BAB V Pengujian dan Analisis Mesin Turbojet Olympus

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB V Pengujian dan Analisis Mesin Turbojet Olympus"

Transkripsi

1 BAB V Pengujian dan Analisis Mesin Turbojet Olympus Pada bab ini akan dibahas mengenai pengujian serta analisis hasil pengujian yang dilakukan. Validasi dilakukan dengan membandingkan hasil pengujian terhadap data dari AMT Netherland serta referensi lain yang berkaitan dengan pengujian Olympus. 5.1 Pengujian Pengujian dilakukan pada tanggal 29 Januari 2008 di Dinas Penelitian dan Pengembangan TNI Angkatan udara (Dislitbang TNI AU). Prosedur yang digunakan dalam pengujian ini terdiri dari dua tahap yaitu: 1. Tahap pra-pengujian Pada tahap ini dilakukan instalasi alat ukur yang telah dibuat sebelumnya. Tempat pengujian dipastikan terlebih dahulu terbebas dari benda-benda kecil yang tidak diinginkan yang dapat masuk ke dalam mesin. Mesin menghadap ke dalam pipa inlet serta exhaust mesin diarahkan keluar ruangan. Untuk menjamin tingkat keselamatan, disiapkan sebuah pemadam api untuk berjaga-jaga jika terjadi ledakan dan kobaran api. Sebelum mesin dinyalakan semua sensor dipastikan telah terinstalasi dan dapat bekerja dengan baik. Turbojet yang telah siap diuji ditunjukkan pada gambar 5.1. Gambar 5.1 Turbojet yang telah siap diuji 56

2 2. Tahap pengujian Pengukuran tekanan atmosfer, temperatur atmosfer, dan kelembababan atmosfer dilakukan sebelum penyalaan. Hal ini penting dilakukan untuk menentukan kerapatan udara pada kondisi di tempat pengujian. Tekanan atmosfer, temperatur atmosfer, dan kelembababan atmosfer pada saat pengujian adalah sebagai berikut: Tekanan atmosfer = Pa Temperatur atmosfer = K Kelembaban atmosfer = 73 % Dalam tahap pengujian, pengambilan data dilakukan setiap kenaikan dengan rentang waktu untuk masing-masing data selama 15 detik. Untuk memudahkan pengambilan data, data keluaran signal conditioner direkam menggunakan kamera digital sehingga tidak memerlukan pencatatan secara manual. Setelah semua sensor dan operator siap, turbojet dinyalakan. Penyalaan awal menggunakan motor listrik dengan bahan bakar gas propana. Setelah mencapai kondisi idle pada 35000, bahan bakar propana diganti menjadi kerosene. Dari kondisi idle, putaran mesin akan dinaikkan secara kontinyu hingga mencapai putaran Prosedur penyalaan awal dapat dilihat pada gambar 5.2. Gambar 5.2 Prosedur penyalaan awal Pada pengujian ini, pengambilan data dilakukan dua kali. Kelompok data pertama diambil dari putaran idle ke putaran maksimum lalu dilanjutkan dengan pengambilan kelompok data kedua dari putaran maksimum ke putaran idle. Hal ini dilakukan untuk mendapatkan data yang seragam serta konsisten. Tabel 5.1 menunjukkan data hasil 57

3 pengujian yang dilakukan. Selanjutnya data ini akan dikonversi menjadi variabel yang diinginkan. EGT (deg C) Tabel 5.1 Parameter hasil pengukuran Voltase Signal conditioner (Volt) Voltase pressure transducer (Volt) masa bahan bakar (gram) t (detik) kiri kanan Pada putaran mesin dan , voltase masuk pressure transducer melebihi voltase maksimum pressure transducer, sehingga pressure transducer tidak mampu mengindera voltase. Untuk mengatasi hal tersebut, digunakan DPI untuk mengukur tekanan dinamik yang telah diindera tabung pitot. Melalui parameter-parameter yang telah diukur, nilai parameter yang diinginkan dicari menggunakan kurva kalibrasi yang telah dibuat sebelumnya. Tabel 5.2 menampilkan parameter-parameter yang telah dikalibrasi menjadi parameter gaya dorong, debit udara masuk kompresor, debit bahan bakar, dan EGT turbojet selama pengujian. 58

4 Tabel 5.2 Hasil pengujian setelah kalibrasi EGT GAYA DORONG (Kg) Debit udara Debit bahan (deg C) Kiri Kanan Total masuk (kg/det) bakar (gr/det) Analisis Hasil Pengujian Gambar 5.3,5.4,5.5, dan 5.6 menampilkan hasil pengukuran yang telah dilakukan. Dari hasil tersebut akan dilakukan analisis kinerja turbojet. Vs Fuel flow Fuel flow pengujian (gr/det) naik turun Gambar 5.3 Grafik Debit bahan bakar Vs putaran mesin. 59

5 Kurva Vs Gaya Gaya dorong total (Pengujian) (Kg) Naik turun (Pengujian) Gambar 5.4 Grafik gaya dorong Vs putaran mesin. Vs EGT EGT (oc) naik Turun Gambar 5.5 Grafik EGT Vs putaran mesin. 60

6 Grafik Vs debit udara masuk Debit udara (pengujian) (ger/det) naik turun Gambar 5.6 Grafik Debit udara Vs putaran mesin. Dari grafik debit bahan bakar vs putaran mesin (gambar 5.3), dapat dilihat bahwa semakin rendah putaran mesin, bahan bakar yang digunakan semakin sedikit. Pada putaran rendah, udara yang masuk ke kompresor sedikit (gambar 5.6), sehingga massa bahan bakar yang digunakan juga sedikit. Dengan demikian gaya dorong yang dihasilkan akan semakin kecil (gambar 5.4). Dari grafik EGT Vs (gambar 5.5), terlihat bahwa pada kondisi idle, EGT turbojet tinggi. Dengan naiknya putaran mesin, EGT cenderung stabil kemudian naik drastis pada putaran mesin mulai Tinggi nya EGT pada kondisi idle ini disebabkan oleh perbandingan bahan bakar dan udara yang besar. Bahan bakar tidak terbakar sempurna di dalam ruang bakar sehingga terjadi kenaikan temperatur di nozzle. Pada saat pengujian, terlihat sedikit semburan bahan bakar cair keluar nosel. Hal ini mengindikasikan bahwa tidak semua bahan bakar tercampur sempurna dan terbakar di ruang bakar. Pada putaran rendah, terdapat campuran bahan bakar dan udara yang terbakar di luar ruang bakar, akibatnya api menyembur keluar ruang bakar hingga mencapai turbin. Pada putaran rendah, efiseinsi turbin menjadi rendah karena turbin memiliki kecepatan putar minimum agar mencapai kinerja yang diharapkan. Adanya api yang masuk hingga turbin ini membuat kinerja mesin pada putaran rendah menjadi tidak efisien. Pada grafik EGT Vs ini (gambar 5.5) terjadi masalah hysterisis, yaitu data 61

7 pada saat naik tidak sama dengan data pada saat turun. Pada saat pembandingan dengan data dari AMT, kedua data tersebut akan ditampilkan. Gaya dorong merupakan parameter paling penting dalam pengujian turbojet. Pada grafik gaya dorong Vs (gambar 5.4), terlihat bahwa gaya dorong turbojet meningkat dengan naiknya putaran mesin. Gaya dorong ini sangat dipengaruhi oleh parameter-parameter lain pada saat operasional. Pada pengujian ini, parameter yang diatur adalah debit bahan bakar masuk ke turbojet. Debit ini diatur menggunakan pompa yang tersambung melalui solenoida dan dapat diatur langsung melalui remote control Normalisasi parameter hasil pengujian Dari gambar 5.3, 5.4, 5.5 dan 5.6 dapat dilihat bahwa kecenderungan masingmasing parameter telah sesuai dengan teori yang ada. Untuk validasi, dilakukan perbandingan dengan data-data yang telah diberikan oleh AMT, perhitungan teoritik ataupun referensi lain yang membahas kinerja turbojet ini. Data - data yang disediakan oleh AMT adalah data-data variabel dalam temperatur dan tekanan udara standar ( Pa dan 288 K), sehingga perlu dilakukan normalisasi terhadap hasil pengujian. Persamaan-persamaan yang digunakan adalah sebagai berikut [13]: ma normalized Thrust normalized normalized ma*101325* Pamb* 288 Tamb = (5.1) thrust * Pamb = (5.2) rpm* 288 = (5. 3) Tamb. mf normalized mf *101325* 288 = (5.4) Pamb* Tamb 62

8 Hasil perhitungan diberikan pada tabel 5.3. Hasil tersebut selanjutnya dapat dibandingkan dengan data data dari AMT. Tabel 5.3 Hasil normalisasi parameter hasil pengujian Fuel flow (gr/det) Thrust (Kg) EGT (Deg C) Mass flow Validasi hasil pengujian Validasi dilakukan dengan membandingkan data hasil pengujian dengan referensi dari data AMT dan tesis master John Ebaid dari Cranfield University [13] serta perhitungan termodinamika. Validasi yang dilakukan adalah sebagai berikut: 1. Gaya dorong akan di validasi menggunakan data data dari AMT serta menggunakan perhitungan termodinamika yang telah dijelaskan pada bab 2. Perhitungan termodinamika ini dilakukan dengan bantuan perangkat lunak MATLAB. 2. Debit bahan bakar dan EGT akan dibandingkan dengan data data dari AMT. 3. Debit udara masuk dibandingkan dengan pengujian serupa yang dilakukan John Ebaid dari Cranfield university [13]. Namun pada tesis tersebut turbo jet yang digunakan adalah Olympus versi 190 N sehingga yang dibandingkan hanya kecenderungan grafik saja. 63

9 5.3.1 Validasi gaya dorong, debit bahan bakar dan EGT Sebelum validasi dilakukan, data hasil perhitungan terlebih dahulu di interpolasi untuk mendapatkan parameter yang sama. Parameter yang di interpolasi adalah putaran mesin, sehingga parameter ini akan sama dengan data dari AMT. Pada validasi ini juga dilakukan extrapolasi gaya dorong hasil pengujian untuk melihat gaya dorong yang terjadi pada maksimum menurut AMT. Hasil extrapolasi dan interpolasi hasil pengujian ditunjukkan pada tabel 5.6 (halaman 66). Data yang diberikan oleh AMT masih dalam bentuk grafik, sehingga untuk mendapatkan data berupa angka, dilakukan plot terhadap grafik tersebut. Gambar 5.7, 5.8, dan 5.9 menunjukkan grafik data Olympus yang diberikan oleh AMT. Gambar 5.7 Debit bahan bakar vs putaran mesin (data AMT) 64

10 Gambar 5.8 gaya dorong vs putaran mesin (data AMT) Gambar 5.9 EGT vs putaran mesin (data AMT) Dari gambar 5.7, 5.8, dan 5.9 diperoleh data-data yang digunakan untuk memvalidasi hasil pengujian. Data yang telah dikuantifikasi disajikan pada tabel 5.4. Data inilah yang dibandingkan dengan data pengujian. Perhitungan teoritik dilakukan dengan bantuan perangkat lunak MATLAB. Pada perhitungan ini, hanya dihitung gaya dorong yang terjadi pada putaran mesin maksimum 65

11 yaitu sebesar Efisiensi kompresor dan turbin di ruang bakar divariasikan dalam 3 nilai, yaitu 0.7, 0.75 dan 0.8 [13][5]. sedangkan kerugian tekanan di ruang bakar, efisiensi nosel, efisiensi mekanik turbin-kompresor diasumsikan konstan. Hasil lengkapnya ditunjukkan pada tabel 5.5. Tabel 5.4 Data-data dari AMT Fuel flow (gr/det) Thrust (Kg) EGT (Deg C) Mass flow Tabel 5.5 Hasil perhitungan secara teoritik η c η t η n η m P b Thrust Tabel 5.6 Hasil interpolasi data hasil pengujian Fuel flow (gr/det) Thrust (Kg) EGT (Deg C) Mass flow (kg/det)

12 Perbandingan hasil pengujian dibuat pada gambar 5.10, 5.11, dan Grafik Vs Debit bahan bakar Debit bahan bakar (gr/det) Pengujian AMT Gambar 5.10 Grafik debit bahan bakar Vs putaran mesin (hasil perbandingan) Grafik Vs Gaya dorong 30 Gaya dorong (Kg) Pengujian AMT Teoritik_0,7 Teoritik_0,75 Teoritik_0,8 Gambar 5.11 Grafik gaya dorong Vs putaran mesin (hasil perbandingan) 67

13 Kurva Vs EGT EGT (deg C) amt pengujian naik pengujian turun Gambar 5.12 Grafik EGT Vs putaran mesin (hasil perbandingan) pada tabel 5.7, 5.8 dan 5.9. Perbedaan kuantitas antara hasil pengujian dengan data AMT ditunjukkan Tabel 5.7 Perbandingan hasil pengujian debit bahan bakar dan data AMT Fuel flow (gr/det) Pengujian AMT Delta Persentase (%) Tabel 5.8 Perbandingan hasil pengujian EGT dan data AMT EGT (Deg C) Pengujian AMT Delta Persentase (%)

14 Tabel 5.8 Perbandingan hasil pengujian EGT dan data AMT (lanjutan) EGT (Deg C) Pengujian AMT Delta Persentase (%) Tabel 5.9 Perbandingan hasil pengujian gaya dorong dan data AMT Thrust (Kg) Pengujian AMT Delta Persentase (%) Dari tabel tabel diatas dapat disimpulkan: 1. Tabel perbandingan gaya dorong terhadap menunjukkan bahwa antara hasil pengujian yang dilakukan dengan data dari AMT tidak banyak terjadi perbedaan. Perbedaan sebesar 1,18 kg maksimum terjadi pada Perbedaan dengan perhitungan secara teoritis terlihat bila efisiensi kompresor dan turbin 0.7 dan 0.8 (gambar 5.11). Dari hasil ini dapat disimpulkan bahwa efisiensi kompresor dan turbin turbojet Olympus ini berkisar Dari tabel debit bahan bakar terhadap (tabel 5.5), perbedaan terbesar terjadi pada sebesar 0.85 gr/detik. Hal ini kemungkinan disebabkan oleh tidak sempurnanya pembakaran di dalam ruang bakar saat pengujian di putaran mesin rendah. Akibatnya terjadi pembakaran pada turbin dan nosel yang mengurangi efisiensi konversi energi bahan bakar. Hal ini menyebabkan dibutuhkannya bahan bakar lebih banyak untuk putaran mesin yang sama. 3. Dari tabel EGT terhadap, perbedaan terbesar terjadi pada putaran mesin atau pada kondisi idle. Seperti yang sudah dijelaskan sebelumnya, pada putaran 69

15 rendah, pada saat pengujian, terjadi pembakaran tidak sempurna yang menyebabkan EGT tinggi. Hal ini menyebabkan perbedaan besar pada EGT turbojet. Pada grafik EGT vs (gambar 5.12), dapat dilihat bahwa EGT saat naik lebih kecil daripada EGT saat turun, hal ini disebabkan karena pada saat turun, EGT masih dipengaruhi oleh temperatur putaran sebelumnya yang lebih tinggi. Ini disebabkan karena waktu pengambilan data untuk masing masing putaran mesin sangat singkat Validasi debit udara masuk kompresor. AMT tidak memberikan data lengkap mengenai debit udara masuk kompresor. Data yang diberikan adalah debit udara masuk kompresor pada maksimum. Pembandingan dilakukan terhadap tesis master John Ebiad dari Cranfield University [13]. Pada tesis tersebut, Olympus yang digunakan adalah versi awal dimana gaya dorong maksimumnya hanya mencapai 19 kg. Maka untuk pembandingan debit udara, hanya dilihat kecenderungan tiap kenaikan putaran mesin. Hasil pengujian yang dilakukan John Ebiad disusun pada tabel Perbandingan antara hasil pengujian dan hasil yang didapatkan oleh John Ebiad ditampilkan pada gambar Tabel 5.10 Hasil pengujian debit udara olympus 19 kg [13] Mass flow ,

16 Grafik Vs debit udara Debit udara (gr/det) Pengujian Olympus 190 N cranfield AMT Gambar 5.13 Perbandingan hasil pengujian debit udara kompresor Dari hasil yang didapat, laju aliran udara masuk kompresor yang terjadi pada putaran rendah memiliki kecenderungan grafik yang sama, namun dengan semakin meningkatnya putaran mesin, perbedaan yang terjadi semakin besar. Hal ini kemungkinan disebabkan oleh ketidaktepatan pemodelan pada simulasi menggunakan perangkat lunak. Hal ini juga mungkin karena pipa yang digunakan saat pengujian memiliki diameter yang tidak seragam dalam arah aksial, sehingga timbul perbedaan pada debit udara yang masuk kompresor antara hasil simulasi dengan hasil pengujian. Hal lain yang menyebabkan terjadinya perbedaan antara data dari AMT dan hasil pengujian adalah, adanya motor starter, kabel starter dan saluran bahan bakar di dalam pipa inlet. Adanya benda benda tersebut tidak dimodelkan dalam simulasi sehingga timbul perbedaan antara hasil simulasi dengan hasil pengujian. 71

Institut Teknologi Bandung

Institut Teknologi Bandung PEMBUATAN SISTEM PENGUJIAN DAN PENGUJIAN SMALL TURBOJET ENGINE OLYMPUS TUGAS AKHIR Diajukan sebagai salah satu syarat untuk memperoleh Gelar Sarjana Teknik Strata Satu Program Studi Teknik Penerbangan

Lebih terperinci

BAB IV Pembuatan dan Kalibrasi Alat Ukur Prestasi Turbojet

BAB IV Pembuatan dan Kalibrasi Alat Ukur Prestasi Turbojet BAB IV Pembuatan dan Kalibrasi Alat Ukur Prestasi Turbojet Pembuatan alat ukur dilakukan di laboratorium Teknik Penerbangan ITB. Proses pemesinan dilakukan menggunakan mesin bubut, mesin Frais, gerinda

Lebih terperinci

BAB III Perancangan Alat Ukur Prestasi Turbo Jet

BAB III Perancangan Alat Ukur Prestasi Turbo Jet BAB III Perancangan Alat Ukur Prestasi Turbo Jet Seperti telah dijelaskan pada bab 2, mengukur prestasi turbo jet bukanlah hal yang mudah dilakukan. Untuk mendapatkan hasil pengukuran yang valid diperlukan

Lebih terperinci

BAB II Dasar Teori. Gambar 2. 1 Turbin Gas [12]

BAB II Dasar Teori. Gambar 2. 1 Turbin Gas [12] BAB II Dasar Teori 2.1 Turbin Gas Turbin gas adalah motor bakar yang terdiri dari tiga komponen utama, yaitu: kompresor, ruang bakar, dan turbin (gambar 2.1). Sistem ini dapat berfungsi sebagai pembangkit

Lebih terperinci

Bab II Ruang Bakar. Bab II Ruang Bakar

Bab II Ruang Bakar. Bab II Ruang Bakar Bab II Ruang Bakar Sebelum berangkat menuju pelaksanaan eksperimen dalam laboratorium, perlu dilakukan sejumlah persiapan pra-eksperimen yang secara langsung maupun tidak langsung dapat dijadikan pedoman

Lebih terperinci

Gambar 11 Sistem kalibrasi dengan satu sensor.

Gambar 11 Sistem kalibrasi dengan satu sensor. 7 Gambar Sistem kalibrasi dengan satu sensor. Besarnya debit aliran diukur dengan menggunakan wadah ukur. Wadah ukur tersebut di tempatkan pada tempat keluarnya aliran yang kemudian diukur volumenya terhadap

Lebih terperinci

BAB 3 PERALATAN DAN PROSEDUR PENELITIAN

BAB 3 PERALATAN DAN PROSEDUR PENELITIAN BAB 3 PERALATAN DAN PROSEDUR PENELITIAN Penelitian mengenai nyala difusi pada medan aliran berlawanan ini merupakan kelanjutan dari penelitian sebelumnya yang telah meneliti mengenai limit stabilitas nyala

Lebih terperinci

Assalamu alaikum Warahmatullahi Wabarakatuh

Assalamu alaikum Warahmatullahi Wabarakatuh Assalamu alaikum Warahmatullahi Wabarakatuh Hai teman-teman penerbangan, pada halaman ini saya akan berbagi pengetahuan mengenai engine atau mesin yang digunakan pada pesawat terbang, yaitu CFM56 5A. Kita

Lebih terperinci

BAB III PERALATAN DAN PROSEDUR PENGUJIAN

BAB III PERALATAN DAN PROSEDUR PENGUJIAN BAB III PERALATAN DAN PROSEDUR PENGUJIAN 3.1 PERANCANGAN ALAT PENGUJIAN Desain yang digunakan pada penelitian ini berupa alat sederhana. Alat yang di desain untuk mensirkulasikan fluida dari tanki penampungan

Lebih terperinci

Aku berbakti pada Bangsaku,,,,karena Negaraku berjasa padaku. Pengertian Turbocharger

Aku berbakti pada Bangsaku,,,,karena Negaraku berjasa padaku. Pengertian Turbocharger Pengertian Turbocharger Turbocharger merupakan sebuah peralatan, untuk menambah jumlah udara yang masuk kedalam slinder dengan memanfaatkan energi gas buang. Turbocharger merupakan perlatan untuk mengubah

Lebih terperinci

PENGARUH BYPASS RATIO OVERALL PRESSURE RATIO, DAN TURBINE INLET TEMPERATURE TERHADAP SFC PADA GAS-TURBINE ENGINE

PENGARUH BYPASS RATIO OVERALL PRESSURE RATIO, DAN TURBINE INLET TEMPERATURE TERHADAP SFC PADA GAS-TURBINE ENGINE PENGARUH BYPASS RATIO OVERALL PRESSURE RATIO, DAN TURBINE INLET TEMPERATURE TERHADAP SFC PADA GAS-TURBINE ENGINE Muhamad Jalu Purnomo Jurusan Teknik Penerbangan Sekolah Tinggi Teknologi Adisutjipto Jalan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Tempat penelitian Penelitian dilakukan di Laboratorium Fenomena Dasar Mesin (FDM) Jurusan Teknik Mesin Fakultas Teknik Universitas Muhammadiyah Yogyakarta. 3.2.Alat penelitian

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. METODE PENELITIAN Penelitian dilakukan untuk mengetahui fenomena yang terjadi pada mesin Otto dengan penggunaan bahan bakar yang ditambahkan aditif dengan variasi komposisi

Lebih terperinci

BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER

BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER 4.1 Perhitungan Blower Untuk mengetahui jenis blower yang digunakan dapat dihitung pada penjelasan dibawah ini : Parameter yang diketahui : Q = Kapasitas

Lebih terperinci

BAB 3 METODOLOGI PENGUJIAN

BAB 3 METODOLOGI PENGUJIAN BAB 3 METODOLOGI PENGUJIAN Setiap melakukan penelitian dan pengujian harus melalui beberapa tahapan-tahapan yang ditujukan agar hasil penelitian dan pengujian tersebut sesuai dengan standar yang ada. Caranya

Lebih terperinci

ANALISIS PERFORMA ENGINE TURBOFAN PESAWAT BOEING

ANALISIS PERFORMA ENGINE TURBOFAN PESAWAT BOEING ANALISIS PERFORMA ENGINE TURBOFAN PESAWAT BOEING 737-300 Sri Mulyani Jurusan Teknik PenerbanganSTT Adisutjipto Yogyakarta Jl. Janti Blok R- Lanud Adi-Yogyakarta Srimulyani042@gmail.com ABSTRAK Jenis mesin

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 PERALATAN PENELITIAN 3.1.1 Peralatan Utama Peralatan utama dalam penelitian ini terdiri dari : 1. Bunsen Burner Flame Propagation and Stability Unit P.A Hilton LTD C551. Dilengkapi

Lebih terperinci

PROSES ADIABATIK PADA REAKSI PEMBAKARAN MOTOR ROKET PROPELAN

PROSES ADIABATIK PADA REAKSI PEMBAKARAN MOTOR ROKET PROPELAN PROSES ADIABATIK PADA REAKSI PEMBAKARAN MOTOR ROKET PROPELAN DADANG SUPRIATMAN STT - JAWA BARAT 2013 DAFTAR ISI JUDUL 1 DAFTAR ISI 2 DAFTAR GAMBAR 3 BAB I PENDAHULUAN 4 1.1 Latar Belakang 4 1.2 Rumusan

Lebih terperinci

Bab IV Analisis dan Pengujian

Bab IV Analisis dan Pengujian Bab IV Analisis dan Pengujian 4.1 Analisis Simulasi Aliran pada Profil Airfoil Simulasi aliran pada profil airfoil dimaskudkan untuk mencari nilai rasio lift/drag terhadap sudut pitch. Simulasi ini tidak

Lebih terperinci

BAB IV PEMODELAN POMPA DAN ANALISIS

BAB IV PEMODELAN POMPA DAN ANALISIS BAB IV PEMODELAN POMPA DAN ANALISIS Berdasarkan pemodelan aliran, telah diketahui bahwa penutupan LCV sebesar 3% mengakibatkan perubahan kondisi aliran. Kondisi yang paling penting untuk dicermati adalah

Lebih terperinci

BAB I PENDAHULUAN. Turbo charger adalah salah satu komponen tambahan pada motor

BAB I PENDAHULUAN. Turbo charger adalah salah satu komponen tambahan pada motor 1 BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Turbo charger adalah salah satu komponen tambahan pada motor pembakaran dalam yang berfungsi untuk meningkatkan mass flow yang masuk kedalam engine sehingga

Lebih terperinci

Bab VI Hasil dan Analisis

Bab VI Hasil dan Analisis Bab VI Hasil dan Analisis Dalam bab ini akan disampaikan data-data hasil eksperimen yang telah dilakukan di dalam laboratorium termodinamika PRI ITB, dan juga hasil pengolahan data-data tersebut yang diberikan

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Indonesia

BAB 1 PENDAHULUAN. Universitas Indonesia BAB 1 PENDAHULUAN 1.1 Latar Belakang Berbagai langkah untuk memenuhi kebutuhan energi menjadi topik penting seiring dengan semakin berkurangnya sumber energi fosil yang ada. Sistem energi yang ada sekarang

Lebih terperinci

V. HASIL DAN PEMBAHASAN

V. HASIL DAN PEMBAHASAN V. HASIL DAN PEMBAHASAN Semua mekanisme yang telah berhasil dirancang kemudian dirangkai menjadi satu dengan sistem kontrol. Sistem kontrol yang digunakan berupa sistem kontrol loop tertutup yang menjadikan

Lebih terperinci

ANALISIS SUDU KOMPRESOR AKSIAL UNTUK SISTEM TURBIN HELIUM RGTT200K ABSTRAK ABSTRACT

ANALISIS SUDU KOMPRESOR AKSIAL UNTUK SISTEM TURBIN HELIUM RGTT200K ABSTRAK ABSTRACT ANALISIS SUDU KOMPRESOR AKSIAL UNTUK SISTEM TURBIN HELIUM RGTT200K Sri Sudadiyo Pusat Teknologi Reaktor dan Keselamatan Nuklir ABSTRAK ANALISIS SUDU KOMPRESOR AKSIAL UNTUK SISTEM TURBIN HELIUM RGTT200K.

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 PERALATAN PENELITIAN 3.1.1 Bunsen Burner Alat utama yang digunakan pada penelitian ini yaitu Bunsen burner Flame Propagation and Stability Unit P.A. Hilton Ltd C551, yang

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Konversi dari energi kimia menjadi energi mekanik saat ini sangat luas digunakan. Salah satunya adalah melalui proses pembakaran. Proses pembakaran ini baik berupa

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN A. Hasil Setelah melakukan pengujian maka diperoleh beberapa data, diantaranya adalah data pengujian penghembusan udara bertekanan, pengujian kekerasan Micro Vickers dan pengujian

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN 3.1 Peralatan Penelitian Alat percobaan yang digunakan pada percobaan ini bertujuan untuk mengukur temperatur ring pada saat terjadi fenomena flame lift-up maupun blow off, yaitu

Lebih terperinci

BAB III METODOLOGI PENGUJIAN

BAB III METODOLOGI PENGUJIAN BAB III METODOLOGI PENGUJIAN Percobaan yang dilakukan adalah percobaan dengan kondisi bukan gas penuh dan pengeraman dilakukan bertahap sehingga menyebabkan putaran mesin menjadi berkurang, sehingga nilai

Lebih terperinci

BAB 4 HASIL & ANALISIS

BAB 4 HASIL & ANALISIS BAB 4 HASIL & ANALISIS 4.1 PENGUJIAN KARAKTERISTIK WATER MIST UNTUK PEMADAMAN DARI SISI SAMPING BAWAH (CO-FLOW) Untuk mengetahui kemampuan pemadaman api menggunakan sistem water mist terlebih dahulu perlu

Lebih terperinci

Analisa Pengaruh Variasi Volume Tabung Udara Dan Variasi Beban Katup Limbah Terhadap Performa Pompa Hidram

Analisa Pengaruh Variasi Volume Tabung Udara Dan Variasi Beban Katup Limbah Terhadap Performa Pompa Hidram Analisa Pengaruh Variasi Volume Tabung Udara Dan Variasi Beban Katup Limbah Terhadap Performa Pompa Hidram Andrea Sebastian Ginting 1, M. Syahril Gultom 2 1,2 Departemen Teknik Mesin, Fakultas Teknik,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Turbin gas adalah suatu unit turbin dengan menggunakan gas sebagai fluida kerjanya. Sebenarnya turbin gas merupakan komponen dari suatu sistem pembangkit. Sistem turbin gas paling

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN 3.1 PERALATAN PENELITIAN 3.1.1 Bunsen Burner Alat yang digunakan pada penelitian ini yaitu Bunsen burner Flame Propagation and Stability Unit P.A. Hilton Ltd C551, yang dilengkapi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1.1 Turbin Air Turbin air adalah turbin dengan media kerja air. Secara umum, turbin adalah alat mekanik yang terdiri dari poros dan sudu-sudu. Sudu tetap atau stationary blade, tidak

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial fluida, atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

Deni Rafli 1, Mulfi Hazwi 2. Universitas Sumatera Utara (USU) Jl. Almamater, Kampus USU Medan INDONESIA

Deni Rafli 1, Mulfi Hazwi 2. Universitas Sumatera Utara (USU) Jl. Almamater, Kampus USU Medan INDONESIA SIMULASI NUMERIK PENGGUNAAN POMPA SEBAGAI TURBIN PADA PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO (PLTMH) DENGAN HEAD 9,29 M DAN 5,18 M MENGGUNAKAN PERANGKAT LUNAK CFD PADA PIPA BERDIAMETER 10,16 CM Deni Rafli

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Hasil Perancangan 4.1.1 Gambar Rakitan (Assembly) Dari perancangan yang dilakukan dengan menggunakan software Autodesk Inventor 2016, didapat sebuah prototipe alat praktikum

Lebih terperinci

BAB III METODE PENGUJIAN DAN PEMBAHASAN PERHITUNGAN SERTA ANALISA

BAB III METODE PENGUJIAN DAN PEMBAHASAN PERHITUNGAN SERTA ANALISA BAB III METODE PENGUJIAN DAN PEMBAHASAN PERHITUNGAN SERTA ANALISA 3.1 Metode Pengujian 3.1.1 Pengujian Dual Fuel Proses pembakaran di dalam ruang silinder pada motor diesel menggunakan sistem injeksi langsung.

Lebih terperinci

PERBANDINGAN UNJUK KERJA GENSET 4-LANGKAH MENGGUNAKAN BAHAN BAKAR BENSIN DAN LPG DENGAN PENAMBAHAN MIXER VENTURI

PERBANDINGAN UNJUK KERJA GENSET 4-LANGKAH MENGGUNAKAN BAHAN BAKAR BENSIN DAN LPG DENGAN PENAMBAHAN MIXER VENTURI TUGAS AKHIR KONVERSI ENERGI PERBANDINGAN UNJUK KERJA GENSET 4-LANGKAH MENGGUNAKAN BAHAN BAKAR BENSIN DAN LPG DENGAN PENAMBAHAN MIXER VENTURI Pembimbing : Ir. Joko Sarsetyanto, MT PROGRAM STUDI DIPLOMA

Lebih terperinci

yang digunakan adalah sebagai berikut. Perbandingan kompresi : 9,5 : 1 : 12 V / 5 Ah Kapasitas tangki bahan bakar : 4,3 liter Tahun Pembuatan : 2004

yang digunakan adalah sebagai berikut. Perbandingan kompresi : 9,5 : 1 : 12 V / 5 Ah Kapasitas tangki bahan bakar : 4,3 liter Tahun Pembuatan : 2004 24 III. METODOLOGI PENELITIAN A. Alat dan Bahan Pengujian. Spesifikasi motor bensin 4-langkah 0 cc Dalam penelitian ini, mesin uji yang digunakan adalah motor bensin 4- langkah 0 cc, dengan merk Suzuki

Lebih terperinci

SIMULASI GERAK WAHANA PELUNCUR POLYOT

SIMULASI GERAK WAHANA PELUNCUR POLYOT BAB SIMULASI GERAK WAHANA PELUNCUR POLYOT. Pendahuluan Simulasi gerak wahana peluncur Polyot dilakukan dengan menggunakan perangkat lunak Simulink Matlab 7.. Dalam simulasi gerak ini dimodelkan gerak roket

Lebih terperinci

BAB III METODE PENELITIAN. Bahan yang digunakan pada penelitian ini adalah :

BAB III METODE PENELITIAN. Bahan yang digunakan pada penelitian ini adalah : BAB III METODE PENELITIAN 3.1. Bahan dan Alat 3.1.1. Bahan Penelitian Bahan yang digunakan pada penelitian ini adalah : Air 3.1.2. Alat Penelitian Alat yang digunakan dalam penelitian ini dapat dilihat

Lebih terperinci

III. METODOLOGI PENELITIAN. uji yang digunakan adalah sebagai berikut.

III. METODOLOGI PENELITIAN. uji yang digunakan adalah sebagai berikut. III. METODOLOGI PENELITIAN 3. Alat dan Bahan Pengujian. Motor bensin 4-langkah 50 cc Dalam penelitian ini, mesin uji yang digunakan adalah motor bensin 4- langkah 50 cc, dengan merk Yamaha Vixion. Adapun

Lebih terperinci

Standard Operating Procedure. Penyalaan Turbin Jetcat P160

Standard Operating Procedure. Penyalaan Turbin Jetcat P160 Halaman : 1 Tahapan Persiapan adalah sebagai berikut : 1. Letakan turbin pada tesbed (ikuti SOP tesbed) 2. Lakukan Ceklist komponen atau perlengkapan untuk penyalaan turbin jetcat dengan mengisi form 1.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Pengertian Turbin Gas Turbin gas adalah turbin dengan gas hasil pembakaran bahan bakar di ruang bakarnya dengan temperatur tinggi sebagai fluida kerjanya. Sebenarnya turbin gas

Lebih terperinci

Panduan Praktikum Mesin-Mesin Fluida 2012

Panduan Praktikum Mesin-Mesin Fluida 2012 PERCOBAAN TURBIN PELTON A. TUJUAN PERCOBAAN Tujuan dari pelaksanaan percobaan ini adalah untuk mempelajari prinsip kerja dan karakteristik performance turbin air (pelton). Karakteristik performance turbin

Lebih terperinci

BAB II LANDASAN TEORI. stage nozzle atau nozzle tingkat pertama atau suhu pengapian turbin. Apabila suhu

BAB II LANDASAN TEORI. stage nozzle atau nozzle tingkat pertama atau suhu pengapian turbin. Apabila suhu BAB II LANDASAN TEORI 2.1 Kendali suhu Pembatasan suhu sebenarnya adalah pada turbin inlet yang terdapat pada first stage nozzle atau nozzle tingkat pertama atau suhu pengapian turbin. Apabila suhu pengapian

Lebih terperinci

PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM

PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM Franciscus Manuel Sitompul 1,Mulfi Hazwi 2 Email:manuel_fransiskus@yahoo.co.id 1,2, Departemen

Lebih terperinci

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian METODOLOGI PENELITIAN Waktu dan Tempat Penelitian Penelitian ini telah dilaksanakan dari bulan Januari hingga November 2011, yang bertempat di Laboratorium Sumber Daya Air, Departemen Teknik Sipil dan

Lebih terperinci

BAB III DESKRIPSI ALAT DAN PROSEDUR PENGUJIAN

BAB III DESKRIPSI ALAT DAN PROSEDUR PENGUJIAN BAB III DESKRIPSI ALAT DAN PROSEDUR PENGUJIAN 3.1 RANCANGAN ALAT PENGUJIAN Pada penelitian ini alat uji yang akan dibuat terlebih dahulu di desain sesuai dengan dasar teori, pengalaman dosen pembimbing

Lebih terperinci

TUGAS AKHIR ANALISA MINIMALISASI WATER HAMMER DENGAN VARIASI PEMILIHAN GAS ACCUMULATOR PADA SISTEM PERPIPAAN DI PT.

TUGAS AKHIR ANALISA MINIMALISASI WATER HAMMER DENGAN VARIASI PEMILIHAN GAS ACCUMULATOR PADA SISTEM PERPIPAAN DI PT. TUGAS AKHIR ANALISA MINIMALISASI WATER HAMMER DENGAN VARIASI PEMILIHAN GAS ACCUMULATOR PADA SISTEM PERPIPAAN DI PT. KALTIM PRIMA COAL Chairul Anwar 2107100021 Dosen Pembimbing : NUR IKHWAN, ST., M. Eng.

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Kalor dapat didefinisikan sebagai energi yang dimiliki oleh suatu zat. Secara umum untuk mendeteksi adanya kalor dalam suatu zat salah satunya dengan melakukan pengujian

Lebih terperinci

PERBANDINGAN KINERJA POMPA REKONDISI TIPE VERTIKAL API 610 OH-4 MODEL 3900L DI PT.Y DENGAN CAE

PERBANDINGAN KINERJA POMPA REKONDISI TIPE VERTIKAL API 610 OH-4 MODEL 3900L DI PT.Y DENGAN CAE Volume 1 No.1 Juli 2016 Website : www.journal.unsika.ac.id Email : barometer_ftusk@staff.unsika.ac.id PERBANDINGAN KINERJA POMPA REKONDISI TIPE VERTIKAL API 610 OH-4 MODEL 3900L DI PT.Y DENGAN CAE Fatkur

Lebih terperinci

BAB IV HASIL DAN ANALISA. 4.1 Perhitungan konsumsi bahan bakar dengan bensin murni

BAB IV HASIL DAN ANALISA. 4.1 Perhitungan konsumsi bahan bakar dengan bensin murni BAB IV HASIL DAN ANALISA 4.1 Perhitungan konsumsi bahan bakar dengan bensin murni Percobaan pertama dilakukan pada motor bakar dengan bensin murni, untuk mengetahui seberapa besar laju konsumsi BBM yang

Lebih terperinci

MODIFIKASI MESIN MOTOR BENSIN 4 TAK TIPE 5K 1486 cc MENJADI BAHAN BAKAR LPG. Oleh : Hari Budianto

MODIFIKASI MESIN MOTOR BENSIN 4 TAK TIPE 5K 1486 cc MENJADI BAHAN BAKAR LPG. Oleh : Hari Budianto MODIFIKASI MESIN MOTOR BENSIN 4 TAK TIPE 5K 1486 cc MENJADI BAHAN BAKAR LPG Oleh : Hari Budianto 2105 030 057 Latar Belakang Kebutuhan manusia akan energi setiap tahun terus bertambah, selaras dengan perkembangan

Lebih terperinci

IV. HASIL DAN PEMBAHASAN. Setelah dilakukan pengujian, maka didapatkan data yang merupakan parameterparameter

IV. HASIL DAN PEMBAHASAN. Setelah dilakukan pengujian, maka didapatkan data yang merupakan parameterparameter 48 IV. HASIL DAN PEMBAHASAN A. Hasil Setelah dilakukan pengujian, maka didapatkan data yang merupakan parameterparameter dari daya engkol dan laju pemakaian bahan bakar spesifik yang kemudian digunakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 15 BAB II TINJAUAN PUSTAKA Kompresor merupakan suatu komponen utama dalam sebuah instalasi turbin gas. Sistem utama sebuah instalasi turbin gas pembangkit tenaga listrik, terdiri dari empat komponen utama,

Lebih terperinci

Uji Fungsi Dan Karakterisasi Pompa Roda Gigi

Uji Fungsi Dan Karakterisasi Pompa Roda Gigi Uji Fungsi Dan Karakterisasi Pompa Roda Gigi Wismanto Setyadi, Asmawi, Masyhudi, Basori Program Studi Teknik Mesin, Fakultas Teknik dan Sains, Universitas Nasional Jakarta Korespondensi: tmesin@yahoo.com

Lebih terperinci

Unjuk Kerja Motor Bakar Bensin Dengan Turbojet Accelerator

Unjuk Kerja Motor Bakar Bensin Dengan Turbojet Accelerator Unjuk Kerja Motor Bakar Bensin Dengan Turbojet Accelerator Ekadewi Anggraini Handoyo Dosen Fakultas Teknologi Industri, Jurusan Teknik Mesin - Universitas Kristen Petra Indarto Wicaksono Alumni Fakultas

Lebih terperinci

Jurnal e-dinamis, Volume 3, No.3 Desember 2012 ISSN

Jurnal e-dinamis, Volume 3, No.3 Desember 2012 ISSN SIMULASI NUMERIK ALIRAN FLUIDA DI DALAM RUMAH POMPA SENTRIFUGAL YANG DIOPERASIKAN SEBAGAI TURBIN PADA PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO (PLTMH)MENGGUNAKAN CFD DENGAN HEAD (H) 9,29 M DAN 5,18 M RIDHO

Lebih terperinci

Fahmi Wirawan NRP Dosen Pembimbing Prof. Dr. Ir. H. Djoko Sungkono K, M. Eng. Sc

Fahmi Wirawan NRP Dosen Pembimbing Prof. Dr. Ir. H. Djoko Sungkono K, M. Eng. Sc Fahmi Wirawan NRP 2108100012 Dosen Pembimbing Prof. Dr. Ir. H. Djoko Sungkono K, M. Eng. Sc Latar Belakang Menipisnya bahan bakar Kebutuhan bahan bakar yang banyak Salah satu solusi meningkatkan effisiensi

Lebih terperinci

TURBIN GAS. Berikut ini adalah perbandingan antara turbin gas dengan turbin uap. Berat turbin per daya kuda yang dihasilkan lebih besar.

TURBIN GAS. Berikut ini adalah perbandingan antara turbin gas dengan turbin uap. Berat turbin per daya kuda yang dihasilkan lebih besar. 5 TURBIN GAS Pada turbin gas, pertama-tama udara diperoleh dari udara dan di kompresi dengan menggunakan kompresor udara. Udara kompresi kemudian disalurkan ke ruang bakar, dimana udara dipanaskan. Udara

Lebih terperinci

ANALISIS TEKANAN POMPA TERHADAP DEBIT AIR Siswadi 5

ANALISIS TEKANAN POMPA TERHADAP DEBIT AIR Siswadi 5 ANALISIS TEKANAN POMPA TERHADAP DEBIT AIR Siswadi 5 Abstrak: Dengan ketersediannya ilmu mekanika fluida maka spesifikasi teknis yang berkaitan dengan aplikasi tekanan pompa terhadap debit air sangat langka,

Lebih terperinci

TURBIN ANGIN POROS VERTIKAL UNTUK PENGGERAK POMPA AIR

TURBIN ANGIN POROS VERTIKAL UNTUK PENGGERAK POMPA AIR TURBIN ANGIN POROS VERTIKAL UNTUK PENGGERAK POMPA AIR Slamet Riyadi, Mustaqim, Ahmad Farid Progdi Teknik Mesin Fakultas Universitas Pancasakti Tegal Email: mesinftups@gmail.com ABSTRAK Angin merupakan

Lebih terperinci

BAB III PEMBUATAN ALAT UJI DAN METODE PENGAMBILAN DATA

BAB III PEMBUATAN ALAT UJI DAN METODE PENGAMBILAN DATA BAB III PEMBUATAN ALAT UJI DAN METODE PENGAMBILAN DATA Untuk mendapatkan koefisien gesek dari saluran pipa berpenampang persegi, nilai penurunan tekanan (pressure loss), kekasaran pipa dan beberapa variabel

Lebih terperinci

BAB II TINJAUAN PUSTAKA. suatu pembangkit daya uap. Siklus Rankine berbeda dengan siklus-siklus udara

BAB II TINJAUAN PUSTAKA. suatu pembangkit daya uap. Siklus Rankine berbeda dengan siklus-siklus udara BAB II TINJAUAN PUSTAKA Analisa Termodinamika Siklus Rankine adalah siklus teoritis yang mendasari siklus kerja dari suatu pembangkit daya uap Siklus Rankine berbeda dengan siklus-siklus udara ditinjau

Lebih terperinci

SESSION 12 POWER PLANT OPERATION

SESSION 12 POWER PLANT OPERATION SESSION 12 POWER PLANT OPERATION OUTLINE 1. Perencanaan Operasi Pembangkit 2. Manajemen Operasi Pembangkit 3. Tanggung Jawab Operator 4. Proses Operasi Pembangkit 1. PERENCANAAN OPERASI PEMBANGKIT Perkiraan

Lebih terperinci

TUGAS SKRIPSI SISTEM PEMBANGKIT TENAGA

TUGAS SKRIPSI SISTEM PEMBANGKIT TENAGA TUGAS SKRIPSI SISTEM PEMBANGKIT TENAGA ANALISIS VARIASI SUDUT SUDU-SUDU TURBIN IMPULS TERHADAP DAYA MEKANIS TURBIN SEBAGAI PEMBANGKIT TENAGA UAP PADA PKS KAPASITAS 30 TON TBS/JAM OLEH ISKANDAR PERANGIN

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Tekanan Biogas Untuk mengetahui tekanan biogas yang ada perlu dilakukan pengukuran tekanan terlebih dahulu. Pengukuran ini dilakukan dengan membuat sebuah manometer sederhana

Lebih terperinci

LISTRIK GENERATOR AC GENERATOR DAN MOTOR

LISTRIK GENERATOR AC GENERATOR DAN MOTOR LISTRIK GENERATOR AC GENERATOR DAN MOTOR CARA KERJA GENERATOR AC JARINGAN LISTRIK LISTRIK SATU PHASE LISTRIK TIGA PHASE MOTOR LISTRIK Konversi energi listrik menjadi energi mekanikyang terjadi pada bagian

Lebih terperinci

FLUIDA. Standar Kompetensi : 8. Menerapkan konsep dan prinsip pada mekanika klasik sistem kontinu (benda tegar dan fluida) dalam penyelesaian masalah.

FLUIDA. Standar Kompetensi : 8. Menerapkan konsep dan prinsip pada mekanika klasik sistem kontinu (benda tegar dan fluida) dalam penyelesaian masalah. Nama :... Kelas :... FLUIDA Standar Kompetensi : 8. Menerapkan konsep dan prinsip pada mekanika klasik sistem kontinu (benda tegar dan fluida) dalam penyelesaian masalah. Kompetensi dasar : 8.. Menganalisis

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Dasar Termodinamika 2.1.1 Siklus Termodinamika Siklus termodinamika adalah serangkaian proses termodinamika mentransfer panas dan kerja dalam berbagai keadaan tekanan, temperatur,

Lebih terperinci

Gambar 3.1 Arang tempurung kelapa dan briket silinder pejal

Gambar 3.1 Arang tempurung kelapa dan briket silinder pejal BAB III METODE PENELITIAN 3.1 Tempat dan Waktu Penelitian Penelitian ini dilakukan di Laboratorium Energi Biomassa, Program Studi S-1 Teknik Mesin, Fakultas Teknik, Universitas Muhammadiayah Yogyakarta

Lebih terperinci

RANCANG BANGUN TURBIN PELTON UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO DENGAN VARIASI BENTUK SUDU

RANCANG BANGUN TURBIN PELTON UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO DENGAN VARIASI BENTUK SUDU PKMT-2-16-1 RANCANG BANGUN TURBIN PELTON UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO DENGAN VARIASI BENTUK SUDU Pamungkas Irwan N, Franciscus Asisi Injil P, Karwanto, Samodra Wasesa Jurusan Teknik

Lebih terperinci

III. METODOLOGI PENELITIAN. berdasarkan prosedur yang telah di rencanakan sebelumnya. Dalam pengambilan data

III. METODOLOGI PENELITIAN. berdasarkan prosedur yang telah di rencanakan sebelumnya. Dalam pengambilan data 26 III. METODOLOGI PENELITIAN A. Instalasi Pengujian Pengujian dengan memanfaatkan penurunan temperatur sisa gas buang pada knalpot di motor bakar dengan pendinginan luar menggunakan beberapa alat dan

Lebih terperinci

PROGRAM STUDI DIII TEKNIK MESIN FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2014

PROGRAM STUDI DIII TEKNIK MESIN FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2014 KAJIAN NUMERIK PENGARUH VARIASI IGNITION TIMING DAN AFR TERHADAP PERFORMA UNJUK KERJA PADA ENGINE MOTOR TEMPEL EMPAT LANGKAH SATU SILINDER YAMAHA F2.5 MENGGUNAKAN BAHAN BAKAR BENSIN DAN LPG Oleh: Helmi

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN III.1 Umum Bab ini berisi tentang metodologi yang akan dilakukan selama penelitian, di dalamnya berisi mengenai cara-cara pengumpulan data (data primer maupun sekunder), urutan

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN III. METODE PENELITIAN 3.1. WAKTU DAN TEMPAT Kegiatan Penelitian ini dilaksanakan mulai bulan Juni hingga Desember 2011 dan dilaksanakan di laboratorium lapang Siswadhi Soepardjo (Leuwikopo), Departemen

Lebih terperinci

BAB IV HASIL DAN ANALISA

BAB IV HASIL DAN ANALISA BAB IV HASIL DAN ANALISA 4.1 HASIL PENGUJIAN STEADY SISTEM CASCADE Dalam proses pengujian pada saat menyalakan sistem untuk pertama kali, diperlukan waktu oleh sistem supaya dapat bekerja dengan stabil.

Lebih terperinci

Uji Eksperimental Pertamina DEX dan Pertamina DEX + Zat Aditif pada Engine Diesel Putaran Konstan KAMA KM178FS

Uji Eksperimental Pertamina DEX dan Pertamina DEX + Zat Aditif pada Engine Diesel Putaran Konstan KAMA KM178FS Uji Eksperimental Pertamina DEX dan Pertamina DEX + Zat Aditif pada Engine Diesel Putaran Konstan KAMA KM178FS ANDITYA YUDISTIRA 2107100124 Dosen Pembimbing : Prof. Dr. Ir. H D Sungkono K, M.Eng.Sc Kemajuan

Lebih terperinci

UNJUK KERJA TURBIN AIR TIPE CROSS FLOW DENGAN VARIASI DEBIT AIR DAN SUDUT SERANG NOSEL

UNJUK KERJA TURBIN AIR TIPE CROSS FLOW DENGAN VARIASI DEBIT AIR DAN SUDUT SERANG NOSEL UNJUK KERJA TURBIN AIR TIPE CROSS FLOW DENGAN VARIASI DEBIT AIR DAN SUDUT SERANG NOSEL Yudi Setiawan, Irfan Wahyudi, Erwin Nandes Jurusan Teknik Mesin, Universitas Bangka Belitung Jl.Merdeka no. 04 Pangkalpinang

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISIS

BAB IV PENGUJIAN DAN ANALISIS Bab IV Pengujian dan Analisis 47 BAB IV PENGUJIAN DAN ANALISIS Dalam melakukan pengujian menggunakan BOCLE, diperlukan perangkat data akuisisi. Perangkat ini akan mengambil data dan memindahkannya ke komputer

Lebih terperinci

BAB 4 PENGUJIAN, DATA DAN ANALISIS

BAB 4 PENGUJIAN, DATA DAN ANALISIS BAB 4 PENGUJIAN, DATA DAN ANALISIS 4.1 Pengujian Turbin Angin Turbin angin yang telah dirancang, dibuat, dan dirakit perlu diuji untuk mengetahui kinerja turbin angin tersebut. Pengujian yang dilakukan

Lebih terperinci

Gambar 3.1. Plastik LDPE ukuran 5x5 cm

Gambar 3.1. Plastik LDPE ukuran 5x5 cm BAB III METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian 3.1.1 Waktu Penelitian Penelitian pirolisis dilakukan pada bulan Juli 2017. 3.1.2 Tempat Penelitian Pengujian pirolisis, viskositas, densitas,

Lebih terperinci

Bab I Pendahuluan. Bab I Pendahuluan

Bab I Pendahuluan. Bab I Pendahuluan Bab I Pendahuluan Di dalam Bab Pendahuluan ini akan diuraikan secara ringkas beberapa gambaran umum yang mengawali laporan skripsi ini antara lain: latar belakang, tinjauan pustaka, pelaksanaan eksperimen,

Lebih terperinci

ANALISA PENGARUH TEMPERATUR UDARA MASUK TERHADAP TEKANAN DAN TEMPERATUR GAS BUANG PADA PLTD PULO PANJANG BANTEN

ANALISA PENGARUH TEMPERATUR UDARA MASUK TERHADAP TEKANAN DAN TEMPERATUR GAS BUANG PADA PLTD PULO PANJANG BANTEN 35 JTM Vol. 05, No. 2, Juni 2016 ANALISA PENGARUH TEMPERATUR UDARA MASUK TERHADAP TEKANAN DAN TEMPERATUR GAS BUANG PADA PLTD PULO PANJANG BANTEN Sandi Setiawan Program Studi Teknik Mesin, Fakultas Teknik,

Lebih terperinci

Studi terhadap prestasi pompa hidraulik ram dengan variasi beban katup limbah

Studi terhadap prestasi pompa hidraulik ram dengan variasi beban katup limbah Jurnal Ilmiah Teknik Mesin CAKRAM Vol. 2 No. 2, Desember (92 96) Studi terhadap prestasi pompa hidraulik ram dengan variasi Yosef Agung Cahyanta (1), Indrawan Taufik (2) (1) Staff pengajar Prodi Teknik

Lebih terperinci

BAB III METODOLOGI PENGUJIAN

BAB III METODOLOGI PENGUJIAN BAB III METODOLOGI PENGUJIAN Dalam melakukan penelitian dan pengujian, maka dibutuhkan tahapantahapan yang harus dijalani agar percobaan dan pengujian yang dilakukan sesuai dengan standar yang ada. Dengan

Lebih terperinci

Analisa Aliran Fluida Pada Turbin Udara Untuk Pneumatic Wave Energy Converter (WEC) Menggunakan Computational Fluid Dynamic (CFD)

Analisa Aliran Fluida Pada Turbin Udara Untuk Pneumatic Wave Energy Converter (WEC) Menggunakan Computational Fluid Dynamic (CFD) LOGO Analisa Aliran Fluida Pada Turbin Udara Untuk Pneumatic Wave Energy Converter (WEC) Menggunakan Computational Fluid Dynamic (CFD) Dosen Pembimbing : 1. Beni Cahyono, ST, MT. 2. Sutopo Purwono F. ST,

Lebih terperinci

Sandblasting Macam-Macam Abrasif Material untuk Sandblasting

Sandblasting Macam-Macam Abrasif Material untuk Sandblasting Sandblasting Sandblasting adalah suatu proses pembersihan dengan cara menembakan partikel (pasir) kesuatu permukaan material sehingga menimbulkan gesekan atau tumbukan. Permukaan material tersebut akan

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISA

BAB IV PENGUJIAN DAN ANALISA BAB IV PENGUJIAN DAN ANALISA 4.1. Instalasi Pengujian Alat pemanas air yang diuji performansinya ditunjukan pada gambar instalasi pengujian di bawah ini. Gambar 4.1 Instalasi pengujian alat pemanas air.

Lebih terperinci

FINONDANG JANUARIZKA L SIKLUS OTTO

FINONDANG JANUARIZKA L SIKLUS OTTO FINONDANG JANUARIZKA L 125060700111051 SIKLUS OTTO Siklus Otto adalah siklus thermodinamika yang paling banyak digunakan dalam kehidupan manusia. Mobil dan sepeda motor berbahan bakar bensin (Petrol Fuel)

Lebih terperinci

BAB I PENDAHULUAN I-1

BAB I PENDAHULUAN I-1 BAB I PENDAHULUAN Dalam bab ini akan diuraikan mengenai latar belakang masalah dari penelitian, perumusan masalah yang diangkat dalam penelitian ini, tujuan dan manfaat dari penelitian yang dilakukan,

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1. Metode Penelitian Pada penelitian ini, penulis menggunakan data primer yang diperoleh dari hasil pengamatan dan pengambilan data langsung di lapangan. Penulis juga menggunakan

Lebih terperinci

BAB III PROSES PENGUJIAN APU GTCP36-4A

BAB III PROSES PENGUJIAN APU GTCP36-4A BAB III PROSES PENGUJIAN APU GTCP36-4A 3.1 Teori Dasar APU Auxiliary Power Unit (APU) merupakan mesin turbin gas yang berfungsi sebagai supporting engine pada pesawat. APU tergolong dalam jenis turboshaft,

Lebih terperinci

BAB III. Universitas Sumatera Utara MULAI PENGISIAN MINYAK PELUMAS PENGUJIAN SELESAI STUDI LITERATUR MINYAK PELUMAS SAEE 20 / 0 SAE 15W/40 TIDAK

BAB III. Universitas Sumatera Utara MULAI PENGISIAN MINYAK PELUMAS PENGUJIAN SELESAI STUDI LITERATUR MINYAK PELUMAS SAEE 20 / 0 SAE 15W/40 TIDAK BAB III METODE PENGUJIAN 3.1. Diagram Alir Penelitian MULAI STUDI LITERATUR PERSIAPAN BAHAN PENGUJIAN MINYAK PELUMAS SAE 15W/40 MINYAK PELUMAS SAEE 20 / 0 TIDAK PENGUJIAN KEKENTALAN MINYAK PELUMAS PENGISIAN

Lebih terperinci

Mesin uji yang digunakan dalam penelitian ini adalah sepeda motor 4-

Mesin uji yang digunakan dalam penelitian ini adalah sepeda motor 4- III. METODOLOGI PENELITIAN A. Alat dan Bahan Pengujian. Spesifikasi Sepeda Motor 4-langkah Mesin uji yang digunakan dalam penelitian ini adalah sepeda motor 4- langkah. Adapun spesifikasi dari mesin uji

Lebih terperinci

Antiremed Kelas 11 Fisika

Antiremed Kelas 11 Fisika Antiremed Kelas Fisika Fluida Dinamis - Latihan Soal Halaman 0. Perhatikan gambar penampang pipa berikut! Air mengalir dari pipa A ke B terus ke C. Perbandingan luas penampang A dengan penampang C adalah

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Perpipaan Dalam pembuatan suatu sistem sirkulasi harus memiliki sistem perpipaan yang baik. Sistem perpipaan yang dipakai mulai dari sistem pipa tunggal yang sederhana

Lebih terperinci