HUKUM PERTAMA TERMODINAMIKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "HUKUM PERTAMA TERMODINAMIKA"

Transkripsi

1 MAKALAH TERMODINAMIKA TEKNIK KIMIA HUKUM PERTAMA TERMODINAMIKA Disusun Oleh : Kelompok : 12 Nama Mahasiswa : Hari Purnama ( ) Hendrik ( ) Rahganda ( ) Siti Zunuraen ( ) Departemen Teknik Kimia FAKULTAS TEKNIK UNIVERSITAS INDONESIA DEPOK, 2014

2 Jawaban Pemicu 2 : Hukum Pertama Termodinamika MA Teknik Kimia FTUI 4 Maret, Instruktur : Dr. Ir. Praswasti PDK Wulan, MT 1. Buatlah daftar semua jenis energi dan Berikan contoh dalam kehidupan nyata masingmasing. Tabel 1. Jenis-Jenis Energi dan Conrohnya Jenis Energi Contoh Dalam Kehidupan Nyata Sehari-hari 1 Mechanical energy Buah kelapa jatuh dari pohon dengan kecepatan 1 m/s 2 Kinetic energy Mobil melaju dengan kecepatan 40 Km/jam 3 Potential energy Apel berada diatas pohon 4 Sound energy Suara petir menggetarkan rumah 5 Thermal energy Telur direbus dengan air mendidih 6 Chemical energy Reaksi asam klorida dengan pita Mg 7 Electric energy Nyamuk yang tewas tersengat perangkap listrik 8 Electrostatic energy Balon yang digesek kain perca dapat menarik kertas 9 Magnetic energy Kutub magnet yang berlawanan saling tarik-menarik 10 light energy Matahari menyinari bumi 2. Menurut anda, ada berapa jeniskah kapasitas panas dalam termodinamika dan berikan definisinya berdasarkan gambar yang diberikan. Ada dua jenis kapasitas panas, yaitu kapasitas panas volume konstan dan tekanan konstan. Definisi untuk volume konstan : ( ) Definisi untuk tekanan konstan :

3 ( ) 3. Jelaskanlah mengapa kedua satuan yang diberikan dapat identik! Yang diperhitungkan dalam kapasitas panas hanyalah perbedaan temperatur awal dan temperatur akhir sistem. Misalkan adalah temperatur awal dan adalah temperatur akhir dalam o C, sehingga untuk satuan kj/kg. o C, perbedaan suhunya adalah: Untuk temperatur dalam kelvin, temperatur awalnya adalah dan temperatur akhirnya sehingga untuk satuan kj/kg. o K, perbedaan suhunya adalah: sehingga 4. Berikan penjelasan untuk satuan kapasitas panas yang menggunakan basis molar! Kapasitas panas menggunakan basis molar untuk menghadapi permasalahanpermasalahan di bidang kimia yang seringkali lebih mudah diselesaikan dalam basis molar. Bergantung pula dengan tetapan nilai R yang digunakan. 5. Jelaskan mengapa ada diskontinuitas dalam plot kapasitas panas air! Hal ini terjadi karena adanya kekhususan yang terjadi pada nilai C p air fase cair. Pada fase tersebut, air akan memiliki kapasitas panas yang lebih besar. Diskontinuitas disebabkan adanya usaha pembengkokan ikatan hidrogen saat kenaikan suhu pada H 2 O fase cair. Sehingga dibutuhkan lebih banyak energi untuk menaikkan suhu H 2 O fase cair, karena

4 sebagian energi terpakai untuk membengkokkan iktan hidrogen tersebut. Hal tersebut tidak ditemui pada H 2 O fase padat dan gas. 6. Hitung panas yang dibutuhkan untuk meningkatkan suhu 1 mol gas metana K menggunakan data yang ditampilkan! Untuk mempermudah perhitungan, maka kurva kapasitas panas tekanan konstan pada rentang K adalah linier (kondisi awalnya memang hampir linier) dengan kapasitas kalornya adalah 8.1 cal/mol K pada 300 K, dan 15 cal/mol K pada 800 K, sehingga panas yang dibutuhkan adalah : ( ) Terjadi diskontinuitas pada kurva H2O dikarenakan terjadi perubahan fase dari solid menjadi liquid, dan liquid menjadi gas. Dapat dilihat bahwa Cp H2O melonjak sangat tinggi saat perubahan fase dari solid menjadi liquid, dan diskontinu turun saat berubah fase menjadi gas. 7. Apakah anda pikir masuk akal mengasumsikan kapasitas panas yang konstan untuk rentang suhu menyeluruh? Masuk akal selama selama substansinya adalah gas monoatomik seperti yang terlihat pada gambar 3(a) untuk gas helium. 8. Bagaimana pendapat anda untuk gambar 3 (b)? Untuk volume konstan : ( ) Dengan menerapkan hukum I termodinamika

5 pada volume konstan sehingga dan persamaan menjadi: ( ) Untuk tekanan konstan : ( ) Dengan menerapkan hukum I termodinamika pada tekanan konstan sehingga dan persamaan menjadi: ( ) 9. Jelaskan energi internal molekul gas dalam hal mode yang berbeda gerak translasi,rotasi, dan mode getaran. Energi Translational : energi ini merupakan energi kinetik molekul gas karena mempunyai komponen kecepatan, semakin cepat pergerakan molekul, semakin besar energi dalamnya, karena itu kenaikan suhu dapat meningkatkan perubahan energi dalam yang diakibatkan oleh bertambah cepatnya molekul gas tersebut. Energi rotasional : energi ini juga merupakan energi kinetik molekul gas karena mempunyai komponen kecepatan. Namun energi tersebut hanya dimiliki oleh gas nonmonoatomik Energi vibrasional : energi tersebut juga berasal dari struktur molekul nonmonoatomik dalam bentuk getaran. 10. Gunakan diagram berikut untuk menunjukkan distribusi populasi boltzmann. Contoh sebaran populasi untuk getaran

6 Gambar. 1 sebaran Populasi Getaran Untuk rotasional, bentuknya seperti gelombang yang menuju kekanan seiring bertambahnya suhu, sedangkan pada tingkat electronic, sebarannya tidak teratur, tergantung apakah elektron tereksitasi atau tidak. 11. Untuk sistem tertutup, persamaan kesetimbangan energi diberikan,sangat menarik dan membantu unutk mengetahui bagaimana energi internal dan kapasitas panas yang ditentukan secara eksperimental,oleh karena itu, Jelaskanlah cara menerapkan persamaan untuk penentuan energi internal cairan menggunakan kalorimeter bom adiabatik ditunjukan dibawah ini! Neraca energi untuk sistem tertutup Karena pada kalorimeter bom adiabatik, W= 0 dan Q dari luar sistem juga bernilai 0. Sehingga 12. Salah satu kebutuhan untuk memahami konsep kekelan energi dan massa, dalam rangka unutk memahami bagaimana kalorimeter bekerja. Jelaskan sifat termodinamika yang disebutkan dalam pernyataan berikut dan menentukan nilai-nilai mereka untuk air sebagai bahan murni pada tekanan atmosfer.

7 Gambar. 2 Kurva Entalpi Air Sebagai Fungsi Temperatur 1. Kapasitas panas yang solid sebagai fungsi temperatur dari -10 sampai 0 dan panas yang dibutuhkan untuk memanaskan es dari -10 o C sampai 0 o C Tabel 2. Sifat Termodinamika Es Pada Suhu -10 o C samapi 0 o C No Sifat Keterangan Termodinamika 1 Temperatur Naik, 2 Tekanan Tetap, (101 kpa) 3 Energi dalam Meningkat seiring kenaikan suhu 4 Volume Meningkat seiring kenaikan suhu Spesifik 5 Entalpi Panas sensible(tidak ada perubahan fase) meningkatseiringkenaikansuhu.

8 2. Panas mencairnya es pada 0 o C Tabel 3. Sifat Termodinamika mencairnya Es pada suhu 0 o C No Sifat Keterangan Termodinamika 1 Temperatur Tetap, yaitu 0 2 Tekanan Tetap,( 101 kpa) 4 Energi dalam Meningkat seiring kenaikan suhu 5 Volume Meningkat seiring kenaikan suhu Spesifik 6 Entalpi Panas tetap(kalor lebur), Tidak ada perubahan suhu,adanya perubahan Fase dari padat ke cair 7 Kapasitas Panas 8,712 J/(g mol) o C 3. Kapasitas panas cair sebagai fungsi temperature 0 o C sampai 100 o C dan panas yang dibutuhkan untuk memanaskan air dari 0 o C sampai 100 o C. Tabel 4. Sifat Termodinamika Air pada Suhu 0 o C sampai 100 o C No Sifat Keterangan Termodinamika 1 Temperatur Meningkat, 2 Tekanan Tetap,(101 kpa) 3 Energi dalam Meningkatseiringkenaikansuhu 4 Volume Spesifik Meningkatseiringkenaikansuhu 5 Entalpi Panas sensible(tidak ada perubahan fase) meningkatseiringkenaikansuhu, 6 KapasitasPanas Meningkatkarenaterjadikenaikansuhu

9 4. Panaspenguapan air pada 100 o C Tabel 5. Sifat Termodinamika Air pada Suhu 100 o C No Sifat Keterangan Termodinamika 1 Temperatur Tetap, yaitu Tekanan Tetap, (101 kpa) 3 Energidalam Meningkatseiringkenaikansuhu 4 Volume Spesifik Meningkatseiringkenaikansuhu 5 Entalpi.Panas tetap disebut kalor laten karena tidak ada perubahan fase 6 KapasitasPanas J/(g mol) o C 5. Kapasitas panas uap sebagai fungsi temperatur dari 100 o C 110 o C dan panas yang dibutuhkan untuk memanaskan uap jenuh pada 100 o C menjadi superheated steam pada 110 o C. Tabel 6. Sifat Termodinamika Uap Jenuh pada Suhu 100 o C menjadi steam pada suhu 110 o C. No Sifat Keterangan Termodinamika 1 Temperatur Meningkat, 2 Tekanan Tetap, (101kpa) 3 Energidalam Meningkat seiring kenaikan suhu 4 Volume Spesifik Meningkat seiring kenaikan suhu 5 Entalpi Panas sensible(tidak ada perubahan fase) meningkat seiring kenaikan suhu 6 KapasitasPanas Meningkat seiring kenaikan suhu

10 13. Kukus (steam) masuk nozzle dari steam turbine dengan kecepatan 10 ft/sec pada tekanan 500 psia suhu 1000 o F. Tekanan dan suhu pada keluaran nozzle adalah 300 o F dan 1 atm. Tentukanlah kecepatan keluaran nozzle dan luas penampangnya. V 1 = 10 ft/sec P 1 = 500 psia T 1 = 100 F Steam P 2 = 1 atm T 2 = 300 F V 2 =? A 2 =? h 1 = btu/lbm v 1 = 1699 ft 3 /lbm h 2 = btu/lbm v 2 = ft 3 /lbm Gambar 3. Nozzle ( ) ( ) ( ) ( ) Dengan menggunakan persamaan kontinuitas maka luas penampangnya dapat dihitung sebagai berikut :

11 ( ) ( ) ( ) 14. Tangki pejal mempunyai volume 0,5 m 3 diisi dengan refrigerant 134a pada 0,5 Mpa, 50 o C. Selanjutnya zat ini dipanaskan sampai mencapai keadaan uap jenuhnya. Hitunglah kalor proses ini. Diketahui : Gambar 4. Boiler State 1 : - P 1 = 0.4 Mpa - T 1 = 50 o C - Volume = 0,5 m 3 - h 1 = kj/kg - u 1 = kj/kg - v 1 = m 3 /kg - m = 8,53 kg State 2 : saturated steam volume 0.5 m 3 u 2 = ( )/ x = kj/kg h 2 = kj/kg

12 15. Kukus (steam) masuk alat penukar panas (HE) pada 1,4 Mpa dan 300 o C dimana kukus terkondensasi pada keluaran beberapa tube-tube. Kukus yang terkondensasi meninggalkan HE sebagai cairan pada 1,4 Mpa dan 150 o C dengan laju alir 5000 kg/hr. Kukus dikondensasi oleh air yang lewat tube-tube. Air masuk HE pada 20 o C dan menyebabkan kenaikan suhu 20 o C pada sisi keluaran. Asumsikan HE dalam keadaan adiabatis dan jelaskanlah laju alir yang diperlukan. Steam P = 1.4 Mpa T = 300 o C = 5000 kg/h 1 water T=20 o C=293 K 4 2 T o C = 313 K 3 Kondensat T = 150 o C P = 1.4 Mpa =?? Gambar 5. Aliran Fluida Pada alat Penukar Panas C p = 4.18 kj/kg o C

13 h 1 = kj/kg h 3 = 630 kj/kg ( ) 16. Nitrogen cair disimpan dalam tangki logam 0,5 m3 yang diinsulasi dengan baik. Perkirakanlah proes pengisian tangki kosong yang awalnya mempunyai suhu 295 K. Nitrogen cair dicapai pada titik didih normal 77,3 K dan pada tekanan beberapa bar. Pada kondisi ini, entalpinya adalah -120,8 kj/kg. Saat katup dibuka, nitrogen mengalir masuk tangki saat evaporasi pertama kali terjadi dalam proses pendinginan tangki. Jika tangki mempunyai massa 30 kg dan logam mempunyai kapasitas panas spesifik 0,43 kj/kg.k. Menurut anda berapakah massa nitrogen yang harus mengalir masuk ke dalam tangki hanya untuk mendinginkannya ke suhu yang membuat nitrogen cair mulai terakumulasi di dalam tangki? Asumsikan bahwa nitrogen dan tangki selalu pada suhu yang sama. Sifat-sifat uap jenuh nitrogen (a saturated nitrogen vapor) pada beberapa suhu diberikan sebagai berikut : Tabel 7. Sifat-Sifat Uap Jenuh Nitrogen

14 T/K P/bar V v /m 3 kg -1 H v / kjkg ,396 0, ,9 85 2,287 0, ,3 90 3,600 0, ,398 0, , ,775 0, , ,83 0, , ,67 0, ,6 Diketahui : Volum tangki = 0,5 m3 H in = -120,8 kj/kg C = 0,43 kj/kg.k T 1 = 295 K Massa tangki = 30 kg Data untuk uap jenuh nitrogen : 80 1,396 0, ,287 0,1017 T = 90 K P = 3,600 bar V = 0,06628 m 3 /kg 95 5,398 0, ,775 0, ,83 0, ,67 0,01598

15 78,9 82,3 H = 85 kj/kg 86,8 87,7 87,4 85,6 Pada titik dimana nitrogen cair mulai terakumulasi di tangki, tangki tersebut diisi dengan uap nitrogen jenuh pada suhu akhir dan memiliki sifat-sifat berikut : m vap, T vap, V vap, H vap, U vap Dengan persamaan 2.29 dikalikan dengan dt,d(n t.u t ) H.dm = dq T mewakili tangki. H dan m mewakili aliran masuk. Karena di awal tangki dievakuasi, maka integrasi akan menghasilkan m vap.u vap H in.m vap = m tangki.c. (T vap T1) dan m vap = V tangki / V vap Selanjutnya kita dapat menghitung energi dalam sebagai berikut (U = H - PV)

16 56,006 59,041 U = 61,139 kj/kg 62,579 63,395 63,325 62,157 Jika data dicocokkan dengan cubic spline : Us = Ispline (T,U) Vs = Ispline (T,V) Uvap (t) = interp (Us, T, U, t) Vvap (t) = interp (Vs, T, V, t) Tvap = 100 K Dengan menyambungkan persamaan 1 dan 2 akan dihasilkan : Uvap (Tvap) Hin = mtangki. C. (T1-T vap ). V vap. (T vap ) / V tangki Tvap = Find (Tvap) mvap = Vtangki / Vvap (Tvap) Tvap = 97,924 K mvap = 13,821 kg 17. Gas metana dibakar dibakar secara sempurna dengan 30% udara berlebih pada tekanan atmosfer. Metana dan udara masuk tungku pada suhu 30 0 C jenuh dengan uap air, dan gas buang meninggalkan tungku pada C. Kemudian gas buang melewati penukar panas dan keluar dari HE pada 50 0 C. Dengan basis 1 mol metana, Hitunglah banyak panas yang hilang dari tungku, dan banyak panas yang ditransfer dalam penukar panas. Jawaban: Proses di tungku Basis : 1 mol CH4 and 30% udara berlebih

17 Jumlah mol metana = 1 mol Jumlah mol oksigen = 130% x 2 x 1 mol = 2,6 mol Jumlah mol nitrogen = 79/21 x 2,6 mol = 9,78 mol Jumlah mol semua gas kering = n CH4 + n O2 + n N2 = 1+2,6+9,78 mol = 13,38 mol Tekanan uap air pada suhu 30 0 C = 4,241 kpa, maka jumlah uap air yang masuk ke sistem = n v = 4,241 / (101 4,241) x 13,38 mol = 0,585 mol Hasil Produk CO 2 = 1 mol H 2 O = 2 + 0,585 mol = 2,585 mol O 2 = 2,6 2 mol = 0,6 mol N 2 = 9,78 mol Neraca Energi di tungku : Q = H = H298 + Ahp 1 5,457 1,045-1,157 n = 2,585 A = 3,470 B = 1,450 x10-3 D = 0,121x10 5 0,6 3,639 0,506-0,227 9,78 3,280 0,593 0,040 i = 1,2,3,4 R = 8,314 J/K.mol Total nilai MCPH dari produk : MCPH (303,15, 1773,15, 48,692, 10, , 0,0, -0, ) = 59,89511

18 AHp = R. MCHP (1773,15 303,15) AH298 = (-393, x(-241,818) (-74,520) Joule = -802,625 Jolue Q = Hp + H298 = J Alat Penukar Panas Flue gas mengalami pendinginan dari C ke 50 0 C. Tekanan parsial dari air di flue gas yang meninggalkan tungku adalah : P = (n 2 ) / (n 1 + n 2 + n 3 + n 4 ). 101,325 = 18,754 kpa Tekanan uap air pada 50 0 C adalah 12,34 kpa dan air akan mencair untuk menurunkan tekanan parsialnya sampai titik ini Jumlah mol gas kering menjadi : n = n 1 +n 3 +n 4 n = 11,38 Jumlah mol uap air yang meninggalkan alat penukar panas : n 2 = 12,34 / (101,325 12,34). n n 2 = 1,578 Jumlah mol air berkondensasi : n = 2,585 1,578 Kalor laten air pada suhu 50 0 C adalah 2382,9 x 18,015 Panas sensible dari proses pendinginan flue gas ke suhu 50 0 C dengan semua air sebagai uap : MCPH (303,15, 1773,15, 48,692, 10, , 0,0, -0, ) = 59,89511 Q = R. MCHP (323, ,15) n. AH50 Q = Joule

19 DAFTAR PUSTAKA Boles, Michael, Cengel, Yunus. Thermodynamics an Engineering Approach. Fifth Edition Smith, J.M, Van Ness. Introduction to Chemical Engineering Thermodynamics. McGraw-Hill Moran, Michael, Shapiro, Howard Fundamentals of Engineering Thermodynamics. US : John Wiley

MAKALAH TERMODINAMIKA TEKNIK KIMIA

MAKALAH TERMODINAMIKA TEKNIK KIMIA MAKALAH TERMODINAMIKA TEKNIK KIMIA PEMICU I : SIFAT PVT Kelompok 3 Nahida Rani (1106013555) Nuri Liswanti Pertiwi (1106015421) Rizqi Pandu Sudarmawan (0906557045) Sulaeman A S (0906557051) Sony Ikhwanuddin

Lebih terperinci

LTM TERMODINAMIKA TEKNIK KIMIA Pemicu

LTM TERMODINAMIKA TEKNIK KIMIA Pemicu EFEK P&T, TITIK KRITIS, DAN ANALISI TRANSIEN Oleh Rizqi Pandu Sudarmawan [0906557045], Kelompok 3 I. Efek P dan T terhadap Nilai Besaran Termodinamika Dalam topik ini, saya akan meninjau bagaimana efek

Lebih terperinci

ENTROPI. Untuk gas ideal, dt dan V=RT/P. Dengan subtitusi dan pembagian dengan T, akan diperoleh persamaan:

ENTROPI. Untuk gas ideal, dt dan V=RT/P. Dengan subtitusi dan pembagian dengan T, akan diperoleh persamaan: ENTROPI PERUBAHAN ENTROPI GAS IDEAL Untuk satu mol atau unit massa suatu fluida yang mengalami proses reversibel dalam sistem tertutup, persamaan untuk hukum pertama termodinamika menjadi: [35] Diferensiasi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Umum Mesin pendingin atau kondensor adalah suatu alat yang digunakan untuk memindahkan panas dari dalam ruangan ke luar ruangan. Adapun sistem mesin pendingin yang

Lebih terperinci

FISIKA TERMAL Bagian I

FISIKA TERMAL Bagian I FISIKA TERMAL Bagian I Temperatur Temperatur adalah sifat fisik dari materi yang secara kuantitatif menyatakan tingkat panas atau dingin. Alat yang digunakan untuk mengukur temperatur adalah termometer.

Lebih terperinci

BAB IV TERMOKIMIA A. PENGERTIAN KALOR REAKSI

BAB IV TERMOKIMIA A. PENGERTIAN KALOR REAKSI BAB IV TERMOKIMIA A. Standar Kompetensi: Memahami tentang ilmu kimia dan dasar-dasarnya serta mampu menerapkannya dalam kehidupan se-hari-hari terutama yang berhubungan langsung dengan kehidupan. B. Kompetensi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Dasar Termodinamika 2.1.1 Siklus Termodinamika Siklus termodinamika adalah serangkaian proses termodinamika mentransfer panas dan kerja dalam berbagai keadaan tekanan, temperatur,

Lebih terperinci

LTM TERMODINAMIKA TEKNIK KIMIA Pemicu

LTM TERMODINAMIKA TEKNIK KIMIA Pemicu NERACA ENERGI DAN EFISIENSI POMPA Oleh Rizqi Pandu Sudarmawan [0906557045], Kelompok 3 I. Neraca Energi Pompa Bila pada proses ekspansi akan menghasilkan penurunan tekanan pada aliran fluida, sebaliknya

Lebih terperinci

12/3/2013 FISIKA THERMAL I

12/3/2013 FISIKA THERMAL I FISIKA THERMAL I 1 Temperature Our senses, however, are unreliable and often mislead us Jika keduanya sama-sama diambil dari freezer, apakah suhu keduanya sama? Mengapa metal ice tray terasa lebih dingin?

Lebih terperinci

PERHITUNGAN NERACA PANAS

PERHITUNGAN NERACA PANAS PERHITUNGAN NERACA PANAS Data-data yang dibutuhkan: 1. Kapasitas panas masing-masing komponen gas Cp = A + BT + CT 2 + DT 3 Sehingga Cp dt = Keterangan: Cp B AT T 2 2 C T 3 = kapasitas panas (kj/kmol.k)

Lebih terperinci

III ZAT MURNI (PURE SUBSTANCE)

III ZAT MURNI (PURE SUBSTANCE) III ZAT MURNI (PURE SUBSTANCE) Tujuan Instruksional Khusus: Mahasiswa mampu 1. menjelaskan karakteristik zat murni dan proses perubahan fasa 2. menggunakan dan menginterpretasikan data dari diagram-diagram

Lebih terperinci

AZAS TEKNIK KIMIA (NERACA ENERGI) PRODI TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS NEGERI SEMARANG

AZAS TEKNIK KIMIA (NERACA ENERGI) PRODI TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS NEGERI SEMARANG AZAS TEKNIK KIMIA (NERACA ENERGI) PRODI TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS NEGERI SEMARANG KESETIMBANGAN ENERGI Konsep dan Satuan Perhitungan Perubahan Entalpi Penerapan Kesetimbangan Energi Umum

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 ALAT PENGKONDISIAN UDARA Alat pengkondisian udara merupakan sebuah mesin yang secara termodinamika dapat memindahkan energi dari area bertemperatur rendah (media yang akan

Lebih terperinci

FISIKA TERMAL(1) Yusron Sugiarto

FISIKA TERMAL(1) Yusron Sugiarto FISIKA TERMAL(1) Yusron Sugiarto MENU HARI INI TEMPERATUR KALOR DAN ENERGI DALAM PERUBAHAN FASE Temperatur adalah sifat fisik dari materi yang secara kuantitatif menyatakan tingkat panas atau dingin. Alat

Lebih terperinci

1 Energi. Energi kinetic; energy yang dihasilkan oleh benda bergerak. Energi radiasi : energy matahari.

1 Energi. Energi kinetic; energy yang dihasilkan oleh benda bergerak. Energi radiasi : energy matahari. 1 Energi Dapat diubah dari bentuk yang satu ke bentuk lainnya. Kemampuan untuk melakukan kerja. Kerja: perubahan energi yang langsung dihasilkan oleh suatu proses. Energi kinetic; energy yang dihasilkan

Lebih terperinci

PENGARUH SUHU DAN TEKANAN TERHADAP PENINGKATAN EFISIENSI THERMAL SIKLUS RANKINE PADA PEMBANGKIT DAYA TENAGA UAP. Oleh ( ) TEKNIK MESIN UNILA

PENGARUH SUHU DAN TEKANAN TERHADAP PENINGKATAN EFISIENSI THERMAL SIKLUS RANKINE PADA PEMBANGKIT DAYA TENAGA UAP. Oleh ( ) TEKNIK MESIN UNILA 1 PENGARUH SUHU DAN TEKANAN TERHADAP PENINGKATAN EFISIENSI THERMAL SIKLUS RANKINE PADA PEMBANGKIT DAYA TENAGA UAP Oleh BAYU AGUNG PERMANA JASIRON NENI SUSANTI (0615021007) TEKNIK MESIN UNILA (0715021012)

Lebih terperinci

TERMODINAMIKA (II) Dr. Ifa Puspasari

TERMODINAMIKA (II) Dr. Ifa Puspasari TERMODINAMIKA (II) Dr. Ifa Puspasari PV Work Irreversible (Pressure External Constant) Kompresi ireversibel: Kerja = Gaya x Jarak perpindahan W = F x l dimana F = P ex x A W = P ex x A x l W = - P ex x

Lebih terperinci

Makalah Termodinamika Pemicu 4: Kesetimbangan Fasa Uap-Cair

Makalah Termodinamika Pemicu 4: Kesetimbangan Fasa Uap-Cair Makalah Termodinamika Pemicu 4: Kesetimbangan Fasa Uap-Cair Kelompok 3 Nahida Rani (1106013555) Nuri Liswanti Pertiwi (1106015421) Rizqi Pandu Sudarmawan (0906557045) Sony Ikhwanuddin (1106052902) Sulaeman

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Dasar Termodinamika 2.1.1 Siklus Termodinamika Siklus termodinamika adalah serangkaian proses termodinamika mentransfer panas dan kerja dalam berbagai keadaan tekanan, temperatur,

Lebih terperinci

Teknik Lingkungan S1 TERMODINAMIKA LINGKUNGAN

Teknik Lingkungan S1 TERMODINAMIKA LINGKUNGAN Teknik Lingkungan S1 TERMODINAMIKA LINGKUNGAN Uraian Singkat Silabus Definisi dan pengertian dasar, sifat-sifat unsur murni, hukum pertama termodinamika untuk sistem tertutup, hukum pertama termodinamika,

Lebih terperinci

TERMODINAMIKA TEKNIK HUKUM PERTAMA TERMODINAMIKA BAGI VOLUME ATUR. Chandrasa Soekardi, Prof.Dr.Ir. 1 Sistem termodinamika volume atur

TERMODINAMIKA TEKNIK HUKUM PERTAMA TERMODINAMIKA BAGI VOLUME ATUR. Chandrasa Soekardi, Prof.Dr.Ir. 1 Sistem termodinamika volume atur TERMODINAMIKA TEKNIK Modul ke: HUKUM PERTAMA TERMODINAMIKA BAGI VOLUME ATUR Chandrasa Soekardi, Prof.Dr.Ir Fakultas 03TEKNIK Program Studi Teknik Mesin 1 Sistem termodinamika volume atur 2. Sistem volume

Lebih terperinci

BAB 4 UAP JENUH DAN UAP PANAS LANJUT

BAB 4 UAP JENUH DAN UAP PANAS LANJUT BAB 4 UAP JENUH DAN UAP PANAS LANJUT 4-1. Temperatur Jenuh Ketika temperatur benda cair naik sampai pada titik dimana adanya penambahan panas pada benda cair yang menyebabkan sebagian benda cair itu menguap,

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1 Tinjauan Pustaka Bambang (2016) dalam perancangan tentang modifikasi sebuah prototipe kalorimeter bahan bakar untuk meningkatkan akurasi pengukuran nilai

Lebih terperinci

...(2) adalah perbedaan harga tengah entalphi untuk suatu bagian. kecil dari volume.

...(2) adalah perbedaan harga tengah entalphi untuk suatu bagian. kecil dari volume. Cooling Tower Menara pendingin adalah suatu menara yang digunakan untuk mendinginkan air pendingin yang telah menjadi panas pada proses pendinginan, sehingga air pendingin yang telah dingin itu dapat digunakan

Lebih terperinci

KALOR. hogasaragih.wordpress.com

KALOR. hogasaragih.wordpress.com KALOR Ketika satu ketel air dingin diletakkan di atas kompor, temperatur air akan naik. Kita katakan bahwa kalor mengalir dari kompor ke air yang dingin. Ketika dua benda yang temperaturnya berbeda diletakkan

Lebih terperinci

ANALISIS TERMODINAMIKA PERFORMA HRSG PT. INDONESIA POWER UBP PERAK-GRATI SEBELUM DAN SESUDAH CLEANING DENGAN VARIASI BEBAN

ANALISIS TERMODINAMIKA PERFORMA HRSG PT. INDONESIA POWER UBP PERAK-GRATI SEBELUM DAN SESUDAH CLEANING DENGAN VARIASI BEBAN ANALISIS TERMODINAMIKA PERFORMA HRSG PT. INDONESIA POWER UBP PERAK-GRATI SEBELUM DAN SESUDAH CLEANING DENGAN VARIASI BEBAN Ilham Bayu Tiasmoro. 1), Dedy Zulhidayat Noor 2) Jurusan D III Teknik Mesin Fakultas

Lebih terperinci

BUKU RANCANGAN PENGAJARAN MATA AJAR TERMODINAMIKA DASAR. oleh. Tim Dosen Mata Kuliah Termodinamika Dasar

BUKU RANCANGAN PENGAJARAN MATA AJAR TERMODINAMIKA DASAR. oleh. Tim Dosen Mata Kuliah Termodinamika Dasar BUKU RANCANGAN PENGAJARAN MATA AJAR TERMODINAMIKA DASAR oleh Tim Dosen Mata Kuliah Termodinamika Dasar Fakultas Teknik Universitas Indonesia Maret 2016 DAFTAR ISI PENGANTAR BAB 1 INFORMASI UMUM 4 BAB 2

Lebih terperinci

TEMPERATUR. dihubungkan oleh

TEMPERATUR. dihubungkan oleh 49 50 o F. Temperatur pada skala Fahrenheit dan Celcius TEMPERATUR 1. Teori atom zat mendalilkan bahwa semua zat terdiri dari kesatuan kecil yang disebut atom, yang biasanya berdiameter 10-10 m.. Massa

Lebih terperinci

9/17/ KALOR 1

9/17/ KALOR 1 9. KALOR 1 1 KALOR SEBAGAI TRANSFER ENERGI Satuan kalor adalah kalori (kal) Definisi kalori: Kalor yang dibutuhkan untuk menaikkan temperatur 1 gram air sebesar 1 derajat Celcius. Satuan yang lebih sering

Lebih terperinci

Cara Menggunakan Tabel Uap (Steam Table)

Cara Menggunakan Tabel Uap (Steam Table) Cara Menggunakan Tabel Uap (Steam Table) Contoh : 1. Air pada tekanan 1 bar dan temperatur 99,6 C berada pada keadaan jenuh (keadaan jenuh artinya uap dan cairan berada dalam keadaan kesetimbangan atau

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Gambaran Umum Nitrometana Nitrometana merupakan senyawa organik yang memiliki rumus molekul CH 3 NO 2. Nitrometana memiliki nama lain Nitrokarbol. Nitrometana ini merupakan

Lebih terperinci

Evaporasi S A T U A N O P E R A S I D A N P R O S E S T I P F T P UB

Evaporasi S A T U A N O P E R A S I D A N P R O S E S T I P F T P UB Evaporasi S A T U A N O P E R A S I D A N P R O S E S T I P F T P UB M A S U D E F F E N D I Pendahuluan Evaporasi bertujuan untuk memekatkan atau menaikkan konsentrasi zat padat dari bahan yang berupa

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-321) Topik hari ini (minggu 15) Temperatur Skala Temperatur Pemuaian Termal Gas ideal Kalor dan Energi Internal Kalor Jenis Transfer Kalor Termodinamika Temperatur? Sifat Termometrik?

Lebih terperinci

TERMODINAMIKA I G I T A I N D AH B U D I AR T I

TERMODINAMIKA I G I T A I N D AH B U D I AR T I TERMODINAMIKA I G I T A I N D AH B U D I AR T I REFERENSI Smith, J.M., and Van Ness, H.C. 1987, Introduction to Chemical Engineering Thermodynamics, 4 ed., Mc Graw Hill Book Co. Inc., New York PENILAIAN

Lebih terperinci

Bab VIII Teori Kinetik Gas

Bab VIII Teori Kinetik Gas Bab VIII Teori Kinetik Gas Sumber : Internet : www.nonemigas.com. Balon udara yang diisi dengan gas massa jenisnya lebih kecil dari massa jenis udara mengakibatkan balon udara mengapung. 249 Peta Konsep

Lebih terperinci

PENENTUAN BANYAKNYA UAP YANG DILEPASKAN KE UDARA DARI SUATU CAIRAN YANG TERSIMPAN DI TANGKI SIMPAN DENGAN PENDEKATAN TEORI NERACA ENERGI

PENENTUAN BANYAKNYA UAP YANG DILEPASKAN KE UDARA DARI SUATU CAIRAN YANG TERSIMPAN DI TANGKI SIMPAN DENGAN PENDEKATAN TEORI NERACA ENERGI PENENTUAN BANYAKNYA UAP YANG DILEPASKAN KE UDARA DARI SUATU CAIRAN YANG TERSIMPAN DI TANGKI SIMPAN DENGAN PENDEKATAN TEORI NERACA ENERGI Oleh : Arluky Novandy * ABSTRAK Isu lingkungan tentang clean production

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembangkit Listrik Tenaga Uap (PLTU) PLTU merupakan sistem pembangkit tenaga listrik dengan memanfaatkan energi panas bahan bakar untuk diubah menjadi energi listrik dengan

Lebih terperinci

WEEK 8,9 & 10 (Energi & Perubahan Energi) TERMOKIMIA

WEEK 8,9 & 10 (Energi & Perubahan Energi) TERMOKIMIA WEEK 8,9 & 10 (Energi & Perubahan Energi) TERMOKIMIA Binyamin Mechanical Engineering Muhammadiyah University Of Surakarta Termokimia dapat didefinisikan sebagai bagian ilmu kimia yang mempelajari dinamika

Lebih terperinci

HUBUNGAN ENERGI DALAM REAKSI KIMIA

HUBUNGAN ENERGI DALAM REAKSI KIMIA HUBUNGAN ENERGI DALAM REAKSI KIMIA _KIMIA INDUSTRI_ DEWI HARDININGTYAS, ST, MT, MBA WIDHA KUSUMA NINGDYAH, ST, MT AGUSTINA EUNIKE, ST, MT, MBA ENERGI & KERJA Energi adalah kemampuan untuk melakukan kerja.

Lebih terperinci

Teori Kinetik Gas Teori Kinetik Gas Sifat makroskopis Sifat mikroskopis Pengertian Gas Ideal Persamaan Umum Gas Ideal

Teori Kinetik Gas Teori Kinetik Gas Sifat makroskopis Sifat mikroskopis Pengertian Gas Ideal Persamaan Umum Gas Ideal eori Kinetik Gas eori Kinetik Gas adalah konsep yang mempelajari sifat-sifat gas berdasarkan kelakuan partikel/molekul penyusun gas yang bergerak acak. Setiap benda, baik cairan, padatan, maupun gas tersusun

Lebih terperinci

Jurnal FEMA, Volume 1, Nomor 3, Juli Kajian Analitis Sistem Pembangkit Uap Kogenerasi

Jurnal FEMA, Volume 1, Nomor 3, Juli Kajian Analitis Sistem Pembangkit Uap Kogenerasi Jurnal FEMA, Volume 1, Nomor 3, Juli 2013 Kajian Analitis Sistem Pembangkit Uap Kogenerasi Lamsihar S. Tamba 1), Harmen 2) dan A. Yudi Eka Risano 2) 1) Mahasiswa Jurusan Teknik Mesin, Fakultas Teknik Universitas

Lebih terperinci

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya BAB II DASAR TEORI 2.1 Hot and Cool Water Dispenser Hot and cool water dispenser merupakan sebuah alat yang digunakan untuk mengkondisikan temperatur air minum baik dingin maupun panas. Sumber airnya berasal

Lebih terperinci

I. Pendahuluan. A. Latar Belakang. B. Rumusan Masalah. C. Tujuan

I. Pendahuluan. A. Latar Belakang. B. Rumusan Masalah. C. Tujuan I. Pendahuluan A. Latar Belakang Dalam dunia industri terdapat bermacam-macam alat ataupun proses kimiawi yang terjadi. Dan begitu pula pada hasil produk yang keluar yang berada di sela-sela kebutuhan

Lebih terperinci

BAB II PERANCANGAN PRODUK. : Sebagai bahan baku pembuatan ammonia, plastik,

BAB II PERANCANGAN PRODUK. : Sebagai bahan baku pembuatan ammonia, plastik, BAB II PERANCANGAN PRODUK 2.1 Produk Utama 2.1.1.Gas Hidrogen (H2) : Sebagai bahan baku pembuatan ammonia, plastik, polyester, dan nylon, dipakai untuk proses desulfurisasi minyak bakar dan bensin dan

Lebih terperinci

TRANSFER MOMENTUM FLUIDA DINAMIK

TRANSFER MOMENTUM FLUIDA DINAMIK TRANSFER MOMENTUM FLUIDA DINAMIK Fluida dinamik adalah fluida dalam keadaan bergerak atau mengalir. Syarat bagi fluida untuk mengalir adalah adanya perbedaan besar gaya antara dua titik yang dijalani oleh

Lebih terperinci

Hukum Termodinamika 1. Adhi Harmoko S,M.Kom

Hukum Termodinamika 1. Adhi Harmoko S,M.Kom Hukum Termodinamika 1 Adhi Harmoko S,M.Kom Apa yang dapat anda banyangkan dengan peristiwa ini Balon dicelupkan ke dalam nitrogen cair Sistem & Lingkungan Sistem: sebuah atau sekumpulan obyek yang ditinjau

Lebih terperinci

PENDINGINAN KOMPRESI UAP

PENDINGINAN KOMPRESI UAP Babar Priyadi M.H. L2C008020 PENDINGINAN KOMPRESI UAP Pendinginan kompresi uap adalah salah satu dari banyak siklus pendingin tersedia yang banyak digunakan. Metode ini merupakan yang paling banyak digunakan

Lebih terperinci

Energetika dalam sistem kimia

Energetika dalam sistem kimia Thermodinamika - kajian sainstifik tentang panas dan kerja. Energetika dalam sistem kimia Drs. Iqmal Tahir, M.Si. iqmal@ugm.ac.id I. Energi: prinsip dasar A. Energi Kapasitas untuk melakukan kerja Ada

Lebih terperinci

BAB 2 Pengenalan Neraca Energi pada Proses Tanpa Reaksi

BAB 2 Pengenalan Neraca Energi pada Proses Tanpa Reaksi BAB Pengenalan Neraca Energi pada Prses Tanpa Reaksi Knsep Hukum Kekekalan Energi Ttal energi pada sistem dan lingkungan tidak dapat diciptakan ataupun dimusnahkan..1 Neraca Energi untuk Sistem Tertutup

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Dasar Steam merupakan bagian penting dan tidak terpisahkan dari teknologi modern. Tanpa steam, maka industri makanan kita, tekstil, bahan kimia, bahan kedokteran,daya, pemanasan

Lebih terperinci

BAB 4. WUJUD ZAT 1. WUJUD GAS 2. HUKUM GAS 3. HUKUM GAS IDEAL 4. GAS NYATA 5. CAIRAN DAN PADATAN 6. GAYA ANTARMOLEKUL 7. TRANSISI FASA 8.

BAB 4. WUJUD ZAT 1. WUJUD GAS 2. HUKUM GAS 3. HUKUM GAS IDEAL 4. GAS NYATA 5. CAIRAN DAN PADATAN 6. GAYA ANTARMOLEKUL 7. TRANSISI FASA 8. BAB 4. WUJUD ZAT 1. WUJUD GAS 2. HUKUM GAS 3. HUKUM GAS IDEAL 4. GAS NYATA 5. CAIRAN DAN PADATAN 6. GAYA ANTARMOLEKUL 7. TRANSISI FASA 8. DIAGRAM FASA WUJUD ZAT: GAS CAIRAN PADATAN PERMEN (sukrosa) C 12

Lebih terperinci

Desain Proses Pengelolaan Limbah Vinasse dengan Metode Pemekatan dan Pembakaran pada Pabrik Gula- Alkohol Terintegrasi

Desain Proses Pengelolaan Limbah Vinasse dengan Metode Pemekatan dan Pembakaran pada Pabrik Gula- Alkohol Terintegrasi Desain Proses Pengelolaan Limbah Vinasse dengan Metode Pemekatan dan Pembakaran pada Pabrik Gula- Alkohol Terintegrasi Disusun oleh : Iqbal Safirul Barqi 2308 100 151 Muhammad Fauzi 2308 100 176 Dosen

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan Pengeringan adalah proses mengurangi kadar air dari suatu bahan [1]. Dasar dari proses pengeringan adalah terjadinya penguapan air ke udara karena perbedaan kandungan

Lebih terperinci

Xpedia Fisika. Soal Zat dan Kalor

Xpedia Fisika. Soal Zat dan Kalor Xpedia Fisika Soal Zat dan Kalor Doc. Name: XPPHY0399 Version: 2013-04 halaman 1 01. Jika 400 g air pada suhu 40 C dicampur dengan 100 g air pada 30 C, suhu akhir adalah... (A) 13 C (B) 26 C (C) 36 C (D)

Lebih terperinci

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU)

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU) BAB II TINJAUAN PUSTAKA 2.1 Pengertian HRSG HRSG (Heat Recovery Steam Generator) adalah ketel uap atau boiler yang memanfaatkan energi panas sisa gas buang satu unit turbin gas untuk memanaskan air dan

Lebih terperinci

Maka persamaan energi,

Maka persamaan energi, II. DASAR TEORI 2. 1. Hukum termodinamika dan sistem terbuka Termodinamika teknik dikaitkan dengan hal-hal tentang perpindahan energi dalam zat kerja pada suatu sistem. Sistem merupakan susunan seperangkat

Lebih terperinci

Teori Kinetik Gas. C = o C K K = K 273 o C. Keterangan : P2 = tekanan gas akhir (N/m 2 atau Pa) V1 = volume gas awal (m3)

Teori Kinetik Gas. C = o C K K = K 273 o C. Keterangan : P2 = tekanan gas akhir (N/m 2 atau Pa) V1 = volume gas awal (m3) eori Kinetik Gas Pengertian Gas Ideal Istilah gas ideal digunakan menyederhanakan permasalahan tentang gas. Karena partikel-partikel gas dapat bergerak sangat bebas dan dapat mengisi seluruh ruangan yang

Lebih terperinci

Penyelesaian: x 1. Dik : x 2. =0,8m. K=100 N m. Dit : Q=? Jawab : ΣW =ΣQ. Usaha yang dilakukan pegas : dx x1. = F Pegas.

Penyelesaian: x 1. Dik : x 2. =0,8m. K=100 N m. Dit : Q=? Jawab : ΣW =ΣQ. Usaha yang dilakukan pegas : dx x1. = F Pegas. Contoh Soal 4.1 Sebuah pegas diregangkan sejauh 0,8 m dan dihubungkan ke sebuah roda dayung (Gbr 4-2). Roda dayung tersebut kemudian berputar sehingga pegas menjadi tidak teregang lagi. Hitunglah besarnya

Lebih terperinci

kimia KTSP & K-13 TERMOKIMIA I K e l a s A. HUKUM KEKEKALAN ENERGI TUJUAN PEMBELAJARAN

kimia KTSP & K-13 TERMOKIMIA I K e l a s A. HUKUM KEKEKALAN ENERGI TUJUAN PEMBELAJARAN KTSP & K-13 kimia K e l a s XI TERMOKIMIA I TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Menjelaskan hukum kekekalan energi, membedakan sistem dan

Lebih terperinci

Fisika Umum (MA101) Topik hari ini (minggu 6) Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa

Fisika Umum (MA101) Topik hari ini (minggu 6) Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa Fisika Umum (MA101) Topik hari ini (minggu 6) Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa Kalor Hukum Ke Nol Termodinamika Jika benda A dan B secara terpisah berada dalam kesetimbangan

Lebih terperinci

Xpedia Fisika. Kapita Selekta Set Energi kinetik rata-rata dari molekul dalam sauatu bahan paling dekat berhubungan dengan

Xpedia Fisika. Kapita Selekta Set Energi kinetik rata-rata dari molekul dalam sauatu bahan paling dekat berhubungan dengan Xpedia Fisika Kapita Selekta Set 07 Doc. Name: XPFIS0107 Doc. Version : 2011-06 halaman 1 01. Energi kinetik rata-rata dari molekul dalam sauatu bahan paling dekat berhubungan dengan... (A) Panas (B) Suhu

Lebih terperinci

ANALISA PENGARUH ARUS ALIRAN UDARA MASUK EVAPORATOR TERHADAP COEFFICIENT OF PERFORMANCE

ANALISA PENGARUH ARUS ALIRAN UDARA MASUK EVAPORATOR TERHADAP COEFFICIENT OF PERFORMANCE ANALISA PENGARUH ARUS ALIRAN UDARA MASUK EVAPORATOR TERHADAP COEFFICIENT OF PERFORMANCE Ir. Syawalludin,MM,MT 1.,Muhaemin 2 Lecture 1,College student 2,Departement of machine, Faculty of Engineering, University

Lebih terperinci

BAB II DASAR TEORI. Pengujian alat pendingin..., Khalif Imami, FT UI, 2008

BAB II DASAR TEORI. Pengujian alat pendingin..., Khalif Imami, FT UI, 2008 BAB II DASAR TEORI 2.1 ADSORPSI Adsorpsi adalah proses yang terjadi ketika gas atau cairan berkumpul atau terhimpun pada permukaan benda padat, dan apabila interaksi antara gas atau cairan yang terhimpun

Lebih terperinci

MENGUAP DAN MENDIDIH

MENGUAP DAN MENDIDIH MENGUAP DAN MENDIDIH Catatan: - Tulisan ini dibuat sebagai tanggapan terhadap thread Mekanisme Penguapan Air pada RTP di Milis Fisika Indonesia. Tulisan ini bukan makalah resmi. Penambahan/pengurangan/revisi

Lebih terperinci

PERBANDINGAN UNJUK KERJA FREON R-12 DAN R-134a TERHADAP VARIASI BEBAN PENDINGIN PADA SISTEM REFRIGERATOR 75 W

PERBANDINGAN UNJUK KERJA FREON R-12 DAN R-134a TERHADAP VARIASI BEBAN PENDINGIN PADA SISTEM REFRIGERATOR 75 W PERBANDINGAN UNJUK KERJA FREON R-2 DAN R-34a TERHADAP VARIASI BEBAN PENDINGIN PADA SISTEM REFRIGERATOR 75 W Ridwan Jurusan Teknik Mesin Fakultas Teknologi Industri Universitas Gunadarma e-mail: ridwan@staff.gunadarma.ac.id

Lebih terperinci

BAB 1 Energi : Pengertian, Konsep, dan Satuan

BAB 1 Energi : Pengertian, Konsep, dan Satuan BAB Energi : Pengertian, Konsep, dan Satuan. Pengenalan Hal-hal yang berkaitan dengan neraca energi : Adiabatis, isothermal, isobarik, dan isokorik merupakan proses yang digunakan dalam menentukan suatu

Lebih terperinci

LEMBAR KERJA SISWA TEORI KINETIK GAS. Mata Pelajaran : Fisika Kelas/ Semester : XI / II. Nama Kelompok:

LEMBAR KERJA SISWA TEORI KINETIK GAS. Mata Pelajaran : Fisika Kelas/ Semester : XI / II. Nama Kelompok: BAB 3 LEMBAR KERJA SISWA TEORI KINETIK GAS Mata Pelajaran : Fisika Kelas/ Semester : XI / II Nama Kelompok: 1. 2. 3. 4. 5. Kompetensi Dasar: I Mendeskripsikan sifat-sifat gas ideal monoatomik I TEORI KINETIK

Lebih terperinci

Session 17 Steam Turbine Theory. PT. Dian Swastatika Sentosa

Session 17 Steam Turbine Theory. PT. Dian Swastatika Sentosa Session 17 Steam Turbine Theory PT. Dian Swastatika Sentosa DSS Head Office, 27 Oktober 2008 Outline 1. Pendahuluan 2. Bagan Proses Tenaga Uap 3. Air dan Uap dalam diagram T s dan h s 4. Penggunaan Diagram

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA.1 Teori Pengujian Sistem pengkondisian udara (Air Condition) pada mobil atau kendaraan secara umum adalah untuk mengatur kondisi suhu pada ruangan didalam mobil. Kondisi suhu yang

Lebih terperinci

Fisika Umum (MA101) Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa

Fisika Umum (MA101) Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa Fisika Umum (MA101) Topik hari ini: Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa Kalor Hukum Ke Nol Termodinamika Jika benda A dan B secara terpisah berada dalam kesetimbangan termal

Lebih terperinci

ANALISA KINERJA MESIN REFRIGERASI RUMAH TANGGA DENGAN VARIASI REFRIGERAN

ANALISA KINERJA MESIN REFRIGERASI RUMAH TANGGA DENGAN VARIASI REFRIGERAN ANALISA KINERJA MESIN REFRIGERASI RUMAH TANGGA DENGAN VARIASI REFRIGERAN 1 Amrullah, 2 Zuryati Djafar, 3 Wahyu H. Piarah 1 Program Studi Perawatan dan Perbaikan Mesin, Politeknik Bosowa, Makassar 90245,Indonesia

Lebih terperinci

Studi Eksperimen Pemanfaatan Panas Buang Kondensor untuk Pemanas Air

Studi Eksperimen Pemanfaatan Panas Buang Kondensor untuk Pemanas Air Studi Eksperimen Pemanfaatan Panas Buang Kondensor untuk Pemanas Air Arif Kurniawan Jurusan Teknik Mesin Institut Teknologi Nasional (ITN) Malang E-mail : arifqyu@gmail.com Abstrak. Pada bagian mesin pendingin

Lebih terperinci

MODUL PRAKTIKUM LABORATORIUM INSTRUKSIONAL TEKNIK KIMIA REFRIGERASI (REF) Koordinator LabTK Dr. Pramujo Widiatmoko

MODUL PRAKTIKUM LABORATORIUM INSTRUKSIONAL TEKNIK KIMIA REFRIGERASI (REF) Koordinator LabTK Dr. Pramujo Widiatmoko MODUL PRAKTIKUM LABORATORIUM INSTRUKSIONAL TEKNIK KIMIA REFRIGERASI Koordinator LabTK Dr. Pramujo Widiatmoko FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI BANDUNG 2016 Kontributor: Ir. Johnner Sitompul,

Lebih terperinci

ANALISIS KEBUTUHAN BAHAN BAKAR TERHADAP PERUBAHAN TEKANAN UAP

ANALISIS KEBUTUHAN BAHAN BAKAR TERHADAP PERUBAHAN TEKANAN UAP ANALISIS KEBUTUHAN BAHAN BAKAR TERHADAP PERUBAHAN TEKANAN UAP Qamaruddin 1) Muhammad Ilyas Sikki 2) 1) Fakultas Teknik, Universitas Islam "45" Bekasi, Email :Qomarudin.q@gmail.com 2) Fakultas Teknik, Universitas

Lebih terperinci

BAB II DASAR TEORI. Energy balance 1 = Energy balance 2 EP 1 + EK 1 + U 1 + EF 1 + ΔQ = EP 2 + EK 2 + U 2 + EF 2 + ΔWnet ( 2.1)

BAB II DASAR TEORI. Energy balance 1 = Energy balance 2 EP 1 + EK 1 + U 1 + EF 1 + ΔQ = EP 2 + EK 2 + U 2 + EF 2 + ΔWnet ( 2.1) BAB II DASAR TEORI 2.1 HUKUM TERMODINAMIKA DAN SISTEM TERBUKA Hukum pertama termodinamika adalah hukum kekekalan energi. Hukum ini menyatakan bahwa energi tidak dapat diciptakan ataupun dimusnahkan. Energi

Lebih terperinci

HUKUM TERMODINAMIKA II Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A. Boles

HUKUM TERMODINAMIKA II Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A. Boles HUKUM ERMODINAMIKA II hermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A. Boles Hukum ermodinamika II Sistem a. Suatu benda pada temperatur tinggi, yang mengalami sentuhan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. temperatur di bawah 123 K disebut kriogenika (cryogenics). Pembedaan ini

BAB II TINJAUAN PUSTAKA. temperatur di bawah 123 K disebut kriogenika (cryogenics). Pembedaan ini BAB II TINJAUAN PUSTAKA 21 Mesin Refrigerasi Secara umum bidang refrigerasi mencakup kisaran temperatur sampai 123 K Sedangkan proses-proses dan aplikasi teknik yang beroperasi pada kisaran temperatur

Lebih terperinci

PERHITUNGAN EFISIENSI BOILER

PERHITUNGAN EFISIENSI BOILER 1 of 10 12/22/2013 8:36 AM PERHITUNGAN EFISIENSI BOILER PERHITUNGAN EFISIENSI BOILER Efisiensi adalah suatu tingkatan kemampuan kerja dari suatu alat. Sedangkan efisiensi pada boiler adalah prestasi kerja

Lebih terperinci

BAB V CAMPURAN BEREAKSI : PEMBAKARAN

BAB V CAMPURAN BEREAKSI : PEMBAKARAN BAB V CAMPURAN BEREAKSI : PEMBAKARAN Pembakaran Bahan Bakar Padat Pembakaran pada bahan bakar adalah kombinasi kimia dengan oksigen. Hal-hal yang penting pada pembakaran: 1. Jika karbon dibakar dengan

Lebih terperinci

PRAKTIKUM OPERASI TEKNIK KIMIA II MODUL 7 WETTED WALL COLUMN

PRAKTIKUM OPERASI TEKNIK KIMIA II MODUL 7 WETTED WALL COLUMN PRAKTIKUM OPERASI TEKNIK KIMIA II MODUL 7 WETTED WALL COLUMN LABORATORIUM RISET DAN OPERASI TEKNIK KIMIA PROGRAM STUDI TEKNIK KIMA FAKULTAS TEKNOLOGI INDUSTRI UPN VETERAN JAWA TIMUR SURABAYA I. TUJUAN

Lebih terperinci

ANALISA EFISIENSI PERFORMA HRSG ( Heat Recovery Steam Generation ) PADA PLTGU. Bambang Setyoko * ) Abstracts

ANALISA EFISIENSI PERFORMA HRSG ( Heat Recovery Steam Generation ) PADA PLTGU. Bambang Setyoko * ) Abstracts ANALISA EFISIENSI PERFORMA HRSG ( Heat Recovery Steam Generation ) PADA PLTGU Bambang Setyoko * ) Abstracts Heat Recovery Steam Generator ( HRSG ) is a construction in combine cycle with gas turbine and

Lebih terperinci

MULTIREFRIGERASI SISTEM. Oleh: Ega T. Berman, S.Pd., M,Eng

MULTIREFRIGERASI SISTEM. Oleh: Ega T. Berman, S.Pd., M,Eng MULTIREFRIGERASI SISTEM Oleh: Ega T. Berman, S.Pd., M,Eng SIKLUS REFRIGERASI Sistem refrigerasi dengan siklus kompresi uap Proses 1 2 : Kompresi isentropik Proses 2 2 : Desuperheating Proses 2 3 : Kondensasi

Lebih terperinci

TINJAUAN PUSTAKA. Df adalah driving force (kg/kg udara kering), Y s adalah kelembaban

TINJAUAN PUSTAKA. Df adalah driving force (kg/kg udara kering), Y s adalah kelembaban TINJAUAN PUSTAKA Mekanisme Pengeringan Udara panas dihembuskan pada permukaan bahan yang basah, panas akan berpindah ke permukaan bahan, dan panas laten penguapan akan menyebabkan kandungan air bahan teruapkan.

Lebih terperinci

10/18/2012. James Prescoutt Joule. Konsep dasar : Kerja. Kerja. Konsep dasar : Kerja. TERMODINAMIKA KIMIA (KIMIA FISIK 1 ) Hukum Termodinamika Pertama

10/18/2012. James Prescoutt Joule. Konsep dasar : Kerja. Kerja. Konsep dasar : Kerja. TERMODINAMIKA KIMIA (KIMIA FISIK 1 ) Hukum Termodinamika Pertama Jurusan Kimia - FMIPA Universitas Gadjah Mada (UGM) TERMODINAMIKA KIMIA (KIMIA FISIK 1 ) Hukum Termodinamika Pertama Drs. Iqmal Tahir, M.Si. Laboratorium Kimia Fisika,, Jurusan Kimia Fakultas Matematika

Lebih terperinci

PENGARUH STUDI EKSPERIMEN PEMANFAATAN PANAS BUANG KONDENSOR UNTUK PEMANAS AIR

PENGARUH STUDI EKSPERIMEN PEMANFAATAN PANAS BUANG KONDENSOR UNTUK PEMANAS AIR PENGARUH STUDI EKSPERIMEN PEMANFAATAN PANAS BUANG KONDENSOR UNTUK PEMANAS AIR Arif Kurniawan Institut Teknologi Nasional (ITN) Malang; Jl.Raya Karanglo KM. 2 Malang 1 Jurusan Teknik Mesin, FTI-Teknik Mesin

Lebih terperinci

7. Temperatur Teori Atom Zat. Tidak dapat dibagi

7. Temperatur Teori Atom Zat. Tidak dapat dibagi 7. Temperatur 1. Teori Atom Zat Atom Tidak dapat dibagi Hukum perbandingan yang tetap: ketika dua atau lebih unsur bergabung untuk membentuk senyawa, seyawa tersebut akan terbentuk dengan perbandingan

Lebih terperinci

BAB II SISTEM VAKUM. Vakum berasal dari kata latin, Vacuus, berarti Kosong. Kata dasar dari

BAB II SISTEM VAKUM. Vakum berasal dari kata latin, Vacuus, berarti Kosong. Kata dasar dari BAB II SISTEM VAKUM II.1 Pengertian Sistem Vakum Vakum berasal dari kata latin, Vacuus, berarti Kosong. Kata dasar dari kata vacuum tersebut merupakan Vakum yang ideal atau Vakum yang sempurna (Vacuum

Lebih terperinci

Fugasitas. Oleh : Samuel Edo Pratama

Fugasitas. Oleh : Samuel Edo Pratama Fugasitas Oleh : Samuel Edo Pratama - 1106070741 Pengertian Dalam termodinamika, fugasitas dari gas nyata adalah nilai dari tekanan efektif yang menggantukan nilai tekanan mekanis sebenarnya dalam perhitungan

Lebih terperinci

Sistem pendingin siklus kompresi uap merupakan daur yang terbanyak. daur ini terjadi proses kompresi (1 ke 2), 4) dan penguapan (4 ke 1), seperti pada

Sistem pendingin siklus kompresi uap merupakan daur yang terbanyak. daur ini terjadi proses kompresi (1 ke 2), 4) dan penguapan (4 ke 1), seperti pada Siklus Kompresi Uap Sistem pendingin siklus kompresi uap merupakan daur yang terbanyak digunakan dalam daur refrigerasi, pada daur ini terjadi proses kompresi (1 ke 2), pengembunan( 2 ke 3), ekspansi (3

Lebih terperinci

E V A P O R A S I PENGUAPAN

E V A P O R A S I PENGUAPAN E V A P O R A S I PENGUAPAN Soal 1 Single effect evaporator menguapkan larutan 10% padatan menjadi 30% padatan dg laju 250 kg feed per jam. Tekanan dalam evaporator 77 kpa absolute, & steam tersedia dg

Lebih terperinci

BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara

BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara Sistem pengkondisian udara adalah suatu proses mendinginkan atau memanaskan udara sehingga dapat mencapai temperatur dan kelembaban yang sesuai dengan

Lebih terperinci

BAB 2 ENERGI DAN HUKUM TERMODINAMIKA I

BAB 2 ENERGI DAN HUKUM TERMODINAMIKA I BAB 2 ENERGI DAN HUKUM TERMODINAMIKA I Bab ini hanya akan membahas Sistem Tertutup (Massa Atur). Energi Energi: konsep dasar Termodinamika. Energi: - dapat disimpan, di dalam sistem - dapat diubah bentuknya

Lebih terperinci

WUJUD ZAT (GAS) Gaya tarik menarik antar partikel sangat kecil

WUJUD ZAT (GAS) Gaya tarik menarik antar partikel sangat kecil WUJUD ZAT (GAS) SP-Pertemuan 2 Gas : Jarak antar partikel jauh > ukuran partikel Sifat Gas Gaya tarik menarik antar partikel sangat kecil Laju-nya selalu berubah-ubah karena adanya tumbukan dengan wadah

Lebih terperinci

LANDASAN TEORI. P = Pc = P 3 = P 2 = Pg P 5 P 4. x 5. x 1 =x 2 x 3 x 2 1

LANDASAN TEORI. P = Pc = P 3 = P 2 = Pg P 5 P 4. x 5. x 1 =x 2 x 3 x 2 1 III. LANDASAN TEORI 3.1 Diagram suhu dan konsentrasi Hubungan antara suhu dan konsentrasi pada sistem pendinginan absorpsi dengan fluida kerja ammonia air ditunjukkan oleh Gambar 6 : t P = Pc = P 3 = P

Lebih terperinci

PAPER FISIKA DASAR MODUL 8 KALORIMETER

PAPER FISIKA DASAR MODUL 8 KALORIMETER PAPER FISIKA DASAR MODUL 8 KALORIMETER Nama : Nova Nurfauziawati NPM : 240210100003 Tanggal / jam : 2 Desember 2010 / 13.00-15.00 WIB Asisten : Dicky Maulana JURUSAN TEKNOLOGI INDUSTRI PANGAN FAKULTAS

Lebih terperinci

KESETIMBANGAN ENERGI

KESETIMBANGAN ENERGI KESETIMBANGAN ENERGI Landasan: Hukum I Termodinamika Energi total masuk sistem - Energi total = keluar sistem Perubahan energi total pada sistem E in E out = E system Ė in Ė out = Ė system per unit waktu

Lebih terperinci

ANALISA TERMODINAMIKA LAJU PERPINDAHAN PANAS DAN PENGERINGAN PADA MESIN PENGERING BERBAHAN BAKAR GAS DENGAN VARIABEL TEMPERATUR LINGKUNGAN

ANALISA TERMODINAMIKA LAJU PERPINDAHAN PANAS DAN PENGERINGAN PADA MESIN PENGERING BERBAHAN BAKAR GAS DENGAN VARIABEL TEMPERATUR LINGKUNGAN Flywheel: Jurnal Teknik Mesin Untirta Vol. IV, No., April 208, hal. 34-38 FLYWHEEL: JURNAL TEKNIK MESIN UNTIRTA Homepagejurnal: http://jurnal.untirta.ac.id/index.php/jwl ANALISA TERMODINAMIKA LAJU PERPINDAHAN

Lebih terperinci

Soal Teori Kinetik Gas

Soal Teori Kinetik Gas Soal Teori Kinetik Gas Tahun Ajaran 203-204 FISIKA KELAS XI November, 203 Oleh Ayu Surya Agustin Soal Teori Kinetik Gas Tahun Ajaran 203-204 A. SOAL PILIHAN GANDA Pilihlah salah satu jawaban yang paling

Lebih terperinci

PENGANTAR TEKNIK REFRIGERASI INDRA S. DALIMUNTHE. Program Studi Teknik Kimia Fakultas Teknik Universitas Sumatera Utara BABI PENDAHULUAN

PENGANTAR TEKNIK REFRIGERASI INDRA S. DALIMUNTHE. Program Studi Teknik Kimia Fakultas Teknik Universitas Sumatera Utara BABI PENDAHULUAN PENGANTAR TEKNIK REFRIGERASI INDRA S. DALIMUNTHE Program Studi Teknik Kimia Fakultas Teknik Universitas Sumatera Utara BABI PENDAHULUAN 1.1. Refrigerasi Refrigerasi adalah metode pengkondisian temperatur

Lebih terperinci