB III METODE PENELITIAN. salam dan uji antioksidan sediaan SNEDDS daun salam. Dalam penelitian BAB III METODE PENELITIAN 3.1 Jenis Penelitian Metode penelitian yang dilakukan adalah eksperimental laboratorium untuk memperoleh data hasil. Penelitian ini dilakukan dalam beberapa tahap yaitu pembuatan

Lebih terperinci

BAB IV PROSEDUR PENELITIAN

BAB IV PROSEDUR PENELITIAN BAB IV PROSEDUR PENELITIAN 4.1. Pengumpulan Bahan Tumbuhan yang digunakan sebagai bahan penelitian ini adalah daun steril Stenochlaena palustris. Bahan penelitian dalam bentuk simplisia, diperoleh dari

Lebih terperinci

BAB 1 PENDAHULUAN 1.1. Latar Belakang

BAB 1 PENDAHULUAN 1.1. Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Dewasa ini di jaman yang sudah modern terdapat berbagai macam jenis makanan dan minuman yang dijual di pasaran. Rasa manis tentunya menjadi faktor utama yang disukai

Lebih terperinci

BAHAN DAN METODE Bahan dan Alat

BAHAN DAN METODE Bahan dan Alat 19 Metode ekstraksi tergantung pada polaritas senyawa yang diekstrak. Suatu senyawa menunjukkan kelarutan yang berbeda-beda dalam pelarut yang berbeda. Hal-hal yang harus diperhatikan dalam pemilihan pelarut

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN 3.1 Alat-alat 1. Alat Destilasi 2. Batang Pengaduk 3. Beaker Glass Pyrex 4. Botol Vial 5. Chamber 6. Corong Kaca 7. Corong Pisah 500 ml Pyrex 8. Ekstraktor 5000 ml Schoot/ Duran

Lebih terperinci

4 HASIL DAN PEMBAHASAN

4 HASIL DAN PEMBAHASAN 27 4 HASIL DAN PEMBAHASAN 4.1 Karakteristik Api-api (Avicennia marina (Forks.)Vierh.) Pohon api-api (Avicennia marina (Forks.)Vierh.) merupakan tumbuhan sejati yang hidup di kawasan mangrove. Morfologi

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. identitas tanaman tersebut, apakah tanaman tersebut benar-benar tanaman yang

BAB IV HASIL DAN PEMBAHASAN. identitas tanaman tersebut, apakah tanaman tersebut benar-benar tanaman yang 30 BAB IV HASIL DAN PEMBAHASAN 4.1. Determinasi Tanaman Determinasi dari suatu tanaman bertujuan untuk mengetahui kebenaran identitas tanaman tersebut, apakah tanaman tersebut benar-benar tanaman yang

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. (Pandanus amaryllifolius Roxb.) 500 gram yang diperoleh dari padukuhan

BAB IV HASIL DAN PEMBAHASAN. (Pandanus amaryllifolius Roxb.) 500 gram yang diperoleh dari padukuhan BAB IV HASIL DAN PEMBAHASAN A. Hasil Penelitian 1. Preparasi Sampel Bahan utama yang digunakan dalam penelitian ini adalah pandan wangi (Pandanus amaryllifolius Roxb.) 500 gram yang diperoleh dari padukuhan

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Waktu dan Lokasi Penelitian Penelitian dilaksanakan dari Bulan Maret sampai Bulan Juni 2013. Pengujian aktivitas antioksidan, kadar vitamin C, dan kadar betakaroten buah pepaya

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Sampel atau bahan yang digunakan dalam penelitian ini adalah daun

BAB III METODOLOGI PENELITIAN. Sampel atau bahan yang digunakan dalam penelitian ini adalah daun BAB III METODOLOGI PENELITIAN 3.1 Sampel dan Lokasi Penelitian Sampel atau bahan yang digunakan dalam penelitian ini adalah daun Artocarpus communis (sukun) yang diperoleh dari Garut, Jawa Barat serta

Lebih terperinci

BAB III METODE PENELITIAN. A. Waktu dan Tempat Penelitian. Pengambilan sampel buah Debregeasia longifolia dilakukan di Gunung

BAB III METODE PENELITIAN. A. Waktu dan Tempat Penelitian. Pengambilan sampel buah Debregeasia longifolia dilakukan di Gunung BAB III METODE PENELITIAN A. Waktu dan Tempat Penelitian Pengambilan sampel buah Debregeasia longifolia dilakukan di Gunung Lawu. Sedangkan pengujian sampel dilakukan di Laboratorium Biologi dan Kimia

Lebih terperinci

KAJIAN AWAL AKTIFITAS ANTIOKSIDAN FRAKSI POLAR KELADI TIKUS (typhonium flagelliforme. lodd) DENGAN METODE DPPH

KAJIAN AWAL AKTIFITAS ANTIOKSIDAN FRAKSI POLAR KELADI TIKUS (typhonium flagelliforme. lodd) DENGAN METODE DPPH KAJIAN AWAL AKTIFITAS ANTIOKSIDAN FRAKSI POLAR KELADI TIKUS (typhonium flagelliforme. lodd) DENGAN METODE DPPH Dian Pratiwi, Lasmaryna Sirumapea Sekolah Tinggi Ilmu Farmasi Bhakti Pertiwi Palembang ABSTRAK

Lebih terperinci

Agustiningsih. Achmad Wildan Sekolah Tinggi Ilmu Farmasi Yayasan Pharmasi Semarang. Mindaningsih Sekolah Menengah Farmasi Yayasan Pharmasi Semarang

Agustiningsih. Achmad Wildan Sekolah Tinggi Ilmu Farmasi Yayasan Pharmasi Semarang. Mindaningsih Sekolah Menengah Farmasi Yayasan Pharmasi Semarang Momentum, Vol. 6, No. 2, Oktober 2010 : 36-41 Agustiningsih Achmad Wildan Sekolah Tinggi Ilmu Farmasi Yayasan Pharmasi Semarang Mindaningsih Sekolah Menengah Farmasi Yayasan Pharmasi Semarang OPTIMASI

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 22 4. HASIL DAN PEMBAHASAN 4.1 Komposisi Proksimat Komposisi rumput laut Padina australis yang diuji meliputi kadar air, kadar abu, kadar lemak, kadar protein, dan kadar abu tidak larut asam dilakukan

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Sampel atau bahan penelitian ini adalah daun M. australis (hasil

BAB III METODOLOGI PENELITIAN. Sampel atau bahan penelitian ini adalah daun M. australis (hasil BAB III METODOLOGI PENELITIAN 3.1 Sampel dan Lokasi Penelitian Sampel atau bahan penelitian ini adalah daun M. australis (hasil determinasi tumbuhan dilampirkan pada Lampiran 1) yang diperoleh dari perkebunan

Lebih terperinci

METODE. Waktu dan Tempat Penelitian

METODE. Waktu dan Tempat Penelitian 2 dalam menurunkan kadar glukosa dalam darah, selain itu daun anggrek merpati juga memiliki kandungan flavonoid yang tinggi, kandungan flavonoid yang tinggi ini selain bermanfaat sebagai antidiabetes juga

Lebih terperinci

BAHAN DAN METODE. Bahan dan Alat

BAHAN DAN METODE. Bahan dan Alat BAHAN DAN METODE Bahan dan Alat Bahan yang digunakan adalah daun salam, daun jati belanda, daun jambu biji yang diperoleh dari Pusat Studi Biofarmaka (PSB) LPPM-IPB Bogor. Bahan yang digunakan untuk uji

Lebih terperinci

ISOLASI DAN IDENTIFIKASI SENYAWA FLAVONOID DARI FASE n-butanol DAUN JERUK PURUT (Citrus hystrix.dc)

ISOLASI DAN IDENTIFIKASI SENYAWA FLAVONOID DARI FASE n-butanol DAUN JERUK PURUT (Citrus hystrix.dc) ISOLASI DAN IDENTIFIKASI SENYAWA FLAVONOID DARI FASE n-butanol DAUN JERUK PURUT (Citrus hystrix.dc) Zuhelmi Aziz*, Ratna Djamil Fakultas Farmasi Universitas Pancasila,Jakarta 12640 email : emi.ffup@yahoo.com

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3. 1 Waktu dan Lokasi Penelitian Waktu penelitian dimulai dari bulan Februari sampai Juni 2014. Lokasi penelitian dilakukan di berbagai tempat, antara lain: a. Determinasi sampel

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. A. Ekstraksi Zat Warna Rhodamin B dalam Sampel

BAB IV HASIL DAN PEMBAHASAN. A. Ekstraksi Zat Warna Rhodamin B dalam Sampel BAB IV HASIL DAN PEMBAHASAN A. Ekstraksi Zat Warna Rhodamin B dalam Sampel Zat warna sebagai bahan tambahan dalam kosmetika dekoratif berada dalam jumlah yang tidak terlalu besar. Paye dkk (2006) menyebutkan,

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan dari bulan Januari sampai Juni 2010 di Laboratorium

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan dari bulan Januari sampai Juni 2010 di Laboratorium III. METODOLOGI PENELITIAN A. Tempat dan Waktu Penelitian Penelitian ini dilaksanakan dari bulan Januari sampai Juni 2010 di Laboratorium Kimia Organik, Jurusan Kimia Fakultas MIPA Universitas Lampung.

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini telah dilakukan pada bulan Januari sampai dengan Juli 2014,

III. METODE PENELITIAN. Penelitian ini telah dilakukan pada bulan Januari sampai dengan Juli 2014, III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini telah dilakukan pada bulan Januari sampai dengan Juli 2014, bertempat di Laboratorium Kimia Organik Jurusan Kimia Fakultas Matematika

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN. - Beaker glass 1000 ml Pyrex. - Erlenmeyer 1000 ml Pyrex. - Labu didih 1000 ml Buchi. - Labu rotap 1000 ml Buchi

BAB 3 METODOLOGI PENELITIAN. - Beaker glass 1000 ml Pyrex. - Erlenmeyer 1000 ml Pyrex. - Labu didih 1000 ml Buchi. - Labu rotap 1000 ml Buchi BAB 3 METODOLOGI PENELITIAN 3.1. Alat-alat - Beaker glass 1000 ml Pyrex - Erlenmeyer 1000 ml Pyrex - Maserator - Labu didih 1000 ml Buchi - Labu rotap 1000 ml Buchi - Rotaryevaporator Buchi R 210 - Kain

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Waktu dan Lokasi Penelitian Penelitian ini dilakukan dari bulan April 2013 sampai Agustus 2013 di Laboratoium Kimia Riset Makanan dan Material serta di Laboratorium Instrumen

Lebih terperinci

BAB III. Penelitian ini dilakukan di Laboratorium Riset, Jurusan Pendidikan Kimia,

BAB III. Penelitian ini dilakukan di Laboratorium Riset, Jurusan Pendidikan Kimia, BAB III METODE PENELITIAN 3.1 Lokasi Penelitian Penelitian ini dilakukan di Laboratorium Riset, Jurusan Pendidikan Kimia, Universitas Pendidikan Indonesia (UPI) yang bertempat di jalan Dr. Setiabudhi No.229

Lebih terperinci

METODE PENELITIAN Waktu dan Tempat Penelitian Alat dan Bahan Prosedur Penelitian

METODE PENELITIAN Waktu dan Tempat Penelitian Alat dan Bahan Prosedur Penelitian METODE PENELITIAN Waktu dan Tempat Penelitian Penelitian ini dilaksanakan dari bulan Desember 2010 sampai dengan Mei 2011 di Laboratorium Kimia Organik, Departemen Kimia Institut Pertanian Bogor (IPB),

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Sampel dari penelitian ini adalah daun murbei (Morus australis Poir) yang

BAB III METODOLOGI PENELITIAN. Sampel dari penelitian ini adalah daun murbei (Morus australis Poir) yang BAB III METODOLOGI PENELITIAN 3.1. Sampel dan Lokasi Penelitian Sampel dari penelitian ini adalah daun murbei (Morus australis Poir) yang diperoleh dari perkebunan murbei di Kampung Cibeureum, Cisurupan

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Waktu dan Lokasi Penelitian Penelitian ini dilakukan untuk mengkarakterisasi simplisia herba sambiloto. Tahap-tahap yang dilakukan yaitu karakterisasi simplisia dengan menggunakan

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Objek yang digunakan dalam penelitian ini adalah daun Artocarpus

BAB III METODOLOGI PENELITIAN. Objek yang digunakan dalam penelitian ini adalah daun Artocarpus BAB III METODOLOGI PENELITIAN 3.1 Objek dan Lokasi Penelitian Objek yang digunakan dalam penelitian ini adalah daun Artocarpus communis (sukun) yang diperoleh dari Jawa Barat. Identifikasi dari sampel

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Monggupo Kecamatan Atinggola Kabupaten Gorontalo Utara Provinsi Gorontalo,

BAB IV HASIL DAN PEMBAHASAN. Monggupo Kecamatan Atinggola Kabupaten Gorontalo Utara Provinsi Gorontalo, BAB IV HASIL DAN PEMBAHASAN 4.1 Penyiapan Sampel Sampel daging buah sirsak (Anonna Muricata Linn) yang diambil didesa Monggupo Kecamatan Atinggola Kabupaten Gorontalo Utara Provinsi Gorontalo, terlebih

Lebih terperinci

BAB III METODE PENELITIAN. Subjek penelitian ini adalah ekstrak etanol daun pandan wangi.

BAB III METODE PENELITIAN. Subjek penelitian ini adalah ekstrak etanol daun pandan wangi. BAB III METODE PENELITIAN A. Subjek dan Objek Penelitian 1. Subjek Penelitian Subjek penelitian ini adalah ekstrak etanol daun pandan wangi. 2. Objek Penelitian Objek penelitian ini adalah aktivitas antioksidan

Lebih terperinci

BAB 4 HASIL PERCOBAAN DAN BAHASAN

BAB 4 HASIL PERCOBAAN DAN BAHASAN BAB 4 HASIL PERCOBAAN DAN BAHASAN Tumbuhan labu dideterminasi untuk mengetahui kebenaran identitas botani dari tumbuhan yang digunakan. Hasil determinasi menyatakan bahwa tanaman yang diteliti adalah Cucubita

Lebih terperinci

IDENTIFIKASI SENYAWA ANTIOKSIDAN DALAM SELADA AIR (Nasturtium officinale R.Br)

IDENTIFIKASI SENYAWA ANTIOKSIDAN DALAM SELADA AIR (Nasturtium officinale R.Br) IDENTIFIKASI SENYAWA ANTIOKSIDAN DALAM SELADA AIR (Nasturtium officinale R.Br) Hindra Rahmawati 1*, dan Bustanussalam 2 1Fakultas Farmasi Universitas Pancasila 2 Lembaga Ilmu Pengetahuan Indonesia (LIPI)

Lebih terperinci

BAB III METODOLOGI PENELITIAN. di Laboratorium Kimia Riset Makanan dan Material Jurusan Pendidikan

BAB III METODOLOGI PENELITIAN. di Laboratorium Kimia Riset Makanan dan Material Jurusan Pendidikan BAB III METODOLOGI PENELITIAN 3.1 Lokasi Penelitian Penelitian ini dilakukan dari bulan Februari sampai dengan Juli 2010 di Laboratorium Kimia Riset Makanan dan Material Jurusan Pendidikan Kimia FPMIPA

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN 20 IV. HASIL DAN PEMBAHASAN 4.1 Kadar Zat Ekstraktif Mindi Kadar ekstrak pohon mindi beragam berdasarkan bagian pohon dan jenis pelarut. Berdasarkan bagian, daun menghasilkan kadar ekstrak tertinggi yaitu

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN BAB V HASIL DAN PEMBAHASAN Penelitian ini dilakukan untuk mengetahui pengaruh perbedaan jenis pelarut terhadap kemampuan ekstrak daun beluntas (Pluchea indica Less.) dalam menghambat oksidasi gula. Parameter

Lebih terperinci

BAB III METODE PENELITIAN. di Laboratorium Kimia Riset Makanan dan Laboratorium Kimia Analitik

BAB III METODE PENELITIAN. di Laboratorium Kimia Riset Makanan dan Laboratorium Kimia Analitik 30 BAB III METODE PENELITIAN 3.1. Tempat dan Waktu Penelitian Penelitian dilakukan dari bulan November 2011 sampai Mei 2012 di Laboratorium Kimia Riset Makanan dan Laboratorium Kimia Analitik Instrumen

Lebih terperinci

IV. HASIL DAN PEMBAHASAN. 1. Dari 100 kg sampel kulit kacang tanah yang dimaserasi dengan 420 L

IV. HASIL DAN PEMBAHASAN. 1. Dari 100 kg sampel kulit kacang tanah yang dimaserasi dengan 420 L IV. HASIL DAN PEMBAHASAN 4.1 Hasil Dari penelitian yang telah dilakukan, maka diperoleh hasil sebagai berikut: 1. Dari 100 kg sampel kulit kacang tanah yang dimaserasi dengan 420 L etanol, diperoleh ekstrak

Lebih terperinci

3. METODOLOGI PENELITIAN

3. METODOLOGI PENELITIAN 3. METODOLOGI PENELITIAN 3.1. Waktu dan tempat Penelitian Penelitian telah dilaksanakan dari bulan Agustus 2006 sampai Juli 2007, bertempat di Laboratorium Bioteknologi Hasil Perairan Departemen Teknologi

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilakukan pada bulan Januari 2015 Juli 2015, bertempat di

III. METODE PENELITIAN. Penelitian ini dilakukan pada bulan Januari 2015 Juli 2015, bertempat di III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilakukan pada bulan Januari 2015 Juli 2015, bertempat di Laboratorium Kimia Organik, Jurusan Kimia, Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

PENDAHULUAN. BAHAN DAN METODE Alat dan Bahan. Metode

PENDAHULUAN. BAHAN DAN METODE Alat dan Bahan. Metode 2 PENDAHULUAN Kayu manis (Cinnamomum burmanii) merupakan tanaman tahunan yang memerlukan waktu lama untuk diambil hasilnya. Hasil utama kayu manis adalah kulit batang, dahan, ranting, dan daun. Selain

Lebih terperinci

3 METODOLOGI 3.1 Waktu dan Tempat 3.2 Bahan dan Alat

3 METODOLOGI 3.1 Waktu dan Tempat 3.2 Bahan dan Alat 18 3 METODOLOGI 3.1 Waktu dan Tempat Penelitian ini dilaksanakan pada bulan Februari sampai April 2012. Pengambilan sampel dilakukan di Pantai Ekowisata Mangrove, Pantai Kapuk, Muara Karang, Jakarta Utara.

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1. Lokasi Pengambilan Sampel, Waktu, dan Tempat Penelitian Lokasi pengambilan sampel bertempat di daerah Cibarunai, Kelurahan Sarijadi, Bandung. Sampel yang diambil berupa tanaman

Lebih terperinci

BAB III METODOLOGI PENELITIAN. polyanthum) asal NTB. Untuk memastikan identitas dari tanaman salam

BAB III METODOLOGI PENELITIAN. polyanthum) asal NTB. Untuk memastikan identitas dari tanaman salam BAB III METODOLOGI PENELITIAN 3.1 Objek dan Lokasi Penelitian Objek atau bahan penelitian ini adalah daun salam (Syzygium polyanthum) asal NTB. Untuk memastikan identitas dari tanaman salam yang didapatkan

Lebih terperinci

HASIL DAN PEMBAHASAN. Gambar 3 Perubahan konsentrasi fase gerak metanol pada metode gradien KCKT ekstrak etanol 70% S. arvensis Solo.

HASIL DAN PEMBAHASAN. Gambar 3 Perubahan konsentrasi fase gerak metanol pada metode gradien KCKT ekstrak etanol 70% S. arvensis Solo. Sebanyak 1 ekor larva A. salina dimasukkan ke dalam vial yang berisi air laut. Setelah itu, masing-masing vial ditambahkan larutan ekstrak (metanol 7% dan etanol 7%) dari ekstrak S. arvensis dan C. roseus,

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Penelitian ini dilakukan di Laboratorium Riset, Jurusan Pendidikan Kimia,

BAB III METODOLOGI PENELITIAN. Penelitian ini dilakukan di Laboratorium Riset, Jurusan Pendidikan Kimia, BAB III METODOLOGI PENELITIAN 3.1. Lokasi Penelitian Penelitian ini dilakukan di Laboratorium Riset, Jurusan Pendidikan Kimia, Universitas Pendidikan Indonesia yang bertempat di jalan Dr. Setiabudhi No.

Lebih terperinci

III. METODELOGI PENELITIAN. Penelitian ini dilakukan pada bulan April Januari 2013, bertempat di

III. METODELOGI PENELITIAN. Penelitian ini dilakukan pada bulan April Januari 2013, bertempat di 30 III. METODELOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilakukan pada bulan April 2012 - Januari 2013, bertempat di Laboratorium Kimia Organik Jurusan Kimia Fakultas MIPA Universitas

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. yang didapatkan dari 20 kg buah naga merah utuh adalah sebanyak 7 kg.

BAB IV HASIL DAN PEMBAHASAN. yang didapatkan dari 20 kg buah naga merah utuh adalah sebanyak 7 kg. BAB IV HASIL DAN PEMBAHASAN A. Penyiapan sampel Kulit buah naga merah (Hylocereus polyrhizus) dalam keadaan basah yang didapatkan dari 20 kg buah naga merah utuh adalah sebanyak 7 kg. Kulit buah naga merah

Lebih terperinci

BAB III METODE PENELITIAN. ini berlangsung selama 4 bulan, mulai bulan Maret-Juni 2013.

BAB III METODE PENELITIAN. ini berlangsung selama 4 bulan, mulai bulan Maret-Juni 2013. BAB III METODE PENELITIAN 3.1 Lokasi dan waktu Penelitian Penelitian ini dilakukan di Laboratorium Kimia, Jurusan Pendidikan Kimia, Fakultas Matematika dan IPA, Universitas Negeri Gorontalo (UNG). Penelitian

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Waktu dan Lokasi Penelitian Penelitian ini dilakukan dari bulan Maret sampai dengan bulan Juni 2013 di Laboratorium Kimia Riset Makanan dan Material serta di Laboratorium

Lebih terperinci

IV. HASIL DAN PEMBAHASAN. Dari penelitian ini telah berhasil diisolasi senyawa flavonoid murni dari kayu akar

IV. HASIL DAN PEMBAHASAN. Dari penelitian ini telah berhasil diisolasi senyawa flavonoid murni dari kayu akar IV. HASIL DAN PEMBAHASAN A. Isolasi Senyawa Fenolik Dari penelitian ini telah berhasil diisolasi senyawa flavonoid murni dari kayu akar tumbuhan kenangkan yang diperoleh dari Desa Keputran Sukoharjo Kabupaten

Lebih terperinci

HASIL DAN PEMBAHASAN. 1. Pemeriksaan kandungan kimia kulit batang asam kandis ( Garcinia cowa. steroid, saponin, dan fenolik.(lampiran 1, Hal.

HASIL DAN PEMBAHASAN. 1. Pemeriksaan kandungan kimia kulit batang asam kandis ( Garcinia cowa. steroid, saponin, dan fenolik.(lampiran 1, Hal. IV. HASIL DAN PEMBAHASAN 4.1 Hasil 1. Pemeriksaan kandungan kimia kulit batang asam kandis ( Garcinia cowa Roxb.) menunjukkan adanya golongan senyawa flavonoid, terpenoid, steroid, saponin, dan fenolik.(lampiran

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan dari bulan Maret sampai Juli 2012 di Laboratorium Kimia Fisika

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan dari bulan Maret sampai Juli 2012 di Laboratorium Kimia Fisika III. METODOLOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan dari bulan Maret sampai Juli 2012 di Laboratorium Kimia Fisika FMIPA dan Laboratorium Biomasa Terpadu Universitas Lampung.

Lebih terperinci

BAB III METODE PENELITIAN Lokasi Pengambilan Sampel, Waktu dan Tempat Penelitian

BAB III METODE PENELITIAN Lokasi Pengambilan Sampel, Waktu dan Tempat Penelitian BAB III METODE PENELITIAN 3.1. Lokasi Pengambilan Sampel, Waktu dan Tempat Penelitian Lokasi pengambilan sampel PBAG di lingkungan sekitar kampus Universitas Pendidikan Indonesia (UPI) dan daerah Cipaku.

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Objek atau bahan penelitian ini adalah daun pohon suren (Toona sinensis

BAB III METODOLOGI PENELITIAN. Objek atau bahan penelitian ini adalah daun pohon suren (Toona sinensis 22 BAB III METODOLOGI PENELITIAN 3.1 Objek dan Lokasi Penelitian Objek atau bahan penelitian ini adalah daun pohon suren (Toona sinensis Roem) yang diperoleh dari daerah Tegalpanjang, Garut dan digunakan

Lebih terperinci

3. BAHAN DAN METODE Waktu dan Lokasi Penelitian. Pengambilan sampel karang lunak dilakukan pada bulan Juli dan Agustus

3. BAHAN DAN METODE Waktu dan Lokasi Penelitian. Pengambilan sampel karang lunak dilakukan pada bulan Juli dan Agustus 3. BAHAN DAN METODE 3.1. Waktu dan Lokasi Penelitian Pengambilan sampel karang lunak dilakukan pada bulan Juli dan Agustus 2010 di Area Perlindungan Laut Pulau Pramuka, Kepulauan Seribu, DKI Jakarta pada

Lebih terperinci

BAB III METODE PENELITIAN. A. Waktu dan Tempat Penelitian. November Pengambilan sampel Phaeoceros laevis (L.) Prosk.

BAB III METODE PENELITIAN. A. Waktu dan Tempat Penelitian. November Pengambilan sampel Phaeoceros laevis (L.) Prosk. BAB III METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini telah dilakukan pada bulan Oktober sampai dengan November 2015. Pengambilan sampel Phaeoceros laevis (L.) Prosk. dilakukan di daerah

Lebih terperinci

BAB III METODE PENELITIAN. Metode penelitian yang dilakukan adalah penelitian eksperimental, karena

BAB III METODE PENELITIAN. Metode penelitian yang dilakukan adalah penelitian eksperimental, karena BAB III METODE PENELITIAN Metode penelitian yang dilakukan adalah penelitian eksperimental, karena penelitian bertujuan untuk mengetahui pengaruh/hubungan antara variabel bebas dengan variabel terikat.

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Objek atau bahan penelitian ini adalah biji paria (Momordica charantia)

BAB III METODOLOGI PENELITIAN. Objek atau bahan penelitian ini adalah biji paria (Momordica charantia) BAB III METODOLOGI PENELITIAN 3.1 Objek dan Lokasi Penelitian Objek atau bahan penelitian ini adalah biji paria (Momordica charantia) yang diperoleh dari Kampung Pamahan, Jati Asih, Bekasi Determinasi

Lebih terperinci

BAB I TINJAUAN PUSTAKA

BAB I TINJAUAN PUSTAKA BAB I TINJAUAN PUSTAKA 1.1 Sirih Hitam Sirih hitam merupakan tumbuhan merambat dengan bentuk daun menyerupai hati dan bertangkai, tumbuh berselang-seling dari batangnya serta warna daun yang berwarna hijau

Lebih terperinci

HASIL. Kadar Air Daun Anggrek Merpati

HASIL. Kadar Air Daun Anggrek Merpati 6 konsentrasi yang digunakan. Nilai x yang diperoleh merupakan konsentrasi larutan yang menyebabkan kematian terhadap 50% larva udang. Ekstrak dinyatakan aktif apabila nilai LC50 lebih kecil dai 1000 μg/ml.

Lebih terperinci

BAB III METODE PENELITIAN. 3.1 Lokasi Pengambilan Sampel, Waktu dan Tempat Penelitian. Lokasi pengambilan sampel bertempat di sepanjang jalan Lembang-

BAB III METODE PENELITIAN. 3.1 Lokasi Pengambilan Sampel, Waktu dan Tempat Penelitian. Lokasi pengambilan sampel bertempat di sepanjang jalan Lembang- 18 BAB III METODE PENELITIAN 3.1 Lokasi Pengambilan Sampel, Waktu dan Tempat Penelitian Lokasi pengambilan sampel bertempat di sepanjang jalan Lembang- Cihideung. Sampel yang diambil adalah CAF. Penelitian

Lebih terperinci

1.1. LATAR BELAKANG MASALAH

1.1. LATAR BELAKANG MASALAH BAB 1 PENDAHULUAN 1.1. LATAR BELAKANG MASALAH Saat ini, tingkat kematian akibat penyakit degeneratif seperti jantung, kanker, kencing manis dan lain-lain mengalami peningkatan cukup signifikan di dunia.

Lebih terperinci

3 Metodologi Penelitian

3 Metodologi Penelitian 3 Metodologi Penelitian 3.1 Persiapan sampel Sampel kulit kayu Intsia bijuga Kuntze diperoleh dari desa Maribu, Irian Jaya. Sampel kulit kayu tersedia dalam bentuk potongan-potongan kasar. Selanjutnya,

Lebih terperinci

BAB III. eksperimental komputasi. Penelitian ini dilakukan dalam beberapa tahapan yang

BAB III. eksperimental komputasi. Penelitian ini dilakukan dalam beberapa tahapan yang BAB III METODE PENELITIAN A. Jenis dan Desain Penelitian Dalam melakukan penelitian ini, peneliti menggunakan penelitian yang termasuk gabungan dari penelitian jenis eksperimental laboratorik dan eksperimental

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. membentuk konsistensi setengah padat dan nyaman digunakan saat

BAB IV HASIL DAN PEMBAHASAN. membentuk konsistensi setengah padat dan nyaman digunakan saat BAB IV HASIL DAN PEMBAHASAN A. HASIL 1. Evaluasi Krim Hasil evaluasi krim diperoleh sifat krim yang lembut, mudah menyebar, membentuk konsistensi setengah padat dan nyaman digunakan saat dioleskan pada

Lebih terperinci

BAB I PENDAHULUAN. Radikal bebas merupakan senyawa yang terbentuk secara alamiah di

BAB I PENDAHULUAN. Radikal bebas merupakan senyawa yang terbentuk secara alamiah di 1 BAB I PENDAHULUAN 1.1 Latar Belakang Radikal bebas merupakan senyawa yang terbentuk secara alamiah di dalam tubuh dan terlibat hampir pada semua proses biologis mahluk hidup. Senyawa radikal bebas mencakup

Lebih terperinci

Lampiran 1. Prosedur Analisis Karakteristik Pati Sagu. Kadar Abu (%) = (C A) x 100 % B

Lampiran 1. Prosedur Analisis Karakteristik Pati Sagu. Kadar Abu (%) = (C A) x 100 % B Lampiran 1. Prosedur Analisis Karakteristik Pati Sagu 1. Analisis Kadar Air (Apriyantono et al., 1989) Cawan Alumunium yang telah dikeringkan dan diketahui bobotnya diisi sebanyak 2 g contoh lalu ditimbang

Lebih terperinci

BAB III METODE PENELITIAN. Lokasi pengambilan sampel bertempat di daerah Cihideung Lembang Kab

BAB III METODE PENELITIAN. Lokasi pengambilan sampel bertempat di daerah Cihideung Lembang Kab BAB III METODE PENELITIAN 3.1 Deskripsi Penelitian Lokasi pengambilan sampel bertempat di daerah Cihideung Lembang Kab Bandung Barat. Sampel yang diambil berupa tanaman KPD. Penelitian berlangsung sekitar

Lebih terperinci

BAB 3 PERCOBAAN 3.1 Bahan 3.2 Alat 3.3 Penyiapan Simplisia 3.4 Karakterisasi Simplisia

BAB 3 PERCOBAAN 3.1 Bahan 3.2 Alat 3.3 Penyiapan Simplisia 3.4 Karakterisasi Simplisia BAB 3 PERCOBAAN Pada bab ini dibahas tentang langkah-langkah percobaan yang dilakukan dalam penelitian meliputi bahan, alat, pengumpulan dan determinasi simplisia, karakterisasi simplisia, penapisan fitokimia,

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Waktu dan Lokasi Penelitian Penelitian ini dilaksanakan dari bulan April sampai dengan bulan Juli 2013 di Laboratorium Kimia Riset Makanan dan Material, dan Laboratorium

Lebih terperinci

IV. HASIL DAN PEMBAHASAN. Sampel Akar tumbuhan akar wangi sebanyak 3 kg yang dibeli dari pasar

IV. HASIL DAN PEMBAHASAN. Sampel Akar tumbuhan akar wangi sebanyak 3 kg yang dibeli dari pasar IV. HASIL DAN PEMBAHASAN A. Persiapan Sampel Sampel Akar tumbuhan akar wangi sebanyak 3 kg yang dibeli dari pasar Bringharjo Yogyakarta, dibersihkan dan dikeringkan untuk menghilangkan kandungan air yang

Lebih terperinci

Aktivitas antioksidan ekstrak buah labu siam (Sechium edule Swartz) Disusun oleh : Tri Wahyuni M BAB I PENDAHULUAN

Aktivitas antioksidan ekstrak buah labu siam (Sechium edule Swartz) Disusun oleh : Tri Wahyuni M BAB I PENDAHULUAN Aktivitas antioksidan ekstrak buah labu siam (Sechium edule Swartz) Disusun oleh : Tri Wahyuni M.0304067 BAB I PENDAHULUAN A. Latar Belakang Masalah Antioksidan memiliki arti penting bagi tubuh manusia,

Lebih terperinci

LAPORAN PRAKTIKUM ANALISIS KANDUNGAN TUMBUHAN OBAT. ANALISIS Etil p-metoksi sinamat DARI RIMPANG KENCUR (Kaempferia galanga L.)

LAPORAN PRAKTIKUM ANALISIS KANDUNGAN TUMBUHAN OBAT. ANALISIS Etil p-metoksi sinamat DARI RIMPANG KENCUR (Kaempferia galanga L.) LAPORAN PRAKTIKUM ANALISIS KANDUNGAN TUMBUHAN OBAT ANALISIS Etil p-metoksi sinamat DARI RIMPANG KENCUR (Kaempferia galanga L.) Disusun oleh: Nama : Eky Sulistyawati FA/08708 Putri Kharisma FA/08715 Gol./Kel.

Lebih terperinci