BAB II LANDASAN TEORI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II LANDASAN TEORI"

Transkripsi

1 BAB II LANDASAN TEORI 2.1. Gardu Distribusi Pengertian Umum Gardu Distribusi tenaga listrik adalah suatu bangunan gardu listrik berisi atau terdiri dari instalasi Perlengkapan Hubung Bagi Tegangan Menengah (PHB-TM), Transformator Distribusi (TD) dan Perlengkapan Hubung Bagi Tegangan Rendah (PHB-TR) untuk memasok kebutuhan tenaga listrik bagi para pelanggan baik dengan Tegangan Menengah (TM 20 kv) maupun Tegangan Rendah (TR 220/380V). Konstruksi Gardu distribusi dirancang berdasarkan optimalisasi biaya terhadap maksud dan tujuan penggunaannya yang kadang kala harus disesuaikan dengan peraturan Pemda setempat. Fungsi Dari Gardu Distribusi adalah : a. Tempat pengumpul, pembagi dan penyalur energi listrik b. Tempat untuk pengubah tegangan sebelum disalurkan ke konsumen Secara Garis Besar Gardu Distribusi dibedakan atas : a. Jenis Pemasangannya 1. Gardu Pasangan Luar : Gardu Portal, Gardu Cantol 2. Gardu Pasangan Dalam : Gardu Beton, Gardu Kios b. Jenis Konstruksinya 1. Gardu Beton : Bangunan Sipil 2. Gardu Tiang : Gardu Portal, Gardu Cantol 3. Gardu Kios c. Jenis Penggunaannya 7

2 8 1. Gardu Pelanggan Umum 2. Gardu Pelanggan Khusus Gardu Beton Gardu Beton adalah sebuah gardu yang seluruh komponen utama instalasi yaitu transformator dan peralatan switching/proteksi, terangkai didalam bangunan sipil yang dirancang, dibangun dan difungsikan dengan konstruksi pasangan batu dan beton (masonrywall building). Konstruksi ini dimaksudkan untuk pemenuhan persyaratan terbaik bagi keselamatan ketenagalistrikan Transformator Transformator merupakan peralatan mesin listrik statis yang bekerja berdasarkan prinsip induksi elektromagnetik, yang dapat mentransformasikan energi listrik dari tegangan tinggi ke tegangan rendah ataupun sebaliknya, dimana perbandingan tegangan antara sisi primer dan sisi sekunder berbanding lurus dengan perbandingan jumlah lilitan dan berbanding terbalik dengan perbandingan arusnya dengan nilai frekuensi yang sama besar. Pada sistem distribusi, transformator digunakan untuk menurunkan tegangan penyaluran 20 kv ke tegangan pelayanan 400 / 231 V. Pada fungsi tersebut, transformator dapat berupa transformator satu fase (Gambar 2.1) yang secara umum memiliki kapasitas 160 kva dengan hubungan vektor Yzn5, sedangkan tiga fase (Gambar 2.2) memiliki kapasitas > 160 KVA memiliki hubungan vektor Dyn5 (berdasarkan SPLN 50 tahun 1982 dan 1997, serta SPLN D : 2007).

3 9 Gambar 2.1 Trafo satu fase Gambar 2.2 Trafo tiga fase Jenis Transformator Secara umum, terdapat dua jenis transformator distribusi yang banyak digunakan pada jaringan distribusi yaitu : a. Transformator Konvensional Transformator konvensional dilengkapi dengan konservator yaitu sebuah tabung atau tangki yang letaknya diatas body transformator, yang berfungsi untuk menampung pemuaian minyak saat transformator berbeban. Tekanan lebih yang timbul selama beban tinggi akan mengalir ke atmosfer luar. Bila beban transformator meningkat, temperatur belitan transformator akan naik sehingga volume minyak akan membesar. Semakin tinggi temperatur belitan, minyak akan semakin panas dan volume minyak juga semakin besar. Kenaikan volume ini ditampung oleh konservator, dan didalam konservator minyak akan mendorong udara keluar melalui lubang pernapasan, dan sebaliknya. Proses aliran tersebut disebut dengan open systematau freely breathing dalam menangani fluaktansi beban yang apabila terjadi peningkatan kadar air didalam minyak akan berakibat menurunkan ketahanan tegangan transformator.

4 10 Udara lembab dari atmosfer luar yang masuk ke dalam tangki selama proses pernapasan tersebut berpotensi mempengaruhi kekuatan dielektrik transformator. Untuk menghindari hal ini, udara yang mengalir ke dalam tangki disaring dengan desiccants yang merupakan jenis bahan kimia yang dapat menyerap air. Jenis desiccants yang umum digunakan adalah silika gel yang berfungsi untuk mengeringkan atau menyaring udara lembab yang masuk kedalam lubang pernapasan yang merupakan faktor penentu dalam menjaga kualitas sistem dielektrik. Gambar 2.3 Konservator dan Silika Gel Silika gel yang telah jenuh dapat direaktivasi dengan cara pemanasan pada suhu 105 o C o C selama 4-6 jam untuk menurunkan kadar air ke tingkat 2% berat dan kembali ke warna awalnya. Gangguan sistem adalah gangguan yang terjadi di sistem tenaga listrik seperti pada generator, trafo, SUTT, SKTT dan lain sebagainya. Bila tegangan tembus minyak telah berada dibawah ambang batas minimal, minyak perlu dipelihara (purifying) untuk menurunkan kadar air dan membuang partikel fisika lainnya, salah satu upaya yang dilakukan untuk memutus hubungan antara medium pendingin internal dengan

5 11 atmosfer luar adalah dengan penerapan penggunaan bladder berupa balon karet (rubber bag) yang dipasang pada konservator, sehingga kontak minyak dengan atmosfer luar akan terpisahkan. Namun bladder memiliki keterbatasan yakni dalam segi umur dan tingkat kesulitan sewaktu memeriksa kondisi bladder karena posisinya berada di dalam tangki konservator. Bladder Udara Tabung Silika gel Minyak Tangki Konservator Gambar 2.4 Conservator Bladde b. Transformator Hermatical Pada sistem ini konservator dan sistem pipa untuk hubungan dengan atmosfer luar tidak digunakan lagi. Untuk mengamankan pemuaian maupun penyusutan minyak, tangki dibuat fleksibel (hermetic), dimana kenaikan volume minyak akan ditampung oleh sirip yang dapat mengembang yang mampu menampung semua pemuaian minyak. Lubang pernapasan sengaja ditiadakan agar minyak tidak bersentuhan dengan udara. Terdapat dua jenis sistem hermetical pada transformator distribusi, yaitu : a) Hermetically Sealed Inert Gas Cushion Sistem hermetical jenis ini umumnya digunakan pada bentuk tangki rigid dengan menerapkan bantalan gas (nitrogen) pada ruang diatas level minyak. Volume untuk ruang gas diperhitungkan agar mampu menampung ekspansi minyak yang terjadi pada saat beban maksimum. Minyak dan gas berperan bersama - sama dalam membentuk tekanan tangki.

6 12 Gambar 2.5 Transformator hermatically sealed inert gas cushion Busing dan pengubah sadapan yang direkomendasikan untuk menggunakan desain wall mounted (terpasang pada dinding tangki), hal ini untuk menghindari bagian bawah komponen - komponen tersebut tidak terendam minyak. b) Hermetically Sealed Fully Filled Sistem hermetical ini adalah dengan mengisi seluruh ruang di dalam tangki dengan minyak. Sistem ini diterapkan pada tangki yang dikonstruksi dengan sirip pendingin dari pelat yang fleksibel (corrugated), yang dapat membuat volume tangki bersifat variable, membesar saat beban tinggi dan kembali mengecil pada beban yang lebih rendah. Gambar 2.6 Transformator hermetically sealed fully filled

7 Fungsi Transformator Pada dasarnya transformator memiliki prinsip kerja yang sama. Transformator dapat dibagi menjadi beberapa macam, tergantung dari fungsi dan lokasinya, sebagai berikut : a. Berdasarkan Fungsi Pemakaian a) Transformator Daya Transformator daya digunakan sebagai penyuplai daya. Terdapat dua jenis fungsi transformator ini berdasarkan sistem penyaluran tenaga listrik, yaitu: a. Transformator step-up merupakan transformator yang memiliki lilitan sekunder lebih banyak daripada lilitan primer sehingga berfungsi sebagai penaik tegangan pada saat pengiriman/penyaluran daya. b. Transformator step-down merupakan transformator yang memiliki lilitan sekunder lebih sedikit daripada lilitan primer sehingga berfungsi sebagai penurun tegangan pada saat menerima/memerlukan daya. Transformator daya tidak dapat langsung digunakan untuk menyuplai beban, sebab sisi tegangan rendahnya masih lebih tinggi dari tegangan beban, sedangkan sisi tegangan tingginya merupakan tegangan transmisi (dari pembangkit ke gardu induk). Ciri - ciri transformator daya yaitu : Jumlah lilitan primer lebih sedikit daripada jumlah lilitan sekunder Tegangan primer lebih kecil daripada tegangan sekunder Kuat arus primer lebih besar daripada kuat arus sekunder b) Transformator Distribusi Transformator distribusi digunakan untuk membagi/ menyalurkan arus atau energi listrik dengan tegangan distribusi agar jumlah energi yang hilang

8 14 tidak terlalu banyak (dari gardu induk ke konsumen). Ciri - ciri transformator distribusi yaitu : Jumlah lilitan primer lebih banyak daripada jumlah lilitan sekunder Tegangan primer lebih besar daripada tegangan sekunder Kuat arus primer lebih kecil daripada kuat arus sekunder c) Transformator Pengukuran Transformator ini dugunakan untuk pemasangan alat - alat ukur dan proteksi pada jaringan tegangan tinggi. Transformator pengukuran ini terdiri dari : Transformator arus (Current Transformator) berfungsi untuk menurunkan besarnya arus listrik pada tegangan tinggi menjadi arus listrik yang kecil dan diperlukan untuk alat ukur dan pengaman. Transformator tegangan (Potensial Transformator) berfungsi untuk menurunkan besarnya tegangan tinggi menjadi tegangan rendah yang diperlukan untuk alat ukur dan pengaman/proteksi. b. Berdasarkan Fungsi Pemakaian a) Pemasangan dalam (Indoor) Transformator hanya dapat dipasang di dalam ruangan yang aman dan terlindung dari kondisi cuaca panas, hujan dan sebagainya. b) Pemasangan luar (Outdoor) Transformator yang dirancang dapat dipasang di luar ruangan, seperti di switch yard dan tiang portal, namun jenis outdoor ini dapat juga dipasang dalam ruangan.

9 15 c. Berdasarkan Kapasitas dan Tegangan Kerja Untuk mempermudah pengawasan dalam operasi, transformator dapat dibagi menjadi : a) Transformator Besar : Tegangan 70 kv : Daya 10 MVA b) Transformator Sedang : Tegangan 30 kv - 70 kv : Daya 1 MVA - 10 MVA c) Transformator Kecil : < 30 kv : Daya < 1MVA 2.3. Konstruksi Transformator Konstruksi transformator distribusi dikelompokkan menjadi beberapa bagian (Gambar 2.7), yaitu : a. Bagian utama/aktif, terdiri dari inti besi, kumparan transformator, minyak transformator, bushing dan tangki konservator. b. Bagian pasif, terdiri dari sistem pendingin, tap changer, alat pernapasan (dehydrating breather) dan alat indikator. c. Sistem insulasi. d. Terminal. e. Proteksi gangguan internal f. Peralatan proteksi, terdiri dari rele bucholz, pengaman tekanan lebih (explosive membrane/bursting plate), rele tekanan lebih (sudden pressure relay), rele pengaman tangki.

10 16 g. Peralatan tambahan untuk pengaman transformator, terdiri dari rele differensial, rele arus lebih, rele hubung tanah, rele thermis, arrester. Gambar 2.7 Konstruksi transformator : 1. Inti besi 6. Konservator 11. Breather 2. Klem inti besi 7. Fin radiator 12. Pembatas tekanan 3. Belitan sekunder 8. Bushing primer 13. Gelas penduga 4. Belitan primer 9. Bushing sekunder 14. Roda 5. Penyangga belitan 10. Tap changer 15. Kuping pengangkat 2.4. Prinsip Kerja Transformator Transformator adalah suatu alat listrik yang mentransformasikan energi listrik dengan memberikan tegangan bolak - balik pada belitan primer untuk membangkitkan medan magnetik. Garis - garis fluks dari medan magnetik tersebut

11 17 akan memotong konduktor belitan sekunder dan menginduksikan tegangan pada terminalnya. Besar tegangan pada kedua terminal, berbanding lurus terhadap jumlah lilitan masing masing belitan. Untuk mendapatkan efisiensi yang lebih tinggi, garis - garis fluks dialirkan melalui inti besi bereluktansi rendah, namun beberapa diantaranya mengalir di luar inti besi (bocor) membentuk impedans bocor (leakage impedance; voltage impedance). Bila belitan sekunder terhubung dengan beban atau pada terminal belitan sekunder terbentuk suatu sirkit tertutup, arus akan mengalir pada konduktor kedua belitan dan sirkit keluaran. Apabila transformator diasumsikan sebagai transformator ideal dimana tidak terjadi rugi-rugi daya pada transformator, daya pada kumparan primer (Np) sama dengan daya pada kumparan sekunder (Ns). Besar tegangan dan arus pada kumparan sekunder diatur menggunakan perbandingan: banyaknya lilitan antara kumparan primer dan kumparan sekunder. Namun kenyataannya pada saat operasi tidak ada transformator yang ideal. Alasannya, pada penyaluran tenaga listrik terjadi kerugian energi sebesar I² R watt.detik. Kerugian ini akan banyak berkurang apabila tegangan dinaikkan. Transformator terdiri atas dua buah kumparan (primer dan sekunder) yang bersifat induktif. Kedua kumparan ini terpisah secara elektris namun berhubungan secara magnetis melalui jalur yang memiliki reluktansi (reluctance) rendah. Apabila kumparan primer dihubungkan dengan sumber tegangan bolak - balik maka fluks bolak - balik akan muncul di dalam inti yang dilaminasi, karena kumparan tersebut membentuk jaringan tertutup maka mengalirlah arus primer. Akibat adanya fluks di kumparan primer maka di kumparan primer terjadi induksi (self induction) dan terjadi pula induksi di kumparan sekunder karena pengaruh

12 18 induksi dari kumparan primer atau disebut sebagai induksi bersama (mutual induction). yang menyebabkan timbulnya fluks magnet di kumparan sekunder, maka mengalirlah arus sekunder jika rangkaian sekunder di bebani, sehingga energi listrik dapat ditransfer keseluruhan (secara magnetisasi), fluks bolak-balik timbul di dalam inti besi yang dihubungkan dengan kumparan yang lain menyebabkan atau menimbulkan gaya gerak listrik (GGL) induksi (sesuai dengan induksi elektromagnet) dari hukum faraday, Bila arus bolak balik mengalir pada induktor, maka akan timbul gaya gerak listrik (GGL). Flux magnet ( ) Kumparan sekunder Kumparan primer Inti besi Gambar 2.8 Rangkaian Magnetik pada Transformator Hukum yang digunakan pada prinsip kerja transformator adalah Hukum Lorentz yang berbunyi Arus bolak-balik yang mengalir di suatu kumparan yang mengelilingi inti besi menyebabkan inti besi itu berubah menjadi magnet (Gambar 2.9a). Apabila magnet tersebut dikelilingi oleh suatu belitan, kedua ujung belitan tersebut akan terjadi beda tegangan (Gambar 2.9b) sehingga akan timbul gaya gerak listrik.

13 19 Gambar 2.9a Gambar 2.9b Gambar 2.9 Proses magnetic Apabila lilitan primer dihubungkan dengan sumber tegangan V 1, arus I 0 akan mengalir. Arus ini akan menimbulkan flux magnet ( ) yang akan mengalir pada inti besi. Karena tegangan sumber adalah tegangan bolak-balik dan I juga bolak - balik. Fluks ini akan mengalir melalui kumparan primer dan sekunder. Jika dibandingkan antara GGL induksi di kumparan primer E 1 dengan GGL induksi di kumparan sekunder E Permasalahan Pada Transformator Distribusi Permasalahan pada transformator distribusi yaitu transformator distribusi mempunyai batasan - batasan dalam operasinya. Selain itu, transformator tersebut juga dapat mengalami gangguan hubung singkat baik didalam maupun diluar transformator. Namun gangguan yang perlu lebih diperhatikan adalah apabila terjadi kenaikan suhu pada transformator tersebut akibat dari beban lebih. Gangguan hubung singkat terjadi antar kumparan yang diakibatkan rusaknya isolasi. Kemungkinan rusaknya isolasi yaitu akibat tuanya umur isolasi

14 20 tersebut. Oleh karena itu, transformator didalam operasinya harus diperhatikan kenaikan suhu akibat berbeban lebih. Transformator didalam operasinya dilengkapi pula dengan peralatan proteksi. Peralatan proteksi merupakan peralatan yang mengamankan transformator terhadap bahaya fisis, elektris maupun kimiawi. Yang termasuk peralatan proteksi transformator antara lain sebagai berikut : a. Rele Bucholz berfungsi untuk mendeteksi dan mengamankan terhadap gangguan di dalam transformator yang menimbulkan gas. Didalam transformator, gas mungkin dapat timbul akibat hubung singkat antar lilitan (dalam phasa/ antar phasa), hubung singkat antar phasa ke tanah, busur listrik antar laminasi, atau busur listrik yang ditimbulkan karena terjadinya kontak yang kurang baik. b. Rele tekanan lebih berfungsi untuk mendeteksi gangguan pada transformator bila terjadi kenaikan tekanan gas secara tiba - tiba dan secara langsung mentripkan CB pada sisi upstream-nya. c. Rele diferensial berfungsi untuk mendeteksi terhadap gangguan transformator apabila terjadi flash over antara kumparan dengan kumparan, kumparan dengan tangki atau belitan dengan belitan di dalam kumparan ataupun antar kumparan. d. Rele beban lebih berfungsi untuk mengamankan transformator terhadap beban yang berlebihan dengan menggunakan sirkit simulator yang dapat mendeteksi lilitan transformator yang kemudian apabila terjadi gangguan akan membunyikan alarm pada tahap pertama dan kemudian akan menjatuhkan PMT.

15 21 e. Rele arus lebih berfungsi untuk mengamankan transformator terhadap gangguan hubung singkat antar fasa didalam maupun diluar daerah pengaman transformator, juga diharapkan rele ini mempunyai sifat komplementer dengan rele beban lebih. Rele ini juga berfungsi sebagai cadangan bagi pengaman instalasi lainnya. Arus berlebih dapat terjadi karena beban lebih atau gangguan hubung singkat. f. Rele fluks lebih berfungsi untuk mengamankan transformator dengan mendeteksi besaran fluksi atau perbandingan tegangan dan frekwensi. g. Rele tangki tanah berfungsi untuk mengamankan transformator bila terjadi hubung singkat antara bagian yang bertegangan dengan bagian yang tidak bertegangan pada transformator. h. Rele gangguan tanah terbatas berfungsi untuk mengamankan transformator terhadap gangguan tanah didalam daerah pengaman transformator khususnya untuk gangguan didekat titik netral yang tidak dapat dirasakan oleh rele diferential. i. Rele termis berfungsi untuk mengamankan transformator dari kerusakan isolasi kumparan, akibat adanya panas lebih yang ditimbulkan oleh arus lebih. Besaran yang diukur didalam rele ini adalah kenaikan temperatur. j. Fire Protection k. Peralatan pernapasan (dehydrating breather) yaitu ventilasi udara yang berupa saringan silika gel yang akan menyerap uap air pada transformator. l. Indikator untuk mengawasi selama transformator beroperasi, maka perlu adanya indikator pada transformator yang antara lain : indikator kedudukan tap

16 22 indikator permukaan minyak indikator sistem pendingin indikator suhu minyak Kegagalan suatu transformator biasanya diakibatkan oleh keburukan dari sistem isolasinya yang menyebabkan banyaknya efek panas yang terjadi di dalam transformator. Oleh sebab itu, perlu diketahui atau dipilih kelas isolasi yang sesuai dengan standar yang berlaku. Secara umum isolasi pada transformator dibagi menjadi dua bagian, yaitu isolasi padat dan cair. Isolasi itu sendiri merupakan suatu sifat bahan yang mampu untuk memisahkan dua buah penghantar atau lebih yang berdekatan, baik secara elektrik (mencegah kebocoran arus yang terjadi), maupun sebagai pelindung mekanis (melindungi material, magnetik) dari kerusakan yang diakibatkan oleh pengkaratan, pengoperasian, pengangkutan ketempat pemasangan maupun pada saat pengujian. Ketahanan sistem isolasi dalam peralatan listrik banyak dipengaruhi oleh beberapa faktor seperti suhu, kekuatan listrik dan mekanik, getaran, kerugian akibat tekanan atmosfir dan kimia, serta debu dan radiasi. Suhu dalam sistem peralatan listrik sering kali mempengaruhi faktor-faktor dalam material isolasi dan sistem isolasi. Adapun kelas-kelas isolasi dan suhu yang berlaku menurut standar IEC 354, serta bahan isolasi yang dipergunakan dapat dilihat pada (Tabel 2.1).

17 23 Tabel 2.1 Kelas-kelas isolasi dan suhu yang diijinkan No Kelas Temperatur Bahan Isolasi Isolasi Maksimum 1 Y 90 C Unimpregnated cellulose, katun, sutera. 2 A 105 C Impregnated cellulose, katun atau sutera, kertas minyak 3 E 120 C Cellulose triacetate 4 B 130 C Mika, fiber glass, asbes berlapis organik. 5 F 155 C Sama dengan kelas E dengan lapisan yang cukup 6 H 180 C Sama dengan kelas E dengan lapisan silicon C Sama dengan kelas H C Mika, porselen, glas-kwarsa dan sejenis material inorganik C Sama dengan kelas 220

18 2.6. Sistem Pendingin Transformator Pada inti besi dan kumparan - kumparan akan timbul panas akibat rugi - rugi besi dan rugi - rugi tembaga. Bila panas tersebut mengakibatkan kenaikan suhu yang berlebihan, akan merusak isolasi transformator. Untuk mengurangi adanya kenaikan suhu yang berlebihan tersebut, pada transformator perlu juga dilengkapi dengan sistem pendingin yang berfungsi untuk menyalurkan panas keluar transformator. Media yang digunakan pada sistem pendingin dapat berupa udara dan minyak. Sistem pendingin transformator dapat dikelompokkan sebagai berikut : ONAN (Oil Natural Air Natural) ialah pendinginan minyak pada kumparan transformator dan udara sebagai pendingin luar, dimana keduanya bersirkulasi secara alami. Jenis ini biasa digunakan untuk transformator dengan kapasitas kecil. ONAF (Oil Natural Air Force) ialah pendinginan minyak yang bersirkulasi secara alami dan udara yang bersirkulasi secara paksa yakni menggunakan hembusan kipas angin yang digerakkan oleh motor listrik. Pada umumnya operasi transformator dimulai dengan ONAN atau dengan ONAF tetapi hanya sebagian kipas angin yang berputar. Apabila suhu transformator meningkat, kipas angin lainnya akan berputar secara bertahap. OFAF (Oil Force Air Force) ialah minyak dipompakan dari tangki utama secara paksa melewati udara yang dipaksakan. 7

19 25 Pada sistem pendingin ini, minyak berfungsi sebagai pendingin kumparan transformator yang bersirkulasi secara paksa dan dengan udara sebagai pendingin luar transformator yang bersirkulasi secara paksa. OFWF (Oil Force Water Force) ialah minyak dipompakan dari tangki utama melewati air pendingin. Pada sistem pendingin ini, minyak sebagai pendingin kumparan transformator yang bersirkulasi secara paksa dan dengan air sebagai pendingin luar transformator yang bersirkulasi secara paksa. Berikut ini merupakan (Tabel 2.2) berisikan klasifikasi tipe pendingin transformator. Tabel 2.2 Tipe Pendingin Transformator No Macam Sistem Pendingin Media Di dalam Transformator Di luar Transformator Sirkulasi Sirkulasi Sirkulasi Sirkulasi Alami Paksa Alami Paksa 1 AN - - Udara - 2 AF Udara 3 ONAN Minyak - Udara - 4 ONAF Minyak - - Udara 5 OFAN - Minyak Udara - 6 OFAF - Minyak - Udara 7 OFWF - Minyak - Air

20 26 8 ONAN/ONAF Kombinasi 3 dan 4 9 ONAN/OFAN Kombinasi 3 dan 5 10 ONAN/OFAF Kombinasi 3 dan 6 11 ONAN/OFWF Kombinasi 3 dan 7 Keterangan : A = Air (udara) N = Natural (alamiah) O = Oil (minyak) F = Forced (paksa/tekanan) Pemeran utama di bagian internal adalah minyak isolasi. Kemampuan minyak untuk fungsi ini dipengaruhi oleh kualitas heat transfernya dan bagaimana minyak dapat secara efektif mengalir (membasuh) pada setiap celah dari susunan belitan. Pada bagian eksternal pemeran utamanya adalah suhu dan aliran udara di sekitar transformator serta luas permukaan sirip - sirip pendingin. Luas permukaan dan sirip - sirip pendingin yang akan berinteraksi dengan udara luar merupakan faktor yang menentukan efektifitas pendinginan. Untuk hal tersebut, jumlah dan ukuran sirip pendingin di desain sedemikian, sehingga mampu mendisipasi suhu yang timbul saat transformator dioperasikan. Luas permukaan sirip pendingin akan menentukan kualitas pendinginan. Untuk transformator dengan kelas suhu A, seperti halnya kebanyakan transformator distribusi, desain ketahanan termal ditentukan pada suhu ruang maksimum 40 o C. Suhu pada bagian - bagian transformator dibedakan menjadi suhu rata - rata dan suhu titik terpanas (hot spot). Suhu panas pada bagian selain belitan dapat

21 27 terjadi pada bagian konstruksi klem inti besi yang dibuat dari bahan logam magnetik dan bagian tutup tangki di sekitar busing. Untuk mengurangi pengaruh arus eddy, pada sebagian bidang pelat tutup tangki diganti dengan bahan logam non magnetik Pendingin Transformator Minyak transformator berfungsi sebagai media pendingin dan isolasi, yang mempunyai sifat media pemindah panas (disirkulasi) dan mempunyai daya tegangan tembus tinggi. Pada transformator yang berkapasitas besar, kumparan - kumparan dan inti besi transformator direndam dalam minyak transformator. Syarat suatu cairan bias dijadikan sebagai minyak transformator adalah sebagai berikut : 1. Ketahanan isolasi harus tinggi ( >10kV/mm ). 2. Berat jenis harus kecil, sehingga partakel - partikel inert di dalam minyak dapat mengendap dengan cepat. 3. Viskositas yang rendah agar lebih mudah bersirkulasi dan kemampuan pendinginan menjadi lebih baik. 4. Titik nyala yang tinggi, tidak mudah menguap yang dapat membahayakan. 5. Tidak merusak bahan isolasi padat. 6. Sifat kimia yang stabil. Minyak transformator adalah minyak berbasis mineral yang digunakan karena keunggulan sifat kimia dan kekuatan dielektrik. Kualitas minyak akan

22 28 mempengaruhi sifat insulasi dan pendingin. Karakteristik minyak transformator dapat dilihat pada (Tabel 2.3) berikut. Tabel 2.3 Karakteristik minyak transformator berdasarkan IEC 60422:2005 No. Parameter Baik Cukup Buruk 1 Warna dan penampakan Clear - Gelap 2 Tegangan tembus [kv/2,5 mm] > < 30 3 Kadar air pada 20 C [mg/kg] < > 25 4 Keasaman [mgkoh/g] < 0,15 0,15-0,30 > 0,30 5 Tan δ pada 90 o C < 0,1 0,1 0,5 0,5 6 Tahanan jenis pada 90 o C [GΩ.m] > 3 0,2-3 < 0,2 7 Sedimen [% berat] < 0,02 8 Tegangan antar muka [mn/m] > < 22 9 Titik nyala [ o C] Maks penurunan 13 C Sepanjang waktu pengoperasian transformator, kualitas minyak akan terdegradasi, sehingga potensi gangguan pada transformator akan meningkat. Kelembaban, sedimen dan partikel konduktif merupakan faktor yang cenderung mereduksi kuat dielektrik minyak. Oksidasi adalah asam (acid) yang terbentuk dari minyak yang terjadi bila kontak dengan udara. Keasaman akan membentuk sludge yang mendiami

23 29 belitan transformator mereduksi disipasi panas. Belitan akan lebih panas dengan semakin besarnya sludge, sehingga transformator lebih panas. Kadar keasaman tinggi dan peningkatan suhu akan mengakselerasi pemburukan kualitas minyak. Kontaminasi yang terdapat pada minyak transformator umumnya mengandung air dan partikel. Keberadaan salah satu dari kontaminan akan mereduksi kualitas insulasi. Bila tingkat keasaman tinggi perlu kewaspadaan, sludge yang terbentuk oleh keasaman tersebut harus dibersihkan dengan minyak panas untuk menghilangkan sedimen. Pada penggantian minyak sebaiknya dilakukan pada kondisi vakum, jika tangki tidak tahan vakum minyak harus didegasifikasi dan disirkulasi melalui degasifier 3 kali dari volume tangki untuk membantu menghilangkan lembab pada insulasi transformator. Kerusakan disebabkan level uap air yang masuk ke dalam tangki humiditas yang rendah. Dalam proses identifikasi minyak transformator melalui kegiatan pengujian dengan pengambilan sampel minyak, terdapat dua jenis pengujian yaitu : a. DGA (Dissolved Gas Analyst) merupakan suatu analisa secara kualitatif maupun kuantitatif gas terlarut pada minyak isolasi transformator, untuk mengetahui ketidaknormalan yang terjadi pada bagian dalam transformator. Berikut merupakan cara pengambilan sampel minyak transformator untuk diuji DGA (Gambar 2.10) sebagai berikut:

24 30 Gambar 2.10 Pengambilan sampel minyak untuk uji DGA Dalam pelaksanaannya, tegangan tembus minyak transformator diuji dengan menggunakan alat pengujian yang dinamakan Breakdown Voltage Test (BDV) seperti yang terdapat pada (Gambar 2.11) berikut ini : Gambar 2.11 Alat Penguji Tegangan Tembus Minyak Transformator. b. Keasaman atau angka kenetralan (acidity) dalam minyak transformator menunjukkan adanya kontaminan hasil oksidasi yang bersifat asam yang dapat merusak isolasi kertas. Uji ini sangat dibutuhkan untuk suatu penggantian minyak. Pengujian ini mengacu pada standar IEC 296:1982 dan 296:2003. Cara menguji acidity adalah dengan mencampurkan minyak

25 31 transformator dengan etanol sebanyak 40% dan Toluen sebanyak 60%. Kemudian dilarutkan koh sampai minyak transformator berwarna merah, banyaknya koh yang diperlukan sampai minyak berwarna merah itulah angka kenetralan pada minyak transformator tersebut. Berikut merupakan alat penguji keasaman minyak transformator (Gambar 2.12) sebagai berikut : Gambar 2.12 Alat penguji keasaman minyak transformator 2.7. Umur Transformator Umur Transformator Distribusi Belitan transformator diinsulasi oleh kertas (craft paper) dan minyak mineral. Kertas berasal dari wood pulp dengan kandungan selulose sekitar 90%. Selulose akan mengalami penuaan (aging), terdegradasi dalam fungsi waktu dengan tingkat laju penuaan yang ditentukan oleh suhu, konsentrasi air dan konsentrasi oksigen. Faktor - faktor ini secara simultan akan memutus ikatan panjang cincin glucose, mereduksi kekuatan mekanikal kertas.

26 32 Degradasi ini bersifat permanen, sehingga umur kertas insulasi diidentikan dengan umur transformator. Umur transformator merupakan fungsi dari umur sistem insulasinya. Umur insulasi didefinisikan berakhir bila kekuatan mekanikalnya telah menurun hingga 50% kekuatan awal. Pada batas ini transformator masih dapat beroperasi namun rentan terhadap berbagai gangguan, meskipun beberapa transformator dengan sisa kuat tarik lebih rendah dari 50% masih tetap dapat beroperasi. Untuk kelas suhu insulasi, seperti halnya transformator distribusi yang umum digunakan di PLN, penurunan ini dicapai pada jam (20,55 tahun) bila transformator dioperasikan pada kapasitas beban penuh secara berkelanjutan. Sistem insulasi didesain untuk beroperasi pada suhu belitan rata - rata 65 o C dan suhu belitan hottest-spot 80 o C di atas suhu ambien rata - rata 30 o C. Dengan kondisi ini, suhu operasi transformator adalah : 65 o C kenaikan suhu rata - rata + 30 o C suhu ambien = 95 o C suhu rata - rata belitan 80 o C kenaikan hottest-spot + 30 o C suhu ambien = 110 o C suhu hottestspot Sistem insulasi diatas menggunakan material thermal upgraded paper yang merupakan hasil improvement dari material generasi sebelumnya yang mempunyai suhu operasi lebih rendah, yaitu : 55 o C kenaikan suhu rata - rata + 30 o C suhu ambien = 85 o C suhu rata - rata belitan

27 33 65 o C kenaikan hottest-spot + 30 o C suhu ambien = 95 o C suhu hottestspot Secara operasional, umur transformator akan ditentukan oleh suhu pada konduktor belitannya yang disebabkan oleh pembebanan paada transformator tersebut. Suhu yang melebihi batas kemampuannya akan mempercepat umur transformator dan sebaliknya. Kurva umur operasi vs suhu belitan dapat dilihat pada (Gambar 2.13) berikut. Gambar 2.13 Kurva Umur Transformator vs Suhu Belitan Dari gambar di atas dapat dilihat bahwa untuk variasi suhu 7 o C dari batas suhu operasi akan terjadi faktor kelipatan dua. Pada suhu 117 o C, umur transformator akan berkurang setengahnya akibat penuaan progresif oleh suhu tinggi terhadap sistem insulasi, sedangkan pada suhu belitan 107 o C umur akan lebih panjang dua kalinya. Pembebanan yang berlebihan pada transformator (overload), akan mengakibatkan panas berlebih yang mana akan mempercepat proses oksidasi pada minyak. Hasil oksidasi inilah sebagai pemicu pengikisan unsur logam hingga pada akhirnya penurunan kemampuan isolasi yang berujung pada kerusakan transformator. Selain itu pula, dengan adanya thermal

28 34 stress yang sangat tinggi tersebut akan merusak kertas isolasi pada transformator itu sendiri. (Gambar 2.14) berikut ini merupakan contoh figur kerusakan isolasi transformator (craft paper) pada suhu 150 o C yang terendam dalam minyak transformator sehingga menimbulkan penurunan kualitas yang sangat signifikan, yaitu dalam waktu kurang dari 6 bulan, dengan variasi waktu pada figur penuaan kertas isolasi transformator Gambar (2.14) sebagai berikut : Gambar 2.14 Figur penuaan kertas isolasi transformator Faktor Yang Mempercepat Penuaan Selain suhu tinggi, penuaan pada sistem insulasi dapat dipercepat oleh kelembaban dan oksidasi. Suhu tinggi, air dan oksigen, secara simultan akan membentuk siklus berantai melalui tiga proses, oksidasi (pada minyak dan material selulose), hidrolisis dan pirolisis yang akan mempercepat kerusakan sistem insulasi. Pada tingkat suhu beban normal, oksidasi dan lembab cenderung lebih berperan dalam merusak sistem insulasi. Hasil dari siklus ini adalah peningkatan kadar keasaman (acidity) pada minyak. Berikut merupakan proses oksidasi, hidrolisis, pirolisis (Gambar. 2.15).

29 35 Gambar 2.15 Proses oksidasi, hidrolisis dan pirolisis Kadar keasaman mempunyai korelasi terhadap pembentukan sludge, yang keberadaannya akan merusak kemampuan heat transfer minyak. Asam akan membentuk sludge yang menetap pada belitan transformator, menghasilkan berkurangnya kemampuan minyak dalam mendisipasi panas. Suhu operasi belitan yang menjadi lebih panas akan membentuk lebih banyak sludge dan menimbulkan lebih panas lagi. Kadar asam yang semakin tinggi dan peningkatan suhu operasi belitan akan mempercepat pemburukan kualitas insulasi minyak. Penelitian telah membuktikan bahwa kertas yang mengandung kadar air 2% akan mengalami penuaan tiga kali lebih cepat daripada yang berkadar

30 36 air 1% dan pada kadar air 3% kecepatan penuaan akan mencapai 30 kali lebih cepat. Tabel 2.4 Kondisi Transformator Kondisi 1 Kondisi baik. Bila salah satu gas nilainya melebihi batasan level harus diinvestigasi Kondisi 2 Komposisi gas sudah melebihi batas normal. Bila salah satu gas nilainya melebihi batasan level harus diinvestigasi dengan cepat. Lakukan tindakan untuk mendapatkan trend. Gangguan mungkin hadir. Kondisi 3 Pemburukan tingkat tinggi. Bila salah satu gas nilainya melebihi batasan level harus diinvestigasi dengan cepat. Lakukan tindakan untuk mendapatkan trend. Gangguan kemungkinan bisa hadir Kondisi 4 Pemburukan yang sangat tinggi. Melanjutkan operasi transformator dapat mengarah pada kerusakan transformator Thermal Ageing Kekuatan isoalsi dan umur ekonomis dari transformator pada dasarnya dipengaruhi oleh kekuatan mekanis dari isolasi pada proses normal ageing. Pada keadaan pembebanan yang normal, secara teoritis umur dari isolasi trafo terhadap tekanan mekanis dapat mencapai 1000 tahun. Akan

31 37 tetapi pada kenyataannya umur trafo dilapangan hanya sekitar 20 tahun, bahkan banyak trafo yang mengalami kerusakan sebelum umur 20 tahun, hal ini disebabkan karena proses degradasi pada aksesoris trafo yang antara lain terjadi pada tank, bushings, katup, dan lain sebagainya. Proses degradasi ini disebabkan karena proses thermal ageing, dimana suhu yang terlampau tinggi dapat menyebabkan isolasi kertas pada trafo mengalami proses degradasi termal, sehingga pada saat terjadi gangguan (through fault) isolasi kertas akan kehilangan kekuatan menahan tekanan mekanis yang menyebabkan belitan mengalami pergeseran. Hal inilah yang menyebabkan kekuatan dielektris mengalami laju penurunan dengan cepat. Beberapa pernyataan mengenai proses thermal ageing diantaranya adalah: a. Pada temperatur hot spot antara (80-140) 0 C, maka setiap kenaikan 6 0 C, umur trafo akan berkurang setengahnya (IEC Publication Loading Guide for Oil-Immersed Transformer, CIGRE Transformer Working Group-1961). b. Proses ageing pada selulosa merupakan proses kimia, dimana panas, air dan oksigen adalah katalis (zat yang mempercepat reaksi). c. Selain menyebabkan efek thermal ageing, suhu yang tinggi juga dapat menyebabkan tekanan yang tinggi pada internal tank, sehingga dapat memacu pecahnya tank/kendornya baut pada bodi trafo sehingga menyebabkan kebocoran minyak trafo.

32 38 d. Temperatur yang tinggi pada hot spot dapat menyebabkan timbulnya gelembung-gelembung bebas yang menyebabkan turunnya kekuatan dielektrik minyak trafo Pengertian Hot Spot Temperature Merupakan titik pada kumparan transformator yang memiliki suhu terpanas yang mana titik terpanas ini selalu mendapatkan perhatian yang paling besar dibandingkan bagian lainnya, karena pada titik ini merupakan tempat terjadinya degradasi termal. Hot spot temperature dipengaruhi oleh beberapa hal diantaranya adalah : Kenaikan suhu minyak (b): berdasarkan SPLN D bahwa kenaikan suhu maksimal minyak adalah 50 0 C Kenaikan suhu belitan (c): berdasarkan SPLN D bahwa kenaikan suhu maksimal belitan adalah 55 0 C Suhu minyak rata-rata (br) Suhu minyak rata-rata** = (0,8 x kenaikan maksimal suhu minyak) **(IEC Standard ) Suhu temperatur sekitar /ambient (a): secara desain transformator dirancang pada suhu operasi sekitar 30 0 C, dan temperatur sekitar (ambient) tidak boleh melebihi 40 0 C (SPLN D ).

33 39 Hot spot temperature menurut SPLN D dan IEC Publication (Loading Guide for Oil-Immersed Transformer) ditetapkan bahwa suhu titik panas adalah sebesar 98 0 C. Dimana berlaku persamaan : (2.1) c a b w0 Keterangan: hot spot temperature c suhu lingkungan sekitar ( ambient) a kenaikan suhu maksimal min b w0 yak perbedaan antara suhu maksimal beli tan dan suhu rata rata miyak Sehingga dari persamaan tersebut maka hot spot temperature dapat ditentukan: c (55 0,8X 50) X C Terlihat bahwa dari hasil perhitungan hot spot temperature sesuai dengan stándar yang ditentukan oleh SPLN D dan IEC Publication yaitu sebesar 98 0 C Asumsi Diagram Thermal Kenaikan temperatur dapat diasumsikan dengan diagram termal sederhana seperti ditunjukkan gambar Gambar ini dapat dipahami karena merupakan diagram penyederhanaan dari distribusi yang lebih rumit. Kenaikan temperatur top oil yang diukur selama pengujian kenaikkan temperatur berbeda dengan minyak yang meninggalkan kumparan. Minyak pada top oil adalah campuran sebagian dari minyak

34 40 yang bersirkukasi pada sepanjang kumparan. Tetapi perbedaan ini tidak dipertimbangkan dengan cukup signifikan untuk memvalidasi metode. Metode ini disederhanakan sebagai asumsi yang telah dibuat sebagai berikut: 1. Temperatur minyak bertambah secara linear sesuai kumparan 2. Kenaikkan temperatur rata-rata minyak adalah sama untuk semua kumparan dari kolom yang sama. 3. Perbedaan temperatur antara minyak pada puncak kumparan (asumsinya sepadan dengan yang di puncak) dan minyak yang berada di dasar kumparan (asumsinya sepadan sepadan dengan yang di pendingin) adalah sama untuk semua bagian kumparan. 4. Kenaikkan temperatur rata-rata dari tembaga pada setiap posisi diatas kumparan meningkat secara linear sejalan kenaikkan temperatur minyak yang mempunyai selisih kostan wo antara dua garis lurus (wo adalah selisih antara kenaikkan temperatur rata-rata tahanan dan kenaikkan temperatur ratarata minyak). 5. Kenaikkan temperatur rata-rata puncak kumparan adalah kenaikkan temperatur rata-rata minyak ditambah wo 6. Kenaikkan temperatur hot spot adalah lebih tinggi dibanding kenaikkan temperatur rata-rata puncak kumparan. Untuk menghitung perbedaan antara kedua kenaikkan temperatur ini, nilai wo diasumsikan 0,1 untuk sirkulasi minyak secara

35 41 alami. Sehingga kenaikkan temperatur hot spot adalah sepadan dengan kenaikkan temperatur top oil ditambah 1.1 wo Gambar 2.16 Diagram Thermal transformator (standar IEC Loading Guide for Oil- Immersed Transformer) Nilai Relatif dari Umur Pemakaian Hubungan Montsinger sekarang telah dapat digunakan untuk menentukan nilai relatif dari umur pemakaian pada temperatur hot spot (c) dibandingkan umur pemakaian pada temperatur hot spot normal (cr). Berdasarkan hubungan Montsinger yang dijadikan sebagai standar publikasi IEC dan CIGRE Transformer Working Group, bahwa setiap kenaikan 6 0 C, maka umur ekonomis trafo berkurang mnejadi setengahnya (berlaku untuk hot spot temperature 80 0 C C). Hubungan Montsinger dapat dirumuskan sebagai berikut:

36 42 V Laju thermal ageing Laju thermal ageing pada temperatur pada temperatur c cr..(2.2) V cr 2 e ( c cr ) / ( c )... (2.3) Dengan memasukkan nilai cr sebesar 98 0 C kedalam persamaan V.2, maka diperoleh persamaan laju pemakain relatif dalam bentuk logaritmis yaitu: V ( c 98) / (2.4) Keterangan: c lapangan). cr : temperatur hot spot riil (sesuai kondisi pemakaian di : temperatur hot spot standar, yaitu sebesar 98 0 C (mengacu pada standar IEC Publication dan SPLN D ). Definisi dari umur relatif adalah 1 jam pemakaian pada temperature hot spot cr akan sama dengan x jam pemakaian pada temperature standar c (98 0 C). Sebagai contoh apabila nilai V=3, pada temperatur hot spot 107,5 0 C artinya pemakainnya dalam 1 jam akan setara dengan 3 jam pemakaian pada keadaan standar yaitu pada temperatur hot spot 98 0 C.

37 7

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Transformator Transformator merupakan peralatan mesin listrik statis yang bekerja berdasarkan prinsip induksi elektromagnetik, yang dapat mentransformasikan energi listrik dari

Lebih terperinci

STUDI PENGARUH PEMBEBANAN TERHADAP SUSUT UMUR TRANSFORMATOR DAYA (APLIKASI PADA GARDU INDUK PEMATANGSIANTAR)

STUDI PENGARUH PEMBEBANAN TERHADAP SUSUT UMUR TRANSFORMATOR DAYA (APLIKASI PADA GARDU INDUK PEMATANGSIANTAR) STUDI PENGARUH PEMBEBANAN TERHADAP SUSUT UMUR TRANSFORMATOR DAYA (APLIKASI PADA GARDU INDUK PEMATANGSIANTAR) Junedy Pandapotan Eddy Warman Konsentrasi Teknik Energi Listrik Departemen Teknik Elektro Fakultas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 TRANSFORMATOR 2.1.1 UMUM Transformator (trafo) merupakan peralatan mesin listrik stasis yang bekerja berdasarkan prinsip induksi elektromagnetik, yang dapat mentransformasikan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI Generator Transformator Pemutus Tenaga Distribusi sekunder Distribusi Primer BAB II LANDASAN TEORI 2.1 Proses Penyaluran Tenaga Listrik Ke Pelanggan Didalam dunia kelistrikan sering timbul persoalan teknis,

Lebih terperinci

BAB III. Tinjauan Pustaka

BAB III. Tinjauan Pustaka BAB III Tinjauan Pustaka 3.1 Pengertian Sistem Distribusi Tenaga Listrik Sistem Distribusi Merupakan Bagian dari sistem tenaga listrik.sistem distribusi ini berguna untuk menyalurkan tenaga listrik dari

Lebih terperinci

APLIKASI LISTRIK MAGNET PADA TRANSFORMATOR 2012 APLIKASI LISTRIK MAGNET PADA TRANSFORMATOR

APLIKASI LISTRIK MAGNET PADA TRANSFORMATOR 2012 APLIKASI LISTRIK MAGNET PADA TRANSFORMATOR APLIKASI LISTRIK MAGNET PADA TRANSFORMATOR OLEH : KOMANG SUARDIKA (0913021034) JURUSAN PENDIDIKAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PENDIDIKAN GANESHA TAHUN AJARAN 2012 BAB

Lebih terperinci

TRANSFORMATOR. 1. Pengertian Transformator

TRANSFORMATOR. 1. Pengertian Transformator TRANSFORMATOR 1. Pengertian Transformator Transformator atau transformer atau trafo adalah komponen elektromagnet yang dapat mengubah taraf suatu tegangan AC ke taraf yang lain. Selain itu tranformator

Lebih terperinci

BAB II PRINSIP DASAR TRANSFORMATOR

BAB II PRINSIP DASAR TRANSFORMATOR BAB II PRINSIP DASAR TRANSFORMATOR 2.1 UMUM Transformator (trafo ) merupakan piranti yang mengubah energi listrik dari suatu level tegangan AC lain melalui gandengan magnet berdasarkan prinsip induksi

Lebih terperinci

BAB III FORMULASI PENENTUAN SUSUT UMUR TRANSFORMATOR DISTRIBUSI

BAB III FORMULASI PENENTUAN SUSUT UMUR TRANSFORMATOR DISTRIBUSI BAB III FORMULASI PENENTUAN SUSUT UMUR TRANSFORMATOR DISTRIBUSI 3.1 Pendahuluan Pada bab ini akan diformulasikan hubungan antara kenaikan suhu yang melebihi batas - batas kemampuan isolasi dengan susutnya

Lebih terperinci

ABSTRAK. Kata Kunci : Transformator, Susut Umur

ABSTRAK. Kata Kunci : Transformator, Susut Umur ABSTRAK Susut umur pada transformator dipengaruhi oleh isolasi belitan transformator dan minyak transformator. Salah satu kerusakan atau kegagalan isolasi dari minyak transformator diakibatkan dari perubahan

Lebih terperinci

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK. Pusat tenaga listrik umumnya terletak jauh dari pusat bebannya. Energi listrik

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK. Pusat tenaga listrik umumnya terletak jauh dari pusat bebannya. Energi listrik BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK 2.1. Umum Pusat tenaga listrik umumnya terletak jauh dari pusat bebannya. Energi listrik yang dihasilkan pusat pembangkitan disalurkan melalui jaringan transmisi.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Umum Transformator adalah suatu alat listrik yang dapat memindahkan dan mengubah energi dari satu atau lebih rangkaian listrik ke rangkaian listrik yang lain, melalui suatu

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Proses Penyaluran Tenaga Listrik Ke Pelanggan Didalam dunia kelistrikan sering timbul persoalan teknis, dimana tenaga listrik dibangkitkan pada tempat-tempat tertentu, sedangkan

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Pengertian Sistem Distribusi Tenaga Listrik Sistem Distribusi merupakan bagian dari sistem tenaga listrik. Sistem distribusi ini berguna untuk menyalurkan tenaga listrik dari

Lebih terperinci

TUGAS AKHIR IDENTIFIKASI KONDISI KESEHATAN TRANSFORMATOR DISTRIBUSI

TUGAS AKHIR IDENTIFIKASI KONDISI KESEHATAN TRANSFORMATOR DISTRIBUSI TUGAS AKHIR IDENTIFIKASI KONDISI KESEHATAN TRANSFORMATOR DISTRIBUSI (Studi Kasus di PT. PLN (Persero) Distribusi Jakarta Raya Dan Tangerang) Diajukan guna melengkapi sebagian syarat dalam mencapai gelar

Lebih terperinci

TRANSFORMATOR DAYA & PENGUJIANNYA

TRANSFORMATOR DAYA & PENGUJIANNYA TRANSFORMATOR DAYA & PENGUJIANNYA Transformator tenaga adalah suatu peralatan tenaga listrik yang berfungsi untuk menyalurkan tenaga/daya listrik dari tegangan tinggi ke tegangan rendah atau sebaliknya

Lebih terperinci

BAB II TRANSFORMATOR DAYA DAN PENGUBAH SADAPAN BERBEBAN. Tenaga listrik dibangkitkan dipusat pusat listrik (power station) seperti

BAB II TRANSFORMATOR DAYA DAN PENGUBAH SADAPAN BERBEBAN. Tenaga listrik dibangkitkan dipusat pusat listrik (power station) seperti 6 BAB II TRANSFORMATOR DAYA DAN PENGUBAH SADAPAN BERBEBAN 2.1 Sistem Tenaga Listrik Tenaga listrik dibangkitkan dipusat pusat listrik (power station) seperti PLTA, PLTU, PLTD, PLTP dan PLTGU kemudian disalurkan

Lebih terperinci

PEMELIHARAAN PENTANAHAN PADA PENTANAHAN ABSTRAK

PEMELIHARAAN PENTANAHAN PADA PENTANAHAN ABSTRAK PEMELIHARAAN PENTANAHAN PADA PENTANAHAN Soehardi, Sabari D3 Teknik Elektro Politeknik Harapan Bersama Jl Dewi Sartika No 71 Tegal Telp/Fax (0283) 352000 ABSTRAK Dilapangan dijumpai juga kasus Pentanahan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Umum Transformator adalah suatu alat listrik yang dapat memindahkan dan mengubah energi listrik dari satu atau lebih rangkaian listrik ke rangkaian listrik yang lain, melalui

Lebih terperinci

BAB IV OPTIMALISASI BEBAN PADA GARDU TRAFO DISTRIBUSI

BAB IV OPTIMALISASI BEBAN PADA GARDU TRAFO DISTRIBUSI BAB IV OPTIMALISASI BEBAN PADA GARDU TRAFO DISTRIBUSI 4.1 UMUM Proses distribusi adalah kegiatan penyaluran dan membagi energi listrik dari pembangkit ke tingkat konsumen. Jika proses distribusi buruk

Lebih terperinci

Makalah Seminar Kerja Praktek PEMELIHARAAN TRANSFORMATOR DAYA PADA PLTGU TAMBAK LOROK UNIT 2 PT. INDONESIA POWER UBP SEMARANG

Makalah Seminar Kerja Praktek PEMELIHARAAN TRANSFORMATOR DAYA PADA PLTGU TAMBAK LOROK UNIT 2 PT. INDONESIA POWER UBP SEMARANG Makalah Seminar Kerja Praktek PEMELIHARAAN TRANSFORMATOR DAYA PADA PLTGU TAMBAK LOROK UNIT 2 PT. INDONESIA POWER UBP SEMARANG Yunius Fadli Firdaus. 1, Ir. Agung Warsito, DHET. 2 1 Mahasiswa dan 2 Dosen

Lebih terperinci

BAB II TRANSFORMATOR. magnet dan berdasarkan prinsip induksi elektromagnetik.

BAB II TRANSFORMATOR. magnet dan berdasarkan prinsip induksi elektromagnetik. BAB II TRANSFORMATOR II.1 Umum Transformator atau trafo adalah suatu peralatan listrik yang dapat memindahkan energi listrik atau memindahkan dan mengubah energi listrik bolakbalik dari satu level ke level

Lebih terperinci

DAFTAR ISI. HALAMAN JUDUL... ii HALAMAN PENGESAHAN DOSEN PEMBIMBING...iii HALAMAN PENGESAHAN DOSEN PENGUJI...iv

DAFTAR ISI. HALAMAN JUDUL... ii HALAMAN PENGESAHAN DOSEN PEMBIMBING...iii HALAMAN PENGESAHAN DOSEN PENGUJI...iv DAFTAR ISI Halaman HALAMAN JUDUL...... ii HALAMAN PENGESAHAN DOSEN PEMBIMBING...iii HALAMAN PENGESAHAN DOSEN PENGUJI...iv MOTTO...v KATA PENGANTAR...vi PERSEMBAHAN...vii DAFTAR ISI...viii DAFTAR GAMBAR...

Lebih terperinci

II. TINJAUAN PUSTAKA. Transformator merupakan suatu peralatan listrik yang berfungsi untuk

II. TINJAUAN PUSTAKA. Transformator merupakan suatu peralatan listrik yang berfungsi untuk II. TINJAUAN PUSTAKA A. Transformator Transformator merupakan suatu peralatan listrik yang berfungsi untuk memindahkan dan mengubah tenaga listrik dari tegangan tinggi ke tegangan rendah atau sebaliknya,

Lebih terperinci

BAB II TRANSFORMATOR DISTRIBUSI DAN SISTEM PENGAMANNYA

BAB II TRANSFORMATOR DISTRIBUSI DAN SISTEM PENGAMANNYA BAB II TRANSFORMATOR DISTRIBUSI DAN SISTEM PENGAMANNYA BAB II TRANSFORMATOR DISTRIBUSI DAN SISTEM PENGAMANNYA 2.1 Umum Transformator merupakan suatu perangkat listrik yang berfungsi untuk mentransformasikan

Lebih terperinci

BAB II TRANSFORMATOR TENAGA

BAB II TRANSFORMATOR TENAGA BAB II TRANSFORMATOR TENAGA 2.1 Pengertian Transformator adalah suatu alat listrik yang dapat memindahkan dan mengubah energi listrik dari satu atau lebih rangkaian listrik ke rangkaian listrik yang lain

Lebih terperinci

BAB III PENGAMBILAN DATA

BAB III PENGAMBILAN DATA BAB III PENGAMBILAN DATA Didalam pengambilan data pada skripsi ini harus di perhatikan beberapa hal sebagai berikut : 3.1 PEMILIHAN TRANSFORMATOR Pemilihan transformator kapasitas trafo distribusi berdasarkan

Lebih terperinci

Makalah Seminar Kerja Praktek PEMELIHARAAN TRAFO DISTRIBUSI. Jl. Prof. Sudharto, Tembalang, Semarang

Makalah Seminar Kerja Praktek PEMELIHARAAN TRAFO DISTRIBUSI. Jl. Prof. Sudharto, Tembalang, Semarang Makalah Seminar Kerja Praktek PEMELIHARAAN TRAFO DISTRIBUSI Agung Aprianto. 1, Ir. Agung Warsito, DHET. 2 1 Mahasiswa dan 2 Dosen Jurusan Teknik Elektro, Fakultas Teknik, Universitas Diponegoro Jl. Prof.

Lebih terperinci

ANALISA PENGARUH PEMBEBANAN TERHADAP SUSUT UMUR TRANSFORMATOR TENAGA (STUDI KASUS TRAFO GTG 1.3 PLTGU TAMBAK LOROK SEMARANG)

ANALISA PENGARUH PEMBEBANAN TERHADAP SUSUT UMUR TRANSFORMATOR TENAGA (STUDI KASUS TRAFO GTG 1.3 PLTGU TAMBAK LOROK SEMARANG) ANALISA PENGARUH PEMBEBANAN TERHADAP SUSUT UMUR TRANSFORMATOR TENAGA (STUDI KASUS TRAFO GTG 1.3 PLTGU TAMBAK LOROK SEMARANG) oleh: Nama : Purnama Sigid NIM : LF306046 Abstrak - Transformator Tenaga didesain

Lebih terperinci

STUDI SUSUT UMUR TRANSFORMATOR DISTRIBUSI 20 kv AKIBAT PEMBEBANAN LEBIH DI PT.PLN (PERSERO) KOTA PONTIANAK

STUDI SUSUT UMUR TRANSFORMATOR DISTRIBUSI 20 kv AKIBAT PEMBEBANAN LEBIH DI PT.PLN (PERSERO) KOTA PONTIANAK STUDI SUSUT UMUR TRANSFORMATOR DISTRIBUSI 20 kv AKIBAT PEMBEBANAN LEBIH DI PT.PLN (PERSERO) KOTA PONTIANAK Parlindungan Gultom 1), Ir. Danial, MT. 2), Managam Rajagukguk, ST, MT. 3) 1,2,3) Program Studi

Lebih terperinci

PEMELIHARAAN ALMARI KONTROL

PEMELIHARAAN ALMARI KONTROL PEMELIHARAAN ALMARI KONTROL Yudi Yantoro,Sabari D3 Teknik Elektro Politeknik Harapan Bersama Jl Dewi Sartika No 71 Tegal Telp/Fax (0283) 352000 ABSTRAK Dilapangan dijumpai juga kasus Almari Kontrol Transformator-Almari

Lebih terperinci

BAB IV PEMBAHASAN. dan 1997, serta SPLN D : 2007)

BAB IV PEMBAHASAN. dan 1997, serta SPLN D : 2007) BAB IV PEMBAHASAN 4.1 Transformator Distribusi 4.1.1 Umum Pada sistem distribusi, Transformator digunakan untuk menurunkan tegangan penyaluran 20 kv ke tegangan pelayanan 400 / 231 V. Untuk fungsi tersebut,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Definisi Transformator Transformator atau transformer atau trafo adalah suatu peralatan listrik elektromagnetik statis yang berfungsi untuk memindah dan mengubah energi listrik

Lebih terperinci

BAB II GARDU TRAFO DISTRIBUSI

BAB II GARDU TRAFO DISTRIBUSI BAB II GARDU TRAFO DISTRIBUSI II.1 Umum Gardu trafo distribusiberlokasi dekat dengan konsumen. Transformator dipasang pada tiang listrik dan menyatu dengan jaringan listrik. Untuk mengamankan transformator

Lebih terperinci

STUDI PENGGUNAAN SISTEM PENDINGIN UDARA TEKAN UNTUK MENINGKATKAN EFISIENSI TRANSFORMATOR PADA BEBAN LEBIH

STUDI PENGGUNAAN SISTEM PENDINGIN UDARA TEKAN UNTUK MENINGKATKAN EFISIENSI TRANSFORMATOR PADA BEBAN LEBIH STUDI PENGGUNAAN SISTEM PENDINGIN UDARA TEKAN UNTUK MENINGKATKAN EFISIENSI TRANSFORMATOR PADA BEBAN LEBIH (Aplikasi pada PLTU Labuhan Angin, Sibolga) Yohannes Anugrah, Eddy Warman Konsentrasi Teknik Energi

Lebih terperinci

BAB III PENGAMAN TRANSFORMATOR TENAGA

BAB III PENGAMAN TRANSFORMATOR TENAGA BAB III PENGAMAN TRANSFORMATOR TENAGA 3.1. JENIS PENGAMAN Trafo tenaga diamankan dari berbagai macam gangguan, diantaranya dengan peralatan proteksi (sesuai SPLN 52-1:1983) Bagian Satu, C) : Relai Buchollz

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI 15 BAB III LANDASAN TEORI Tenaga listrik dibangkitkan dalam Pusat-pusat Listrik seperti PLTA, PLTU, PLTG, PLTP dan PLTD kemudian disalurkan melalui saluran transmisi yang sebelumnya terlebih dahulu dinaikkan

Lebih terperinci

BAB IV PEMBAHASAN. 4.1 Pembangkit Listrik Tenaga Panas Bumi (PLTP) Kamojang

BAB IV PEMBAHASAN. 4.1 Pembangkit Listrik Tenaga Panas Bumi (PLTP) Kamojang BAB IV PEMBAHASAN 4.1 Pembangkit istrik Tenaga Panas Bumi (PTP) Kamojang PT. Indonesia Power UPJP Kamojang memiliki 3 pembangkit yang menggunakan panas bumi sebagai energi primernya. Pembangkit tersebut

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Transformator Tenaga Transformator tenaga adalah merupakan suatu peralatan listrik statis yang berfungsi untuk menyalurkan tenaga / daya listrik arus bolak-balik dari tegangan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 6 BAB II LANDASAN TEORI 2.1 Sistem tenaga listrik DC Arus listrik searah dikenal dengan singkatan DC (Direct Current). Sesuai dengan namanya listrik arus searah itu mengalir ke satu jurusan saja dalam

Lebih terperinci

BAB II TRANSFORMATOR. elektromagnet. Pada umumnya transformator terdiri atas sebuah inti yang terbuat

BAB II TRANSFORMATOR. elektromagnet. Pada umumnya transformator terdiri atas sebuah inti yang terbuat BAB II TRANSFORMATOR 2.1 UMUM Transformator merupakan suatu alat listrik yang dapat memindahkan dan mengubah energi listrik dari satu atau lebih rangkain listrik ke rangkaian listrik lainnya melalui suatu

Lebih terperinci

BAB 10. Proteksi relay / peralatan yang digunakan tergantung pada ukuran, kepentingan dan konstruksi (tekan changer jenis) dari trafo.

BAB 10. Proteksi relay / peralatan yang digunakan tergantung pada ukuran, kepentingan dan konstruksi (tekan changer jenis) dari trafo. MINGGU XII Transformer protection Types of protection Thermal Overload protection Over-flux protection BAB 10 10.1 Proteksi Transformator Transformator daya yang paling mahal yaitu elemen tunggal sistem

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Dasar-Dasar Sistem Proteksi 1 Sistem proteksi adalah pengaman listrik pada sistem tenaga listrik yang terpasang pada : sistem distribusi tenaga listrik, trafo tenaga, transmisi

Lebih terperinci

Makalah Seminar Kerja Praktek SISTEM PROTEKSI TRANSFORMATOR TENAGA PLTGU TAMBAK LOROK

Makalah Seminar Kerja Praktek SISTEM PROTEKSI TRANSFORMATOR TENAGA PLTGU TAMBAK LOROK Makalah Seminar Kerja Praktek SISTEM PROTEKSI TRANSFORMATOR TENAGA PLTGU TAMBAK LOROK Muhammad Arief N (21060111130114) 1, Mochammad Facta, ST. MT. PhD (197106161999031003) 2. 1 Mahasiswa dan 2 Dosen Jurusan

Lebih terperinci

LAPORAN AKHIR PEMELIHARAN GARDU DISTRIBUSI

LAPORAN AKHIR PEMELIHARAN GARDU DISTRIBUSI LAPORAN AKHIR PEMELIHARAN GARDU DISTRIBUSI Oleh: OFRIADI MAKANGIRAS 13-021-014 KEMENTRIAN RISET TEKNOLOGI DAN PENDIDIKAN TINGGI JURUSAN TEKNIK ELEKTRO POLITEKNIK NEGERI MANADO 2016 BAB I PENDAHULUAN 1.1

Lebih terperinci

TUGAS AKHIR ANALISA PENYELESAIAN GANGGUAN TRAFO DISTRIBUSI DENGAN METODE RCPS (ROOT CAUSE PROBLEM SOLVING)

TUGAS AKHIR ANALISA PENYELESAIAN GANGGUAN TRAFO DISTRIBUSI DENGAN METODE RCPS (ROOT CAUSE PROBLEM SOLVING) TUGAS AKHIR ANALISA PENYELESAIAN GANGGUAN TRAFO DISTRIBUSI DENGAN METODE RCPS (ROOT CAUSE PROBLEM SOLVING) Di PT. PLN (Persero) Distribusi Jakarta Raya Dan Tangerang Area Ciputat Posko Cinere Diajukan

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Sistem Distribusi Tenaga Listrik Sistem Tenaga Listrik adalah sistem penyediaan tenaga listrik yang terdiri dari beberapa pembangkit atau pusat listrik terhubung satu dengan

Lebih terperinci

SISTEM PROTEKSI RELAY

SISTEM PROTEKSI RELAY SISTEM PROTEKSI RELAY SISTEM PROTEKSI PADA GARDU INDUK DAN SPESIFIKASINYA OLEH : WILLYAM GANTA 03111004071 JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS SRIWIJAYA 2015 SISTEM PROTEKSI PADA GARDU INDUK

Lebih terperinci

PEMELIHARAAN RELE PENGAMAN PADA TRANSFORMATOR. Yudi Yantoro, Sabari

PEMELIHARAAN RELE PENGAMAN PADA TRANSFORMATOR. Yudi Yantoro, Sabari PEMELIHARAAN RELE PENGAMAN PADA TRANSFORMATOR Yudi Yantoro, Sabari D3 Teknik Elektro Politeknik Harapan Bersama Jl Dewi Sartika No 71 Tegal Telp/Fax (0283) 352000 ABSTRAK Dilapangan dijumpai juga kasus

Lebih terperinci

PEMELIHARAAN MINYAK TRANSFORMATOR PADA MINYAK TRANSFORMATOR NOMOR 4 DI GARDU INDIK KEBASEN ABSTRAK

PEMELIHARAAN MINYAK TRANSFORMATOR PADA MINYAK TRANSFORMATOR NOMOR 4 DI GARDU INDIK KEBASEN ABSTRAK PEMELIHARAAN MINYAK TRANSFORMATOR PADA MINYAK TRANSFORMATOR NOMOR 4 DI GARDU INDIK KEBASEN Yudi Yantoro, Sabari D3 Teknik Elektro Politeknik Harapan Bersama Jl Dewi Sartika No 71 Tegal Telp/Fax (0283)

Lebih terperinci

ANALISA TEMPERATUR MINYAK TERHADAP KINERJA TRANSFORMATOR DI UNIT 6 PLTG PAYA PASIR LAPORAN TUGAS AKHIR

ANALISA TEMPERATUR MINYAK TERHADAP KINERJA TRANSFORMATOR DI UNIT 6 PLTG PAYA PASIR LAPORAN TUGAS AKHIR ANALISA TEMPERATUR MINYAK TERHADAP KINERJA TRANSFORMATOR DI UNIT 6 PLTG PAYA PASIR LAPORAN TUGAS AKHIR Diajukan untuk Memenuhi Sebagian Persyaratan dalam Menyelesaikan Program Pendidikan Diploma 3 PROGRAM

Lebih terperinci

BAB 2 DASAR TEORI. lain, melalui suatu gandengan magnet dan berdasarkan prinsip induksi

BAB 2 DASAR TEORI. lain, melalui suatu gandengan magnet dan berdasarkan prinsip induksi BAB DASAR TEORI. Umum Transformator adalah suatu alat listrik yang dapat memindahkan dan mengubah energi listrik dari satu atau lebih rangkaian ke rangkaian listrik yang lain, melalui suatu gandengan magnet

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Definisi Transformator Transformator atau transformer atau trafo adalah suatu peralatan listrik elektromagnetik statis yang berfungsi untuk memindah dan mengubah energi listrik

Lebih terperinci

ANALISA PENGARUH PEMBEBANAN TERHADAP SUSUT UMUR TRANSFORMATOR TENAGA (STUDI KASUS TRAFO GTG 1.3 PLTGU TAMBAK LOROK SEMARANG) Purnama Sigid L2F

ANALISA PENGARUH PEMBEBANAN TERHADAP SUSUT UMUR TRANSFORMATOR TENAGA (STUDI KASUS TRAFO GTG 1.3 PLTGU TAMBAK LOROK SEMARANG) Purnama Sigid L2F ANALISA PENGARUH PEMBEBANAN TERHADAP SUSUT UMUR TRANSFORMATOR TENAGA (STUDI KASUS TRAFO GTG.3 PLTGU TAMBAK LOROK SEMARANG) Tugas Akhir Untuk memenuhi sebagian persyaratan mencapai derajat Sarjana Teknik

Lebih terperinci

STANDAR KONSTRUKSI GARDU DISTRIBUSI DAN KUBIKEL TM 20 KV

STANDAR KONSTRUKSI GARDU DISTRIBUSI DAN KUBIKEL TM 20 KV STANDAR KONSTRUKSI GARDU DISTRIBUSI DAN KUBIKEL TM 20 KV JENIS GARDU 1. Gardu Portal Gardu Distribusi Tenaga Listrik Tipe Terbuka ( Out-door ), dengan memakai DISTRIBUSI kontruksi dua tiang atau lebih

Lebih terperinci

Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA

Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Transformator Transformator adalah suatu alat listrik yang dapat memindahkan dan mengubah energi listrik dari satu atau lebih rangkaian listrik ke rangkaian listrik yang lain

Lebih terperinci

BAB II TRANSFORMATOR DISTRIBUSI DAN SISTEM PENGAMANNYA

BAB II TRANSFORMATOR DISTRIBUSI DAN SISTEM PENGAMANNYA BAB II TRANSFORMATOR DISTRIBUSI DAN SISTEM PENGAMANNYA 2.1 Umum Transformator merupakan suatu perangkat listrik yang berfungsi untuk mentransformasikan tegangan dan arus dari sisi primer ke sisi sekunder

Lebih terperinci

PEMELIHARAAN TRAFO 1 PHASA 50 KVA

PEMELIHARAAN TRAFO 1 PHASA 50 KVA PEMELIHARAAN TRAFO 1 PHASA 50 KVA Soehardi ABSTRAK Dilapangan dijumpai juga kasus trafo-trafo yang bermasalah, baik dari awal perencanaan, prosedur pemeliharaan bahkan pemeliharaan yang kurang baik sehingga

Lebih terperinci

BAB II TRANSFORMATOR. sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik. dan berbanding terbalik dengan perbandingan arusnya.

BAB II TRANSFORMATOR. sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik. dan berbanding terbalik dengan perbandingan arusnya. BAB II TRANSFORMATOR II.. Umum Transformator merupakan komponen yang sangat penting peranannya dalam sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik elektromagnetis statis yang berfungsi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Proses Penyaluran Tenaga Listrik Ke Pelanggan Didalam dunia kelistrikan sering timbul persoalan teknis, dimana tenaga listrik dibangkitkan pada tempat-tempat tertentu, sedangkan

Lebih terperinci

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1)

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) 1. 1. SISTEM TENAGA LISTRIK 1.1. Elemen Sistem Tenaga Salah satu cara yang paling ekonomis, mudah dan aman untuk mengirimkan energi adalah melalui

Lebih terperinci

LAPORAN AKHIR GANGGUAN OVERLOAD PADA GARDU DISTRBUSI ASRAMA KIWAL

LAPORAN AKHIR GANGGUAN OVERLOAD PADA GARDU DISTRBUSI ASRAMA KIWAL LAPORAN AKHIR GANGGUAN OVERLOAD PADA GARDU DISTRBUSI ASRAMA KIWAL Oleh : SEMUEL MASRI PONGKORUNG NIM : 13021003 Dosen Pembimbing Reiner Ruben Philipus Soenpiet, SST NIP. 1961019 199103 2 001 KEMENTERIAN

Lebih terperinci

Bab 3. Teknik Tenaga Listrik

Bab 3. Teknik Tenaga Listrik Bab 3. Teknik Tenaga Listrik Teknik Tenaga Listrik ialah ilmu yang mempelajari konsep dasar kelistrikan dan pemakaian alat yang asas kerjanya berdasarkan aliran elektron dalam konduktor (arus listrik).

Lebih terperinci

Induksi Elektromagnetik

Induksi Elektromagnetik Induksi Elektromagnetik GGL induksi Generator Dinamo Trafo Cara kerja Trafo Jenis-jenis Trafo Persamaan pada Trafo Efisiensi Trafo Kegunaan Trafo A. GGL induksi Hubungan Pergerakan garis medan magnetik

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Radiator Radiator memegang peranan penting dalam mesin otomotif (misal mobil). Radiator berfungsi untuk mendinginkan mesin. Pembakaran bahan bakar dalam silinder mesin menyalurkan

Lebih terperinci

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK. karena terdiri atas komponen peralatan atau mesin listrik seperti generator,

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK. karena terdiri atas komponen peralatan atau mesin listrik seperti generator, BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK II.1. Sistem Tenaga Listrik Struktur tenaga listrik atau sistem tenaga listrik sangat besar dan kompleks karena terdiri atas komponen peralatan atau mesin listrik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Transformator Transformator atau trafo adalah suatu alat listrik yang dapat memindahkan dan mengubah energi listrik dari satu atau lebih rangkaian listrik ke rangkaian listrik

Lebih terperinci

UNIVERSITAS INDONESIA ANALISIS PENGARUH TEMPERATUR TERHADAP MASA GUNA DAN PEMBEBANAN DARURAT TRANSFORMATOR DAYA TESIS

UNIVERSITAS INDONESIA ANALISIS PENGARUH TEMPERATUR TERHADAP MASA GUNA DAN PEMBEBANAN DARURAT TRANSFORMATOR DAYA TESIS UNIVERSITAS INDONESIA ANALISIS PENGARUH TEMPERATUR TERHADAP MASA GUNA DAN PEMBEBANAN DARURAT TRANSFORMATOR DAYA TESIS DEWANTO INDRA KRISNADI 09 06 57 77 66 FAKULTAS TEKNIK PROGRAM MAGISTER TEKNIK ELEKTRO

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI. memanfaatkan energi kinetik berupa uap guna menghasilkan energi listrik.

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI. memanfaatkan energi kinetik berupa uap guna menghasilkan energi listrik. BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1 Tinjauan Pustaka Pembangkit Listrik Tenaga Uap merupakan pembangkit yang memanfaatkan energi kinetik berupa uap guna menghasilkan energi listrik. Pembangkit

Lebih terperinci

PEMAKAIAN DAN PEMELIHARAAN TRANSFORMATOR ARUS (CURRENT TRANSFORMER / CT)

PEMAKAIAN DAN PEMELIHARAAN TRANSFORMATOR ARUS (CURRENT TRANSFORMER / CT) PEMAKAIAN DAN PEMELIHARAAN TRANSFORMATOR ARUS (CURRENT TRANSFORMER / CT) Oleh : Agus Sugiharto Abstrak Seiring dengan berkembangnya dunia industri di Indonesia serta bertambah padatnya aktivitas masyarakat,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1PengertianTransformator 1 Transformator adalah suatu alat listrik yang dapat memindahkan dan mengubah energy listrik bolak-balik dari satu level ke level tegangan yang lain,

Lebih terperinci

STUDI PERKIRAAN UMUR TRANSFORMATOR DISTRIBUSI 160 kva MENGGUNAKAN METODE TINGKAT TAHUNAN PADA PT.PLN (PERSERO) APJ CIREBON

STUDI PERKIRAAN UMUR TRANSFORMATOR DISTRIBUSI 160 kva MENGGUNAKAN METODE TINGKAT TAHUNAN PADA PT.PLN (PERSERO) APJ CIREBON STUDI PERKIRAAN UMUR TRANSFORMATOR DISTRIBUSI 160 kva MENGGUNAKAN METODE TINGKAT TAHUNAN PADA PT.PLN (PERSERO) APJ CIREBON Anggi Adipriyatna Mahasiswa Jurusan Teknik Elektro Universitas 17 Agustus 1945

Lebih terperinci

TRANSFORMATOR DAYA. Dikumpulkan dalam rangka mengerjakan tugas kelompok, mata kuliah Sistem Transmisi dan Gardu Induk.

TRANSFORMATOR DAYA. Dikumpulkan dalam rangka mengerjakan tugas kelompok, mata kuliah Sistem Transmisi dan Gardu Induk. TRANSFORMATOR DAYA Dikumpulkan dalam rangka mengerjakan tugas kelompok, mata kuliah Sistem Transmisi dan Gardu Induk. Disusun Oleh: 1. Arief Nurrahman (02964) 2. R. Maulana S.H (04156 ) 3. Sandi Sulaiman

Lebih terperinci

TUGAS AKHIR. ANALISA PENGGUNAAN DAN PENYETINGAN RELAI DIFFERENSIAL PADA TRAFO STEP UP 11,5/150 kv di PLTGU BLOK I U.P MUARA KARANG

TUGAS AKHIR. ANALISA PENGGUNAAN DAN PENYETINGAN RELAI DIFFERENSIAL PADA TRAFO STEP UP 11,5/150 kv di PLTGU BLOK I U.P MUARA KARANG TUGAS AKHIR ANALISA PENGGUNAAN DAN PENYETINGAN RELAI DIFFERENSIAL PADA TRAFO STEP UP 11,5/150 kv di PLTGU BLOK I U.P MUARA KARANG Diajukan Guna Melengkapi Sebagian Syarat Dalam mencapai gelar Sarjana Strata

Lebih terperinci

1 BAB I PENDAHULUAN. mungkin memiliki keseimbangan antara sistem pembangkitan dan beban, sehingga

1 BAB I PENDAHULUAN. mungkin memiliki keseimbangan antara sistem pembangkitan dan beban, sehingga 1 BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Teknik tenaga listrik sudah mengalami kemajuan yang cukup signifikan dalam sistem penyaluran tenaga listrik. Namun, masih ada daerah yang masih sulit dijangkau

Lebih terperinci

ANALISA PERHITUNGAN SUSUT TEKNIS DENGAN PENDEKATAN KURVA BEBAN PADA JARINGAN DISTRIBUSI PT. PLN (PERSERO) RAYON MEDAN KOTA

ANALISA PERHITUNGAN SUSUT TEKNIS DENGAN PENDEKATAN KURVA BEBAN PADA JARINGAN DISTRIBUSI PT. PLN (PERSERO) RAYON MEDAN KOTA SINGUDA ENSIKOM VOL. 6 NO.2 /February ANALISA PERHITUNGAN SUSUT TEKNIS DENGAN PENDEKATAN KURVA BEBAN PADA JARINGAN DISTRIBUSI PT. PLN (PERSERO) RAYON MEDAN KOTA Bayu Pradana Putra Purba, Eddy Warman Konsentrasi

Lebih terperinci

1. Menerapkan konsep kelistrikan dan kemagnetan dalam berbagai penyelesaian masalah dan produk teknologi

1. Menerapkan konsep kelistrikan dan kemagnetan dalam berbagai penyelesaian masalah dan produk teknologi perubahan medan magnetik dapat menimbulkan perubahan arus listrik (Michael Faraday) Fluks magnetik adalah banyaknya garis-garis medan magnetik yang menembus permukaan bidang secara tegak lurus GGL induksi

Lebih terperinci

BAB II KAJIAN PUSTAKA. batasan-batasan masalah yang berkaitan erat dengan topik yang sedang diambil.

BAB II KAJIAN PUSTAKA. batasan-batasan masalah yang berkaitan erat dengan topik yang sedang diambil. 6 BAB II KAJIAN PUSTAKA 2.1 Tinjauan Pustaka Berdasarkan topik tugas akhir yang diambil, terdapat beberapa referensi dari penelitian-penelitian yang telah dilakukan sebelumnya guna menentukan batasan-batasan

Lebih terperinci

JURNAL TUGAS AKHIR. Kata kunci : Sistem Proteksi, Beban Lebih, Arus Lebih, Relai Arus Lebih

JURNAL TUGAS AKHIR. Kata kunci : Sistem Proteksi, Beban Lebih, Arus Lebih, Relai Arus Lebih JURNAL TUGAS AKHIR STUDI PENGARUH BEBAN LEBIH TERHADAP KINERJA RELAI ARUS LEBIH PADA TRANSFORMATOR DAYA (studi kasus transformator daya 1 150/20 kv (30 MVA) di Gardu Induk Batu Besar PT. PLN Batam) Susi

Lebih terperinci

BAB II TRANSFORMATOR

BAB II TRANSFORMATOR BAB II TRANSFORMATOR II.1 Umum Transformator atau trafo adalah suatu peralatan listrik yang dapat memindahkan energi listrik atau memindahkan dan mengubah energi listrik bolak-balik dari satu level ke

Lebih terperinci

BAB IV PEMELIHARAAN TRAFO DISTRIBUSI

BAB IV PEMELIHARAAN TRAFO DISTRIBUSI BAB IV PEMELIHARAAN TRAFO DISTRIBUSI 4.1 Pengerian dan Tujuan Pemeliharaan Pemeliharaan peralatan listrik tegangan tinggi adalah serangkaian tindakan atau proses kegiatan untuk mempertahankan kondisi dan

Lebih terperinci

MAKALAH ANALISIS SISTEM KENDALI INDUSTRI Synchronous Motor Derives. Oleh PUSPITA AYU ARMI

MAKALAH ANALISIS SISTEM KENDALI INDUSTRI Synchronous Motor Derives. Oleh PUSPITA AYU ARMI MAKALAH ANALISIS SISTEM KENDALI INDUSTRI Synchronous Motor Derives Oleh PUSPITA AYU ARMI 1304432 PENDIDIKAN TEKNOLOGI DAN KEJURUAN PASCASARJANA FAKULTAS TEKNIK UNIVERSITAS NEGERI PADANG 2013 SYNCHRONOUS

Lebih terperinci

BAB IV PEMBAHASAN. 4.1 Identifikasi Kondisi Kesehatan Transformator Distribusi. awal yang harus dilakukan dalam penentuan kegiatan pemeliharaan Trafo

BAB IV PEMBAHASAN. 4.1 Identifikasi Kondisi Kesehatan Transformator Distribusi. awal yang harus dilakukan dalam penentuan kegiatan pemeliharaan Trafo BAB I PEMBAHASAN 4.1 Identifikasi Kondisi Kesehatan Transformator Distribusi Identifikasi kondisi kesehatan Transformator distribusi merupakan langkah awal yang harus dilakukan dalam penentuan kegiatan

Lebih terperinci

L/O/G/O RINCIAN PERALATAN GARDU INDUK

L/O/G/O RINCIAN PERALATAN GARDU INDUK L/O/G/O RINCIAN PERALATAN GARDU INDUK Disusun Oleh : Syaifuddin Z SWITCHYARD PERALATAN GARDU INDUK LIGHTNING ARRESTER WAVE TRAP / LINE TRAP CURRENT TRANSFORMER POTENTIAL TRANSFORMER DISCONNECTING SWITCH

Lebih terperinci

Pemeliharaan Trafo Distribusi

Pemeliharaan Trafo Distribusi Pemeliharaan Trafo Distribusi TRANSFORMATOR TRANSFORMATOR SEBAGAI SALAH SATU PERALATAN LISTRIK PADA DASARNYA DALAM PENGOPERASIANYA MEMBUTUHKAN LEBIH SEDI- KIT PEMELIHARAAN BILA DI- BANDINGKAN PERALATAN

Lebih terperinci

BAB II TRANSFORMATOR

BAB II TRANSFORMATOR 7 BAB II TRANSFORMATOR 2.1 Umum Transformator merupakan suatu alat listrik statis yang dapat memindahkan dan mengubah tegangan dan arus bolak-balik dari suatu atau lebih rangkaian listrik ke rangkaian

Lebih terperinci

Makalah Seminar Kerja Praktek SISTEM PROTEKSI PADA TRANSFORMATOR TENAGA GAS TURBINE GENERATOR 1.1 PLTGU TAMBAK LOROK

Makalah Seminar Kerja Praktek SISTEM PROTEKSI PADA TRANSFORMATOR TENAGA GAS TURBINE GENERATOR 1.1 PLTGU TAMBAK LOROK Makalah Seminar Kerja Praktek SISTEM PROTEKSI PADA TRANSFORMATOR TENAGA GAS TURBINE GENERATOR 1.1 PLTGU TAMBAK LOROK Mahasiswa dan Dionisius Vidi N., Karnoto, ST, MT. Dosen Jurusan Teknik Elektro, Fakultas

Lebih terperinci

BAB IV PEMBAHASAN. Gardu beton (tembok) Gardu kios Gardu portal

BAB IV PEMBAHASAN. Gardu beton (tembok) Gardu kios Gardu portal BAB IV PEMBAHASAN 4.1 Pemeliharaan Bangunan Gardu Pada sistem distribusi kita ketahui terdiri dari beberapa macam gardu distribusi yang digunakan oleh PLN : Gardu beton (tembok) Gardu kios Gardu portal

Lebih terperinci

Zuhal, Dasar Teknik Tenaga Listrik dan Elektronika Daya, Jakarta, 1995,

Zuhal, Dasar Teknik Tenaga Listrik dan Elektronika Daya, Jakarta, 1995, 5 BAB II TINJAUAN PUSTAKA 2.1 Transformator Transformator merupakan suatu peralatan listrik elektromagnetik statis yang berfungsi untuk memindahkan dan mengubah daya listrik dari suatu rangkaian listrik

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dijelaskan tentang gangguan pada sistem tenaga listrik, sistem proteksi tenaga listrik, dan metoda proteksi pada transformator daya. 2.1 Gangguan dalam Sistem Tenaga

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Pengertian Gardu Distribusi Pengertian umum Gardu Distribusi tenaga listrik yang paling dikenal adalah suatu bangunan gardu listrik berisi atau terdiri dari instalasi Perlengkapan

Lebih terperinci

Kerja Praktek PT.Petrokimia Gresik 1

Kerja Praktek PT.Petrokimia Gresik 1 Makalah seminar kerja praktek PEMELIHARAAN TRANSFORMATOR DAYA GARDU INDUK 150 KV PT.PETROKIMIA GRESIK Joko Susilo, Abdul Syakur Jurusan Teknik Elektro, Fakultas Teknik, Universitas Diponegoro Jl. Prof.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian Transformator Transformator adalah suatu alat listrik yang dapat memindahkan dan mengubah energi listrik bolak-balik dari satu level ke level tegangan yang lain,

Lebih terperinci

BAB II TRANSFORMATOR. Transformator merupakan suatu alat listrik statis yang mampu mengubah

BAB II TRANSFORMATOR. Transformator merupakan suatu alat listrik statis yang mampu mengubah BAB II TRANSFORMATOR II. UMUM Transformator merupakan suatu alat listrik statis yang mampu mengubah maupun untuk menyalurkan energi listrik arus bolak-balik dari satu atau lebih rangkaian listrik ke rangkaian

Lebih terperinci

BAB II DASAR TEORI. gesekan antara moekul-molekul cairan satu dengan yang lain. Suatu cairan yang

BAB II DASAR TEORI. gesekan antara moekul-molekul cairan satu dengan yang lain. Suatu cairan yang BAB II DASAR TEORI 2.1. Definisi Viskositas Viskositas dapat dinyatakan sebagai tahanan aliran fluida yang merupakan gesekan antara moekul-molekul cairan satu dengan yang lain. Suatu cairan yang mudah

Lebih terperinci

BAB IV PERAWATAN TRANSFORMATOR TENAGA 150 KV DI GARDU INDUK APP DURIKOSAMBI

BAB IV PERAWATAN TRANSFORMATOR TENAGA 150 KV DI GARDU INDUK APP DURIKOSAMBI BAB IV PERAWATAN TRANSFORMATOR TENAGA 150 KV DI GARDU INDUK APP DURIKOSAMBI 4.1 Trafo Step Up 150 kv PT. PLN Durikosambi Gardu Induk Durikosambi berjenis gardu induk Switchyard, yakni gardu induk yang

Lebih terperinci

BAB III PENGOLAHAN DATA

BAB III PENGOLAHAN DATA BAB III PENGOLAHAN DATA 3.1 Gambaran Umum PT.PLN (Persero) Disjaya dan Tangerang PT. PLN (Persero) Disjaya dan Tangerang merupakan salah satu unit induk pelaksana distribusi di PT. PLN Direktorat Operasi

Lebih terperinci

Transformator adalah suatu alat listrik yang dapat memindahkan dan mengubah energi listrik dari satu

Transformator adalah suatu alat listrik yang dapat memindahkan dan mengubah energi listrik dari satu TRANSFORMATOR 1.PengertianTransformator Transformator adalah suatu alat listrik yang dapat memindahkan dan mengubah energi listrik dari satu atau lebih rangkaian listrik ke rangkaian listrik yang lain,

Lebih terperinci

Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG

Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG 1. SIKLUS PLTGU 1.1. Siklus PLTG Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG Proses yang terjadi pada PLTG adalah sebagai berikut : Pertama, turbin gas berfungsi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 7 BAB II LANDASAN TEORI 2.1 Transformator Trafo atau yang sering bisa disebut dengan Transformator adalah alat yang digunakan untuk menaikkan atau menurunkan tegangan bolak - balik (AC). Transformator

Lebih terperinci