BAB III LANDASAN TEORI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB III LANDASAN TEORI"

Transkripsi

1 BAB III LANDASAN TEORI 3.1. Pengertian Hidrolik Bertahun-tahun lalu manusia telah menemukan kekuatan dari perpindahan air, meskipun mereka tidak mengetahui hal tersebut merupakan prinsip hidrolik. Sejak pertama digunakan prinsip ini, mereka terus menerus mengaplikasikan prinsip ini untuk banyak hal untuk kemajuan dan kemudahan umat manusia. 3.2 Prinsip Hidrolik Hidrolik adalah ilmu pergerakan fluida, tidak terbatas hanya pada fluida air. Jarang dalam keseharian kita tidak menggunakan prinsip hidrolik, tiap kali kita minum air, tiap kali kita menginjak rem kita mengaplikasikan prinsip hidrolik. Untuk mengerti prinsip hidrolik kita harus mengetahui perhitungan dan beberapa hukum yang berhubungan dengan prinsip hidrolik. Area adalah ukuran permukaan (in 2, m 2 ). Force adalah jumlah dorongan atau tarikan pada objek (lb, kg) Unit pressure adalah jumlah kerkuatan dalam satu unit area (lb/in 2, Psi). Stroke (panjang) adalah diukur berdasarkan jarak pergerakan piston dalam silinder (in, m). Volume diukur berdasarkan jumlah dalam in 3, m 3 yang dihitung berdasarkan jumlah fluida dalam reservoir atau dalam pompa atau pergerakan silinder.

2 Fluida yang digunakan dalam bentuk liquid atau gas. Fluida yang digunakan dalam sistem hidrolik umumnya oli ALIRAN FLUIDA Definisi Fluida gaya yang berubah bentuk secara kontinu (terusmenerus) bila terkena tegangan geser, betapapun kecilnya tegangan geser itu. Gaya geser adalah komponen gaya yang menyinggung permukaan, dan gaya ini yang dibagi dengan luas tersebut adalah tegangan geser rata-rata pada permukaan itu. Tegangan geser pada suatu titik adalah nilai batas perbandingan gaya geser terhadap luas dengan berkurangnya luas hingga menjadi titik tersebut. Dinamika fluida membahas tentang gerak fluida.perlu kita ingat bahwa fluida adalah suatu sistem dengan distribusi massa yang kontiniu,jadi merupakan suatu medan.untuk menangani permasalahan dinamika fluida menggunakan hukum-hukum dasar mekanika (Hukum Newton untuk persoalan yang non relativistik) Lagrange( ) mengembangkan metoda dengan mengikuti gerak tiap partikel dalam fluida. Jadi tiap partikel mempunyai parameter berupa posisi dan waktu (x,y,z,t). cara lain yang lebih sederhana dikembangkan oleh Euler ( ) yang lazim dipakai dalam menangani persoalan dinamika fluida, yaitu dengan memandang fluda sebagai medan rapat massa dan medan vektor kecepatan. jadi gerak fluida di suatu titk (x,y,z) pada saat dinyatakan dengan rapat massanya r (x, y, z) dan vektor kecepatannya. Untuk memudahkan pembahasan,terlebih dahulu akan di bahas tentang klasifikasi aliran fluida : Aliran fluida tunak (stedy) dan tak tunak (non-stedy,bergantung wak tu). Pada aliran tunak parameter-parameter aliran dan bersifat tetap dan tak bergantung waktu jadi hanya bergantung posisi saja. Sedangkan pada

3 aliran tak tunak baik r maupun secara umum bergantung pada parameter waktu t dan posisi (X,Y,Z). 1. Aliran rotasional dan tak rasional. Aliran fluida dikatakan rotasional bila elemen fluida disuatu titik mempunyai momentum sudut terhadap titik itu,dan aliran dikatakan tak rptasional bila elemen fluida tersebut tak memiliki momentum sudut terhadap titik tersebut.secara praktis rotasional atau Tak rotasional ini dapat dideteksi dengan meletakkan sebuah kincir kecil dititik tersebut dengan arah-arah aliran.bila kincir berputar berarti aliran bersifat rasional,dan bila tidak berarti tak rasional. 2. Aliran kompresibel (termampatkan) tak kompresibel (tak termampatkan). Bila kerapatan massa fluida berubah terhadap perubahan tekanan fluida maka dikatakan aliran bersifat kompresibel,sedang bila praktis tak berubah terhadap perubahan tekanan yang ada dalam sistem,maka aliran itu dikatakan bersifat tak kompresibel. Zat cair umumnya dapat dianggap mengalir secara tak kompresibel sedang gas secara umum dipandang mengalir secara kompresibel.walaupu kasus-kasus tertentu mungkin aliran gas dapat pula dipandang sebagai tak kompresibel,yaitu bila perubahan kerapatan massa dalam sistem yang ditinjau praktis dapat diabaikan. 3. Aliran kental (viscous) dan tak kental (non viscous ). Suatu aliran dikatakan kental bila ketika terjadi gerak relatif antar berbagai lapisan (layer) yang bergerak sejajar,terjadi gesekan internal sehingga terjadi desipasi energi.bila gesekan internal ini tak terjadi maka aliran tersebut sebagai aliran tak ke internal in dinyatakan dalam parameter viskositas.

4 Pada aliran tunak,didalam aliran didapat garis-garis alir atau garis arus yang disebut streamline. Partkel-partikel digaris arus ini bergerak mengikuti garis arus tersebut.kecepatan digaris yang sama berbedabeda, bergantung pada penampang lintang tempat tersebut tetapi semua partikel/molekul yang lewat dititk yang sama kecepatannya sama(tidak bergantung waktu, hanya bergantung tempat). Sifat Fluida Ideal: - tidak dapat ditekan (volume tetap karena tekanan) - dapat berpindah tanpa mengalami gesekan - mempunyai aliran stasioner (garis alirnya tetap bagi setiap partikel) - kecepatan partikel-partikelnya sama pada penampang yang sama TEKANAN FLUIDA Definisi Tekanan Tekanan dalam mekanika benda titik unsur dinamika yang utama adalah gaya, maka dalam mekanika fluida unsur itu adalah tekanan.tekanan adalah gaya yang dialami oleh suatu titk pada suatu permukaan fluida persatuan luas dalam arah tegak lurus permukaan tersebut. Secara matematik tekanan P didefinisikan melalui hubungan. df=pda. dimana df adalah gaya yang dialami oleh elemen luas da dari permukaan fluida. Secara mikroskopik gaya ini merupakan pertambahan momentum per satuan waktu yang disebabkan oleh tumbukan molekul-molekul fluida di permukaan tersebut. Permukaan ini bisa berupa permukaan batas antara fluida dengan wadahnya, tetapi ia bisa pula berbentuk permukaan imajiner yang kita buat pada fluida.tekanan ini merupakan besaran skalar, bukan suatu besaran vektor seperti halnya gaya. Bendalir akan mengenakan daya normal terhadap sebarang sempadan yang bersentuhan dengannya. Oleh sebab sempadan ini mungkin sangat

5 luas dan daya itu pula mungkin berbeda-beda dari satu tempat ke satu tempat, maka lebih mudah jika analisis dibuat menggunakan ungkapan tekanan, p. Tekanan bisa dirumuskan sebagai : Tekanan = Daya Luas atau P = lim = F = df A 0 A da ( ) Ref. : MEKANIKA FLUIDA ( 8:41 ) dengan F daya normal yang bertindak terhadap permukaan A. Dalam rumus ini perlu diingatkan bahawa luas dalam Pers. (3.1) itu ialah luas area tempat daya dikenakan. Satuan untuk tekanan ialah N/m2 atau seringkali dinyatakan sebagai Pascal, pa. Kadangkala tekanan juga disebut sebagai bar di dalam unit SI yang membawa maksud1 bar = 105 Nm². Jika daya yang dikenakan pada setiap unit luas sempadan adalah sama, tekanan dengan itu dinamai tekanan seragam. Pascal menyatakan bahawa magnitud tekanan pada suatu titik di dalam bendalir statik adalah sama dari semua arah. Harus diingat di sini bahwa tekanan adalah berbentuk scalar, yaitu ia mempunyai magnitud saja. Kita boleh buktikan kenyataan Pascal ini dengan mengambil satu elemen bendalir yang berbentuk taper seperti gambar dibawah ini. Gambar 3.1 Elemen berbentuk taper dalam bendalir statik.

6 Ini adalah gambar elemen kecil bendalir dalam bentuk taper dengan titik P terletak dalam bendalir statik. Kita dapat mengaitkan hubungan di antara tiga tekanan px dalam arah x, py dalam arah y dan pn dalam arah normal terhadap permukaan condong. Kalau diperhatikan gambar ini, terdapat lima permukaan pada elemen tersebut. Walau bagaimanapun, kita hanya akan menumpukan perhatian kepada tiga permukaan saja. Ini adalah kerana dua permukaan lagi adalah setara nilai tekanannya sehingga kedua-dua tekanan pada permukaan tersebut menghapuskan di antara satu sama lain. Tiga permukaan tersebut dikaitkan dengan tiga daya yang dilakarkan. Bendalir adalah dalam keadaan diam. Oleh karena itu, kita ketahui bahwa tidak berlaku sembarang daya, dan kita juga tahu bahwa semua daya juga bertindak pada sudut tepat terhadap permukaan, yaitu: Fn bertindak serenjang terhadap permukaan ABCD, Fx bertindak serenjang terhadap permukaan ABFE, dan Fy bertindak serenjang terhadap permukaan FECD. Dari rumus tekanan, diketahui bahwa daya adalah bersamaan dengan hasil arah tekanan dengan luas permukaan tempat daya itu bertindak, atau dalam kesamaan daya Fn bisa ditulis : Fn = pn A. Oleh sebab daya Fn ini bertindak pada permukaan area ABCD, maka itu bisa dipisahkan kepada daya dalam arah x dan y seperti mana yang ditunjukan sebagai garis putus-putus dalam gambar HUKUM BERNOULLI Hukum ini diterapkan pada zat cair yang mengalir dengan kecepatan berbeda dalam suatu pipa. Persamaan Bernoulli. Salah satu persamaan fundamental dalam persoalan dinamika fluida adalah persamaan Bernoulli.Persamaan ini memberi hubungan antara tekanan,kecepatan dan ketinggian pada titik

7 titik sepanjang garis alir.penurunan persamaan Bernoulli dapat dilakukan dengan menggunakan hukum kekekalan energi,dalam hal ini kerja total (net-work) sama dengan perubahan energi mekanik total yaitu perubahan energi kinetik ditambah perubahan energi potensial.fluida dinamika yang memenuhi hukum Bernoulli adalah fluida ideal yang karakteristiknya ;mengalir dengan garis-garis arus atau aliran tunak,tak kompresibel dan tak kental. Prinsip Bernoulli: v1² + P1 + z 1 = v2² + P2 ( ) 2g 2g Ref. : MEKANIKA FLUIDA ( 8:100 ) Cepat aliran (debit air) Cepat aliran (Q) adalah volume fluida yang dipindahkan tiap satuan waktu. Q = A. V ( ) A1. v1 = A2. v2 v = kecepatan fluida (m/det). A = luas penampang yang dilalui fluida. sumber : MEKANIKA FLUIDA ( 8:207 ) 3.6. HUKUM PASCAL Hukum Pascal yang telah terbukti bisa dikembangkan lagi. Dan Pascal jugalah yang telah menyatakan bahwa perubahan tekanan akan disebarkan melalui bendalir dengan magnitud yang sama ke semua tempat di dalam sesuatu sistem tertutup. Tetapi Hukum ini hanya sah jika bendalir tersebut berada di dalam sistem tertutup saja.

8 Gambar 3.2 Hidrolik Jika ditekan balok A, akan menyebabkan daya dikenakan pada bendalir permukaan A. Daya ini jika dibahagikan dengan luas permukaan A, magnitud tekanan p1 akan anda perolehi. Tekanan p1 ini akan disebarkan ke keseluruhan bendalir dalam sistem yang dalirkan. Ini bermakna bahwa pada permukaan B, magnitud tekanan adalah p1 atau bisa ditulis p1 = p2 Seterusnya, melalui rumus tekanan, bisa ditulis. F1 = F2 A1 A2 Sehingga, F2 = F1. A2 A1 Ref. : MEKANIKA FLUIDA ( 8:200 ) 3.8. Aliran fluida dalam pipa. Suatu aliran fluida dalam pipa akan mempertimbangkan kerugian yang disebabkan oleh perubahan penampampang, belokan, katup, akibat kekasaran permukaan pipa, sebagian besar aplikasi aliran merupakan turbulen, persamaan Darcy Weisbach menghubungakan kerugian karena gesekan dengan laju aliran di dalam pipa dan faktor gesekan ditentukan oleh diagram Moody. Persamaan Darcy Weisbach : h ƒ = ƒ L V² (3.7.1 ) D 2 g Ref. : MEKANIKA FLUIDA ( 8:202 )

9 h ƒ = rugi-rugi gesek. L = panjangpipa. ƒ = koefisien gesekan. V = kecepatan rata-rata. D = diameter dalam pipa. g = grafitasi (asumsi 9,8 ). hƒ ialah kerugian gesek, atau jatuh-garis-gradien-hidrolik, dalam panjang pipa L, yang mempunyai garis-tengah-dalam D dan kecepatan rata-rata V. hƒ mempunyai dimensi panjang dan dinyatakan dalam foot - pound per pound atau meter-newton per newton. Faktor gesekan ƒ ialah suatu faktor tanpa-dimensi yang diperlukan untuk membuat persamaan tersebutmemberikan kerugian harga yang benar. Semua besaran dalam persamaan ( ) kecuali ƒ dapat diukur secara eksperimental. Peralatannya yang khusus ditunjukan dalam Gb dengan mengukur debit dan garis-tengah-dalam, maka kita dapat menghitung kecepatan rata-rata. Kerugian gesekan atau kerugian tinggi-tekan h ƒ diukur dengan manometer diferensial yang dipasang pada lubang pizometer di penampang 1 dan penampang 2, yang berjarak antara L. Gambar 3.3.Tatanan skeperimentasi untuk menentukan kerugian-tinggi-tekan di dalam pipa

10 Eksperimentasi menunjukan kenyataan sebagai berikut dalam aliran turbulen : 1. Kerugian tinggi-tekan berbanding lurus dengan panjang pipa. 2. Kerugian tinggi-tekan hanpir sebanding dengan kuadrat kecepatan. 3. Kerugian tinggi-tekan hampir berbanding terbalik dengan garistengah. 4. Kerugian tinggi-tekan bergantung pada kekasaran permukaan dinding pipa sebelah dalam. 5. Kerugian tinggi-tekan bergantung pada sifat-sifat fluida kerapatan dan viscositas. 6. Kerugian tinggi-tekan tidak tergantung pada tekanan. Cairan yang mengalir didalam pipa biasanya tidak mempunyai permukaan bebas. Cairan itu akan dibawah tekanan, diatas atau dibawah tekanan atmosfir, dan tekanan ini dapat berubah-ubah sepanjang pipa. Kehilangan energi pada aliran dalam pipa disebabkan oleh : a) Perubahan penampang aliran atau pada tikungan, atau gangguangangguan lain yang mengganggu aliran yang normal ( kerugian kecil / minor ). b) Tahanan gesekan pada aliran ( kerugian besar / mayor ). Faktor gesekan ƒ harus dipilih sedemikian rupa hingga persamaan (3.7.1) memberikan kerugian gesekan atau kerugian tinggi-tekan secara benar, maka dari itu ƒ tidak dapat meruapkan konstanta tetapi harus bergantung pada kecepatan V, garis-tengah D, kecepatan, viskositas, dan ciri-ciri tertentu bagi kekasaran dinding yang ditandai dengan,, dan m, dimana menunjukan ukuran tonjolan kekasaran dan mempunyai

11 dimensi panjang, menunjukan tatanan atau jarak antara elemen-elemen kekasaran dan juga mempunyai dimensi panjang, dan m ialah faktor bentuk, yang bergantung pada bentuk masing-masingelemen kekasaran dan tidak berdimensi. Suku ƒ, merupakan konstanta sederhana, ternyata tergantung pada tujuh besaran : ƒ = ƒ ( V, D,,,, m ) ( ) Ref. : MEKANIKA FLUIDA ( 8:203 ) Karena ƒ adalah faktor tanpa-dimensi, maka ƒ harus bergantung pada pengelompokan besaran-besaran ini dalam parameter-parameter tanpa-dimensi. Untuk pipa licin = m = 0, sehingga ƒ hanya bergantung pada empat besaran yang pertama. Besaran-besaran ini hanya dapat disusun dala satu cara untuk membuatnya tanpa-dimensi, yaitu VD /, yang merupakan bilangan Reynolds, untuk pipa kasar suku-suku dan dapat dibuat tanpa-dimensi dengan membaginya dengan D. Oleh karena itu,, secara umum. ƒ = ƒ ( VD /, /D, /D, m ) ( ) Ref. : MEKANIKA FLUIDA ( 8:203 ) Bukti hubungan ini terletak pada eksperimentasi. Untuk pipa yang halu gambar grafik semua hail eksperimen menunjukan hubungan fungsional tersebut, dengan pancaran ±5 persen. Gambar grafik faktor gesekan terhadap bilangan Reynolds pada diagram log-log dinamakan digram stanton. Blasius yang untuk pertama kali menkorelasikan eksperimen-eksperimen pipa licin dalam aliran turbulen, menyajikan hasilhasil dengan suatu rumus empirik yang berlaku sampai kurang-lebih R = Rumus Blasius tersebut adalah :

12 ƒ = 0,316 ( ) R ¼ Ref. : MEKANIKA FLUIDA ( 8:203 ) Untuk pipa kasar suku /D disebut kekasaran relatif. Nikuradse membuktikan kebenaran penertian kekerasan relatif dengan pengujianpengujiannya pada pipa-pipa yang dikasarkan oleh pasir. Beliau menggunakan tiga ukuran pipa dan merekatkan butir-butir pasir ( = garis-tengah butir pasir ) yang berukuran praktis konstan pada dinding sebelah dalam sehingga beliau mempunyai nilai /D yang sama untuk pipa-pipa yang berbeda. Eksperimen-eksperimen ini Gb. ( 3.5 ) menunjukan bahwa untuk satu nilai /D kurfa ƒ, R tersambung secara lancar bearapa pun garis-tengah pipa yang sebenarnya. Pengujianpengujian ini tidak memungkinkan variasi /D atau m tetapi membuktikan berlakunya persamaan : Untuk satu jenis kekerasan. ƒ = ƒ ( R, /D ) Karena sangat rumitnya permukaan yang kasar secara alamiah, maka sebagian besar kemajuan dalam hubungan-hubungan dasar telah berkembang seputar pipa-pipa yang dikasarkan secara buatan, Moody telah membuat salah satu diagram yang paling mudah digunakan untuk menentukn faktor gesekan dalam pipa-perdagangan yang bersih. Diagram ini Gb. ( 3.6 ) menjadi dasar peerhitungan aliran dalam Bab berikutnya. Bagan ini adalah suatu diagram Stanton yang menyatakan ƒ sebagai fungsi kekasaran relatif dan bilangan Reynolds. Nilai kekasaran mutlak pipa-pipa perdagangan ditentukan dengan eksperimen, disini ƒ dan R ditemukan dan ditentukan rumus Colebrook yang sangat mendekati kecendrungan alamiah pipa. Harga-harga ini tertera di dalam tabel disudut

13 kiri-bawah Gb. (3,6) Rumus Colebrook memberi bentuk bentuk kepada kurva-kurva /D = konstan dalam daerah. Rumus Colebrook : 1 = -0,869 Ln ( /D + 2,523 (3.7.5) ƒ 3,7 R ƒ Ref. : MEKANIKA FLUIDA ( 8:203 ) Gambar ( 3,5 ) Percobaan-percobaan Nikoradse denganpipa-pipa yang dikasarkan dengan pasir.

14 Garis lurus yang ditandai aliran laminar dalam Gb. (3,5) ialah persamaan Hargen Poiseuille. V = pr ² 8 L (3.7.6) Ref. : MEKANIKA FLUIDA ( 8:204 ) Persamaan tersebut dapat diubah menjadi persamaan (3.7.7) dengan p = h ƒ dan dengan menyelesaikan untuk memperoleh h ƒ, adalah sebagai berikut : h ƒ = V8 L = 64 L V = 64 L V² r² D D 2g DV/ D 2g atau h ƒ = ƒ L V² = 64 L V² D 2g R D 2g sehingga ƒ = 64 R Persamaan tersebut yang bergambar garis lurus kemiringan --- dengan 1 pada diagram log-log, dapat digunakan untuk menyelesaikan soal-soal aliran laminar di dalam pipa. Persamaan ini berlaku untuk semua kekasaran, karena kerugian tingi-tekan dalam aliran laminar tidak bergantung pada kekasaran dinding. Bilangan Reynolds kritis kurang-lebih 2.000, dan daerah kritis, dimana aliran dapat laminar atau turbulen, adalah kurang-lebih dari sampai Kiranya perlu diperhatikan bahwa kurva-kurva kekasaran-relatif /D = 0,001 dan lebih kecil mendekati kurva pipa licin dengan mengecilnya bilangan Reynolds. Hal ini dapat diterangkan dengan adanya selaput laminar pada dinding pipa yang berkurang tebalnya meningkatnya bilangan Reynolds. Untuk daerah bilangan Reynolds tertentu dalam daerah peralihan, selaput tersebut menutup tonjolan kekasaran yang

15 kecil-kecil sepenuhnya, dan pipa mempunyai faktor gesekan yang sama dengan faktor gesekan pipa licin. Untuk bilangan Reynolds yang lebih besar, tonjolan-tonjolan menembus selaput laminar, dan tiap tonjolan mengakibatkan turbulensi ekstra yang memperbesar kerugian tinggitekan. Untuk daerah yang bertanda turbulen penuh, pipa kasar, tebal selaput terebut dapat diabaikan dalam perbandingn dengan tinggi tonjolan kekasaran, dan tiap tonjolan menyumbang kepada turbulensi sepenuhnya.

16 Gambar ( 3,6 ) Diagram Moody

17 Dalam daerah ini viskositas tidak mempengaruhi kerugian gesekan atau tinggi-tekan, sepaerti melihat dari kenyataan bahwa faktor gesekan tidak berubah dengan berubahnya bilangan Reynolds. Kerugian dalam daerah ini mengikuti hukum V², yaitu kerugian berbanding lurus dengan kuadrat kecepatan Keuntungan Mekanik Dapat kita lihat ilustrasi dari keuntungan mekanik, ketika gaya 50 lbs dihasilkan oleh piston dengan luas permukaan 2 in 2, tekanan fluida dapat menjadi 25 psi. dengan tekanan 25 psi pada luas permukaan 10 2 in dapat dihasilkan gaya sebesar 250 lbs Komponen Sistem Hidrolik gambar 3. sistem hidrolik

18 Motor Hidrolik Motor hidrolik berfungsi untuk mengubah energi tekanan cairan hidrolik menjadi energi mekanik Pompa Hidrolik. Pompa umumnya digunakan untuk memindahkan sejumlah volume cairan yang digunakan agar suatu cairan tersebut memiliki bentuk energi Katup (Valve) Katup adalah alat kontrol atau pengendali suatu aliran fluida, pada sistem dibedakan atas fungsi, disain dan cara kerja katup Perawatan Sistem Hidrolik Perawatan dari sistem hidrolik, memerlukan penggunaan fluida hidrolik yang layak, pemilihan tube dan seal yang layak. Dan kita harus dapat mengetahui bagaimana pengecekan untuk kebersihan nya yang layak. Perbaikan pada sistem hidrolik, adanya satu prosedur perawatan dilakukan pada mekanik hidrolik. Sebelum perbaikan dimulai, spesifikasi tipe fluida harus diketahui. warna dari fluida pada sistem dapat juga digunakan sebagai penentu dari tipe fluida. Perawatan efektif dari sistem hidrolik yang diperlukan adalah melihat kelayakan seal, tube, selang yang digunakan. Untuk sistem hidrolik (3000 psi) digunakan tube stainless steel, dan untuk sistem hidrolik tekanan rendah dapat digunakan tube dari alumunium alloy.

19 3.11. Keuntungan Hidrolik Sistem hidrolik banyak memiliki keuntungan. Sebagai sumber kekuatan untuk banyak variasi pengoperasian. Keuntungan sistem hidrolik antara lain: a. Ringan. b. Mudah dalam pemasangan. c. Sedikit perawatan. d. Sistem hidrolik hampir 100 % efisien, bukan berarti mengabaikan terjadinya gesekan fluida.

MEKANIKA FLUIDA A. Statika Fluida

MEKANIKA FLUIDA A. Statika Fluida MEKANIKA FLUIDA Fluida atau zat alir adalah zat yang dapat mengalir. Zat cair dan gas adalah fluida, jelas bahwa bukan benda tegar, sebab jarak antara dua partikel di dalam fluida tidaklah tetap. Molekul-molekul

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi Fluida

BAB II DASAR TEORI. 2.1 Definisi Fluida BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antarmolekul

Lebih terperinci

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3 BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

Fluida atau zat alir adalah zat yang dapat mengalir. Zat cair dan gas adalah fluida. Karena jarak antara dua partikel di dalam fluida tidaklah tetap.

Fluida atau zat alir adalah zat yang dapat mengalir. Zat cair dan gas adalah fluida. Karena jarak antara dua partikel di dalam fluida tidaklah tetap. Fluida Fluida atau zat alir adalah zat yang dapat mengalir. Zat cair dan gas adalah fluida. Karena jarak antara dua partikel di dalam fluida tidaklah tetap. Molekul-moleku1di dalam fluida mempunyai kebebasan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi fluida

BAB II DASAR TEORI. 2.1 Definisi fluida BAB II DASAR TEORI 2.1 Definisi fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Definisi Fluida Aliran fluida atau zat cair (termasuk uap air dan gas) dibedakan dari benda padat karena kemampuannya untuk mengalir. Fluida lebih mudah mengalir karena ikatan molekul

Lebih terperinci

Losses in Bends and Fittings (Kerugian energi pada belokan dan sambungan)

Losses in Bends and Fittings (Kerugian energi pada belokan dan sambungan) Panduan Praktikum Fenomena Dasar 010 A. Tujuan Percobaan: Percobaan 5 Losses in Bends and Fittings (Kerugian energi pada belokan dan sambungan) 1. Mengamati kerugian tekanan aliran melalui elbow dan sambungan.

Lebih terperinci

KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa

KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa ALIRAN STEDY MELALUI SISTEM PIPA Persamaan kontinuitas Persamaan Bernoulli

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1. Tekanan Atmosfer Tekanan atmosfer adalah tekanan yang ditimbulkan oleh bobot udara di atas suatu titik di permukaan bumi. Pada permukaan laut, atmosfer akan menyangga kolom air

Lebih terperinci

Aliran pada Saluran Tertutup (Pipa)

Aliran pada Saluran Tertutup (Pipa) Aliran pada Saluran Tertutup (Pipa) Pipa adalah saluran tertutup yang biasanya berpenampang lingkaran yang digunakan untuk mengalirkan fluida dengan tampang aliran penuh (Triatmojo 1996 : 25). Fluida yang

Lebih terperinci

ρ =, (1) MEKANIKA FLUIDA

ρ =, (1) MEKANIKA FLUIDA MEKANIKA FLUIDA PENDAHULUAN Zat yang tersebar di alam dibedakan dalam tiga keadaan (fase), yaitu fase padat, cair dan gas. Beberapa perbedaan di antara ketiganya adalah: 1) Fase padat, zat mempertahankan

Lebih terperinci

Panduan Praktikum 2012

Panduan Praktikum 2012 Percobaan 4 HEAD LOSS (KEHILANGAN ENERGI PADA PIPA LURUS) A. Tujuan Percobaan: 1. Mengukur kerugian tekanan (Pv). Mengukur Head Loss (hv) B. Alat-alat yang digunakan 1. Fluid Friction Demonstrator. Stopwatch

Lebih terperinci

KEHILANGAN HEAD ALIRAN AKIBAT PERUBAHAN PENAMPANG PIPA PVC DIAMETER 12,7 MM (0,5 INCHI) DAN 19,05 MM (0,75 INCHI).

KEHILANGAN HEAD ALIRAN AKIBAT PERUBAHAN PENAMPANG PIPA PVC DIAMETER 12,7 MM (0,5 INCHI) DAN 19,05 MM (0,75 INCHI). KEHILANGAN HEAD ALIRAN AKIBAT PERUBAHAN PENAMPANG PIPA PVC DIAMETER 12,7 MM (0,5 INCHI) DAN 19,05 MM (0,75 INCHI). Tugas Akhir, Jurusan Teknik Mesin, Fakultas Teknologi Industri Universitas Gunadarma,,2013

Lebih terperinci

Klasisifikasi Aliran:

Klasisifikasi Aliran: Klasisifikasi Aliran: 1) Aliran Invisid dan Viskos 2) Aliran kompresibel dan tak kompresible 3) Aliran laminer dan turbulen 4) Aliran steady dan unsteady 5) Aliran seragam dan tak seragam 6) Aliran satu,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu alat atau mesin yang digunakan untuk memindahkan cairan dari suatu tempat ke tempat yang lain melalui suatu media perpipaan

Lebih terperinci

BAB FLUIDA. 7.1 Massa Jenis, Tekanan, dan Tekanan Hidrostatis

BAB FLUIDA. 7.1 Massa Jenis, Tekanan, dan Tekanan Hidrostatis 1 BAB FLUIDA 7.1 Massa Jenis, Tekanan, dan Tekanan Hidrostatis Massa Jenis Fluida adalah zat yang dapat mengalir dan memberikan sedikit hambatan terhadap perubahan bentuk ketika ditekan. Yang termasuk

Lebih terperinci

MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA

MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA 13321070 4 Konsep Dasar Mekanika Fluida Fluida adalah zat yang berdeformasi terus menerus selama dipengaruhi oleh suatutegangan geser.mekanika fluida disiplin ilmu

Lebih terperinci

BAB I PENDAHULUAN. 1 Universitas Indonesia. Analisa aliran berkembang..., Iwan Yudi Karyono, FT UI, 2008

BAB I PENDAHULUAN. 1 Universitas Indonesia. Analisa aliran berkembang..., Iwan Yudi Karyono, FT UI, 2008 BAB I PENDAHULUAN 1.1 LATAR BELAKANG Suatu sistem transfer fluida dari suatu tempat ke tempat lain biasanya terdiri dari pipa,valve,sambungan (elbow,tee,shock dll ) dan pompa. Jadi pipa memiliki peranan

Lebih terperinci

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS 2.1 Konsep Dasar Perpindahan Panas Perpindahan panas dapat terjadi karena adanya beda temperatur antara dua bagian benda. Panas akan mengalir dari

Lebih terperinci

ALIRAN PADA PIPA. Oleh: Enung, ST.,M.Eng

ALIRAN PADA PIPA. Oleh: Enung, ST.,M.Eng ALIRAN PADA PIPA Oleh: Enung, ST.,M.Eng Konsep Aliran Fluida Hal-hal yang diperhatikan : Sifat Fisis Fluida : Tekanan, Temperatur, Masa Jenis dan Viskositas. Masalah aliran fluida dalam PIPA : Sistem Terbuka

Lebih terperinci

FLUIDA BERGERAK. Di dalam geraknya pada dasarnya dibedakan dalam 2 macam, yaitu : Aliran laminar / stasioner / streamline.

FLUIDA BERGERAK. Di dalam geraknya pada dasarnya dibedakan dalam 2 macam, yaitu : Aliran laminar / stasioner / streamline. FLUIDA BERGERAK ALIRAN FLUIDA Di dalam geraknya pada dasarnya dibedakan dalam 2 macam, yaitu : Aliran laminar / stasioner / streamline. Aliran turbulen Suatu aliran dikatakan laminar / stasioner / streamline

Lebih terperinci

MEKANIKA FLUIDA. Ferianto Raharjo - Fisika Dasar - Mekanika Fluida

MEKANIKA FLUIDA. Ferianto Raharjo - Fisika Dasar - Mekanika Fluida MEKANIKA FLUIDA Zat dibedakan dalam 3 keadaan dasar (fase), yaitu:. Fase padat, zat mempertahankan suatu bentuk dan ukuran yang tetap, sekalipun suatu gaya yang besar dikerjakan pada benda padat. 2. Fase

Lebih terperinci

1/24 FISIKA DASAR (TEKNIK SIPIL) FLUIDA. menu. Mirza Satriawan. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta

1/24 FISIKA DASAR (TEKNIK SIPIL) FLUIDA. menu. Mirza Satriawan. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta 1/24 FISIKA DASAR (TEKNIK SIPIL) FLUIDA Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.id Pendahuluan Dalam bagian ini kita mengkhususkan diri pada materi

Lebih terperinci

PERTEMUAN III HIDROSTATISTIKA

PERTEMUAN III HIDROSTATISTIKA PERTEMUAN III HIDROSTATISTIKA Pengenalan Statika Fluida (Hidrostatik) Hidrostatika adalah ilmu yang mempelajari perilaku zat cair dalam keadaan diam. Konsep Tekanan Tekanan : jumlah gaya tiap satuan luas

Lebih terperinci

DINAMIKA FLUIDA. nurhidayah.staff.unja.ac.id

DINAMIKA FLUIDA. nurhidayah.staff.unja.ac.id DINAMIKA FLUIDA nurhidayah@unja.ac.id nurhidayah.staff.unja.ac.id Fluida adalah zat alir, sehingga memiliki kemampuan untuk mengalir. Ada dua jenis aliran fluida : laminar dan turbulensi Aliran laminar

Lebih terperinci

BAB IV PENGUKURAN KEHILANGAN ENERGI AKIBAT BELOKAN DAN KATUP (MINOR LOSSES)

BAB IV PENGUKURAN KEHILANGAN ENERGI AKIBAT BELOKAN DAN KATUP (MINOR LOSSES) BAB IV PENGUKURAN KEHILANGAN ENERGI AKIBAT BELOKAN DAN KATUP (MINOR LOSSES) 4.1 Pendahuluan Kerugian tekan (headloss) adalah salah satu kerugian yang tidak dapat dihindari pada suatu aliran fluida yang

Lebih terperinci

Aliran Fluida. Konsep Dasar

Aliran Fluida. Konsep Dasar Aliran Fluida Aliran fluida dapat diaktegorikan:. Aliran laminar Aliran dengan fluida yang bergerak dalam lapisan lapisan, atau lamina lamina dengan satu lapisan meluncur secara lancar. Dalam aliran laminar

Lebih terperinci

Rumus bilangan Reynolds umumnya diberikan sebagai berikut:

Rumus bilangan Reynolds umumnya diberikan sebagai berikut: Dalam mekanika fluida, bilangan Reynolds adalah rasio antara gaya inersia (vsρ) terhadap gaya viskos (μ/l) yang mengkuantifikasikan hubungan kedua gaya tersebut dengan suatu kondisi aliran tertentu. Bilangan

Lebih terperinci

MODUL KULIAH : MEKANIKA FLUIDA DAN HIROLIKA

MODUL KULIAH : MEKANIKA FLUIDA DAN HIROLIKA MODUL KULIAH : MEKANIKA FLUIDA DAN SKS : 3 HIROLIKA Oleh : Acep Hidayat,ST,MT. Jurusan Teknik Perencanaan Fakultas Teknik Perencanaan dan Desain Universitas Mercu Buana Jakarta 2011 MODUL 12 HUKUM KONTINUITAS

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Prinsip Kerja Pompa Hidram Prinsip kerja hidram adalah pemanfaatan gravitasi dimana akan menciptakan energi dari hantaman air yang menabrak faksi air lainnya untuk mendorong ke

Lebih terperinci

8. FLUIDA. Materi Kuliah. Staf Pengajar Fisika Fakultas Teknologi Pertanian Universitas Brawijaya

8. FLUIDA. Materi Kuliah. Staf Pengajar Fisika Fakultas Teknologi Pertanian Universitas Brawijaya 8. FLUIDA Staf Pengajar Fisika Fakultas Teknologi Pertanian Universitas Brawijaya Tegangan Permukaan Viskositas Fluida Mengalir Kontinuitas Persamaan Bernouli Materi Kuliah 1 Tegangan Permukaan Gaya tarik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.. Kecepatan dan Kapasitas Aliran Fluida Penentuan kecepatan disejumlah titik pada suatu penampang memungkinkan untuk membantu dalam menentukan besarnya kapasitas aliran sehingga

Lebih terperinci

MODUL PRAKTIKUM MEKANIKA FLUIDA

MODUL PRAKTIKUM MEKANIKA FLUIDA MODUL PRAKTIKUM MEKANIKA FLUIDA LABORATORIUM TEKNIK SUMBERDAYA ALAM dan LINGKUNGAN JURUSAN KETEKNIKAN PERTANIAN FAKULTAS TEKNOLOGI PERTANIAN UNIVERSITAS BRAWIJAYA MALANG 2013 MATERI I KALIBRASI SEKAT UKUR

Lebih terperinci

MEKANIKA FLUIDA BAB I. SIFAT-SIFAT FLUIDA

MEKANIKA FLUIDA BAB I. SIFAT-SIFAT FLUIDA MEKANIKA FLUIDA BAB I. SIFAT-SIFAT FLUIDA Mekanika Fluida dan Hidrolika adalah merupakan cabang mekanika terapan yng berkenaan dengan tingkah laku fluida dalam keadaan diam dan keadaan bergerak. Dalam

Lebih terperinci

BAB II LANDASAN TEORI. bisa mengalami perubahan bentuk secara kontinyu atau terus-menerus bila terkena

BAB II LANDASAN TEORI. bisa mengalami perubahan bentuk secara kontinyu atau terus-menerus bila terkena BAB II LANDASAN TEORI 2.1 Mekanika Fluida Mekanika fluida adalah subdisiplin dari mekanika kontinyu yang mempelajari tentang fluida (dapat berupa cairan dan gas). Fluida sendiri merupakan zat yang bisa

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Movable Bridge Movable Bridge (Jembatan bergerak) adalah jembatan yang difungsikan sebagai tempat sandar kapal laut serta sebagai jembatan penghubung antara pintu masuk dan keluar

Lebih terperinci

BAB II DASAR TEORI. Fluida atau zat cair (termasuk uap air dan gas) dibedakan dari benda padat

BAB II DASAR TEORI. Fluida atau zat cair (termasuk uap air dan gas) dibedakan dari benda padat BAB II DASAR TEORI II.1. Aliran Fluida Fluida atau zat cair (termasuk uap air dan gas) dibedakan dari benda padat karena kemampuannya untuk mengalir. Fluida lebih mudah mengalir karena ikatan molekul dalam

Lebih terperinci

HIDRODINAMIKA BAB I PENDAHULUAN

HIDRODINAMIKA BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Kinematika adalah tinjauan gerak partikel zat cair tanpa memperhatikan gaya yang menyebabkan gerak tersebut. Kinematika mempelajari kecepatan disetiap titik dalam medan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Perpipaan Dalam pembuatan suatu sistem sirkulasi harus memiliki sistem perpipaan yang baik. Sistem perpipaan yang dipakai mulai dari sistem pipa tunggal yang sederhana

Lebih terperinci

FISIKA STATIKA FLUIDA SMK PERGURUAN CIKINI

FISIKA STATIKA FLUIDA SMK PERGURUAN CIKINI FISIKA STATIKA FLUIDA SMK PERGURUAN CIKINI MASSA JENIS Massa jenis atau kerapatan suatu zat didefinisikan sebagai perbandingan massa dengan olum zat tersebut m V ρ = massa jenis zat (kg/m 3 ) m = massa

Lebih terperinci

TUGAS AKHIR PERENCANAAN SYSTEM HYDROLIK PADA MOVABLE BRIDGE DERMAGA KAPASITAS 100 TON

TUGAS AKHIR PERENCANAAN SYSTEM HYDROLIK PADA MOVABLE BRIDGE DERMAGA KAPASITAS 100 TON TUGAS AKHIR PERENCANAAN SYSTEM HYDROLIK PADA MOVABLE BRIDGE DERMAGA KAPASITAS 100 TON Diajukan Guna Memenuhi Syarat Kelulusan Mata Kuliah Tugas Akhir Pada Program Sarjana Strata Satu (S1) Disusun Oleh

Lebih terperinci

BAB II PRINSIP-PRINSIP DASAR HIDRAULIK

BAB II PRINSIP-PRINSIP DASAR HIDRAULIK BAB II PRINSIP-PRINSIP DASAR HIDRAULIK Dalam ilmu hidraulik berlaku hukum-hukum dalam hidrostatik dan hidrodinamik, termasuk untuk sistem hidraulik. Dimana untuk kendaraan forklift ini hidraulik berperan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pompa adalah suatu alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan tersebut. Kenaikan tekanan cairan tersebut

Lebih terperinci

Fisika Dasar I (FI-321) Mekanika Zat Padat dan Fluida

Fisika Dasar I (FI-321) Mekanika Zat Padat dan Fluida Fisika Dasar I (FI-321) Topik hari ini (minggu 11) Mekanika Zat Padat dan Fluida Keadaan Zat/Bahan Padat Cair Gas Plasma Kita akan membahas: Sifat mekanis zat padat dan fluida (diam dan bergerak) Kerapatan

Lebih terperinci

SOAL TRY OUT FISIKA 2

SOAL TRY OUT FISIKA 2 SOAL TRY OUT FISIKA 2 1. Dua benda bermassa m 1 dan m 2 berjarak r satu sama lain. Bila jarak r diubah-ubah maka grafik yang menyatakan hubungan gaya interaksi kedua benda adalah A. B. C. D. E. 2. Sebuah

Lebih terperinci

BAB 5: DINAMIKA: HUKUM-HUKUM DASAR

BAB 5: DINAMIKA: HUKUM-HUKUM DASAR BAB 5: DINAMIKA: HUKUM-HUKUM DASAR Dinamika mempelajari pengaruh lingkungan terhadap keadaan gerak suatu sistem. Pada dasarya persoalan dinamika dapat dirumuskan sebagai berikut: Bila sebuah sistem dengan

Lebih terperinci

ANALISIS FAKTOR GESEK PADA PIPA AKRILIK DENGAN ASPEK RASIO PENAMPANG 1 (PERSEGI) DENGAN PENDEKATAN METODE EKSPERIMENTAL DAN EMPIRIS TUGAS AKHIR

ANALISIS FAKTOR GESEK PADA PIPA AKRILIK DENGAN ASPEK RASIO PENAMPANG 1 (PERSEGI) DENGAN PENDEKATAN METODE EKSPERIMENTAL DAN EMPIRIS TUGAS AKHIR ANALISIS FAKTOR GESEK PADA PIPA AKRILIK DENGAN ASPEK RASIO PENAMPANG 1 (PERSEGI) DENGAN PENDEKATAN METODE EKSPERIMENTAL DAN EMPIRIS TUGAS AKHIR Oleh : DEKY PUTRA 04 04 22 013 3 DEPARTEMEN TEKNIK MESIN

Lebih terperinci

Tegangan Permukaan. Fenomena Permukaan FLUIDA 2 TEP-FTP UB. Beberapa topik tegangan permukaan

Tegangan Permukaan. Fenomena Permukaan FLUIDA 2 TEP-FTP UB. Beberapa topik tegangan permukaan Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas Beberapa topik tegangan permukaan Fenomena permukaan sangat mempengaruhi : Penetrasi melalui membran

Lebih terperinci

JUDUL TUGAS AKHIR ANALISA KOEFISIEN GESEK PIPA ACRYLIC DIAMETER 0,5 INCHI, 1 INCHI, 1,5 INCHI

JUDUL TUGAS AKHIR  ANALISA KOEFISIEN GESEK PIPA ACRYLIC DIAMETER 0,5 INCHI, 1 INCHI, 1,5 INCHI JUDUL TUGAS AKHIR http://www.gunadarma.ac.id/ ANALISA KOEFISIEN GESEK PIPA ACRYLIC DIAMETER 0,5 INCHI, 1 INCHI, 1,5 INCHI ABSTRAKSI Alat uji kehilangan tekanan didalam sistem perpipaan dibuat dengan menggunakan

Lebih terperinci

PENGARUH DIAMETER NOZEL UDARA PADA SISTEM JET

PENGARUH DIAMETER NOZEL UDARA PADA SISTEM JET i Saat ini begitu banyak perusahaan teknologi dalam pembuatan satu barang. Salah satunya adalah alat penyemprotan nyamuk. Alat penyemprotan nyamuk ini terdiri dari beberapa komponen yang terdiri dari pompa,

Lebih terperinci

ALIRAN MELALUI PIPA 15:21. Pendahuluan

ALIRAN MELALUI PIPA 15:21. Pendahuluan ALIRAN MELALUI PIPA Ir. Suroso Dipl.HE, M.Eng Dr. Eng. Alwai Pujiraharjo Pendahuluan Pipa adalah saluran tertutup yang biasanya berpenampang lingkaran dan dipergunakan untuk mengalirkan luida dengan penampang

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-321) Topik hari ini (minggu 11) Statika dan Dinamika Fluida Pertanyaan Apakah fluida itu? 1. Cairan 2. Gas 3. Sesuatu yang dapat mengalir 4. Sesuatu yang dapat berubah mengikuti bentuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Kecepatan dan Kapasitas Aliran Fluida Setiap fluida yang mengalir dalam sebuah pipa harus memasuki pipa pada suatu lokasi. Daerah aliran di dekat lokasi fluida memasuki pipa tersebut

Lebih terperinci

BAB III PERALATAN DAN PROSEDUR PENGUJIAN

BAB III PERALATAN DAN PROSEDUR PENGUJIAN BAB III PERALATAN DAN PROSEDUR PENGUJIAN 3.1 PERANCANGAN ALAT PENGUJIAN Desain yang digunakan pada penelitian ini berupa alat sederhana. Alat yang di desain untuk mensirkulasikan fluida dari tanki penampungan

Lebih terperinci

HUKUM STOKES. sekon (Pa.s). Fluida memiliki sifat-sifat sebagai berikut.

HUKUM STOKES. sekon (Pa.s). Fluida memiliki sifat-sifat sebagai berikut. HUKUM STOKES I. Pendahuluan Viskositas dan Hukum Stokes - Viskositas (kekentalan) fluida menyatakan besarnya gesekan yang dialami oleh suatu fluida saat mengalir. Makin besar viskositas suatu fluida, makin

Lebih terperinci

PERANCANGAN ALAT PRAKTIKUM PENGUJIAN HEADLOSS ALIRAN FLUIDA TAK TERMAMPATKAN. Dwi Ermadi 1*,Darmanto 1

PERANCANGAN ALAT PRAKTIKUM PENGUJIAN HEADLOSS ALIRAN FLUIDA TAK TERMAMPATKAN. Dwi Ermadi 1*,Darmanto 1 PERANCANGAN ALAT PRAKTIKUM PENGUJIAN HEADLOSS ALIRAN FLUIDA TAK TERMAMPATKAN Dwi Ermadi 1*,Darmanto 1 1 Jurusan Teknik Mesin, Fakultas Teknik, Universitas Wahid Hasyim Semarang Jl. Menoreh Tengah X/22,

Lebih terperinci

BAB III LANDASAN TEORI. 3.1 Sistem Kerja Pompa Torak Menggunakan Tenaga Angin. sebagai penggerak mekanik melalui unit transmisi mekanik.

BAB III LANDASAN TEORI. 3.1 Sistem Kerja Pompa Torak Menggunakan Tenaga Angin. sebagai penggerak mekanik melalui unit transmisi mekanik. BAB III LANDASAN TEORI 3.1 Sistem Kerja Pompa Torak Menggunakan Tenaga Angin Pompa air dengan menggunakan tenaga angin merupakan sistem konversi energi untuk mengubah energi angin menjadi putaran rotor

Lebih terperinci

1. Pada gambar dibawah ini, tekanan hidrostatis yang paling besar berada pada titik. a. A b. B

1. Pada gambar dibawah ini, tekanan hidrostatis yang paling besar berada pada titik. a. A b. B Paket 1 1. Pada gambar dibawah ini, tekanan hidrostatis yang paling besar berada pada titik. a. A b. B A C c. C E d. D B e. E D 2. A 1 F 1 F 2 A 2 A 2 Perhatikan gambar, jika A1: A2 = 1: 10, dan gaya F1=

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1. KLASIFIKASI FLUIDA Fluida dapat diklasifikasikan menjadi beberapa bagian, tetapi secara garis besar fluida dapat diklasifikasikan menjadi dua bagian yaitu :.1.1 Fluida Newtonian

Lebih terperinci

BAB FLUIDA A. 150 N.

BAB FLUIDA A. 150 N. 1 BAB FLUIDA I. SOAL PILIHAN GANDA Jika tidak diketahui dalam soal, gunakan g = 10 m/s 2, tekanan atmosfer p 0 = 1,0 x 105 Pa, dan massa jenis air = 1.000 kg/m 3. dinyatakan dalam meter). Jika tekanan

Lebih terperinci

9. Dari gambar berikut, turunkan suatu rumus yang dikenal dengan rumus Darcy.

9. Dari gambar berikut, turunkan suatu rumus yang dikenal dengan rumus Darcy. SOAL HIDRO 1. Saluran drainase berbentuk empat persegi panjang dengan kemiringan dasar saluran 0,015, mempunyai kedalaman air 0,45 meter dan lebar dasar saluran 0,50 meter, koefisien kekasaran Manning

Lebih terperinci

FLUIDA. Staf Pengajar Fisika Departemen Fisika FMIPA Universitas Indonesia

FLUIDA. Staf Pengajar Fisika Departemen Fisika FMIPA Universitas Indonesia FLUIDA Staf Pengajar Fisika Departemen Fisika FMIPA Universitas Indonesia FLUIDA Fluida merupakan sesuatu yang dapat mengalir sehingga sering disebut sebagai zat alir. Fasa zat cair dan gas termasuk ke

Lebih terperinci

Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas

Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas Staf Pengajar Fisika Fakultas Teknologi Pertanian Universitas Brawijaya Beberapa topik tegangan permukaan

Lebih terperinci

YAYASAN WIDYA BHAKTI SEKOLAH MENENGAH ATAS SANTA ANGELA TERAKREDITASI A

YAYASAN WIDYA BHAKTI SEKOLAH MENENGAH ATAS SANTA ANGELA TERAKREDITASI A YAYASAN WIDYA BHAKTI SEKOLAH MENENGAH ATAS SANTA ANGELA TERAKREDITASI A Jl. Merdeka No. 24 Bandung 022. 4214714 Fax. 022. 4222587 http//: www.smasantaangela.sch.id, e-mail : smaangela@yahoo.co.id MODUL

Lebih terperinci

FLUIDA DINAMIS. GARIS ALIR ( Fluida yang mengalir) ada 2

FLUIDA DINAMIS. GARIS ALIR ( Fluida yang mengalir) ada 2 DINAMIKA FLUIDA FLUIDA DINAMIS SIFAT UMUM GAS IDEAL Aliran fluida dapat merupakan aliran tunak (STEADY ) dan tak tunak (non STEADY) Aliran fluida dapat termanpatkan (compressibel) dan tak termanfatkan

Lebih terperinci

MODUL- 9 Fluida Science Center U i n versit itas Brawijijaya

MODUL- 9 Fluida Science Center U i n versit itas Brawijijaya MODUL- 9 Fluida Science Center Universitas it Brawijaya Definisi i i Fluida adalah zat alir, yaitu zat yang dapat mengalir. Contoh : Udara dan zat cair. Tekanan Hidrostatis adalah tekanan yang diderita

Lebih terperinci

Desain Rehabilitasi Air Baku Sungai Brang Dalap Di Kecamatan Alas 8.1. DATA SISTEM PENYEDIAAN AIR BAKU LAPORAN AKHIR VIII - 1

Desain Rehabilitasi Air Baku Sungai Brang Dalap Di Kecamatan Alas 8.1. DATA SISTEM PENYEDIAAN AIR BAKU LAPORAN AKHIR VIII - 1 8.1. DATA SISTEM PENYEDIAAN AIR BAKU Pada jaringan distribusi air bersih pipa merupakan komponen yang paling utama, pipa berfungsi untuk mengalirkan sarana air dari suatu titik simpul ke titik simpul yang

Lebih terperinci

Analisa Rugi Aliran (Head Losses) pada Belokan Pipa PVC

Analisa Rugi Aliran (Head Losses) pada Belokan Pipa PVC Seminar Nasional Peranan Ipteks Menuju Industri Masa Depan (PIMIMD-4) Institut Teknologi Padang (ITP), Padang, 27 Juli 2017 ISBN: 978-602-70570-5-0 http://eproceeding.itp.ac.id/index.php/pimimd2017 Analisa

Lebih terperinci

BAB III PEMBUATAN ALAT UJI DAN METODE PENGAMBILAN DATA

BAB III PEMBUATAN ALAT UJI DAN METODE PENGAMBILAN DATA BAB III PEMBUATAN ALAT UJI DAN METODE PENGAMBILAN DATA Untuk mendapatkan koefisien gesek dari saluran pipa berpenampang persegi, nilai penurunan tekanan (pressure loss), kekasaran pipa dan beberapa variabel

Lebih terperinci

PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P

PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P ANGGAPAN YANG DIGUNAKAN ZAT CAIR ADALAH IDEAL ZAT CAIR ADALAH HOMOGEN DAN TIDAK TERMAMPATKAN ALIRAN KONTINYU DAN SEPANJANG GARIS ARUS GAYA YANG BEKERJA HANYA

Lebih terperinci

KOEFISIEN GESEK PADA RANGKAIAN PIPA DENGAN VARIASI DIAMETER DAN KEKASARAN PIPA

KOEFISIEN GESEK PADA RANGKAIAN PIPA DENGAN VARIASI DIAMETER DAN KEKASARAN PIPA KOEFISIEN GESEK PADA RANGKAIAN PIPA DENGAN ARIASI DIAMETER DAN KEKASARAN PIPA Yanuar, Didit Fakultas Teknologi Industri, Jurusan Teknik Mesin Universitas Gunadarma Depok Abstraksi Penelitian ini dilakukan

Lebih terperinci

FLUIDA DINAMIS. Ciri-ciri umum dari aliran fluida :

FLUIDA DINAMIS. Ciri-ciri umum dari aliran fluida : FLUIDA DINAMIS Dalam fluida dinamis, kita menganalisis fluida ketika fluida tersebut bergerak. Aliran fluida secara umum bisa kita bedakan menjadi dua macam, yakni aliran lurus alias laminar dan aliran

Lebih terperinci

Fluida Statik & Dinamik

Fluida Statik & Dinamik Pendahuluan Fluida Statik & Dinamik Fluida didefinisikan sebagai zat yang dapat mengalir yaitu zat cair dan zat gas(termasuk gas yang terionisasi atau plasma) tetapi zat padat pada temperatur tertentu

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Hukum Kekekalan Massa Hukum kekekalan massa atau dikenal juga sebagai hukum Lomonosov- Lavoiser adalah suatu hukum yang menyatakan massa dari suatu sistem tertutup akan konstan

Lebih terperinci

Oleh: STAVINI BELIA

Oleh: STAVINI BELIA FLUIDA DINAMIS Oleh: STAVINI BELIA 14175034 TUJUAN PEMBELAJARAN 1. Siswa dapat menjelaskan prinsip kontinuitas dan prinsip bernaulli pada fluida dinamik dalam kehidupan seharihari. 2. Siswa dapat menganalisis

Lebih terperinci

Edy Sriyono. Jurusan Teknik Sipil Universitas Janabadra 2013

Edy Sriyono. Jurusan Teknik Sipil Universitas Janabadra 2013 Edy Sriyono Jurusan Teknik Sipil Universitas Janabadra 2013 Aliran Pipa vs Aliran Saluran Terbuka Aliran Pipa: Aliran Saluran Terbuka: Pipa terisi penuh dengan zat cair Perbedaan tekanan mengakibatkan

Lebih terperinci

2 yang mempunyai posisi vertikal sama akan mempunyai tekanan yang sama. Laju Aliran Volume Laju aliran volume disebut juga debit aliran (Q) yaitu juml

2 yang mempunyai posisi vertikal sama akan mempunyai tekanan yang sama. Laju Aliran Volume Laju aliran volume disebut juga debit aliran (Q) yaitu juml KERUGIAN JATUH TEKAN (PRESSURE DROP) PIPA MULUS ACRYLIC Ø 10MM Muhammmad Haikal Jurusan Teknik Mesin Universitas Gunadarma ABSTRAK Kerugian jatuh tekanan (pressure drop) memiliki kaitan dengan koefisien

Lebih terperinci

Pertemuan 1 PENDAHULUAN Konsep Mekanika Fluida dan Hidrolika

Pertemuan 1 PENDAHULUAN Konsep Mekanika Fluida dan Hidrolika Pertemuan 1 PENDAHULUAN Konsep Mekanika Fluida dan Hidrolika OLEH : ENUNG, ST.,M.Eng JURUSAN TEKNIK SIPIL POLITEKNIK NEGERI BANDUNG 2011 1 SILABUS PERTEMUAN MATERI METODE I -PENDAHULUAN -DEFINISI FLUIDA

Lebih terperinci

Laporan Tugas Akhir Pembuatan Modul Praktikum Penentuan Karakterisasi Rangkaian Pompa BAB II LANDASAN TEORI

Laporan Tugas Akhir Pembuatan Modul Praktikum Penentuan Karakterisasi Rangkaian Pompa BAB II LANDASAN TEORI 3 BAB II LANDASAN TEORI II.1. Tinjauan Pustaka II.1.1.Fluida Fluida dipergunakan untuk menyebut zat yang mudah berubah bentuk tergantung pada wadah yang ditempati. Termasuk di dalam definisi ini adalah

Lebih terperinci

PERTEMUAN VII KINEMATIKA ZAT CAIR

PERTEMUAN VII KINEMATIKA ZAT CAIR PERTEMUAN VII KINEMATIKA ZAT CAIR PENGERTIAN Kinematika aliran mempelajari gerak partikel zat cair tanpa meninjau gaya yang menyebabkan gerak tersebut. Macam Aliran 1. Invisid dan viskos 2. Kompresibel

Lebih terperinci

BAB III METODA PERENCANAAN

BAB III METODA PERENCANAAN BAB III METODA PERENCANAAN 3. 1. Perencanaan Pompa Injeksi Bahan Bakar Seperti yang telah kita bahas sebelumnya bahwa perencanaan pompa injeksi bahan bakar bertujuan untuk menentukan parameter-parameter

Lebih terperinci

PENERAPAN KONSEP FLUIDA PADA MESIN PERKAKAS

PENERAPAN KONSEP FLUIDA PADA MESIN PERKAKAS PENERAPAN KONSEP FLUIDA PADA MESIN PERKAKAS 1. Dongkrak Hidrolik Dongkrak hidrolik merupakan salah satu aplikasi sederhana dari Hukum Pascal. Berikut ini prinsip kerja dongkrak hidrolik. Saat pengisap

Lebih terperinci

BAB II. 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro. lebih kecil. Menggunakan turbin, generator yang kecil yang sama seperti halnya PLTA.

BAB II. 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro. lebih kecil. Menggunakan turbin, generator yang kecil yang sama seperti halnya PLTA. BAB II LANDASAN TEORI 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro Pembangkit Listrik Tenaga Mikrohydro atau biasa disebut PLTMH adalah pembangkit listrik tenaga air sama halnya dengan PLTA, hanya

Lebih terperinci

Fisika Umum (MA101) Zat Padat dan Fluida Kerapatan dan Tekanan Gaya Apung Prinsip Archimedes Gerak Fluida

Fisika Umum (MA101) Zat Padat dan Fluida Kerapatan dan Tekanan Gaya Apung Prinsip Archimedes Gerak Fluida Fisika Umum (MA101) Topik hari ini: Zat Padat dan Fluida Kerapatan dan Tekanan Gaya Apung Prinsip Archimedes Gerak Fluida Zat Padat dan Fluida Pertanyaan Apa itu fluida? 1. Cairan 2. Gas 3. Sesuatu yang

Lebih terperinci

REKAYASA INSTALASI POMPA UNTUK MENURUNKAN HEAD LOSS

REKAYASA INSTALASI POMPA UNTUK MENURUNKAN HEAD LOSS REKAYASA INSTALASI POMPA UNTUK MENURUNKAN HEAD LOSS Edi Widodo 1,*, Indah Sulistiyowati 2 1,2, Program Studi Teknik Mesin, Universitas Muhammadiyah Sidoarjo, Jl. Raya Gelam No. 250 Candi Sidoarjo Jawa

Lebih terperinci

LATIHAN SOAL MENJELANG UJIAN TENGAH SEMESTER STAF PENGAJAR FISIKA TPB

LATIHAN SOAL MENJELANG UJIAN TENGAH SEMESTER STAF PENGAJAR FISIKA TPB LATIHAN SOAL MENJELANG UJIAN TENGAH SEMESTER STAF PENGAJAR FISIKA TPB Soal No. 1 Seorang berjalan santai dengan kelajuan 2,5 km/jam, berapakah waktu yang dibutuhkan agar ia sampai ke suatu tempat yang

Lebih terperinci

BAB II DASAR TEORI. 2.1 Persamaan Kontinuitas dan Persamaan Gerak

BAB II DASAR TEORI. 2.1 Persamaan Kontinuitas dan Persamaan Gerak BAB II DASAR TEORI Ada beberapa teori yang berkaitan dengan konsep-konsep umum mengenai aliran fluida. Beberapa akan dibahas pada bab ini. Diantaranya adalah hukum kekekalan massa dan hukum kekekalan momentum.

Lebih terperinci

REYNOLDS NUMBER K E L O M P O K 4

REYNOLDS NUMBER K E L O M P O K 4 REYNOLDS NUMBER K E L O M P O K 4 P A R A M I T A V E G A A. T R I S N A W A T I Y U L I N D R A E K A D E F I A N A M U F T I R I Z K A F A D I L L A H S I T I R U K A Y A H FAKULTAS PERIKANAN DAN ILMU

Lebih terperinci

Pengantar Oseanografi V

Pengantar Oseanografi V Pengantar Oseanografi V Hidro : cairan Dinamik : gerakan Hidrodinamika : studi tentang mekanika fluida yang secara teoritis berdasarkan konsep massa elemen fluida or ilmu yg berhubungan dengan gerak liquid

Lebih terperinci

BAB IV PERHITUNGAN SISTEM HIDRAULIK

BAB IV PERHITUNGAN SISTEM HIDRAULIK BAB IV PERHITUNGAN SISTEM HIDRAULIK 4.1 Perhitungan Beban Operasi System Gaya yang dibutuhkan untuk mengangkat movable bridge kapasitas 100 ton yang akan diangkat oleh dua buah silinder hidraulik kanan

Lebih terperinci

Analisis Aliran Fluida Terhadap Fitting Serta Satuan Panjang Pipa. Nisa Aina Fauziah, Novita Elvianti, dan Verananda Kusuma Ariyanto

Analisis Aliran Fluida Terhadap Fitting Serta Satuan Panjang Pipa. Nisa Aina Fauziah, Novita Elvianti, dan Verananda Kusuma Ariyanto Analisis Aliran Fluida Terhadap Fitting Serta Satuan Panjang Pipa Nisa Aina Fauziah, Novita Elvianti, dan Verananda Kusuma Ariyanto Jurusan teknik kimia fakultas teknik universitas Sultan Ageng Tirtayasa

Lebih terperinci

BAB IV PENGOLAHAN DATA DAN ANALISA DATA

BAB IV PENGOLAHAN DATA DAN ANALISA DATA BAB IV PENGOLAHAN DATA DAN ANALISA DATA.1 PERHITUNGAN DATA Dari percobaan yang telah dilakukan, didapatkan data mentah berupa temperatur kerja fluida pada saat pengujian, perbedaan head tekanan, dan waktu

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pompa adalah mesin yang mengkonversikan energi mekanik menjadi energi tekanan. Menurut beberapa literatur terdapat beberapa jenis pompa, namun yang akan dibahas dalam perancangan

Lebih terperinci

Materi Fluida Statik Siklus 1.

Materi Fluida Statik Siklus 1. Materi Fluida Statik Siklus 1. Untuk pembelajaran besok, kita akan belajar tentang dua hal berikut ini : Hukum Utama Hidrostatis Fluida adalah zat yang dapat mengalir dan berubah bentuk (dapat dimampatkan)

Lebih terperinci

JURNAL. Analisis Penurunan Head losses Pada Belokan 180 Dengan Variasi Tube Bundle Pada Diameter Pipa 2 inchi

JURNAL. Analisis Penurunan Head losses Pada Belokan 180 Dengan Variasi Tube Bundle Pada Diameter Pipa 2 inchi JURNAL Analisis Penurunan Head losses Pada Belokan 180 Dengan Variasi Tube Bundle Pada Diameter Pipa 2 inchi Analysis of losses Decrease Head At 180 bend Tube Bundle With Variations On Pipe diameter of

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Saluran Terbuka Saluran terbuka adalah salah satu aliran yang mana tidak semua dinding saluran bergesekan dengan fluida yang mengalir, oleh karena itu terdapat ruang bebas dimana

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 6 BAB II TINJAUAN PUSTAKA 2.1. Manometer Manometer adalah alat untuk mengukur tekanan fluida. Manometer tabung bourdon adalah instrument yang digunakan untuk mengukur tekanan fluida (gas atau cairan) dalam

Lebih terperinci

PERTEMUAN IV DAN V VISKOSITAS

PERTEMUAN IV DAN V VISKOSITAS PERTEMUAN IV DAN V VISKOSITAS Viskositas merupakan ukuran kekentalan fluida yang menyatakan besar kecilnya gesekan di dalam fluida. Makin besar viskositas suatu fluida, maka makin sulit suatu fluida mengalir

Lebih terperinci

Minggu 1 Tekanan Hidrolika (Hydraulic Pressure)

Minggu 1 Tekanan Hidrolika (Hydraulic Pressure) Minggu 1 Tekanan Hidrolika (Hydraulic Pressure) Disiapkan oleh: Bimastyaji Surya Ramadan ST MT Team Teaching: Ir. Chandra Hassan Dip.HE, M.Sc Pengantar Fluida Hidrolika Hidraulika merupakan satu topik

Lebih terperinci

ALIRAN FLUIDA DALAM PIPA TERTUTUP

ALIRAN FLUIDA DALAM PIPA TERTUTUP MAKALAH MEKANIKA FLUIDA ALIRAN FLUIDA DALAM PIPA TERTUTUP Disusun Oleh: Nama : Juventus Victor HS NPM : 3331090796 Jurusan Dosen : Teknik Mesin-Reguler B : Yusvardi Yusuf, ST.,MT JURUSAN TEKNIK MESIN FAKULTAS

Lebih terperinci