BAB IV ANALISA PERHITUNGAN PERBANDINGAN RODA GIGI DAN FORMULA SISTEM TRANSMISI.

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB IV ANALISA PERHITUNGAN PERBANDINGAN RODA GIGI DAN FORMULA SISTEM TRANSMISI."

Transkripsi

1 BAB IV ANALISA PERHITUNGAN PERBANDINGAN RODA GIGI DAN FORMULA SISTEM TRANSMISI. Rumus dalam bab empat ini menyediakan sarana untuk berhubungan langsung mesin-output daya transmisi paket untuk performa kendaraan. Output transmisi kecepatan, torsi, dan karakteristik tenaga kuda dapat diperoleh dari kurva kinerja transmisi tertentu. Hubungan berikut ini mungkin membantu untuk menafsirkan simbol dan mengkonversi mesin membentuk data satu sistem unit yang lain. Tabel.4.1.Konversi.(sumber : Allison Transmission Performance (Formula, Conversion, Tables, Graphs, Definitions) UNIT US SI NSI TORQUE/TORSI LB FT N.m TORQUE (m) * POWER HP kw HP(m) ** Ket: NSI- Centimeter, gram, second system (old metric) US- United State Customary SI- International system of unit (new metric) US LB FT = ( ) HP = ( ) SI N.m = ( ) kw = ( )

2 HP = ( ) kw = ( ) HP = kw =. *meter-kilogram symbol Mk-p Kg.m Mkg Kgm ** metric horsepower simbol PS (Pferde starke) CV (Cheval-vapeur) hk (hast kraft) pk (paarde kracht) 4.1.Analisa Perbandingan Roda Gigi. Perbandingan gigi dapat dinyatakan dengan persamaan sebagai berikut: perbandingan gigi = Hubungan tenaga kuda dan momen seperti tertera dibawah ini. Apabila mesin menghasilkan tenaga kuda dalam jumlah yang sama, rendahkan kecepatan mesin atau dengan kata lain memperbesar perbandingan, akan menyebabkan pertambahan momen (tenaga penggerak) pada roda-roda, tetapi kecepatan yang dipindahkan ke roda belakang berkurang maka kendaraan kehilangan kecepatan. Tenaga Kuda = K x T x n (New Step 2) Dimana: K = konstanta T = momen n = jumlah putaran sebagai contoh pada kombinasi gigi-gigi, perbandingan gigi-gigi, dimulai dari perbandingan yang terbesar, disebut low (rendah), kedua, ketiga, keempat, kelima dan keenam. Perbandingan gigi dimana putaran mesin sama 59

3 dengan putaran propeller shaft disebut putaran tinggi/ top speed. Apabila perbandingan kurang dari satu, artinya bilamana propeller shaft lebih cepat dari putaran mesin disebut over drive. Seringkali mobil tiba-tiba harus diperlambat. Maka perlu percepatannya diganti dengan kecepatan yang lebih rendah; misalnya bila lalu-lintas ramai, sewaktu melalui jembatan sempit, dan lain sebagainya, jika mendaki atau jika keadaan jalan buruk sekali. Andaikata hendak melewati kendaraan didepan kita, kadang-kadang perlu dipakai percepatan yang lebih rendah untuk memperoleh momen yang besar supaya tarikan mobil lebih cepat. Sebagai contoh motor dengan kecepatan 1200 rpm dan percepatan tertinggi telah masuk. Sekarang kita hendak membalikkan percepatan dari gigi III ke gigi II. Segera setelah penghubung dilepas, D berputar dengan kecepatan 1200 rpm, sedang C berputar dengan kecepatan Sebelum D dapat dikisar k atas C, juga C harus berputar dengan kecepatan 1200rpm. Guna keperluan tersebut engine harus berputar 1200 = artinya sebanyak 5x putar kecepatan awal Tabel.4.2.Daftar susunan roda gigi transmisi (Sumber Kontruksi dan analisa cara kerja transmisi Mitshubishi L speed.)). Roda gigi A B C D E F G H I J K L Jumlah gigi

4 TABEL.4.3. Persamaan pemakaian roda-roda gigi (Sumber: Allison E-learn) GIGI PEMAKAIAN GIGI 6 INPUT SHAFT = OUTPUT SHAFT 5 INPUT SHAFT = OUTPUT SHAFT 4 A : B = C : D 3 A : B = E : F 2 A : B = G : H 1 A : B = I : J Mundur A : B = K : L = K : J TABEL.4.4.Gear ratio (Sumber: Allison 4 TH Generation control (Troubleshooting manual 1000 and 2000 product families)) R (0.6+) 4.49 Kemudian gunakan rumus seperti dibawah ini: Perbandingan gigi = Sebagai contoh :Jadi dengan mengunakan rumus diatas dapat dihitung perbandingan pemakaian roda gigi ke-6, ke-5, ke-4, ke-3, ke-2,ke-1 dan mundur pada sebuah transmisi. Contoh : Besarnya putaran yang dihasilkan transmisi jika putaran mesin 1200 rpm pada Allison serie Gigi ke-6.dan ke-5 Pada kedudukan ini umumnya jumlah putaran input shaft = output shaft berarti perbandingannya adalah 1: 1. Putaran propeller shaft = 61

5 = = 1200 rpm Momen motor yang dihasilkan = = = 0,021 Nm Momen transmisi (MT) = momen motor Xi 6 /Xi 5 = 0,0211 = Nm Gigi ke-4(i 4 ) A : B = C : D 20:45 =38:24 = = 2,25 0,63 = 1,42 Putaran propeller shaft = =, = 845 rpm Momen transmisi (MT) = momen motor Xi 4 = 0,0211,42 = 0.03 Nm Gigi ke-3(i 3 ) A : B = E : F 20:45 =30:28 = 62

6 Putaran propeller shaft = = 2,25 0,93 = 2,09 =, = 574 rpm Momen transmisi (MT) = momen motor Xi 3 = 0,0212,09 = 0.04 Nm Gigi ke-2(i 2 ) A : B = G : H 20:45 =22:37 = = 2,25 1,68 = 3,78 Putaran propeller shaft = =, = 317 rpm Momen transmisi (MT) = momen motor Xi 2 = 0,0213,78 = 0.08 Nm Gigi ke-1(i 1 ) A : B = J : I 20:45 =18:43 = = 2,252,39 63

7 Putaran propeller shaft = = 5,38 =, = 223 rpm Momen transmisi (MT) = momen motor Xi 1 = 0,0215,38 = 3,05 Nm Gigi mundur(i R ) A : B = K : L = K : J 20:45 =15 : 17 = 15 : 18 = = 2,25 1,13 1,2 = 3,05 Putaran propeller shaft = =, = 393 rpm Momen transmisi (MT) = momen motor Xi R = 0,0213,05 = 0.06 Nm 4.2.formula Vehicle speed (Kecepatan kendaraan). MPH= (OR) atau km/jam = ( ). 64

8 WHEELED VEHICLE { RR = TRACKED RR = VEHICLE RR =.. Dimana : MPH km/jam N TO RED REV RR atau mm = kecepatan kendaraan (miles/hr) = kecepatan kendaraan (km/jam) = Trans output speed(rpm) = Total drive reduction = Tire revolutions/mile (rev/mile) = Tire radius/ jari-jari (inci) atau (milimeter) TRACTIVE EFFORT (TE) RIMPULL TE = Dimana : atau kn = (. ) ( ) TE kn mm T TO N.m = Tractive effort/ traksi usaha (pounds) = Tractive effort/ traksi usaha (kilonewton) = jari-jari (millimeter) = Trans output torque (pound-fet) = Trans output torque (newton-metre) 65

9 RED EFF = Total drive reduction = driveline Eff (persen%) Drawbar pull (DBP) level DPB = F W = F R =. Dimana : DPB = Drawbar pull (pon) TE = Tractive effort / traksi usaha (pon) F R = Rolling resistensi (pon) F W = Wind resistensi (pon) MPH = Vehicle speed/kecepatan kendaraan (miles/hr) A = Front area (sq ft) CD = Untuk transmisi Allison seri 1000 drag koefesiennya Gradeability (G) % Metode perhitungan langsung. G = atau G = Metode bagan sederhana. 66

10 Calculate K G = atau K G = Dimana : G = Gradeability (%) Kg = vehicle weigh/ berat kendaraan(kilogram) GVW = Vehicle weigh/ berat kendaraan (pounds) TE = Tractive effort/ traksi usaha (pounds) kn = Tractive effort/ traksi usaha (kilo-newton) Kedua metode memberikan nilai identik gradeability kotor. Pengganti DPB di tempat TE untuk memperoleh gradeability bersih. gradeability mengacu pada kemampuan kendaraan untuk bernegosiasi kelas dengan kecepatan konstan Horsepower-Propulsion Available (HP A ) di jalan (road) HPA = ( ) Required road to negotiate grade HPR = ( + + ) 67

11 FR = F W =. Dimana : A = Frontal area (sq ft) EFF = driveline eff (persen%) F G = Grade resistance / tingkat gaya tahan( pounds) F R = Rolling resistance/ tingkat putaran(pounds) F W = Wind resistance ( pounds) GVW = Vehicle weigh / berat kendaraan (pounds) HP TO = Trans output power (horsepower / tenaga kuda) MPH = Vehicle speed /kecepatan kendaraan (miles/hr) TE = Tractive effort (pon) Horsepower-retardation(con t). Diperlukan (RHP R ) di jalan untuk menjaga kecepatan. RHP R = ( ) FR = F W =. Dimana : A = Frontal area (sq ft) F G = Grade resistance / tingkat gaya tahan( pounds) F R = Rolling resistance/ tingkat putaran(pounds) 68

12 F W = Wind resistance ( pounds) GVW = Vehicle weigh / berat kendaraan (pounds) MPH = Vehicle speed (kecepatan kendaraan (mil/hr) Horsepower(HP)-Umum Dasar/ Basic. HP BASIC = ( ) ( ) Pompa/pump. HP HYD = / ( ) / ( ) HP MECH = (%) Acceleration / akselerasi percepatan- level Percepatan dan waktu yang dibutuhkan untuk percepatan dengan kecepatan yang diberikan dalam kondisi kecepatan penuh dapat ditentukan dari kurva DPB-MPH. Dengan menghitung waktu (Δt) yang diperlukan untuk meningkatkan kecepatan kendaraan oleh beberapa peningkatan kecil (ΔMPH), adalah mungkin untuk memperkirakan total waktu yang dibutuhkan untuk mencapai kecepatan tertentu. a =. 69

13 Δt =. Δd = ( + ) Catatan: rumus ini tidak termasuk efek inersia komponen putar dalam transmisi, mesin, dan driveline kendaraan yang tentu akan mengurangi percepatan. Dimana : a = Akselerasi (ft/sec 2 ) d = Distance/jarak (ft) DBP = Drawbar pull (pounds) GVW = Vehicle weight/berat kendaraan (pounds) MPH = Vehicle speed/kecepatan kendaraan (miles/hr) T = Time/waktu (second) Heat load/beban panas. Beban panas transmisi bervariasi sebagai fungsi dari kekuatan mesin dan slip konverter yang dipengaruhi oleh tuntutan kendaraan. Panas yang dihasilkan dalam transmisi dengan pompa pengisian, selip converter, gesekan roda gigi kereta api, dan operasi retarder hidrolik. Sebuah beban panas khas kurva untuk transmisi lengkap selama penggerak (converter dan lockup). Converter cooling/pendinginan converter 70

14 Transmisi beban panas total menjadi hilang selama operasi konverter dapat dinyatakan sebagai berikut: Q T = ( ) HR =. ( ) HR =. ( ) Bagian terbesar dari total beban panas biasanya dihasilkan oleh selip converter. Dua titik operasi sering diperiksa adalah 70% dan 80% converter efisiensi poin. Q C = (70% ) Q C = (80% ) Retarder pendinginan persyaratan untuk transmisi selama operasi retarder mengatur kapasitas penukar panas yang akan digunakan dari banyak faktor yang mempengaruhi pendinginan retarder (kecepatan kendaraan, kelas, model transmisi, dll). Dimana : gpm = Flow/aliran (gal/min) HP T = Conv output power (horsepower) HR = ketingian Temperatur ( ) Q c = Conv heat load (BTU/MIN) QT = Trans heat load (BTU/min). 71

15 Vehicle power (kw) kw = /. Dimana : kw kn km/h = Vehicle power /power kendaraan (kilowatt) = Tractic effort (kilonewton) = kecepatan kendaraan (miles/hr) Gambar.4.1.Grafik Gradeability or grafe (vs) grade factor (Sumber : Allison Transmission Performance (Formula, Conversion, Tables, Graphs, Definitions)). 72

16 Gambar.4.2.Grafik Grade(vs) Grade Angle (Sumber : Allison Transmission Performance (Formula, Conversion, Tables, Graphs, Definitions)). 73

17 Gambar.4.3.Grafik Engine-Converter match (Sumber : Allison Transmission Performance (Formula, Conversion, Tables, Graphs, Definitions)). 74

18 Gambar.4.4.Grafik transmission performance (Sumber : Allison Transmission Performance (Formula, Conversion, Tables, Graphs, Definitions)). 75

19 Gambar.4.5.Grafik Tractive effort (Sumber : Allison Transmission Performance (Formula, Conversion, Tables, Graphs, Definitions)). 76

20 Gambar.4.6.Grafik Gradeability (Sumber : Allison Transmission Performance (Formula, Conversion, Tables, Graphs, Definitions)). 77

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Power Loss Power loss adalah hilangnya daya yang diakibatkan kesalahan pengemudi dalam melakukan pemindahan gigi transmisi yang tidak sesuai dengan putaran mesin seharusnya, sehingga

Lebih terperinci

LOGO. Mohamad Fikki Rizki NRP DOSEN PEMBIMBING Prof. Ir Nyoman Sutantra,Msc,PhD Yohanes.ST,MSc

LOGO. Mohamad Fikki Rizki NRP DOSEN PEMBIMBING Prof. Ir Nyoman Sutantra,Msc,PhD Yohanes.ST,MSc LOGO Analisa Kinerja Sistem Transmisi pada Kendaraan Multiguna Pedesaan untuk Mode Pengaturan Kecepatan Maksimal Pada Putaran Maksimal Engine dan Daya Maksimal Engine Mohamad Fikki Rizki NRP. 2110105011

Lebih terperinci

Analisis Kinerja Traksi Dan Redesign Transmisi Armored Personnel Carrier Komodo 4x4

Analisis Kinerja Traksi Dan Redesign Transmisi Armored Personnel Carrier Komodo 4x4 E7 Analisis Kinerja Traksi Dan Redesign Transmisi Armored Personnel Carrier Komodo 4x4 M. Anggi Siregar dan I Nyoman Sutantra Departemen Teknik Mesin, Fakultas Teknologi Industri, Institut Teknologi Sepuluh

Lebih terperinci

BAB III TEORI DASAR. Mesin Diesel. Diferensial Kontrol Kemudi Drive Shaft. Gambar 3.1 Powertrain (Ipscorpusa.com, 2008)

BAB III TEORI DASAR. Mesin Diesel. Diferensial Kontrol Kemudi Drive Shaft. Gambar 3.1 Powertrain (Ipscorpusa.com, 2008) BAB III TEORI DASAR 3.1. Penggunaan Bahan Bakar pada Mesin Kendaraan 3.1.1 Sistem Penggerak Daya mesin dan gigi pengoperasian merupakan faktor utama yang menentukan besar tenaga yang tersedia untuk drawbar

Lebih terperinci

KARAKTERISTIK TRAKSI DAN KINERJA TRANSMISI PADA SISTEM GEAR TRANSMISSION DAN GEARLESS TRANSMISSION

KARAKTERISTIK TRAKSI DAN KINERJA TRANSMISI PADA SISTEM GEAR TRANSMISSION DAN GEARLESS TRANSMISSION KARAKTERISTIK TRAKSI DAN KINERJA TRANSMISI PADA SISTEM GEAR TRANSMISSION DAN GEARLESS TRANSMISSION I G N P Tenaya dan I Ketut Adi Atmika Staf pengajar PST. Mesin Fakultas Teknik Universitas Udayana ABSTRAK

Lebih terperinci

Pengaruh Variasi Konstanta Pegas dan Massa Roller CVT Terhadap Performa Honda Vario 150 cc

Pengaruh Variasi Konstanta Pegas dan Massa Roller CVT Terhadap Performa Honda Vario 150 cc E1 Pengaruh Variasi Konstanta Pegas dan Massa Roller CVT Terhadap Performa Honda Vario 150 cc Irvan Ilmy dan I Nyoman Sutantra Departemen Teknik Mesin, Fakultas Teknologi Industri, Institut Teknologi Sepuluh

Lebih terperinci

Dosen Pembimbing: Ir. Suhariyanto, MSc Oleh : Alessandro Eranto Bais

Dosen Pembimbing: Ir. Suhariyanto, MSc Oleh : Alessandro Eranto Bais Dosen Pembimbing: Ir. Suhariyanto, MSc 131 843 905 Oleh : Alessandro Eranto Bais 2106 030 056 ABSTRAK Perkembangan dunia otomotif semakin berkembang pesat. Salah satu contoh perkembangan yang saat ini

Lebih terperinci

V. HASIL DAN PEMBAHASAN

V. HASIL DAN PEMBAHASAN V. HASIL DAN PEMBAHASAN 5.1. Kalibrasi Load Cell & Instrumen Hasil kalibrasi yang telah dilakukan untuk pengukuran jarak tempuh dengan roda bantu kelima berjalan baik dan didapatkan data yang sesuai, sedangkan

Lebih terperinci

Analisis Karakteristik Traksi Serta Redesign Rasio Transmisi Mobil Toyota Fortuner 4.0 V6 Sr (At 4x4)

Analisis Karakteristik Traksi Serta Redesign Rasio Transmisi Mobil Toyota Fortuner 4.0 V6 Sr (At 4x4) Analisis Karakteristik Traksi Serta Redesign Rasio Transmisi Mobil Toyota Fortuner 4.0 V6 Sr (At 4x4) Nico Yudha Wardana dan I Nyoman Sutantra Jurusan Teknik Mesin, Fakultas Teknologi Industri, Institut

Lebih terperinci

Perbaikan Performa Traksi dengan Modifikasi Rasio Gigi Tansmisi

Perbaikan Performa Traksi dengan Modifikasi Rasio Gigi Tansmisi Perbaikan Performa Traksi dengan Modifikasi Rasio Gigi Tansmisi I Gusti Agung Kade Suriadi 1), I Ketut Adi Atmika 1)*, I Made Dwi Budiana Penindra 1) 1) Jurusan Teknik Mesin, Universitas Udayana Kampus

Lebih terperinci

BAB II DASAR TEORI. c) Untuk mencari torsi dapat dirumuskan sebagai berikut:

BAB II DASAR TEORI. c) Untuk mencari torsi dapat dirumuskan sebagai berikut: BAB II DASAR TEORI 2.1 Daya Penggerak Secara umum daya diartikan sebagai suatu kemampuan yang dibutuhkan untuk melakukan sebuah kerja, yang dinyatakan dalam satuan Watt ataupun HP. Penentuan besar daya

Lebih terperinci

TUGAS AKHIR. Diajukan guna melengkapi sebagian syarat dalam mencapai gelar Sarjana Strata Satu (S1) Disusun Oleh :

TUGAS AKHIR. Diajukan guna melengkapi sebagian syarat dalam mencapai gelar Sarjana Strata Satu (S1) Disusun Oleh : TUGAS AKHIR Pengaruh Modifikasi Gear Ratio Differential Terhadap Fuel Consumption dan Nilai Gradeability Truck Batubara Jenis FM 260 JD Kapasitas Muat 20 Ton Diajukan guna melengkapi sebagian syarat dalam

Lebih terperinci

BAB II TINJAUAN PUSTAKA 2.1 TOTAL RESISTANCE (TAHANAN PADA KENDARAAN)

BAB II TINJAUAN PUSTAKA 2.1 TOTAL RESISTANCE (TAHANAN PADA KENDARAAN) 5 BAB II TINJAUAN PUSTAKA 2.1 TOTAL RESISTANCE (TAHANAN PADA KENDARAAN) Tahanan pada kendaraan merupakan tahanan yang terdapat pada suatu kendaraan seperti tahanan gelinding kendaraan, tahanan kelandaian

Lebih terperinci

BAB II DASAR TEORI 2.1. Motor Bensin Penjelasan Umum

BAB II DASAR TEORI 2.1. Motor Bensin Penjelasan Umum 4 BAB II DASAR TEORI 2.1. Motor Bensin 2.1.1. Penjelasan Umum Motor bensin merupakan suatu motor yang menghasilkan tenaga dari proses pembakaran bahan bakar di dalam ruang bakar. Karena pembakaran ini

Lebih terperinci

BAB III DASAR TEORI. Gambar 3.1 Powertrain

BAB III DASAR TEORI. Gambar 3.1 Powertrain BAB III DASAR TEORI.1 Penggunaan Bahan Bakar Pada Mesin Kendaraan.1.1 Sistem Penggerak (Propulsion System) Daya mesin (engine horsepower) dan operating gear merupakan faktor utama yang menentukan besar

Lebih terperinci

BAB III KONTRUKSI DAN SISTEM KERJA TRANSMISI ALLISON

BAB III KONTRUKSI DAN SISTEM KERJA TRANSMISI ALLISON BAB III KONTRUKSI DAN SISTEM KERJA TRANSMISI ALLISON 4 TH GENERATION SERI 1000 3.1.KONTRUKSI TRANSMISI. Transmisi Allison seri 1000 termasuk dalam jenis transmisi otomatis transmisi yang melakukan perpindahan

Lebih terperinci

BAB II DASAR TEORI Sistem Transmisi

BAB II DASAR TEORI Sistem Transmisi BAB II DASAR TEORI Dasar teori yang digunakan untuk pembuatan mesin pemotong kerupuk rambak kulit adalah sistem transmisi. Berikut ini adalah pengertian-pengertian dari suatu sistem transmisi dan penjelasannya.

Lebih terperinci

Analisis Kinerja Traksi dan Redesign Rasio Transmisi pada Panser ANOA APC 3 6x6

Analisis Kinerja Traksi dan Redesign Rasio Transmisi pada Panser ANOA APC 3 6x6 JURNAL TEKNIK ITS Vol. 6, No. 1, (2017) ISSN: 2337-3539 (2301-9271 Print) E-23 Analisis Kinerja Traksi dan Redesign Rasio Transmisi pada Panser ANOA APC 3 6x6 Muhamad Johan Putra Prasetya dan I Nyoman

Lebih terperinci

EFISIENSI POWER ENGINE TRUCK PERGERAKAN DINAMIS DENGAN MENGUBAH RATIO FINAL GEAR PADA TRUCK KAPASITAS 30 TON

EFISIENSI POWER ENGINE TRUCK PERGERAKAN DINAMIS DENGAN MENGUBAH RATIO FINAL GEAR PADA TRUCK KAPASITAS 30 TON ISSN: 1410-2331 EFISIENSI POWER ENGINE TRUCK PERGERAKAN DINAMIS DENGAN MENGUBAH RATIO FINAL GEAR PADA TRUCK KAPASITAS 30 TON Hadi Pranoto Program Studi Teknik Mesin, Fakultas Teknik, Universitas Mercu

Lebih terperinci

Diagnosis Technicain - Automatic Transaxle. to Transaxle. Transaxle input shaft. Torque converter. Pump impeller. Transaxle input shaft.

Diagnosis Technicain - Automatic Transaxle. to Transaxle. Transaxle input shaft. Torque converter. Pump impeller. Transaxle input shaft. Garis Besar Converter Stator One-way clutch Torque converter Stator shaft Oil pump to input shaft Umum Konverter tenaga putaran (torque converter) menghantarkan dan menggandakan tenaga putaran dari mesin

Lebih terperinci

BAB II DASAR TEORI 2.1 Sistem Transmisi 2.2 Motor Listrik

BAB II DASAR TEORI 2.1 Sistem Transmisi 2.2 Motor Listrik BAB II DASAR TEORI 2.1 Sistem Transmisi Sistem transmisi dalam otomotif, adalah sistem yang berfungsi untuk konversi torsi dan kecepatan (putaran) dari mesin menjadi torsi dan kecepatan yang berbeda-beda

Lebih terperinci

TRAKTOR RODA-4. Klasifikasi. trakor roda-4. Konstruksi. Penggunaan traktor di pertanian

TRAKTOR RODA-4. Klasifikasi. trakor roda-4. Konstruksi. Penggunaan traktor di pertanian TRAKTOR RODA-4 Klasifikasi traktor roda-4 Konstruksi trakor roda-4 Penggunaan traktor di pertanian Klasifikasi Berdasarkan Daya Penggerak (FWP = fly wheel power) 1. Traktor kecil (

Lebih terperinci

1 BAB II LANDASAN TEORI

1 BAB II LANDASAN TEORI 1 BAB II LANDASAN TEORI Pengertian Transmisi Fungsi transmisi adalah untuk meneruskan putaran dari mesin ke arah putaran roda penggerak, dan untuk mengatur kecepatan putaran dan momen yang dihasilkan sesuai

Lebih terperinci

ANALISA JUMLAH ARMADA TRUCK YANG EKONOMIS MENGGUNAKAN TEORI BARISAN PADA PEKERJAAN PEMINDAHAN TANAH MEKANIS

ANALISA JUMLAH ARMADA TRUCK YANG EKONOMIS MENGGUNAKAN TEORI BARISAN PADA PEKERJAAN PEMINDAHAN TANAH MEKANIS ANALISA JUMLAH ARMADA TRUCK YANG EKONOMIS MENGGUNAKAN TEORI BARISAN PADA PEKERJAAN PEMINDAHAN TANAH MEKANIS A r m e d y NRP : 9021048 Pembimbing : V. Hartanto, Ir., M.Sc. FAKULTAS TEKNIK JURUSAN SIPIL

Lebih terperinci

BAB II DASAR TEORI 2.1. Sistem Transmisi Motor Listrik

BAB II DASAR TEORI 2.1. Sistem Transmisi Motor Listrik BAB II DASAR TEORI 2.1. Sistem Transmisi Transmisi bertujuan untuk meneruskan daya dari sumber daya ke sumber daya lain, sehingga mesin pemakai daya tersebut bekerja menurut kebutuhan yang diinginkan.

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 Skema Dinamometer (Martyr & Plint, 2007)

BAB II DASAR TEORI. Gambar 2.1 Skema Dinamometer (Martyr & Plint, 2007) 3 BAB II DASAR TEORI 2.1 Pengertian Dinamometer Dinamometer adalah suatu mesin yang digunakan untuk mengukur torsi (torque) dan daya (power) yang diproduksi oleh suatu mesin motor atau penggerak berputar

Lebih terperinci

HADID BISMARA TEDJI

HADID BISMARA TEDJI PERANCANGAN FLYWHEEL UNTUK SISTEM HYBRID PADA ATC BUS TRANS JAKARTA BERDASARKAN MODEL DINAMIKA LONGITUDINAL KENDARAAN YANG MENYERTAKAN INTERAKSI PENGEMUDI KENDARAAN PADA DRIVING CYCLE PULAU GADUNG MONAS

Lebih terperinci

ANALISA RESISTANCE, TRACTIVE EFFORT DAN GAYA SENTRIFUGAL PADA KERETA API TAKSAKA DI TIKUNGAN KARANGGANDUL

ANALISA RESISTANCE, TRACTIVE EFFORT DAN GAYA SENTRIFUGAL PADA KERETA API TAKSAKA DI TIKUNGAN KARANGGANDUL ANALISA RESISTANCE, TRACTIVE EFFORT DAN GAYA SENTRIFUGAL PADA KERETA API TAKSAKA DI TIKUNGAN KARANGGANDUL Jean Mario Valentino* *Perekayasa Pertama Badan Pengkajian dan Penerapan Teknologi Gedung Teknologi

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN HASIL UJI DAN PERHITUNGAN MENGETAHUI KINERJA MESIN MOTOR PADA KENDARAAN GOKART

BAB IV HASIL DAN PEMBAHASAN HASIL UJI DAN PERHITUNGAN MENGETAHUI KINERJA MESIN MOTOR PADA KENDARAAN GOKART BAB IV HASIL DAN PEMBAHASAN HASIL UJI DAN PERHITUNGAN MENGETAHUI KINERJA MESIN MOTOR PADA KENDARAAN GOKART 4.1. Analisa Performa Perhitungan ulang untuk mengetahui kinerja dari suatu mesin, apakah kemampuan

Lebih terperinci

BAB I KOMPONEN UTAMA SEPEDA MOTOR

BAB I KOMPONEN UTAMA SEPEDA MOTOR BAB I KOMPONEN UTAMA SEPEDA MOTOR Sepeda motor terdiri dari beberapa komponen dasar. Bagaikan kita manusia, kita terdiri atas beberapa bagian, antara lain bagian rangka, pencernaan, pengatur siskulasi

Lebih terperinci

REKAYASA JALAN REL. Modul 2 : GERAK DINAMIK JALAN REL PROGRAM STUDI TEKNIK SIPIL

REKAYASA JALAN REL. Modul 2 : GERAK DINAMIK JALAN REL PROGRAM STUDI TEKNIK SIPIL REKAYASA JALAN REL Modul 2 : GERAK DINAMIK JALAN REL OUTPUT : Mahasiswa dapat menjelaskan karakteristik pergerakan lokomotif Mahasiswa dapat menjelaskan keterkaitan gaya tarik lokomotif dengan kelandaian

Lebih terperinci

Karakteristik Traksi dan Kinerja Transmisi pada Sistem Gear Transmission dan Gearless Transmission

Karakteristik Traksi dan Kinerja Transmisi pada Sistem Gear Transmission dan Gearless Transmission Karakteristik Traksi dan Kinerja Transmisi pada Sistem Gear Transmission dan Gearless Transmission A.A.I.A. Sri Komaladewi 1)* dan I Ketut Adi Atmika 1) Jurusan Teknik Mesin, Universitas UdayanaKampus

Lebih terperinci

3.1. Waktu dan Tempat Bahan dan Alat

3.1. Waktu dan Tempat Bahan dan Alat III. METODOLOGI 3.1. Waktu dan Tempat Penelitian dilakukan pada bulan Maret hingga bulan September 2011 bertempat di Bengkel Teknik Mesin Budidaya Pertanian, Leuwikopo dan lahan percobaan Departemen Teknik

Lebih terperinci

Oleh: Galih Priyo Atmojo. Dosen Pembimbing: Dr. M. Nur Yuniarto, S.T. JUMAT, 01 JULI 2011

Oleh: Galih Priyo Atmojo. Dosen Pembimbing: Dr. M. Nur Yuniarto, S.T. JUMAT, 01 JULI 2011 TUGAS AKHIR GALIH PRIYO ATMOJO 2106 100 035 PERMODELAN DAN SIMULASI PERFORMA SAPU ANGIN I DENGAN ENGINE PE-M 40 BERSIKLUS MILLER MENGGUNAKAN MATLAB SIMULINK Oleh: Galih Priyo Atmojo 2106 100 035 Dosen

Lebih terperinci

BAB III PERENCANAAN DAN PERHITUNGAN

BAB III PERENCANAAN DAN PERHITUNGAN BAB III PERENCANAAN DAN PERHITUNGAN 3.1 Diagram Alir Proses Perancangan Diagram alir adalah suatu gambaran utama yang dipergunakan untuk dasar dalam bertindak. Seperti halnya pada perancangan diperlukan

Lebih terperinci

BAB V ANALISA AKHIR. pengujian Dynotest dan Uji Konsumsi Bahan Bakar Pada RPM Konstan untuk

BAB V ANALISA AKHIR. pengujian Dynotest dan Uji Konsumsi Bahan Bakar Pada RPM Konstan untuk BAB V ANALISA AKHIR Ada dua jenis analisa pokok pada bab ini yang didasari dari hasil pengujian Dynotest dan Uji Konsumsi Bahan Bakar Pada RPM Konstan untuk disain mesin yang telah diterapkan berdasarkan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Definisi Transmisi Transmisi yaitu salah satu bagian dari sistem pemindah tenaga yang berfungsi untuk mendapatkan variasi momen dan kecepatan sesuai dengan kondisi jalan dan kondisi

Lebih terperinci

Seminar Nasional Mesin dan Industri (SNMI4) 2008 PENENTUAN REGION SKID-NON SKID (2WS) TYPE MODEL KENDARAAN REAR WHEEL DRIVE (RWD)

Seminar Nasional Mesin dan Industri (SNMI4) 2008 PENENTUAN REGION SKID-NON SKID (2WS) TYPE MODEL KENDARAAN REAR WHEEL DRIVE (RWD) PENENTUAN REGION SKID-NON SKID (2WS) TYPE MODEL KENDARAAN REAR WHEEL DRIVE (RWD) Ian Hardianto Siahaan dan Willyanto Anggono Jurusan Teknik Mesin Fakultas Teknologi Industri Universitas Kristen Petra Laboratorium

Lebih terperinci

DESAIN KONTROL PID UNTUK MENGATUR KECEPATAN MOTOR DC PADA ELECTRICAL CONTINUOUSLY VARIABLE TRANSMISSION (ECVT)

DESAIN KONTROL PID UNTUK MENGATUR KECEPATAN MOTOR DC PADA ELECTRICAL CONTINUOUSLY VARIABLE TRANSMISSION (ECVT) DESAIN KONTROL PID UNTUK MENGATUR KECEPATAN MOTOR DC PADA ELECTRICAL CONTINUOUSLY VARIABLE TRANSMISSION (ECVT) Oleh : Raga Sapdhie Wiyanto Nrp 2108 100 526 Dosen Pembimbing : Dr. Ir. Bambang Sampurno,

Lebih terperinci

Teknik Tenaga Listrik(FTG2J2)

Teknik Tenaga Listrik(FTG2J2) Teknik Tenaga Listrik(FTG2J2) Bagian 9: Motor Sinkron Ahmad Qurthobi, MT. Teknik Fisika Telkom University Outline Pendahuluan Konstruksi Kondisi Starting Rangkaian Ekivalen dan Diagram Fasor Rangkaian

Lebih terperinci

METODE PENELITIAN A. WAKTU DAN TEMPAT

METODE PENELITIAN A. WAKTU DAN TEMPAT III. METODE PENELITIAN A. WAKTU DAN TEMPAT Penelitian dilaksanakan pada bulan Maret sampai dengan bulan Juni 2009 bertempat di Bengkel Teknik Mesin Budidaya Pertanian Bengkel Metanium, Leuwikopo, dan lahan

Lebih terperinci

PERENCANAAN LAYOUT DAN ANALISIS STABILITAS PADA KENDARAAN HYBRID RODA TIGA HYVI SAPUJAGAD

PERENCANAAN LAYOUT DAN ANALISIS STABILITAS PADA KENDARAAN HYBRID RODA TIGA HYVI SAPUJAGAD PERENCANAAN LAYOUT DAN ANALISIS STABILITAS PADA KENDARAAN HYBRID RODA TIGA HYVI SAPUJAGAD Oleh: Bagus Kusuma Ruswandiri 2108100120 Dosen Pembimbing: Prof. Ir. I Nyoman Sutantra, M.Sc., Ph.D. Latar Belakang

Lebih terperinci

BAB IV ANALISA PERBANDINGAN DAN PERHITUNGAN DAYA

BAB IV ANALISA PERBANDINGAN DAN PERHITUNGAN DAYA 31 BAB IV ANALISA PERBANDINGAN DAN PERHITUNGAN DAYA 4.1 MENGHITUNG PUTARAN POROS PISAU Dengan mengetahui putaran pada motor maka dapat ditentukan putaran pada pisau yang dapat diketahui dengan persamaan

Lebih terperinci

SIMULASI CRASH DEFORMATION PADA BODI PART MODEL KENDARAAN

SIMULASI CRASH DEFORMATION PADA BODI PART MODEL KENDARAAN SIMULASI CRASH DEFORMATION PADA BODI PART MODEL KENDARAAN Ian Hardianto Siahaan 1), Ninuk Jonoadji 2) Jurusan Teknik Mesin, Fakultas Teknologi Industri-Universitas Kristen Petra (1,2 Laboratorium Pengaturan

Lebih terperinci

PERANCANGAN SISTEM DISTRIBUSI AIR BERSIH DINGIN DARI TANGKI ATAS MENUJU HOTEL PADA THE ARYA DUTA HOTEL MEDAN

PERANCANGAN SISTEM DISTRIBUSI AIR BERSIH DINGIN DARI TANGKI ATAS MENUJU HOTEL PADA THE ARYA DUTA HOTEL MEDAN PERANCANGAN SISTEM DISTRIBUSI AIR BERSIH DINGIN DARI TANGKI ATAS MENUJU HOTEL PADA THE ARYA DUTA HOTEL MEDAN SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik HATOP

Lebih terperinci

JURUSAN TEKNIK MESIN Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2010

JURUSAN TEKNIK MESIN Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2010 TUGAS AKHIR PENGGUNAAN STRAIN GAUGE SEBAGAI SENSOR GAYA UNTUK MENINGKATKAN KINERJA SISTEM TRANSMISI CONTINUOUSLY VARIABLE TRANSMISSION ( CVT ) Oleh : HERLAMBANG BAGUS P. NRP 2108 100 506 Dosen Pembimbing

Lebih terperinci

Studi Eksperimen Kinerja Traksi Kendaraan Hybrid Sapujagad

Studi Eksperimen Kinerja Traksi Kendaraan Hybrid Sapujagad JURNAL TEKNIK POMITS Vol. 1, No. 2, (2012) ISSN: 2301-9271 1 Studi Eksperimen Kinerja Traksi Kendaraan Hybrid Sapujagad Dimaz Gesang Billy Christanyo dan I Nyoman Sutantra Jurusan Teknik Mesin, Fakultas

Lebih terperinci

PEMILIHAN MOTOR LISTRIK SEBAGAI PENGGERAK MULA RUMAH CRANE PADA FLOATING DOCK DI PT. INDONESIA MARINA SHIPYARD GRESIK

PEMILIHAN MOTOR LISTRIK SEBAGAI PENGGERAK MULA RUMAH CRANE PADA FLOATING DOCK DI PT. INDONESIA MARINA SHIPYARD GRESIK LAPORAN FIELD PROJECT PEMILIHAN MOTOR LISTRIK SEBAGAI PENGGERAK MULA RUMAH CRANE PADA FLOATING DOCK DI PT. INDONESIA MARINA SHIPYARD GRESIK POTOT SUGIARTO NRP. 6308030007 DOSEN PEMBIMBING IR. EKO JULIANTO,

Lebih terperinci

BAB II DASAR TEORI. 2.1 Konsep Perencanaan Sistem Transmisi Motor

BAB II DASAR TEORI. 2.1 Konsep Perencanaan Sistem Transmisi Motor BAB II DASAR TEORI 2.1 Konsep Perencanaan Sistem Transmisi Pada perancangan suatu kontruksi hendaknya mempunyai suatu konsep perencanaan. Untuk itu konsep perencanaan ini akan membahas dasar-dasar teori

Lebih terperinci

PEMBAHASAN. 1. Mean Effective Pressure. 2. Torque And Power. 3. Dynamometers. 5. Specific Fuel Consumption. 6. Engine Effeciencies

PEMBAHASAN. 1. Mean Effective Pressure. 2. Torque And Power. 3. Dynamometers. 5. Specific Fuel Consumption. 6. Engine Effeciencies PEMBAHASAN 1. Mean Effective Pressure 2. Torque And Power 3. Dynamometers 4. Air-Fuel Ratio (AFR) and Fuel-Air Ratio (FAR) 5. Specific Fuel Consumption 6. Engine Effeciencies 7. Volumetric Efficiency 1.

Lebih terperinci

BAB I PENDAHULUAN A. LATAR BELAKANG

BAB I PENDAHULUAN A. LATAR BELAKANG BAB I PENDAHULUAN A. LATAR BELAKANG Indonesia sebagai salah satu negara yang berbasis pertanian umumnya memiliki usaha tani keluarga skala kecil dengan petakan lahan yang sempit. Usaha pertanian ini terutama

Lebih terperinci

ANALISIS PERFORMANCE CONTINUOSLY VARIABLE TRANSMISSION (CVT) PADA MOTOR BEBEK MATIC HONDA BEAT MENGGUNAKAN DYNO ABD. Gatot Budy Prasetiyo*)

ANALISIS PERFORMANCE CONTINUOSLY VARIABLE TRANSMISSION (CVT) PADA MOTOR BEBEK MATIC HONDA BEAT MENGGUNAKAN DYNO ABD. Gatot Budy Prasetiyo*) ANALISIS PERFORMANCE CONTINUOSLY VARIABLE TRANSMISSION (CVT) PADA MOTOR BEBEK MATIC HONDA BEAT MENGGUNAKAN DYNO ABD Gatot Budy Prasetiyo*) ABSTRAK Perkembangan teknologi otomotif khususnya sepeda motor

Lebih terperinci

RICARD. Pembimbing : V. HARTANTO, Ir., M.Sc. FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS KRISTEN MARANATHA BANDUNG ABSTRAK

RICARD. Pembimbing : V. HARTANTO, Ir., M.Sc. FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS KRISTEN MARANATHA BANDUNG ABSTRAK TINJAUAN PEMENUHAN WAKTU PENGADAAN MATERIAL PEKERJAAN BASE COURSE DENGAN MENGGUNAKAN KOMBINASI ALAT LOADER DAN DUMP TRUCK PADA JALAN ARTERI PROYEK PEMBANGUNAN JEMBATAN LAYANG PASUPATI BANDUNG RICARD NRP

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Motor Matic motor matic adalah suatu kendaraan yang aman dan nyaman saat dikendarai dengan hanya menarik gas kemudian motor langsung jalan. yang pada dasa rnya kinerja motor matic

Lebih terperinci

BAB III PERANCANGAN ALAT DAN MESIN. Start. Motor Tersedia. Pemilihan Jenis Mesin Motor Daya. Daya Maksimum Tidak Ya

BAB III PERANCANGAN ALAT DAN MESIN. Start. Motor Tersedia. Pemilihan Jenis Mesin Motor Daya. Daya Maksimum Tidak Ya BAB III PERANCANGAN ALAT DAN MESIN 3.1 Diagram Alir Proses Perancangan Start Motor Tersedia Pemilihan Jenis Mesin Motor Daya Daya Maksimum Tidak Ya Dapat memutar Propeller sebagai Sumber tenaga Hovercraft

Lebih terperinci

ANALISA SISTEM KENDALI FUZZY PADA CONTINUOUSLY VARIABLE TRANSMISSION (CVT) DENGAN DUA PENGGERAK PUSH BELT UNTUK MENINGKATKAN KINERJA CVT

ANALISA SISTEM KENDALI FUZZY PADA CONTINUOUSLY VARIABLE TRANSMISSION (CVT) DENGAN DUA PENGGERAK PUSH BELT UNTUK MENINGKATKAN KINERJA CVT ANALISA SISTEM KENDALI FUZZY PADA CONTINUOUSLY VARIABLE TRANSMISSION (CVT) DENGAN DUA PENGGERAK PUSH BELT UNTUK MENINGKATKAN KINERJA CVT Oleh : Agung Prasetya Adhayatmaka NRP 2108100521 Dosen Pembimbing

Lebih terperinci

DAFTAR ISI. Lembar Persetujun Lembar Pernyataan Orsinilitas Abstrak Abstract Kata Pengantar Daftar Isi

DAFTAR ISI. Lembar Persetujun Lembar Pernyataan Orsinilitas Abstrak Abstract Kata Pengantar Daftar Isi DAFTAR ISI Lembar Persetujun ii Lembar Pernyataan Orsinilitas iii Abstrak iv Abstract v Kata Pengantar vi Daftar Isi vii Daftar Gambar ix Daftar Tabel xii Daftar Simbol xiii Bab I PENDAHULUAN 1 1.1 Latar

Lebih terperinci

PERHITUNGAN DAYA MOTOR PENGGERAK UTAMA a. EHP (dinas) = RT (dinas) x Vs = 178,97 Kn x 6,172 m/s = Kw = Hp

PERHITUNGAN DAYA MOTOR PENGGERAK UTAMA a. EHP (dinas) = RT (dinas) x Vs = 178,97 Kn x 6,172 m/s = Kw = Hp PERHITUNGAN DAYA MOTOR PENGGERAK UTAMA a. EHP (dinas) = RT (dinas) x Vs = 178,97 Kn x 6,172 m/s = 1104.631 Kw = 1502.90 Hp b. Menghitung Wake Friction (W) Pada perencanaan ini digunakan tipe single screw

Lebih terperinci

BAB II DASAR TEORI. Differential atau sering dikenal dengan nama gardan ( Bahasa Inggris :

BAB II DASAR TEORI. Differential atau sering dikenal dengan nama gardan ( Bahasa Inggris : BAB II DASAR TEORI 2.1. DIFFERENTIAL Differential atau sering dikenal dengan nama gardan ( Bahasa Inggris : diffferential ; yang berarti pembeda ) adalah komponen yang ada dalam rangkaian penggerak ( power

Lebih terperinci

BAB IV ANALISA DATA DAN PERHITUNGAN

BAB IV ANALISA DATA DAN PERHITUNGAN BAB IV ANALISA DATA DAN PERHITUNGAN 4.1 Pengambilan data Pengambilan data dilakukan pada tanggal 11 Desember 212 di Laboratorium Proses Produksi dengan data sebagai berikut : 1. Kecepatan angin (v) = 3

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Transmisi Transmisi yaitu salah satu bagian dari sistem pemindah tenaga yang berfungsi untuk mendapatkan variasi momen dan kecepatan sesuai dengan kondisi jalan dan kondisi pembebanan,

Lebih terperinci

SISTEM OPERASI DAN KELAUTAN

SISTEM OPERASI DAN KELAUTAN SISTEM OPERASI DAN KELAUTAN Analisis Towing pada Kapal FF 1052 1097 ( DE ) Frigate Ship dengan Menggunakan Tugboat ARS 50 Oleh : Agus Madatama Puja 4314100088 Sofyan Wahyu Widhestomo 4314100047 Zulfikar

Lebih terperinci

UNJUK KERJA MOBIL BERTRANSMISI MANUAL MENGGUNAKAN BAHAN BAKAR LIQUIFIED GAS FOR VEHICLE (LGV)

UNJUK KERJA MOBIL BERTRANSMISI MANUAL MENGGUNAKAN BAHAN BAKAR LIQUIFIED GAS FOR VEHICLE (LGV) Jurnal METTEK Volume 2 No 2 (2016) pp 75 82 ISSN 2502-3829 ojs.unud.ac.id/index.php/mettek UNJUK KERJA MOBIL BERTRANSMISI MANUAL MENGGUNAKAN BAHAN BAKAR LIQUIFIED GAS FOR VEHICLE (LGV) I Dewa Gede Ari

Lebih terperinci

III. METODOLOGI PENELITIAN. Alat-alat dan bahan yang digunakan dalam proses pengujian ini meliputi : mesin

III. METODOLOGI PENELITIAN. Alat-alat dan bahan yang digunakan dalam proses pengujian ini meliputi : mesin III. METODOLOGI PENELITIAN A. Alat dan Bahan Pengujian Alat-alat dan bahan yang digunakan dalam proses pengujian ini meliputi : mesin bensin 4-langkah, alat ukur yang digunakan, bahan utama dan bahan tambahan..

Lebih terperinci

METODOLOGI PERANCANGAN. Dari data yang di peroleh di lapangan ( pada brosur ),motor TOYOTA. 1. Daya maksimum (N) : 109 dk

METODOLOGI PERANCANGAN. Dari data yang di peroleh di lapangan ( pada brosur ),motor TOYOTA. 1. Daya maksimum (N) : 109 dk METODOLOGI PERANCANGAN 3.1. Spesifikasi TOYOTA YARIS Dari data yang di peroleh di lapangan ( pada brosur ),motor TOYOTA YARIS memiliki spesifikasi sebagai berikut : 1. Daya maksimum (N) : 109 dk. Putaran

Lebih terperinci

Perancangan dan Analisis Karakteristik Traksi Pada Mobil Pedesaan Serbaguna WAPRODES

Perancangan dan Analisis Karakteristik Traksi Pada Mobil Pedesaan Serbaguna WAPRODES Perancangan dan Analisis Karakteristik Traksi Pada Mobil Pedesaan Serbaguna WAPRODES E21 Radian Fauzia Rahman, Alief Wikarta, dan I Nyoman Sutantra Departemen Teknik Mesin, Fakultas Teknologi Industri,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Turbin gas adalah suatu unit turbin dengan menggunakan gas sebagai fluida kerjanya. Sebenarnya turbin gas merupakan komponen dari suatu sistem pembangkit. Sistem turbin gas paling

Lebih terperinci

BAB III PROSES MODIFIKASI DAN PENGUJIAN. Mulai. Identifikasi Sebelum Modifikasi: Identifikasi Teoritis Kapasitas Engine Yamaha jupiter z.

BAB III PROSES MODIFIKASI DAN PENGUJIAN. Mulai. Identifikasi Sebelum Modifikasi: Identifikasi Teoritis Kapasitas Engine Yamaha jupiter z. 3.1 Diagram Alir Modifikasi BAB III PROSES MODIFIKASI DAN PENGUJIAN Mulai Identifikasi Sebelum Modifikasi: Identifikasi Teoritis Kapasitas Engine Yamaha jupiter z Target Desain Modifikasi Perhitungan Modifikasi

Lebih terperinci

BAB I PENDAHULUAN. yang diadakan untuk menguji kemampuan, merancang, dan membangun

BAB I PENDAHULUAN. yang diadakan untuk menguji kemampuan, merancang, dan membangun BAB I PENDAHULUAN 1.1. LATAR BELAKANG Indonesia Energy Marathon Challenge (IEMC) merupakan kegiatan yang diadakan untuk menguji kemampuan, merancang, dan membangun kendaraan yang aman, irit dan ramah lingkungan.

Lebih terperinci

PERANCANGAN MESIN R. AAM HAMDANI

PERANCANGAN MESIN R. AAM HAMDANI PERANCANGAN MESIN R. AAM HAMDANI PERANCANGAN MESIN PROSES REKAYASA PERANCANGAN SUATU MESIN BERDASARKAN KEBUTUHAN ATAU PERMINTAAN TERTENTU YANG DIPEROLEH DARI HASIL PENELITIAN ATAU DARI PELANGGAN LANGSUNG

Lebih terperinci

SISTEM SATUAN. Mekanika Kekuatan bahan 2 nd and 3 rd session Page 1

SISTEM SATUAN. Mekanika Kekuatan bahan 2 nd and 3 rd session Page 1 Dalam aplikasi mechanics kita memiliki 3 sistem dimensi dasar, yaitu SISTEM SATUAN 1. English Engineering (FMLT) system Force (F), Mass (M), Length (L), time (t) merupakan dimensi utama. Dengan satuan

Lebih terperinci

AUTOMATIC TRANSMISSION (A/T)

AUTOMATIC TRANSMISSION (A/T) AUTOMATIC TRANSMISSION (A/T) TRANSMISI OTOMATIS KENDARAAN TIPE FR BAGIAN UTAMA A/T 1. Torque Converter ( bagian depan) 2. Planetary Gear Unit (bagian tengah) 3. Hydraulic Control Unit (bagian bawah) Torque

Lebih terperinci

DOSEN PEMBIMBING: Prof.Dr. I NYOMAN SUTANTRA, M.Sc, Phd. YOHANES, ST, MSc. Eng

DOSEN PEMBIMBING: Prof.Dr. I NYOMAN SUTANTRA, M.Sc, Phd. YOHANES, ST, MSc. Eng RANCANG BANGUN MULTIPURPOSE DRIVETRAIN UNTUK MENINGKATKAN UTILITAS ATAU KEMANFAATAN KENDARAAN MULTI GUNA PEDESAAN DOSEN PEMBIMBING: Prof.Dr. I NYOMAN SUTANTRA, M.Sc, Phd. YOHANES, ST, MSc. Eng LATAR BELAKANG

Lebih terperinci

PERANCANGAN AIR TO FUEL RATIO

PERANCANGAN AIR TO FUEL RATIO PERANCANGAN AIR TO FUEL RATIO (AFR) CLUSTERING BERBASIS ADAPTIVE NEURAL FUZZY INFERENCE SYSTEM (ANFIS) PADA MODEL MOBIL BERMESIN INJEKSI BENSIN BERDASARKAN PROFIL KARAKTERISTIK MENGEMUDI PENGENDARA Muhamad

Lebih terperinci

STUDI EKSPERIMENTAL KARAKTERISTIK KINERJA SEPEDA MOTOR DENGAN VARIASI JENIS BAHAN BAKAR BENSIN

STUDI EKSPERIMENTAL KARAKTERISTIK KINERJA SEPEDA MOTOR DENGAN VARIASI JENIS BAHAN BAKAR BENSIN EKSERGI Jurnal Teknik Energi Vol. No.1 Januari 2015, 1 - STUDI EKSPERIMENTAL KARAKTERISTIK KINERJA SEPEDA MOTOR DENGAN VARIASI JENIS BAHAN BAKAR BENSIN Nazaruddin Sinaga 1) ; Mulyono 2) 1) Magister Teknik

Lebih terperinci

SISTEM SATUAN. Mekanika Kekuatan bahan 2 nd session Page 1. Dalam aplikasi mechanics kita memiliki 3 sistem dimensi dasar, yaitu

SISTEM SATUAN. Mekanika Kekuatan bahan 2 nd session Page 1. Dalam aplikasi mechanics kita memiliki 3 sistem dimensi dasar, yaitu Dalam aplikasi mechanics kita memiliki 3 sistem dimensi dasar, yaitu SISTEM SATUAN 1. English Engineering (FMLT) system Force (F), Mass (M), Length (L), time (t) merupakan dimensi utama. Dengan satuan

Lebih terperinci

RANCANG BANGUN POROS DAN ULIR DAYA MESIN HOLE POST AUGER PROYEK AKHIR

RANCANG BANGUN POROS DAN ULIR DAYA MESIN HOLE POST AUGER PROYEK AKHIR RANCANG BANGUN POROS DAN ULIR DAYA MESIN HOLE POST AUGER PROYEK AKHIR Disusun Oleh: MUHAMMAD RISNANDA SURYA KELANA NIM I8113028 PROGRAM DIPLOMA III TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SEBELAS MARET

Lebih terperinci

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Untuk Memperoleh Gelar Sarjana Teknik STEVANUS SITUMORANG NIM

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Untuk Memperoleh Gelar Sarjana Teknik STEVANUS SITUMORANG NIM PERANCANGAN TROLLEY DAN SPREADER GANTRY CRANE KAPASITAS ANGKAT 40 TON TINGGI ANGKAT 41 METER YANG DIPAKAI DI PELABUHAN INDONESIA I CABANG BELAWAN INTERNATIONAL CONTAINER TERMINAL (BICT) SKRIPSI Skripsi

Lebih terperinci

BAB III PERENCAAN DAN GAMBAR

BAB III PERENCAAN DAN GAMBAR BAB III PERENCAAN DAN GAMBAR 3.1 Diagram Alur Perencanaan Proses perancangan alat pencacah rumput gajah seperti terlihat pada diagram alir berikut ini: Mulai Pengamatan dan Pengumpulan Perencanaan Menggambar

Lebih terperinci

Optimasi Pengaktifan Motor Penggerak pada Prototipe Sepeda Motor Hibrid untuk Menurunkan Konsumsi Bahan Bakar

Optimasi Pengaktifan Motor Penggerak pada Prototipe Sepeda Motor Hibrid untuk Menurunkan Konsumsi Bahan Bakar ISBN 978-979-3541-50-1 IRWNS 2015 Optimasi Pengaktifan Motor Penggerak pada Prototipe Sepeda Motor Hibrid untuk Menurunkan Konsumsi Bahan Bakar Aris Suryadi, Budi Triyono Jurusan Teknik Mesin Politeknik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Bahan Bakar Bahan bakar yang dipergunakan motor bakar dapat diklasifikasikan dalam tiga kelompok yakni : berwujud gas, cair dan padat (Surbhakty 1978 : 33) Bahan bakar (fuel)

Lebih terperinci

BAB III PEMBAHASAN, PERHITUNGAN DAN ANALISA

BAB III PEMBAHASAN, PERHITUNGAN DAN ANALISA BAB III PEMBAHASAN, PERHITUNGAN DAN ANALISA 3.1. Proses 3.1.1 Perancangan Propeller. Gambar 3.1. Perancangan Hovercraft Perancangan propeller merupakan tahapan awal dalam pembuatan suatu propeller, maka

Lebih terperinci

Tugas Akhir TM

Tugas Akhir TM Tugas Akhir TM 090340 REDESAIN PERENCANAAN SISTEM CONTINUOSLY VARIABLE TRANSMISSION (CVT) DAN PENGARUH BERAT ROLLER TERHADAP KINERJA PULLEY PADA SEPEDA MOTOR MATIC Program Studi D3 Teknik Mesin Fakultas

Lebih terperinci

Bab 3 METODOLOGI PERANCANGAN

Bab 3 METODOLOGI PERANCANGAN Bab 3 METODOLOGI PERANCANGAN 3.1 Spesifikasi New Mazda 2 Dari data yang diperoleh di lapangan (pada brosur), mobil New Mazda 2 memiliki spesifikasi sebagai berikut : 1. Daya Maksimum (N) : 103 PS 2. Putaran

Lebih terperinci

2.1 Pengertian Umum Mesin Pemipil Jagung. 2.2 Prinsip Kerja Mesin Pemipil Jagung BAB II DASAR TEORI

2.1 Pengertian Umum Mesin Pemipil Jagung. 2.2 Prinsip Kerja Mesin Pemipil Jagung BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Pengertian Umum Mesin Pemipil Jagung Mesin pemipil jagung merupakan mesin yang berfungsi sebagai perontok dan pemisah antara biji jagung dengan tongkol dalam jumlah yang banyak dan

Lebih terperinci

Hubungan Antara Tegangan dan RPM Pada Motor Listrik

Hubungan Antara Tegangan dan RPM Pada Motor Listrik 1 Hubungan Antara Tegangan dan RPM Pada Motor Listrik Pada motor DC berlaku persamaan-persamaan berikut : V = E+I a Ra, E = C n Ф, n =E/C.Ф Dari persamaan-persamaan diatas didapat : n = (V-Ra.Ra) / C.Ф

Lebih terperinci

ARTIKEL. Analisa Pengaruh Jenis Pegas, Roller Terhadap Torsi Dan Konsumsi Bahan Bakar Pada Sepeda Motor Matic

ARTIKEL. Analisa Pengaruh Jenis Pegas, Roller Terhadap Torsi Dan Konsumsi Bahan Bakar Pada Sepeda Motor Matic ARTIKEL Analisa Pengaruh Jenis Pegas, Roller Terhadap Torsi Dan Konsumsi Bahan Bakar Pada Sepeda Motor Matic Analysis Of The Influence Of The Kind Of Pegas, A Roller Against Torsi And Consumption Of Fuel

Lebih terperinci

MAKALAH ELEMEN MESIN RANTAI. Untuk Memenuhi Tugas Mata Kuliah Elemen Mesin

MAKALAH ELEMEN MESIN RANTAI. Untuk Memenuhi Tugas Mata Kuliah Elemen Mesin MAKALAH ELEMEN MESIN RANTAI Untuk Memenuhi Tugas Mata Kuliah Elemen Mesin Oleh: Rahardian Faizal Zuhdi 0220120068 Mekatronika Politeknik Manufaktur Astra Jl. Gaya Motor Raya No 8, Sunter II, Jakarta Utara

Lebih terperinci

M.FADHILLAH RIFKI ( ) Pembimbing: Dr.Ir. Bambang Sampurno, MT

M.FADHILLAH RIFKI ( ) Pembimbing: Dr.Ir. Bambang Sampurno, MT IMPLEMENTASI KONTROL PD UNTUK MENGATUR KECEPATAN MOTOR DC PADA ECVT (ELECTRIKAL CONTINUOUSLY VARIABLE TRANSMISSION) M.FADHILLAH RIFKI (2108.100.512) Pembimbing: Dr.Ir. Bambang Sampurno, MT Latar Belakang

Lebih terperinci

VARIASI KONSTANTA BERAT ROLLER SENTRIFUGAL TERHADAP DAYA DAN TORSI MESIN PADA MOTOR GOKART MATIC

VARIASI KONSTANTA BERAT ROLLER SENTRIFUGAL TERHADAP DAYA DAN TORSI MESIN PADA MOTOR GOKART MATIC VARIASI KONSTANTA BERAT ROLLER SENTRIFUGAL TERHADAP DAYA DAN TORSI MESIN PADA MOTOR GOKART MATIC Andi Saputra 1), Zulfah 2), Rusnoto 3) 1) Mahasiswa Prodi Teknik Mesin Fakultas Teknik Universitas Pancasakti

Lebih terperinci

Karakteristik Traksi Sepeda Motor dengan Continuose Variable Transmission System

Karakteristik Traksi Sepeda Motor dengan Continuose Variable Transmission System Karakteristik Traksi Sepeda Motor dengan Continuose Variable Transmission System I Ketut Adi Atmika 1)*, I Dewa Gede Ary Subagia 1) 1) Jurusan Teknik Mesin, Universitas Udayana Kampus Bukit Jimbaran, Bali

Lebih terperinci

Studi Eksperimen Pengaruh Variasi Pegas Kopling Terhadap Gaya Dorong dan Percepatan Pada Kendaraan Yamaha Vixion 150 cc

Studi Eksperimen Pengaruh Variasi Pegas Kopling Terhadap Gaya Dorong dan Percepatan Pada Kendaraan Yamaha Vixion 150 cc JURNAL TEKNIK ITS Vol. 5, No., (6) ISSN: 337-3539 (3-97 Print) F-95 Studi Eksperimen Pengaruh Variasi Pegas Kopling Terhadap Gaya Dorong dan Percepatan Pada Kendaraan Yamaha Vixion 5 cc Reza Prakoso madhan

Lebih terperinci

Presentasi Tugas Akhir

Presentasi Tugas Akhir Presentasi Tugas Akhir PENGUJIAN PENGARUH PERUBAHAN KECEPATAN MOTOR TERHADAP DAYA PADA SISTEM TRANSMISI CVT OLEH: M. WAHYU ARDANI 2107 030 035 PEMBIMBING : IR. SUHARIYANTO, MSC Program Studi D3 Teknik

Lebih terperinci

BAB IV PEMBAHASAN DAN HASIL. pembongkaran overhoul differential dengan keadaan tutup oli berkarat spare. Gambar 4.1 Differential cover belakang.

BAB IV PEMBAHASAN DAN HASIL. pembongkaran overhoul differential dengan keadaan tutup oli berkarat spare. Gambar 4.1 Differential cover belakang. BAB IV PEMBAHASAN DAN HASIL 4.1 Data Awal setelah Overhoul differential Berikut adalah penampakan differential awal sebelum dilakukan pembongkaran overhoul differential dengan keadaan tutup oli berkarat

Lebih terperinci

KOPLING DAN REM RINI YULIANINGSIH

KOPLING DAN REM RINI YULIANINGSIH KOPLING DAN REM RINI YULIANINGSIH 1 Definition Clutch/Kopling: adalah alat yang digunakan untuk mengubungkan atau memutuskan komponen yang digerakkan dari penggerak utama dalam sistem Break/Rem: adalah

Lebih terperinci

BAB II DASAR TEORI. penyusun utama yaitu clutch, manual transaxle (mencakup transmisi roda gigi dan

BAB II DASAR TEORI. penyusun utama yaitu clutch, manual transaxle (mencakup transmisi roda gigi dan BAB II DASAR TEORI Powertrain adalah sistem penyaluran daya dari mesin ke roda penggerak kendaraan (ban). Powertrain pada kendaraan dengan roda penggerak depan memiliki komponen penyusun utama yaitu clutch,

Lebih terperinci

KARAKTERISTIK KENDARAAN

KARAKTERISTIK KENDARAAN 1 KARAKTERISTIK KENDARAAN Dr.Eng. Muhammad Zudhy Irawan, S.T., M.T. Materi Kuliah PPI MSTT PENDAHULUAN 2 Kriteria untuk desain geometrik jalan dan tebal perkerasan didasarkan pada: 1. Karakteristik statis

Lebih terperinci

BAB IV PENGOLAHAN DATA

BAB IV PENGOLAHAN DATA BAB IV PENGOLAHAN DATA 4.1 Perhitungan Daya Motor 4.1.1 Torsi pada poros (T 1 ) T3 T2 T1 Torsi pada poros dengan beban teh 10 kg Torsi pada poros tanpa beban - Massa poros; IV-1 Momen inersia pada poros;

Lebih terperinci

Surya Hadi Putranto

Surya Hadi Putranto TUGAS AKHIR Rancang Bangun Speed Bump dan Analisa Respon Speed Bump Terhadap Kecepatan Kendaraan Dosen Pembimbing : Ir. Abdul Aziz Achmad Surya Hadi Putranto 2105100163 Latar Belakang Dalam kehidupan sehari-hari,

Lebih terperinci

Variasi berat roller sentrifugal Pada continuosly variable transmission (CTV) terhadap kinerja traksi sepeda motor

Variasi berat roller sentrifugal Pada continuosly variable transmission (CTV) terhadap kinerja traksi sepeda motor Jurnal Ilmiah Teknik Mesin CAKRAM Vol. No., Desember 008 (97 10) Variasi berat roller sentrifugal Pada continuosly variable transmission (CTV) terhadap kinerja traksi sepeda motor 1 Made Dwi Budiana P.

Lebih terperinci