Session 17 Steam Turbine Theory. PT. Dian Swastatika Sentosa

Ukuran: px
Mulai penontonan dengan halaman:

Download "Session 17 Steam Turbine Theory. PT. Dian Swastatika Sentosa"

Transkripsi

1 Session 17 Steam Turbine Theory PT. Dian Swastatika Sentosa DSS Head Office, 27 Oktober 2008

2 Outline 1. Pendahuluan 2. Bagan Proses Tenaga Uap 3. Air dan Uap dalam diagram T s dan h s 4. Penggunaan Diagram h s 5. Daya yang Dihasilkan, Efisiensi, dan Kapasitas Uap 6. Persamaan Kontinuitas dan Penampang Saluran 7. Perbaikan Proses Tenaga Uap dengan Teknologi Panas 8. Aliran Uap Ketika Melewati Fixed Blade dan Moving Blade 9. Cara Kerja dan Bagian-Bagian Turbin Uap Bertingkat 10. Back-Pressure Turbine dan Condensing Turbine

3 1. Pendahuluan Definisi Steam Steam merupakan air dalam wujud gas

4 1. Pendahuluan Definisi Steam Turbine Sebuah steam turbine didefinisikan sebagai suatu mesin yang mengubah energi steam menjadi energi kinetik dengan melakukan ekspansi melalui nozzle, dan energi kinetik yang dihasilkan oleh semburan steam yang diubah menjadi daya kerja pada sudu-sudu yang terdapat pada bagian yang berputar. Dengan kata lain: Sebuah steam turbine adalah penggerak utama yang mengubah energi panas dari steam langsung menjadi energi putaran mesin.

5 1. Pendahuluan Steam Turbine digerakkan oleh fluida : superheated steam atau saturated steam Efisiensi Steam Turbine dipengaruhi oleh : diameter roda turbin, jumlah tingkat, panjang sudu, dan penampang bagian- bagian yang menghantarkan uap. Kerja Steam Turbine dipengaruhi panas jatuh. Panas jatuh yang terjadi merupakan selisih entalpi yang terjadi pada turbin stage pertama dan terakhir akibat ekspansi uap.

6 1. Pendahuluan Konstruksi Turbin Input Superheated Steam Saturated Steam Proses Single stage Multi Stage High Pressure Intermediate Pressure Low Pressure Axial Radial Output Condensing Full Condensing Extraction-Condensing Non-Condensing Back Pressure Extraction-Back Pressure Efisiensi

7 1. Pendahuluan Condensing Turbine Non-Condensing Turbine

8 1. Pendahuluan Radial Blade Turbine Axial Blade Turbine

9 Impulse Steam Turbine 1. Pendahuluan Hero s Aelopile Branca s Steam Turbine Reaction Steam Turbine

10 1. Pendahuluan Steam Tubine Thermodynamic Process

11 1. Pendahuluan Efficiency Definition

12 h h m Q h h m W W in C P h h m Q h h m W out t 2. Bagan Proses Tenaga Uap

13 2.1. Saturated Rankine Cycle in PLTN

14 2. 2. Superheated Rankine Cycle

15 2.3. Superheated-Reheated Rankine Cycle

16 3. Air dan Uap Air Dalam Diagram T s dan h s Steam Table Tabel uap terbagi atas 2 bagian, yakni : tabel uap jenuh (saturated steam) dan tabel uap lanjut (superheated steam). Masing- masing tabel uap tersebut memuat besaranbesaran ukur: pressure (P), temperature (T), specific volume (v), specific enthalpy (h), and specific entropy (s)

17 3.1. Diagram T - s dq = T ds X= kg uap / kg campuran uap dan air) Besarnya temperatur didih bergantung tekanan yang bekerja pada sistem tersebut.

18 3.2. Diagram h - s Contoh 1. lihat gambar berikut Berapakah selisih entalpi seluruhnya dari proses isentropic h = h1-h2 dalam kj/kg? Berapakah entalpi uap bekas yang keluar dari mesin? Bisa mencapai berapakah efisiensi teoritis η tt, bila untuk dua proses tenaga uap dengan tujuan yang sama yaitu perpindahan energi, tetapi bekerja dengan data uap yang berlainan? a. Uap dengan tekanan tinggi yang bekerja di dalam suatu turbin uap dengan kondensasi b. Uap dengan tekanan menengah yang bekerja di dalam suatu lokomotif uap

19 3.2. Diagram h - s Panas Jatuh (Δh) = h1 h2 Efisiensi konversi energi kalor menjadi energi mekanik u tt h h h Back

20 4. Penggunaan Diagram h s Mollier Diagram perubahan keadaan isobar penentuan panas jatuh proses pencekikan (throttling) Dalam daerah uap basah garis temperatur tidak ada, karena temperatur uap basah antara x = 0 sampai x = 1 adalah selalu tetap konstan, tergantung kepada tekanan yang dipunyai temperatur didih air, yang diambil dari tabel uap

21 4. Penggunaan Diagram h s Peristiwa a : Perubahan keadaan isobar Contoh 2 Uap yang lembab dengan tekanan 10 bar dan x = 0,96 (4% air) harus dipanaskan lanjut sampai 10 bar, C Berapakah jumlah kalor yang diperlukan? Berapakah temperatur uap lembab tersebut? Berapakah spesifik volume v yang dipunyai uap panas lanjut dan uap yang lembab?

22 4. Penggunaan Diagram h s Peristiwa b : Penentuan panas jatuh Berapakah panas jatuh (selisih entalpi) h yang terdapat pada turbin bila uap baru dengan tekanan 10 bar/400 0 C berekspansi isentropik sampai 0,05 bar? Berapakah keadaan uap bekas yang keluar dari turbin? Bila di dalam turbin terdapat kerugian perpindahan energi sehingga η i = 0,80, bagaimanakah keadaan uap bekas dari turbin?

23 4. Penggunaan Diagram h s Peristiwa c : Proses pencekikan (throttling) Uap baru dengan kondisi 40 bar/400 0 C di ekspansikan di dalam turbin sampai tekanannya menjadi 1 bar. Sehingga terdapat panas jatuh isentrop sebesar h = 760 kj/kg. Bagaimanakah kondisi uap baru yang masuk ke turbin, bila katup pemasukan uap sebelum turbin ditutup perlahanlahan dicekik sampai 4 bar (uap yang keluar dari katup dan masuk ke turbin menjadi bertekanan 4 bar)? Setelah proses pencekikan, berapakah panas jatuh isentrop yang bekerja di dalam turbin?

24 5. Perbaikan Proses Tenaga Uap dengan Teknologi Panas Steam Turbine Moisture Separation and Steam Reheating

25 5. Perbaikan Proses Tenaga Uap dengan Teknologi Panas

26 5. Perbaikan Proses Tenaga Uap dengan Teknologi Panas Reheater Assembly

27 5. Perbaikan Proses Tenaga Uap dengan Teknologi Panas Actual Moisture Separator

28 5. Perbaikan Proses Tenaga Uap dengan Teknologi Panas Moisture Separator Reheater Guangdong Sizewell N.P.S.

29 5. Perbaikan Proses Tenaga Uap dengan Teknologi Panas Open or Direct Contact Feedwater Heater System

30 5. Perbaikan Proses Tenaga Uap dengan Teknologi Panas Feedwater Heating (Direct Contact Heater)

31 5. Perbaikan Proses Tenaga Uap dengan Teknologi Panas Closed or Surface (Tubed) Feedwater Heater System

32 5. Perbaikan Proses Tenaga Uap dengan Teknologi Panas Feedwater Heating (Surface (Tubed) Heater)

33 5. Perbaikan Proses Tenaga Uap dengan Teknologi Panas Feedwater Heating (Multiple Heaters)

34 5. Perbaikan Proses Tenaga Uap dengan Teknologi Panas Efficiency Gain With Feedwater Heaters

35 5. Perbaikan Proses Tenaga Uap dengan Teknologi Panas Perbaikan dengan jalan pemanasan ulang Dengan menggunakan Re-Heater Steam yang keluar dari HP turbin dipanaskan kembali di Boiler dan dimasukkan kembali di IP Turbin Menaikkan 3-4 % efisiensi Akan mengembun u ( a b c d e f g h i a) ( h b a i) ( a b c d e f g h i a)

36 5. Perbaikan Proses Tenaga Uap dengan Teknologi Panas Perbaikan dengan jalan pemanasan pendahuluan air umpan boiler dengan uap yang di ekstraksi dari turbin uap (sistem regeneratif) Dengan menggunakan ekstraksi steam dari turbin untuk memanasi air umpan menuju boiler Dengan LP Heater, HP Heater, IP Heater Menaikkan 7% efisiensi

37 5. Perbaikan Proses Tenaga Uap dengan Teknologi Panas Pemanasan pendahuluan air umpan boiler dengan uap yang di ekstraksi dari turbin. Proses siklus dengan data uap dari turbin ekstraksi 1 tingkat terdapat pada gambar dibawah ini : Contoh 3

38 5. Perbaikan Proses Tenaga Uap dengan Teknologi Panas Uap baru yang masuk ke dalam turbin = uap yang keluar dari boiler = 160 bar, C. Uap ekstraksi tekanannya 16 bar, x = 1 mengikuti proses ekspansi isentropik. Tekanan uap bekas yang keluar dari turbin = 0,04 bar. Perhitungan dilakukan terhadap tiap 1 kg uap baru yang masuk ke dalam turbin.

39 5. Perbaikan Proses Tenaga Uap dengan Teknologi Panas Berapakah uap ekstraksi (yang harus dikeluarkan dari turbin) z dalam kg/kg yang diperlukan untuk pemanasan pendahuluan air kondensat utama dari temperatur TKA = 290C dan hka = 121 kj/kg menjadi air pengisi ketel dengan temperatur TKE = 1900C dan hke = 810 kj/kg? Uap ekstraksi meninggalkan turbin dengan tekanan 16 bar, x = 1 dan T = 2010C (tabel uap). Di dalam pesawat pemanas lanjut uap ekstraksi ini akan mengembun dan setelah menyerahkan kalor keadaannya menjadi hzk = 856 kj/kg sesuai dengan temperatur didih 2010C (dari tabel uap). Berapa persenkah perbaikan efisiensi termis yang bisa dicapai proses ini?

40 6. Daya Yang Dihasilkan, Efisiensi, dan h = selisih entalpi dari ekspansi isentropik antara uap baru yang masuk ke dalam turbin dengan uap bekasnya yang keluar dari turbin, dalam kj/kg. m s = Kapasitas uap (masa uap yang masuk ke dalam turbin persatuan waktu), dalam kg/detik. η i = efisiensi dalam turbin η m = efisiensi mekanis dari turbin Kapasitas Uap Daya yang dihasilkan Efisiensi kopling dari turbin P h m s i m e i Bekerjanya turbin tergantung kepada panas jatuh, keadaan uap dan kapasitas uap yang dimasukkan ke dalam sebuah atau ke dalam kedua rumah turbin. m

41 6. Daya Yang Dihasilkan, Efisiensi, dan Kapasitas Uap

42 7. Persamaan Kontinuitas dan Penampang Saluran Fixed Blade Moving Blade Bagan cara kerja uap ketika sedang melewati sudu-sudu turbin uap satu tingkat, bentuk penampang sudu pengarah dibuat sedemikian rupa supaya dapat melaksanakan ekspansi uap dengan pertambahan kecepatan yang tertentu. Akibat dari ekspansi itu menghasilkan pertambahan volume.

43 7. Persamaan Kontinuitas dan Penampang Saluran Persamaan Kontinuitas m s v A c V s A m s V c s v Asumsi kapasitas uap 1 kg/detik m s = kapasitas uap (kg/detik) V = volume spesifik (m 3 /kg) A = luas penampang saluran (m 2 ) c = kecepatan uap masuk dan keluar saluran (m/detik) V s =volume aliran uap

44 7. Persamaan Kontinuitas dan Penampang Saluran Bagan penampang saluran suatu tingkat turbin uap A D L sin 1 D 3,0 L

45 7. Persamaan Kontinuitas dan Penampang Saluran Uap baru dengan tekanan 170 bar, 5300C diekspansikan sampai 0,065 bar dengan kondisi akhir x = 0,9. daya pada kopling yang dihasilkan turbin P = kw (150 MW). Turbin memakai pemanasan ulang dan juga menggunakan pemanasan pendahuluan air ketel (Feedwater heater), dengan adanya uap yang diekstraksi dari turbin maka kondisi uap menjadi seperti berikut : Volume spesifik dan kapasitas aliran uap dalam turbin didapat dari Tingkat Pertama Terakhir m s kg/det v 0, m3/kg V s 2, m3/det Contoh 4 V s m s v Perhitungan kasar untuk Diameter tingkat (diameter rata-rata lingkaran sudu) dan panjang sudu.

46 7. Persamaan Kontinuitas dan Penampang Saluran Tujuan : untuk menghindari jangan sampai diameter tingkat (diameter ratarata lingkaran sudu pada tingkat itu) terlalu besar dan kecepatankeliling terlalu tinggi, maka uap yang keluar dari turbin dengan tekanan tinggi dibagi menjadi beberapa aliran uap dan dimasukkan ke dalam beberapa buah turbin tekanan rendah.

47 Different Applications Turbine Expansion Lines Turbine Configurations

48 8. Aliran Uap Ketika Melewati Sudu Pengarah dan Sudu Jalan Energi Tempat + Energi Kecepatan + Energi Tekanan + Energi Dalam = Konstan c c 2 2 Pv u h P1 v1 u1 P2 v2 u2 2 2 c2 c1 h h c 2 ( h h ) c c ( h h ) 44,72 h h Kecepatan keluar sudu h st 2 c 2000

49 8. Aliran Uap Ketika Melewati Sudu Pengarah dan Sudu Jalan Uap dengan tekanan 20 bar, C di ekspansikan dalam suatu alat pengarah (Nozzle) yang sempurna tanpa kerugian menjadi uap dengan tekanan 3 bar. Berapakah kecepatan akhir uap itu bila kecepatan awalnya c 1 = nol? Bagaimanakah kondisi uap di bagian keluar, bila harga-harga uap tersebut dibaca dari diagram h s? Contoh 5

50 8. Aliran Uap Ketika Melewati Sudu Pengarah dan Sudu Jalan Banyaknya aliran uap, perbandingan tekanan, bentuk penampang saluran Suatu masa aliran uap panas m s = 1 kg/detik dengan P1 = 20 bar dan T1 = C harus diekspansikan isentropik sampai 3 bar. Penampang saluran A harus dilaksanakan bagaimana supaya bisa memenuhi persamaan kontinuitas? Contoh 6

51 8. Aliran Uap Ketika Melewati Sudu Pengarah dan Sudu Jalan p bar p x , bar h kj/kg h x kj/kg h 1 -h x kj/kg c x m/s v x 0,140 0,175 0,224 0,280 0,350 0,400 0,600 m 3 /kg A x mm 2

52 8. Aliran Uap Ketika Melewati Sudu Pengarah dan Sudu Jalan Perbandingan tekanan-laval, fungsi pengaliran m s P 1 A s 2 v1 Massa uap yang mengalir persatuan waktu s( maks) 1 ( 1) Fungsi pengaliran

53 8. Aliran Uap Ketika Melewati Sudu Pengarah dan Sudu Jalan Gas atau uap air p L /p 1 s maks Gas dengan 2 atom, udara 1,4 0,528 0,484 Gas dengan 3 atom, uap panas lanjut 1,3 0,546 0,473 Uap jenuh 1,135 0,577 0,450 Uap basah = 1, ,1. x Harga dihitung

54 8. Aliran Uap Ketika Melewati Sudu Pengarah dan Sudu Jalan Lintasan bilangan pengaliran s terhadap perbandingan tekanan p/p 1

55 8. Aliran Uap Ketika Melewati Sudu Pengarah dan Sudu Jalan Di bawah kecepatan suara, kecepatan suara, dan di atas kecepatan suara c c L 2 P1 v 1 ( 1) P v L L L Kecepatan suara P L 0, P 1 Untuk uap jenuh PL 0,546 P 1 Untk uap panas lanjut

56 8. Aliran Uap Ketika Melewati Sudu Pengarah dan Sudu Jalan Untuk p1 = 100 bar, T1 = 4500C besarnya pl = 54,6 bar dan cl = 565 m/s. untuk p1 = 0,8 bar, x = 0,95 besarnya pl = 0,462 bar dan cl = 430 m/s. Kecepatan uap diatas kecepatan suara di dalam turbin uap terjadi pada tingkat curtis, dan juga terjadi di dalam tingkat terakhir dari turbin uap yang besar dan menggunakan kondensasi. Contoh 7

57 8. Aliran Uap Ketika Melewati Sudu Pengarah dan Sudu Jalan penampang saluran pada turbin Sudu Pengarah (Fixed Blade) Nozzle Laval

58 8. Aliran Uap Ketika Melewati Sudu Pengarah dan Sudu Jalan Sudu Jalan (Moving Blade)

59 8. Aliran Uap Ketika Melewati Turbin Impulse Steam Turbine Reaction Steam Turbine

60 8. Aliran Uap Ketika Melewati Turbin Perubahan tekanan dan kapasitas uap yang masuk ke dalam turbin Luas penampang saluran nozzle dan sudu-sudu di dalam turbin dibuat untuk kondisi operasi turbin dengan beban penuh. Jika turbin dioperasikan dengan kondisi beban sebagian atau lebih besar dari beban penuh, maka distribusi tekanan di dalam tingkat turbin akan berubah.

61 8. Aliran Uap Ketika Melewati Turbin Perubahan tekanan dan kapasitas uap yang masuk ke dalam turbin p/p 1 berubah akan menimbulkan perubahan bilangan pengaliran s, jika perubahannya sampai di bawah tekanan laval, maka kecepatan masa uap yang mengalir per satuan waktu m s di bagian keluar saluran pengarah akan mencapai kecepatan suara Ekspansi uap yang selanjutnya sampai di bawah tekanan laval terjadi di dalam ruang sebelah belakang saluran pengarah, dengan demikian penampang keluar dari saluran pengarah berfungsi sebagai penampang tersempit dari nozzle laval.

62 9. Cara Kerja dan Bagian-Bagian Turbin Uap Bertingkat

63 10. Back-Pressure Turbine dan Condensing Turbine 1. Turbin Kondensasi (Condensing Turbine) Turbin yang saluran keluarnya dihubungkan dengan kondenser, sehingga tekanan uap pada saluran keluarnya mendekati tekanan vakum Condensing turbine < 1 bar (0,04 bar s.d. 0,1 bar)

64 10. Back-Pressure Turbine dan Condensing Turbine 2. Turbin Tekanan Balik (Backpressure Turbine) Turbin yang tekanan uap keluarnya dikontrol dengan sebuah pusat pengatur yang menjaga proses steam pada tekanan yang diinginkan. Back-Pressure Turbine > 1 bar

65 Hubungan Antara Tekanan dan Flow Steam, dan Turbine Load

66 Konversi Satuan 1 Bar = 100 kpa = 0,1 MPa = 0, atm = 1,0197 kg/cm2 = N/m2 1 BTU/lb = 0,556 Kcal/kg degc = 2,33 kj/kg 5 9 x(degf 32) 9 deg F xdegc 32 5 deg Kelvin degc 273

Session 20 Steam Turbine Design. PT. Dian Swastatika Sentosa

Session 20 Steam Turbine Design. PT. Dian Swastatika Sentosa Session 20 Steam Turbine Design PT. Dian Swastatika Sentosa DSS Head Office, 31 Oktober 2008 Outline 1. Pendahuluan 2. Diameter tingkat pertama 3. Diameter tingkat terakhir turbin kondensasi 4. Persoalan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. suatu pembangkit daya uap. Siklus Rankine berbeda dengan siklus-siklus udara

BAB II TINJAUAN PUSTAKA. suatu pembangkit daya uap. Siklus Rankine berbeda dengan siklus-siklus udara BAB II TINJAUAN PUSTAKA Analisa Termodinamika Siklus Rankine adalah siklus teoritis yang mendasari siklus kerja dari suatu pembangkit daya uap Siklus Rankine berbeda dengan siklus-siklus udara ditinjau

Lebih terperinci

BAB I PENDAHULUAN. Turbin uap berfungsi untuk mengubah energi panas yang terkandung. menghasilkan putaran (energi mekanik).

BAB I PENDAHULUAN. Turbin uap berfungsi untuk mengubah energi panas yang terkandung. menghasilkan putaran (energi mekanik). BAB I PENDAHULUAN 1.1 LATAR BELAKANG Turbin uap adalah suatu penggerak mula yang mengubah energi potensial menjadi energi kinetik dan energi kinetik ini selanjutnya diubah menjadi energi mekanik dalam

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembangkit Listrik Tenaga Uap (PLTU) PLTU merupakan sistem pembangkit tenaga listrik dengan memanfaatkan energi panas bahan bakar untuk diubah menjadi energi listrik dengan

Lebih terperinci

pesawat konversi, untuk mengkonversikan energi potensial fluida menjadi energi

pesawat konversi, untuk mengkonversikan energi potensial fluida menjadi energi BAB II TINJAUAN PUSTAKA II.1. Pengertian Turbin Turbin adalah salah satu mesin pengerak dimana mesin tersebut merupakan pesawat konversi, untuk mengkonversikan energi potensial fluida menjadi energi kinetis

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Turbin gas adalah suatu unit turbin dengan menggunakan gas sebagai fluida kerjanya. Sebenarnya turbin gas merupakan komponen dari suatu sistem pembangkit. Sistem turbin gas paling

Lebih terperinci

ANALISA HEAT RATE PADA TURBIN UAP BERDASARKAN PERFORMANCE TEST PLTU TANJUNG JATI B UNIT 3

ANALISA HEAT RATE PADA TURBIN UAP BERDASARKAN PERFORMANCE TEST PLTU TANJUNG JATI B UNIT 3 EKSERGI Jurnal Teknik Energi Vol 10 No. 3 September 2014; 72-77 ANALISA HEAT RATE PADA TURBIN UAP BERDASARKAN PERFORMANCE TEST PLTU TANJUNG JATI B UNIT 3 Bachrudin Azis Mustofa, Sunarwo, Supriyo (1) Mahasiswa

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Siklus Rankine adalah siklus teoritis yang mendasari siklus kerja dari suatu

BAB II TINJAUAN PUSTAKA. Siklus Rankine adalah siklus teoritis yang mendasari siklus kerja dari suatu BAB II TINJAUAN PUSTAKA Analisa Termodinamika Siklus Rankine adalah siklus teoritis yang mendasari siklus kerja dari suatu pembangkit daya uap Siklus Rankine berbeda dengan siklus-siklus udara ditinjau

Lebih terperinci

TURBIN GAS. Berikut ini adalah perbandingan antara turbin gas dengan turbin uap. Berat turbin per daya kuda yang dihasilkan lebih besar.

TURBIN GAS. Berikut ini adalah perbandingan antara turbin gas dengan turbin uap. Berat turbin per daya kuda yang dihasilkan lebih besar. 5 TURBIN GAS Pada turbin gas, pertama-tama udara diperoleh dari udara dan di kompresi dengan menggunakan kompresor udara. Udara kompresi kemudian disalurkan ke ruang bakar, dimana udara dipanaskan. Udara

Lebih terperinci

ANALISA PRESTASI KERJA TURBIN UAP PADA BEBAN YANG BERVARIASI

ANALISA PRESTASI KERJA TURBIN UAP PADA BEBAN YANG BERVARIASI ANALISA PRESTASI KERJA TURBIN UAP PADA BEBAN YANG BERVARIASI Soelaiman, Sofyan, Novy Priyanto Jurusan Mesin, Universitas Muhammadiyah Jakarta Abstrak. Kebutuhan konsumen akan daya listrik bervariasi dari

Lebih terperinci

Perhitungan Daya Turbin Uap Dan Generator

Perhitungan Daya Turbin Uap Dan Generator Perhitungan Daya Turbin Uap Dan Generator Dari data yang diketahui tekanan masuk turbin diambil nilai rata-rata adalah sebesar (P in ) = 18 kg/ cm² G ( tekanan dibaca lewat alat ukur ), ditambah dengan

Lebih terperinci

BAB III DASAR TEORI SISTEM PLTU

BAB III DASAR TEORI SISTEM PLTU BAB III DASAR TEORI SISTEM PLTU Sistem pembangkit listrik tenaga uap (Steam Power Plant) memakai siklus Rankine. PLTU Suralaya menggunakan siklus tertutup (closed cycle) dengan dasar siklus rankine dengan

Lebih terperinci

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU)

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU) BAB II TINJAUAN PUSTAKA 2.1 Pengertian HRSG HRSG (Heat Recovery Steam Generator) adalah ketel uap atau boiler yang memanfaatkan energi panas sisa gas buang satu unit turbin gas untuk memanaskan air dan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Dasar Termodinamika 2.1.1 Siklus Termodinamika Siklus termodinamika adalah serangkaian proses termodinamika mentransfer panas dan kerja dalam berbagai keadaan tekanan, temperatur,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Umum Mesin pendingin atau kondensor adalah suatu alat yang digunakan untuk memindahkan panas dari dalam ruangan ke luar ruangan. Adapun sistem mesin pendingin yang

Lebih terperinci

ANALISIS PERHITUNGAN DAYA TURBIN YANG DIHASILKAN DAN EFISIENSI TURBIN UAP PADA UNIT 1 DAN UNIT 2 DI PT. INDONESIA POWER UBOH UJP BANTEN 3 LONTAR

ANALISIS PERHITUNGAN DAYA TURBIN YANG DIHASILKAN DAN EFISIENSI TURBIN UAP PADA UNIT 1 DAN UNIT 2 DI PT. INDONESIA POWER UBOH UJP BANTEN 3 LONTAR ANALISIS PERHITUNGAN DAYA TURBIN YANG DIHASILKAN DAN EFISIENSI TURBIN UAP PADA UNIT 1 DAN UNIT 2 DI PT. INDONESIA POWER UBOH UJP BANTEN 3 LONTAR Jamaludin, Iwan Kurniawan Program Studi Teknik mesin, Fakultas

Lebih terperinci

TUGAS MATAKULIAH SISTEM PEMBANGKIT TENAGA UAP TURBIN UAP : 1. ADE SURYAN YULIANTO (G1C012003) 2. SEPRIANSYAH (G1C01100)

TUGAS MATAKULIAH SISTEM PEMBANGKIT TENAGA UAP TURBIN UAP : 1. ADE SURYAN YULIANTO (G1C012003) 2. SEPRIANSYAH (G1C01100) TUGAS MATAKULIAH SISTEM PEMBANGKIT TENAGA UAP TURBIN UAP NAMA : 1. ADE SURYAN YULIANTO (G1C012003) 2. SEPRIANSYAH (G1C01100) PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS BENGKULU 2015 TURBIN

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Landasan Teori PLTGU atau combine cycle power plant (CCPP) adalah suatu unit pembangkit yang memanfaatkan siklus gabungan antara turbin uap dan turbin gas. Gagasan awal untuk

Lebih terperinci

BAB III ANALISA DAN PEMBAHASAN

BAB III ANALISA DAN PEMBAHASAN BAB III ANALISA DAN PEMBAHASAN 3.1 SPESIFIKASI TURBIN Turbin uap yang digunakan pada PLTU Kapasitas 330 MW didesain dan pembuatan manufaktur dari Beijing BEIZHONG Steam Turbine Generator Co., Ltd. Model

Lebih terperinci

BAB V TURBIN GAS. Berikut ini adalah perbandingan antara turbin gas dengan turbin uap. No. Turbin Gas Turbin Uap

BAB V TURBIN GAS. Berikut ini adalah perbandingan antara turbin gas dengan turbin uap. No. Turbin Gas Turbin Uap BAB V TURBIN GAS Pada turbin gas, pertama-tama udara diperoleh dari udara dan di kompresi dengan menggunakan kompresor udara. Udara kompresi kemudian disalurkan ke ruang bakar, dimana udara dipanaskan.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.. Pandangan Umum Tentang Turbin Uap Sebagai Pembangkit Tenaga Turbin uap termasuk mesin pembangkit tenaga dimana hasil konversi energinya dimanfaatkan mesin lain untuk menghasilkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan Pengeringan adalah proses mengurangi kadar air dari suatu bahan [1]. Dasar dari proses pengeringan adalah terjadinya penguapan air ke udara karena perbedaan kandungan

Lebih terperinci

Analisis Pengaruh Tekanan Fluida Pemanas pada LPH terhadap Efisiensi dan Daya PLTU 1x660 MW dengan Simulasi Cycle Tempo

Analisis Pengaruh Tekanan Fluida Pemanas pada LPH terhadap Efisiensi dan Daya PLTU 1x660 MW dengan Simulasi Cycle Tempo B107 Analisis Pengaruh Tekanan Fluida Pemanas pada LPH terhadap Efisiensi dan Daya PLTU 1x660 MW dengan Simulasi Cycle Tempo Muhammad Ismail Bagus Setyawan dan Prabowo Departemen Teknik Mesin, Fakultas

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Dasar Termodinamika 2.1.1 Siklus Termodinamika Siklus termodinamika adalah serangkaian proses termodinamika mentransfer panas dan kerja dalam berbagai keadaan tekanan, temperatur,

Lebih terperinci

SIMULASI DUA DIMENSI KARAKTERISTIK ALIRAN PADA BLADE UNTUK DESAIN NOZZLE DAN BLADE TURBIN UAP TIPE IMPULS SATU TINGKAT

SIMULASI DUA DIMENSI KARAKTERISTIK ALIRAN PADA BLADE UNTUK DESAIN NOZZLE DAN BLADE TURBIN UAP TIPE IMPULS SATU TINGKAT Tugas Akhir Konversi Energi SIMULASI DUA DIMENSI KARAKTERISTIK ALIRAN PADA BLADE UNTUK DESAIN NOZZLE DAN BLADE TURBIN UAP TIPE IMPULS SATU TINGKAT ANDRIAN HADI PRAMONO 05 00 075 Dosen Pembimbing : Dr Eng

Lebih terperinci

I. PENDAHULUAN. EKSERGI Jurnal Teknik Energi Vol 11 No. 3 September 2015; 61-68

I. PENDAHULUAN. EKSERGI Jurnal Teknik Energi Vol 11 No. 3 September 2015; 61-68 EKSERGI Jurnal Teknik Energi Vol 11 No. 3 September 2015; 61-68 ANALISA HEAT RATE PADA TURBIN UAP BERDASARKAN PERFORMANCE TEST PLTU TANJUNG JATI B UNIT 3 Sunarwo, Supriyo Program Studi Teknik Konversi

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA.1 Teori Pengujian Sistem pengkondisian udara (Air Condition) pada mobil atau kendaraan secara umum adalah untuk mengatur kondisi suhu pada ruangan didalam mobil. Kondisi suhu yang

Lebih terperinci

ANALISA TERMODINAMIKA PADA SISTEM PEMBANGKIT TENAGA UAP DENGAN VARIASI PEMBEBANAN DI UNIT PEMBANGKIT TENAGA UAP PT

ANALISA TERMODINAMIKA PADA SISTEM PEMBANGKIT TENAGA UAP DENGAN VARIASI PEMBEBANAN DI UNIT PEMBANGKIT TENAGA UAP PT ANALISA TERMODINAMIKA PADA SISTEM PEMBANGKIT TENAGA UAP DENGAN VARIASI PEMBEBANAN DI UNIT PEMBANGKIT TENAGA UAP PT. PERTAMINA (PERSERO) REFINERY UNIT IV CILACAP SKRIPSI Skripsi yang Diajukan untuk Melengkapi

Lebih terperinci

TUGAS SARJANA TURBIN UAP

TUGAS SARJANA TURBIN UAP TUGAS SARJANA TURBIN UAP PERANCANGAN TURBIN UAP TYPE IMPULS PENGGERAK GENERATOR DENGAN SATU TINGKAT EKSTARKSI, DAYA GENERATOR 0 MW ; PUTARAN POROS TURBIN 5700 RPM OLEH : RIYALDI 004008 UNIVERSITAS SUMATERA

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 8 BAB I PENDAHULUAN 11 Latar Belakang Energi memiliki peranan penting dalam menunjang kehidupan manusia Seiring dengan perkembangan zaman kebutuhan akan energi pun terus meningkat Untuk dapat memenuhi

Lebih terperinci

ANALISA PERHITUNGAN EFISIENSI TURBINE GENERATOR QFSN B UNIT 10 dan 20 PT. PJB UBJOM PLTU REMBANG

ANALISA PERHITUNGAN EFISIENSI TURBINE GENERATOR QFSN B UNIT 10 dan 20 PT. PJB UBJOM PLTU REMBANG ANALISA PERHITUNGAN EFISIENSI TURBINE GENERATOR QFSN-300-2-20B UNIT 10 dan 20 PT. PJB UBJOM PLTU REMBANG Dwi Cahyadi 1, Hermawan 2 1 Mahasiswa Jurusan Teknik Elektro, Fakultas Teknik, Universitas Diponegoro

Lebih terperinci

Exercise 1c Menghitung efisiensi

Exercise 1c Menghitung efisiensi Exercise 1 In a Rankine cycle, steam leaves the boiler 4 MPa and 400 C. The condenser pressure is 10 kpa. Determine the cycle efficiency & Simplified flow diagram for the following cases: a. Basic ideal

Lebih terperinci

Turbin Uap BOILER. 1 4 konderser

Turbin Uap BOILER. 1 4 konderser Turbin Uap Siklus Renkine setelah diciptakan langsung diterima sebagai standar untuk pembangkit daya yang menggunakan uap (steam ). Siklus Renkine nyata yang digunakan dalam instalasi pembangkit daya jauh

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN Pembangkit Listrik Tenaga Uap (PLTU) Energi Alamraya Semesta adalah PLTU yang menggunakan batubara sebagai bahan bakar. Batubara yang digunakan adalah batubara jenis bituminus

Lebih terperinci

TURBIN UAP. Penggunaan:

TURBIN UAP. Penggunaan: Turbin Uap TURBIN UAP Siklus pembangkitan tenaga terdiri dari pompa, generator uap (boiler), turbin, dan kondenser di mana fluida kerjanya (umumnya adala air) mengalami perubaan fasa dari cair ke uap

Lebih terperinci

BAB II DASAR TEORI. Energy balance 1 = Energy balance 2 EP 1 + EK 1 + U 1 + EF 1 + ΔQ = EP 2 + EK 2 + U 2 + EF 2 + ΔWnet ( 2.1)

BAB II DASAR TEORI. Energy balance 1 = Energy balance 2 EP 1 + EK 1 + U 1 + EF 1 + ΔQ = EP 2 + EK 2 + U 2 + EF 2 + ΔWnet ( 2.1) BAB II DASAR TEORI 2.1 HUKUM TERMODINAMIKA DAN SISTEM TERBUKA Hukum pertama termodinamika adalah hukum kekekalan energi. Hukum ini menyatakan bahwa energi tidak dapat diciptakan ataupun dimusnahkan. Energi

Lebih terperinci

II HUKUM THERMODINAMIKA I

II HUKUM THERMODINAMIKA I II HUKUM THERMODINAMIKA I Tujuan Instruksional Khusus: Mahasiswa mampu menjelaskan hukum thermodinamika I tentang konservasi energi, serta mampu menyelesaikan permasalahan-permasalahan yang berhubungan

Lebih terperinci

Analisa Pengaruh Variasi Pinch Point dan Approach Point terhadap Performa HRSG Tipe Dual Pressure

Analisa Pengaruh Variasi Pinch Point dan Approach Point terhadap Performa HRSG Tipe Dual Pressure JURNAL TEKNIK ITS Vol. 6, No. 1, (2017) ISSN: 2337-3539 (2301-9271 Print) B-137 Analisa Pengaruh Variasi Pinch Point dan Approach Point terhadap Performa HRSG Tipe Dual Pressure Ryan Hidayat dan Bambang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Siklus PLTU Sistem pembangkit listrik tenaga uap (Steam Power Plant) memakai siklus Rankine. PLTU Suralaya menggunakan siklus tertutup (closed cycle) dengan dasar siklus rankine

Lebih terperinci

BAB II DASAR TEORI. 2.1 Prinsip Pembangkit Listrik Tenaga Gas

BAB II DASAR TEORI. 2.1 Prinsip Pembangkit Listrik Tenaga Gas BAB II DASAR TEORI. rinsip embangkit Listrik Tenaga Gas embangkit listrik tenaga gas adalah pembangkit yang memanfaatkan gas (campuran udara dan bahan bakar) hasil dari pembakaran bahan bakar minyak (BBM)

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1 Latar Belakang Pengkondisian udaraa pada kendaraan mengatur mengenai kelembaban, pemanasan dan pendinginan udara dalam ruangan. Pengkondisian ini bertujuan bukan saja sebagai penyejuk

Lebih terperinci

BAB III SISTEM PLTGU UBP TANJUNG PRIOK

BAB III SISTEM PLTGU UBP TANJUNG PRIOK BAB III SISTEM PLTGU UBP TANJUNG PRIOK 3.1 Konfigurasi PLTGU UBP Tanjung Priok Secara sederhana BLOK PLTGU UBP Tanjung Priok dapat digambarkan sebagai berikut: deaerator LP Header Low pressure HP header

Lebih terperinci

III. METODOLOGI PENELITIAN

III. METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN 3.1 Waktu dan tempat Penelitian ini dilaksanakan di PT Energi Alamraya Semesta, Desa Kuta Makmue, kecamatan Kuala, kab Nagan Raya- NAD. Penelitian akan dilaksanakan pada bulan

Lebih terperinci

BAB IV PEMBAHASAN KINERJA BOILER

BAB IV PEMBAHASAN KINERJA BOILER BAB IV PEMBAHASAN KINERJA BOILER 4.1 Spesifikasi boiler di PT. Kartika Eka Dharma Spesifikasi boiler yang digunakan oleh PT. Kartika Eka Dharma adalah boiler jenis pipa air dengan kapasitas 1 ton/ jam,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Pandangan Umum Turbin uap termasuk mesin pembangkit tenaga dimana hasil konversi energinya dimanfaatkan mesin lain untuk menghasilkan daya. Di dalam turbin terjadi perubahan dari

Lebih terperinci

Gambar 1. Skematik pembangkit listrik tenaga uap

Gambar 1. Skematik pembangkit listrik tenaga uap BAB II TINJAUAN PUSTAKA 2.1 Siklus Rengkin Regeneratif Dalam pembangkit listrik tenaga uap, energi primer yang dikonversikan menjadi energi listrik adalah bahan bakar. Bahan bakar yang digunakan dapat

Lebih terperinci

Udara. Bahan Bakar. Generator Kopel Kompresor Turbin

Udara. Bahan Bakar. Generator Kopel Kompresor Turbin BAB II TINJAUAN PUSTAKA 2.1 Cara Kerja Instalasi Turbin Gas Instalasi turbin gas merupakan suatu kesatuan unit instalasi yang bekerja berkesinambungan dalam rangka membangkitkan tenaga listrik. Instalasi

Lebih terperinci

Analisa Efisiensi Isentropik dan Exergy Destruction Pada Turbin Uap Sistem Pembangkit Listrik Tenaga Gas dan Uap

Analisa Efisiensi Isentropik dan Exergy Destruction Pada Turbin Uap Sistem Pembangkit Listrik Tenaga Gas dan Uap Available online at Website http://ejournal.undip.ac.id/index.php/rotasi Analisa Efisiensi Isentropik dan Exergy Destruction Pada Turbin Uap Sistem Pembangkit Listrik Tenaga Gas dan Uap *Eflita Yohana

Lebih terperinci

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya BAB II DASAR TEORI 2.1 Hot and Cool Water Dispenser Hot and cool water dispenser merupakan sebuah alat yang digunakan untuk mengkondisikan temperatur air minum baik dingin maupun panas. Sumber airnya berasal

Lebih terperinci

BAB III APLIKASI TERMODINAMIKA PADA PEMBANGKIT LISTRIK TENAGA PANAS BUMI

BAB III APLIKASI TERMODINAMIKA PADA PEMBANGKIT LISTRIK TENAGA PANAS BUMI BAB III APLIKASI TERMODINAMIKA PADA PEMBANGKIT LISTRIK TENAGA PANAS BUMI Pembangkit Listrik Tenaga Panas Bumi (PLTP) pada prinsipnya sama seperti Pembangkit Listrik Tenaga Uap (PLTU), hanya pada PLTU uap

Lebih terperinci

ANALISIS PRESTASI TURBIN GT-1510 BORSIG PADA UNIT UTILITY KALTIM I Muhammad Hasan Basri* dan Alimuddin Sam * *

ANALISIS PRESTASI TURBIN GT-1510 BORSIG PADA UNIT UTILITY KALTIM I Muhammad Hasan Basri* dan Alimuddin Sam * * ANALISIS PRESTASI TURBIN GT-1510 BORSIG PADA UNIT UTILITY KALTIM I Muhammad Hasan Basri* dan Alimuddin Sam * * Abstract This research aim to analyses how far labour capacity or performance from GT-1510

Lebih terperinci

BAB III TURBIN UAP PADA PLTU

BAB III TURBIN UAP PADA PLTU BAB III TURBIN UAP PADA PLTU 3.1 Turbin Uap Siklus Renkine setelah diciptakan langsung diterima sebagai standar untuk pembangkit daya yang menggunakan uap (steam ). Siklus Renkine nyata yang digunakan

Lebih terperinci

Session 18 Heat Transfer in Steam Turbine. PT. Dian Swastatika Sentosa

Session 18 Heat Transfer in Steam Turbine. PT. Dian Swastatika Sentosa Session 8 Heat Transfer in Steam Trbine PT. Dian Sastatika Sentosa DSS Head Offie, 3 Oktober 008 Otline. Pendahlan. Skema keepatan, gaya tangensial. 3. Daya yang dihasilkan trbin, panas jath. 4. Trbin

Lebih terperinci

ANALISA PERFORMANSI TURBIN UAP KAPASITAS 60 MW DI PLTU PEMBANGKITAN LISTRIK SEKTOR BELAWAN

ANALISA PERFORMANSI TURBIN UAP KAPASITAS 60 MW DI PLTU PEMBANGKITAN LISTRIK SEKTOR BELAWAN ANALISA PERFORMANSI TURBIN UAP KAPASITAS 60 MW DI PLTU PEMBANGKITAN LISTRIK SEKTOR BELAWAN LAPORAN TUGAS AKHIR Diajukan untuk Memenuhi Sebagian Persyaratan dalam Menyelesaikan Program Pendidikan Diploma

Lebih terperinci

Termodinamika II FST USD Jogja. TERMODINAMIKA II Semester Genap TA 2007/2008

Termodinamika II FST USD Jogja. TERMODINAMIKA II Semester Genap TA 2007/2008 TERMODINAMIKA II Semester Genap TA 007/008 Siklus Kompresi Uap Ideal (A Simple Vapor-Compression Refrigeration Cycle) Mempunyai komponen dan proses.. Compressor: mengkompresi uap menjadi uap bertekanan

Lebih terperinci

Tekad Sitepu, Sahala Hadi Putra Silaban Departemen Teknik Mesin, Fakultas Teknik, Universitas Sumatera Utara

Tekad Sitepu, Sahala Hadi Putra Silaban Departemen Teknik Mesin, Fakultas Teknik, Universitas Sumatera Utara PERANCANGAN HEAT RECOVERY STEAM GENERATOR (HRSG) YANG MEMANFAATKAN GAS BUANG TURBIN GAS DI PLTG PT. PLN (PERSERO) PEMBANGKITAN DAN PENYALURAN SUMATERA BAGIAN UTARA SEKTOR BELAWAN Tekad Sitepu, Sahala Hadi

Lebih terperinci

Jurnal FEMA, Volume 1, Nomor 3, Juli Kajian Analitis Sistem Pembangkit Uap Kogenerasi

Jurnal FEMA, Volume 1, Nomor 3, Juli Kajian Analitis Sistem Pembangkit Uap Kogenerasi Jurnal FEMA, Volume 1, Nomor 3, Juli 2013 Kajian Analitis Sistem Pembangkit Uap Kogenerasi Lamsihar S. Tamba 1), Harmen 2) dan A. Yudi Eka Risano 2) 1) Mahasiswa Jurusan Teknik Mesin, Fakultas Teknik Universitas

Lebih terperinci

TUGAS SARJANA PERANCANGAN TURBIN UAP PENGGERAK GENERATOR LISTRIK PADA PABRIK PENGOLAHAN KELAPA SAWIT KAPASITAS : 60 TON TBS/JAM DAYA TERPASANG : 10 MW

TUGAS SARJANA PERANCANGAN TURBIN UAP PENGGERAK GENERATOR LISTRIK PADA PABRIK PENGOLAHAN KELAPA SAWIT KAPASITAS : 60 TON TBS/JAM DAYA TERPASANG : 10 MW TUGAS SARJANA SISTEM PEMBANGKIT TENAGA PERANCANGAN TURBIN UAP PENGGERAK GENERATOR LISTRIK PADA PABRIK PENGOLAHAN KELAPA SAWIT KAPASITAS : 60 TON TBS/JAM DAYA TERPASANG : 10 MW PUTARAN : 5700 RPM OLEH :

Lebih terperinci

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik MARULITUA SIDAURUK NIM

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik MARULITUA SIDAURUK NIM ANALISIS DAN SIMULASI VARIASI SUDUT SUDU-SUDU TURBIN IMPULS TERHADAP DAYA MEKANIS YANG DIHASILKAN TURBIN SEBAGAI PEMBANGKIT TENAGA UAP PADA PKS KAPASITAS 30 TON TBS/JAM SKRIPSI Skripsi Yang Diajukan Untuk

Lebih terperinci

BAB IV ANALISA EKSPERIMEN DAN SIMULASI

BAB IV ANALISA EKSPERIMEN DAN SIMULASI BAB IV ANALISA EKSPERIMEN DAN SIMULASI Selama percobaan dilakukan beberapa modifikasi atau perbaikan dalam rangka usaha mendapatkan air kondensasi. Semenjak dari memperbaiki kebocoran sampai penggantian

Lebih terperinci

PENGARUH SUHU DAN TEKANAN TERHADAP PENINGKATAN EFISIENSI THERMAL SIKLUS RANKINE PADA PEMBANGKIT DAYA TENAGA UAP. Oleh ( ) TEKNIK MESIN UNILA

PENGARUH SUHU DAN TEKANAN TERHADAP PENINGKATAN EFISIENSI THERMAL SIKLUS RANKINE PADA PEMBANGKIT DAYA TENAGA UAP. Oleh ( ) TEKNIK MESIN UNILA 1 PENGARUH SUHU DAN TEKANAN TERHADAP PENINGKATAN EFISIENSI THERMAL SIKLUS RANKINE PADA PEMBANGKIT DAYA TENAGA UAP Oleh BAYU AGUNG PERMANA JASIRON NENI SUSANTI (0615021007) TEKNIK MESIN UNILA (0715021012)

Lebih terperinci

BAB II LANDASAN TEORI. Ketel uap pada dasarnya terdiri dari bumbung (drum) yang tertutup pada

BAB II LANDASAN TEORI. Ketel uap pada dasarnya terdiri dari bumbung (drum) yang tertutup pada BAB II LANDASAN TEORI 2.1 Jenis dan Klasifikasi Ketel Uap Ketel uap pada dasarnya terdiri dari bumbung (drum) yang tertutup pada ujung pangkalnya seperti pada gambar 2.1 dan dalam perkembangannya dilengkapi

Lebih terperinci

Kata Pengantar. sempurna. Oleh sebab itu, kami berharap adanya kritik, saran dan usulan demi perbaikan

Kata Pengantar. sempurna. Oleh sebab itu, kami berharap adanya kritik, saran dan usulan demi perbaikan Kata Pengantar Puji syukur kami panjatkan kehadirat Tuhan Yang Maha Esa karena dengan rahmat, karunia, serta taufik dan hidayah-nya kami dapat menyelesaikan makalah tentang turbin uap ini dengan baik meskipun

Lebih terperinci

BAB I PENDAHULUAN. Dunia industri dewasa ini mengalami perkembangan pesat. akhirnya akan mengakibatkan bertambahnya persaingan khususnya

BAB I PENDAHULUAN. Dunia industri dewasa ini mengalami perkembangan pesat. akhirnya akan mengakibatkan bertambahnya persaingan khususnya BAB I PENDAHULUAN I.1. Latar Belakang Masalah Dunia industri dewasa ini mengalami perkembangan pesat. Perkembangan itu ditandai dengan berkembangnya ilmu dan teknologi yang akhirnya akan mengakibatkan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Perencanaan pengkondisian udara dalam suatu gedung diperlukan suatu perhitungan beban kalor dan kebutuhan ventilasi udara, perhitungan kalor ini tidak lepas dari prinsip perpindahan

Lebih terperinci

BAB I PENDAHULUAN. kemampuan yang memadai untuk melayani proses yang berlangsung di dalamnya.

BAB I PENDAHULUAN. kemampuan yang memadai untuk melayani proses yang berlangsung di dalamnya. BAB I PENDAHULUAN 1.1. Latar Belakang Zaman sekarang ini merupakan era industri yang memerlukan suatu daya dan kemampuan yang memadai untuk melayani proses yang berlangsung di dalamnya. Industri dan perusahaan

Lebih terperinci

BAB II DASAR TEORI. Laporan Tugas Akhir BAB II DASAR TEORI

BAB II DASAR TEORI. Laporan Tugas Akhir BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Sistem Refrigerasi Freezer Freezer merupakan salah satu mesin pendingin yang digunakan untuk penyimpanan suatu produk yang bertujuan untuk mendapatkan produk dengan kualitas yang

Lebih terperinci

BAB I PENDAHULUAN. Bertambahnya perindustrian di Indonesia menyebabkan peningkatan

BAB I PENDAHULUAN. Bertambahnya perindustrian di Indonesia menyebabkan peningkatan BAB I PENDAHULUAN 1.1 Latar Belakang Bertambahnya perindustrian di Indonesia menyebabkan peningkatan kebutuhan listrik, untuk mengatasi hal ini maka pemerintah Indonesia melaksanakan kegiatan percepatan

Lebih terperinci

MULTIREFRIGERASI SISTEM. Oleh: Ega T. Berman, S.Pd., M,Eng

MULTIREFRIGERASI SISTEM. Oleh: Ega T. Berman, S.Pd., M,Eng MULTIREFRIGERASI SISTEM Oleh: Ega T. Berman, S.Pd., M,Eng SIKLUS REFRIGERASI Sistem refrigerasi dengan siklus kompresi uap Proses 1 2 : Kompresi isentropik Proses 2 2 : Desuperheating Proses 2 3 : Kondensasi

Lebih terperinci

STUDI PADA PENGARUH FWH7 TERHADAP EFISIENSI DAN BIAYA KONSUMSI BAHAN BAKAR PLTU DENGAN PEMODELAN GATECYCLE

STUDI PADA PENGARUH FWH7 TERHADAP EFISIENSI DAN BIAYA KONSUMSI BAHAN BAKAR PLTU DENGAN PEMODELAN GATECYCLE SEMINAR TUGAS AKHIR STUDI PADA PENGARUH FWH7 TERHADAP EFISIENSI DAN BIAYA KONSUMSI BAHAN BAKAR PLTU DENGAN PEMODELAN GATECYCLE Disusun oleh : Sori Tua Nrp : 21.11.106.006 Dosen pembimbing : Ary Bacthiar

Lebih terperinci

Penyelesaian: x 1. Dik : x 2. =0,8m. K=100 N m. Dit : Q=? Jawab : ΣW =ΣQ. Usaha yang dilakukan pegas : dx x1. = F Pegas.

Penyelesaian: x 1. Dik : x 2. =0,8m. K=100 N m. Dit : Q=? Jawab : ΣW =ΣQ. Usaha yang dilakukan pegas : dx x1. = F Pegas. Contoh Soal 4.1 Sebuah pegas diregangkan sejauh 0,8 m dan dihubungkan ke sebuah roda dayung (Gbr 4-2). Roda dayung tersebut kemudian berputar sehingga pegas menjadi tidak teregang lagi. Hitunglah besarnya

Lebih terperinci

HALAMAN JUDUL... HALAMAN PENGESAHAN... HALAMAN PERNYATAAN... NASKAH SOAL TUGAS AKHIR... HALAMAN PERSEMBAHAN... ABSTRACT

HALAMAN JUDUL... HALAMAN PENGESAHAN... HALAMAN PERNYATAAN... NASKAH SOAL TUGAS AKHIR... HALAMAN PERSEMBAHAN... ABSTRACT DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii HALAMAN PERNYATAAN... iii NASKAH SOAL TUGAS AKHIR... iv HALAMAN PERSEMBAHAN... v ABSTRACT... vi INTISARI... vii KATA PENGANTAR... viii DAFTAR ISI...

Lebih terperinci

BAB IV HASIL ANALISA DAN PEMBAHASAN. 4.1 Pembangkit Listrik Tenaga Panas Bumi Single Flash System

BAB IV HASIL ANALISA DAN PEMBAHASAN. 4.1 Pembangkit Listrik Tenaga Panas Bumi Single Flash System 32 BAB IV HASIL ANALISA DAN PEMBAHASAN 4.1 Pembangkit Listrik Tenaga Panas Bumi Single Flash System PLTP Gunung Salak merupakan PLTP yang berjenis single flash steam system. Oleh karena itu, seperti yang

Lebih terperinci

SKRIPSI TURBIN UAP PERANCANGAN TURBIN UAP UNTUK PLTGU DENGAN DAYA GENERATOR LISTRIK 80 MW DAN PUTARAN TURBIN 3000 RPM OLEH :

SKRIPSI TURBIN UAP PERANCANGAN TURBIN UAP UNTUK PLTGU DENGAN DAYA GENERATOR LISTRIK 80 MW DAN PUTARAN TURBIN 3000 RPM OLEH : SKRIPSI TURBIN UAP PERANCANGAN TURBIN UAP UNTUK PLTGU DENGAN DAYA GENERATOR LISTRIK 80 MW DAN PUTARAN TURBIN 3000 RPM OLEH : ROY FRANC J. S. NIM : 050 4 03 PROGRAM PENDIDIKAN SARJANA EKSTENSI DEPARTEMEN

Lebih terperinci

BAB II LANDASAN TEORI. tropis dengan kondisi temperatur udara yang relatif tinggi/panas.

BAB II LANDASAN TEORI. tropis dengan kondisi temperatur udara yang relatif tinggi/panas. BAB II LANDASAN TEORI 2.1 Pengertian Sistem Pendingin Sistem pendingin merupakan sebuah sistem yang bekerja dan digunakan untuk pengkondisian udara di dalam ruangan, salah satunya berada di mobil yaitu

Lebih terperinci

ANALISA EFISIENSI PERFORMA HRSG ( Heat Recovery Steam Generation ) PADA PLTGU. Bambang Setyoko * ) Abstracts

ANALISA EFISIENSI PERFORMA HRSG ( Heat Recovery Steam Generation ) PADA PLTGU. Bambang Setyoko * ) Abstracts ANALISA EFISIENSI PERFORMA HRSG ( Heat Recovery Steam Generation ) PADA PLTGU Bambang Setyoko * ) Abstracts Heat Recovery Steam Generator ( HRSG ) is a construction in combine cycle with gas turbine and

Lebih terperinci

ANALISIS VARIASI SUDUT SUDU-SUDU TURBIN IMPULS TERHADAP DAYA MEKANIS TURBIN UNTUK PEMBANGKIT LISTRIK TENAGA UAP

ANALISIS VARIASI SUDUT SUDU-SUDU TURBIN IMPULS TERHADAP DAYA MEKANIS TURBIN UNTUK PEMBANGKIT LISTRIK TENAGA UAP ANALISIS VARIASI SUDUT SUDU-SUDU TURBIN IMPULS TERHADAP DAYA MEKANIS TURBIN UNTUK PEMBANGKIT LISTRIK TENAGA UAP SKRIPSI Skripsi ini Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik OLEH

Lebih terperinci

JURUSAN TEKNIK ELEKTRO KONSENTRASI TEKNIK ELEKTRONIKA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS GUNADARMA

JURUSAN TEKNIK ELEKTRO KONSENTRASI TEKNIK ELEKTRONIKA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS GUNADARMA ANALISA SISTEM KONTROL LEVEL DAN INSTRUMENTASI PADA HIGH PRESSURE HEATER PADA UNIT 1 4 DI PLTU UBP SURALAYA. Disusun Oleh : ANDREAS HAMONANGAN S (10411790) JURUSAN TEKNIK ELEKTRO KONSENTRASI TEKNIK ELEKTRONIKA

Lebih terperinci

PERANCANGAN TURBIN UAP PENGGERAK GENERATOR LISTRIK DENGAN DAYA 80 MW PADA INSTALASI PEMBANGKIT LISTRIK TENAGA UAP

PERANCANGAN TURBIN UAP PENGGERAK GENERATOR LISTRIK DENGAN DAYA 80 MW PADA INSTALASI PEMBANGKIT LISTRIK TENAGA UAP SKRIPSI PERANCANGAN TURBIN UAP PENGGERAK GENERATOR LISTRIK DENGAN DAYA 80 MW PADA INSTALASI PEMBANGKIT LISTRIK TENAGA UAP Skripsi ini Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik Oleh

Lebih terperinci

Kata Kunci : PLC, ZEN OMRON, HP Bypass Turbine System, pompa hidrolik

Kata Kunci : PLC, ZEN OMRON, HP Bypass Turbine System, pompa hidrolik Makalah Seminar Kerja Praktek SIMULASI PLC SEDERHANA SEBAGAI RESPRESENTASI KONTROL POMPA HIDROLIK PADA HIGH PRESSURE BYPASS TURBINE SYSTEM Fatimah Avtur Alifia (L2F008036) Jurusan Teknik Elektro Fakultas

Lebih terperinci

Laporan Tugas Akhir 2012 BAB II DASAR TEORI

Laporan Tugas Akhir 2012 BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Definisi Vaksin Vaksin merupakan bahan antigenik yang digunakan untuk menghasilkan kekebalan aktif terhadap suatu penyakit sehingga dapat mencegah atau mengurangi pengaruh infeksi

Lebih terperinci

PERANCANGAN ULANG HEAT RECOVERY STEAM GENERATOR DENGAN SISTEM DUAL PRESSURE MELALUI PEMANFAATAN GAS BUANG SEBUAH TURBIN GAS BERDAYA 160 MW

PERANCANGAN ULANG HEAT RECOVERY STEAM GENERATOR DENGAN SISTEM DUAL PRESSURE MELALUI PEMANFAATAN GAS BUANG SEBUAH TURBIN GAS BERDAYA 160 MW PERANCANGAN ULANG HEAT RECOVERY STEAM GENERATOR DENGAN SISTEM DUAL PRESSURE MELALUI PEMANFAATAN GAS BUANG SEBUAH TURBIN GAS BERDAYA 160 MW F. Burlian (1), A. Ghafara (2) (1,2) Jurusan Teknik Mesin, Fakultas

Lebih terperinci

BAB II DASAR TEORI. Tabel 2.1 Daya tumbuh benih kedelai dengan kadar air dan temperatur yang berbeda

BAB II DASAR TEORI. Tabel 2.1 Daya tumbuh benih kedelai dengan kadar air dan temperatur yang berbeda BAB II DASAR TEORI 2.1 Benih Kedelai Penyimpanan benih dimaksudkan untuk mendapatkan benih berkualitas. Kualitas benih yang dapat mempengaruhi kualitas bibit yang dihubungkan dengan aspek penyimpanan adalah

Lebih terperinci

Maka persamaan energi,

Maka persamaan energi, II. DASAR TEORI 2. 1. Hukum termodinamika dan sistem terbuka Termodinamika teknik dikaitkan dengan hal-hal tentang perpindahan energi dalam zat kerja pada suatu sistem. Sistem merupakan susunan seperangkat

Lebih terperinci

ANALISA PERFORMANSI TURBIN UAP TIPE SINGLE SILINDER NON REHEAT DENGAN TEKANAN 86 BAR DAN KAPASITAS 65 MW DI PT PLN (PERSERO) SEKTOR BELAWAN

ANALISA PERFORMANSI TURBIN UAP TIPE SINGLE SILINDER NON REHEAT DENGAN TEKANAN 86 BAR DAN KAPASITAS 65 MW DI PT PLN (PERSERO) SEKTOR BELAWAN ANALISA PERFORMANSI TURBIN UAP TIPE SINGLE SILINDER NON REHEAT DENGAN TEKANAN 86 BAR DAN KAPASITAS 65 MW DI PT PLN (PERSERO) SEKTOR BELAWAN LAPORAN TUGAS AKHIR Diajukan Untuk Memenuhi Sebagian Persyaratan

Lebih terperinci

BAB III SISTEM REFRIGERASI DAN POMPA KALOR

BAB III SISTEM REFRIGERASI DAN POMPA KALOR BAB III SISTEM REFRIGERASI DAN POMPA KALOR Untuk mengenalkan aspek-aspek refrigerasi, pandanglah sebuah siklus refrigerasi uap Carnot. Siklus ini adalah kebalikan dari siklus daya uap Carnot. Gambar 1.

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 sistem Blast Chiller [PT.Wardscatering, 2012] BAB II DASAR TEORI

BAB II DASAR TEORI. Gambar 2.1 sistem Blast Chiller [PT.Wardscatering, 2012] BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Blast Chiller Blast Chiller adalah salah satu sistem refrigerasi yang berfungsi untuk mendinginkan suatu produk dengan cepat. Waktu pendinginan yang diperlukan untuk sistem Blast

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 15 BAB II TINJAUAN PUSTAKA Kompresor merupakan suatu komponen utama dalam sebuah instalasi turbin gas. Sistem utama sebuah instalasi turbin gas pembangkit tenaga listrik, terdiri dari empat komponen utama,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Proses Pengeringan Pengeringan adalah proses perpindahan panas dan uap air secara simultan yang memerlukan energi panas uantuk menguapkan kandungan air yang dipindahkan dari

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Proses Pabrik Kelapa Sawit Pabrik kelapa sawit adalah suatu pabrik industri yang berfungsi sebagai tempat pengolahan tandan buah segar (TBS) kelapa sawit menjadi minyak kelapa

Lebih terperinci

BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara

BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara Sistem pengkondisian udara adalah suatu proses mendinginkan atau memanaskan udara sehingga dapat mencapai temperatur dan kelembaban yang sesuai dengan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Siklus PLTU Proses produksi listrik di PLTU dalam pelaksanaannya melalui beberapa tahapan proses. Tahapan tersebut saling berhubungan satu sama lain menjadi siklus. Secara garis

Lebih terperinci

BAB III METODE PERHITUNGAN

BAB III METODE PERHITUNGAN BAB III METODE PERHITUNGAN 1.1. Spesifikasi High Pressure Heater Spesifikasi yang ada pada HPH 7 unit 1 PLTU Indramayu ditunjukkan oleh tabel 3.1 di bawah. Tabel 3.1 Spesifikasi HPH 7 PLTU Indramayu Tipe

Lebih terperinci

SESSION 3 GAS-TURBINE POWER PLANT

SESSION 3 GAS-TURBINE POWER PLANT SESSION 3 GAS-TURBINE POWER PLANT Outline 1. Dasar Teori Turbin Gas 2. Proses PLTG dan PLTGU 3. Klasifikasi Turbin Gas 4. Komponen PLTG 5. Kelebihan dan Kekurangan 1. Dasar Teori Turbin Gas Turbin gas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pompa merupakan peralatan mekanik yang digunakan untuk memindahkan fluida berupa zat cair dari suatu tempat ke tempat yang diinginkan. Pompa beroperasi membuat perbedaan tekanan

Lebih terperinci

TINJAUAN PUSTAKA. Df adalah driving force (kg/kg udara kering), Y s adalah kelembaban

TINJAUAN PUSTAKA. Df adalah driving force (kg/kg udara kering), Y s adalah kelembaban TINJAUAN PUSTAKA Mekanisme Pengeringan Udara panas dihembuskan pada permukaan bahan yang basah, panas akan berpindah ke permukaan bahan, dan panas laten penguapan akan menyebabkan kandungan air bahan teruapkan.

Lebih terperinci

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor BAB II DASAR TEORI 2.1 Pasteurisasi Pasteurisasi ialah proses pemanasan bahan makanan, biasanya berbentuk cairan dengan temperatur dan waktu tertentu dan kemudian langsung didinginkan secepatnya. Proses

Lebih terperinci

Pengoperasian pltu. Simple, Inspiring, Performing,

Pengoperasian pltu. Simple, Inspiring, Performing, Pengoperasian pltu PERSIAPAN COLD START PLTU 1. SISTEM AUXILIARY STEAM (UAP BANTU) FUNGSI : a. Menyuplai uap ke sistem bahan bakar minyak pada igniter untuk mengabutkan bahan bakar minyak (Atomizing sistem).

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang

BAB 1 PENDAHULUAN 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Kebutuhan manusia akan tenaga listrik terus meningkat. Tenaga listrik digunakan pada berbagai lini kehidupan seperti rumah tangga, perkantoran, industri baik home industry,

Lebih terperinci

BAB II DASAR TEORI. perpindahan kalor dari produk ke material tersebut.

BAB II DASAR TEORI. perpindahan kalor dari produk ke material tersebut. BAB II DASAR TEORI 2.1 Sistem Refrigerasi Refrigerasi adalah suatu proses penarikan kalor dari suatu ruang/benda ke ruang/benda yang lain untuk menurunkan temperaturnya. Kalor adalah salah satu bentuk

Lebih terperinci