Desain Turbin Darrieus-Savonius pada Proses Pemanfaatan Arus Laut sebagai Pembangkit Energi Mekanik*

Ukuran: px
Mulai penontonan dengan halaman:

Download "Desain Turbin Darrieus-Savonius pada Proses Pemanfaatan Arus Laut sebagai Pembangkit Energi Mekanik*"

Transkripsi

1 Desain Turbin Darrieus-Savonius pada Proses Pemanfaatan Arus Laut sebagai Pembangkit Energi Mekanik* Syahir Mahmud 1, Stevy Thioritz 2, Victus Kolo Koten 3 1Jurusan Teknik Elektro, FT Universitas Atma Jaya 2Jurusan Teknik Sipil, FT Universitas Atma Jaya 3Jurusan Teknik Mesin, FT Universitas Atma Jaya syahir@mut.co.id, sthioritz@yahoo.com, victus_koten@yahoo.com Sari Arus laut sebagai sumber energy terbarukan, sering terjadi di Indonesia. Hingga saat ini, pemanfaatan energy sumber arus laut ini masih minim. Pemanfaatan energy arus laut untuk berbagai keperluan biasanya menggunakan turbin; sebuah alat yang digunakan untuk mengkonversi energy arus laut menjadi energy mekanik. Secara umum penelitian ini bertujuan untuk memaksimalkan fungsi sudu pada proses konversi energy arus laut menjadi energy mekanis melalui modifikasi bentuk sudu turbin Darrieus dan sudu turbin Savonius menjadi bentuk sudu yang baru; sudu Darrieus-Savonius. Secara spesifik, penelitian ini bertujuan untuk: Merancang turbin Darrieus-Savonius berdasarkan bentuk sudu hasil modifikasi teoritik dan kondisi arus laut di Indonesia. Studi pendahuluan yang dilakukan tentang perbandingan segitiga kecepatan yang terjadi pada sudu turbin Darrieus dan Savonius dengan sudu turbin yang dimodifikasi secara teoritik (sudu turbin Darrieus-Savonius) memperlihatkan sudu turbin Darrieus-Savonius lebih besar menghasilkan energy mekanis dari pada sudu turbin Darrieus dan sudu turbin Savonius. Hasil penelitian menunjukan bahwa kecepatan arus laut sebesar 1,059 m/s dapat membangkitkan energi mekanik 113,028 Watt, putaran 1,4012 rps, dan momen torsi 15,1168 N.m. Melalui daya, putaran, dan momen torsi tersebut maka diperoleh diameter poros minimal sebesar 18 mm, ukuran pasak 6 x 6 x 18 mm, tebal pelat sudu sebesar 0,25 mm, dan nomor bantalan gelinding 4vv pada standar JIS. Kata Kunci: Turbin Darrieus-Savonius, Arus Laut, Energi Mekanik PENDAHULUAN Arus laut sebagai sumber energy terbarukan, banyak terdapat di Indonesia. Setiap delapan jam, saat terjadi pasang surut dan pasang naik, arus laut dalam kapasitas tertentu bergerak melintasi berbagai selat di Indonesia. Pergerakan arus laut ini mengindikasikan adanya energy kinetic dan potensial yang terkandung di dalam arus laut tersebut. Meskipun demikian hingga saat ini pemanfaatan energy arus laut di Indonesia masih minim. Beberapa penelitian terdahulu tetang energy arus laut; menemukan kecepatan arus laut masksimum di Indonesia sebesar 3, 86 m/s terjadi di Selat Larantuka dan beda elevasi antara Samudra Pasifik dan Hindia adalah sebesar 0,305 m 1. Energi mekanik pada turbin biasanya terkonversi dari energy kinetic dan atau energy potensial yang berasal dari pergerakan fluida yang menumbuk sudu turbin. Turbin Darrieus dan Savonius sering memanfaatkan pergerakan fluida untuk menghasilkan energy mekanik. Beberapa jenis turbin yang telah ditemukan dan diuji-coba oleh para ilmuwan dan peneliti untuk memanfaatkan energy arus laut adalah turbin Darrieus, T-Files, Kobold, Royal Haskoning, Savonius, Gorlov, dan lain-lain. Di Indonesia, jenis turbin yang telah dan sedang diteliti untuk pemanfaatan energy arus laut adalah turbin Darrieus (Oleh BPPT) dan T-Files (Oleh ITB). Studi pendahuluan yang telah dilakukan pada ke-3 bentuk sudu turbin (Darrieus, Savonius, dan Darrieus-Savonius) menemukan bahwa sudu turbin Darrieus-Savonius lebih banyak menghasilkan energy mekanik dari pada turbin Darrieus dan Savonius. Sudu turbin Darrieus-Savonius adalah sudu turbin yang dimodifikasi secara teoritik dari perpaduan bentuk sudu Darrieus dan Savonius. METODA Penelitan ini diawali dengan pengambilan data kecepatan arus laut maksimal yang terjadi di Selat Larantuka, Flores Timur, Nusa Tenggara Timur. Kecepatan maksimum yang diperoleh dari pengukuran sebesar 1,059 m/s. Melalui data kecepata arus laut tersebut, bentuk sudu teoritik Darrieus- Saavonius, dan beberapa data teknis lainnya maka proses perhitungan dan penentuan model dari tiap elemen tubin dapat dilakukan. HASIL DAN DISKUSI A. HASIL 1. Desain Turbin. a. Konstruksi sudu turbin dan posisi efektif turbin 144

2 Kontruksi sudu turbin Darrieus-Savonius diperlihatkan pada gambar 1a dan posisi efektif turbin diperlihatkan pada gambar 1b. = [(5,1 x K t x C b x M t ) / (τ a )] 1/3 = [(5,1 x 1,4 x 2,3 x 1,4012) / (5)] 1/3 = 17,12 mm Diamater poros dinormalisasikan untuk keperluan pemasangan bantalan maka diameter poros tingkat berikutnya adalah 20 mm. e. Perencanaan tebal sudu Gambar 1. Konstruksi sudu dan posisi efektif turbin b. Perhitungan gaya pada sudu Perhitungan gaya pada sudu berdasarkan kecepatan dan kontruksi sudu yang terbentuk. Besarnya gaya yang terkandung pada arus laut yang mengalir dengan kecepatan 1,059 m/s adalah: F AL = m v = ρ x A x v 2 = 1027 x (0,35 x 0,15) x 1,0592 = 60,46 N. A adalah luas penampang sudu 1 turbin. Momen pada Turbin (M t ), M t = F AL x r = 60,46 x 0,25 = 15,1168 N.m Daya pada turbin (Pt) Aluminium dipilih sebagai bahan sudu oleh karena ringan dan tahan terhadap korosi. Kekutan tarik aluminium (τ Al ) sebesar 480 GPa atau 48,929 kg/mm2. Luas penampang geser aluminium (A Al ) yang harus mampu menahan gaya (F Al ) yang terkandung dalam arus laut adalah: AAl = τ Al / F Al = (48,929 x 9,81 / 12) / 60,46 = 0,69 mm 2 Untuk lebar sudu (L) 150 mm maka tebal sudu yang dibutuhkan adalah 4,6x10-3 mm. f. Perencanaan lengan turbin Bahan yang dipilih adalah aluminium paduan dengan kekuatan tarik 60 kg/mm2. Untuk jari-jari turbin 250 mm maka lebar (Llt) lengan turbin adalah, P t = M t x ω n = Mt x π x d x n = 1540,9646 x 3,14 x 0,5 x 1,4012 = 133,028 Waat L lt x r = τ Al / F Al = (60 x 9,81 / 12) / (60,46 x 250) Bila efisiensi turbin 85 % maka daya turbin (Pt) adalah = 113,073 Waat. c. Penentuan arah dan besar segitiga kecepatan Kecepatan arus laut (v) diperoleh dari pengukuran sedangkan kecepatan relativ (w) dan kecepatan linier turbin (u) diperoleh berdasarkan metode grafis segitiga kecepatan. Dengan demikian dari gambar 1b pada sudu 1 diperoleh u = 2,2 m/s dan w = 2,5 m/s. kecepatan linier turbin (u) pada sudu 2 dan 3 sama dengan kecepatan linier turbin pada sudu 1 = 2,2 m/s. d. Perencanaan poros Bila bahan poros adalah aluminium paduan dengan kekuatan tarik sebesar 60 kg/mm2. Daya desain poros Pd, Pd = Pt x Fc = 113,074 x 1 = 113,074 Waat Diameter poros, d = 3,254 mm g. Perencanaan spie Berdasarkan diameter poros maka ukuran spie dapat dipilih dari tabel elemen mesin, Sularso dan Kiyokatsu Suga. Dari tabel diperoleh ukuran spie sebesar p x l x t = 6 x 6 x 18 mm. h. Perencanaan bantalan Jenis banatalan yang dipilih berdasarkan dimeter poros dan kondisi operasional turbin. Jenis bantalan yang dipilih adalah bantalan gelinding, nomor bantalan 04vv, kapasitas nominal dinamik spesifik 735 kg, dan kapasitas nominal static spesifik 465 kg. 2. Model tiap elemen gturbin Darrieus-Savonius Model tiap elemn turbin Darrieus-Savonius ini diperlihatkan pada gambar 2. B. DISKUSI 145

3 Berdasarkan data input berupa kecepatan arus laut dan beberapa pertimbangan teknis lainnya maka diperoleh data output berupa segitiga kecepatan pada sudu turbin, ukuran poros, ukuran sudu, spie, dan bantalan. Diameter poros yang diperoleh sebesar 18 mm dan untuk keperluan pemasangan bantalan maka didesain menjadi poros bertingkat. Dimeter poros bertingkat berikutnya sebesar 20 mm. Pemilihan tingaktan poros sebesar 20 mm ini dilakukan untuk memenuhi persyaratan diameter bantalan yang ada di pasaran. Tinggi dan lebar sudu (0,35 dan 0,15 m) diperoleh berdasarkan kemampuan peralatan laboratorium. Bentuk sudu turbin (Darrieus-Savonius) diperoleh berdasarkan kajian teoritik grafis pada studi pendahuluan). Analisis segitiga kecepatan pada bentuk cekungan di sudu memberikan efek yang berbeda dari pada sudu-sudu turbin yang selaama ini diteliti dan diaplikasikan. Tebal pelat sudu 0,25 mm yang dipilih ini lebih besar dibandingkan dengan hasil desain; 0,0003 mm. Hal ini dilakukan karena berdasarkan tebal pelat aluminium yang paling tipis yang ada di pasaran saat ini. Perbedaan tebal ini tidak memperlemah kekuatan sudu namun sebaliknya. Ukuran Spie dan bantan dipilih berdasarkan diameter poros. Ukuran spie, panjang x lebar x tebal (6 x 6 x 18 mm) ini dipilih berdasarkan tabel yang dibuat oleh Sularso dan Kiyokatsu Suga. Nomor bantalan 04vv ini dipilih berdasarkan tabel yang dibuat oleh Sularso dan Kiyokatsu Suga. Bentuk lengan turbin didesain agar tidak memberikan gaya drag yang besar terhadap system. Pengambilan data kecepatan arus laut ini masih dilakukan secara manual pada daerah pesisir. Dalam jangka panjang, output dari teknologi ini diharapkan dapat dinikmati secara mandiri oleh penduduk di pesisir pantai. Selain itu pengambilan data secara manual ini juga memungkinkan peneliti lebih mengetahui karakteristik arus laut. Kecepatan angin dapat mempengaruhi kecepatan arus laut di permukaan. Arah arus lautpun akan berubah arah saat terjadi pergantian dari pasang surut ke pasang naik maupun sebaliknya. Dengan adanya karakteristik arus laut seperti ini maka dapat dikatakan bahwa kecepatan minimal arus laut sebesar nol m/s dan akan bergerak mengikuti bentuk gelombang hyperbolic. Karakteristik arus laut hasil temuan ini sangat berbeda dengan apa yang telah dilakukan oleh peneliti terdahulu. Hal ini terjadi karena pengukuran peneliti terdahulu dilakukan pada kedalaman 20 m dan jauh dari daerah pesisir. Penelitian terdahulu ini lebih mengutamakan pada nilai komersil. Penelitian yang dilakukan ini lebih menitikberatkan pada pemanfaatan bagi masyarakat pesisir. Meskipun data kecepatan arus laut diambil selama 24 jam dan memiliki variasi kecepatan, hanya kecepatan maksimum arus laut saja yang digunakan dalam perhitungan. Hal ini dilakukan untuk keamanan operasional turbin saat terjadi kecepatan arus laut maksimum. Pada saat proses pengambilan data kecepatan arus laut, kecepatan angin sebesar 0 m/s. Dengan kondisi ini memungkinkan keakuratan data yang diperoleh saat pengukuran. Kecepatan angin diambil dengan anemometer. Meskipun efek angin dan gelombang dalam penelitian ini diabaikan, turbin perlu ditenggelamkan pada kedalaman tertentu saat akan diaplikasikan untuk menghindari efek angin dan gelombang yang timbul. Posisi sudu turbin dalam desain ini berada pada kondisi efektif; posisi dimana sudu-sudu turbin menerima gaya maksimum dan menghasilkan energi mekanik maksimal. Dalam kondisi ini, sudu-sudu turbin lebih banyak menerima debit arus laut yang mengalir dan menghasilkan momen torsi terbesar pada sumbu poros turbin. Dalam kondisi seperti ini pulah penentuan segitiga kecepatan, penentuan diameter poros, dan penentuan ukuran elemen turbin lainnya dilakukan. Analisis segitiga kecepatan dilakukan pada tiap sudu. Hasil analisis segi tiga kecepatan pada tiap sudu ini akan memperlihatkan adanya variasi besaran kecepatan pada tiap sudu baik itu kecepatan linier turbin dan kecepatan relativnya. Posisi cekungan sudu ditempatkan sedimikian rupa agar menghindari gaya resistan yang berlebihan pada turbin. Secara teoritik penempatan posisi cekungan harus setelah ujung bebas. Meskipun demikian ujung bebas dalam desain ini diabaikan oleh karena bilangan Reynol yang sangat kecil. Dengan diabaikannya jarak ujung bebas ini maka penempatan cekungan sudu berdasarkan analisis segitiga kecepatan yang memberikan dampak yang lebih besar terhadap kinerja turbin. Analisis segitiga kecepatan memperlihatkan satu kecepatan input (kecepatan arus laut) menghasilkan dua kecepatan ouput; kecepatan linier turbin dan kecepatan relatif turbin. Ketiga jenis kecepatan ini akan memberikan efek yang berbeda terhadap karakteristik turbin. Meskipun demikian, dalam penentuan ukuran poros, hanya kecepatan linier poros saja yang digunakan dalam perhitungan karena memberikan momen torsi maksimum terhadap poros. Kecepatan relativ dan kecepatan arus laut maupun gabungan keduanya memberikan momen torsi yang lebih kecil terhadap poros. Gaya yang terkandung dalam arus laut biasanya terdistribusi secara merata sepanjang sudu turbin namun dalam perhitungan perencanaan poros, gaya terdistibusi diubah menjadi gaya titik yang bekerja pada poros. Perubahan gaya dari gaya terdistibusi menjadi gaya titik ini tidak mempengaruhi ukuran poros yang didapatkan karena momen lentur maksimum yang ditimbulkan oleh ke dua bentuk gaya ini adalah sama. Daya yang digunakan dalam perhitungan ini tentu berbeda dengan daya yang akan dihasuilkan pada kondisi georgafis dan jenis turbin yang berbeda. Untuk kondisi geografis yang berbeda dan turbin yang sama, teknik penentuan 146

4 ukuran poros dan ukuran lainnya dapat mengikuti pinsip perhitungan yang dilakukan pada penelitian ini. Seperti yang diuraikan pada studi pendahuluan bahwa satusatunya yang menjadi pembeda anatara bentuk sudu ini dengan bentuk sudu turbin sebelumnya adalah kontruksi cekung pada ujung tiap sudu turbin. Bentuk cekung ini memberikan efek kecepatan lebih besar ketika berada pada posisi tegak lurus terhadap arah kecapata arus laut. Meskipun pada digram benda bebas terlihat poros terbebani dengan banyak gaya namun gaya-gaya ini akan tereliminasi akibat gaya apung yang akan terjadi ketika turbin ditenggelamkan ke dalam laut. Satu-satunya gaya yang menjadi input perhitungan ini adalah gaya yang timbul akibat pergerakan linier poros yang berseumber dari pergerakan arus laut. Gambar 2. Model tiap elemen turbin Darrieus Savonius 147

5 KESIMPULAN DAN SARAN A. KESIMPULAN 1. Kecepatan maksimum arus laut yang digunakan untuk mendesain turbin ini adalah 1,059 m/s. 2. Daya, putaran, dan momen torsi yang sampai di turbin akibat kecepatan arus laut 1,059 m/s secara berturut-turut adalah sebesar 113,028 Watt, 1,4012 rps, 15,1168 N.m. Berdasarkan daya, putaran, dan momen torsi yang timbul pada turbin maka ukuran elemen-elemen lainnya dapat ditentukan. 3. Jenis poros yang dipilih untuk didesain adalah poros pejal bertingkat dengan bentuk dan ukuran poros diperlihatkan pada gambar 2a. 4. Sudu turbin hasil desain ini adalah sudu turbin Darrieus-Savonius dengan bentuk dan ukuran sudu turbin diperlihatkan pada gambar 2b. 5. Jenis spie yang dipilih adalah spie benam segi empat dengan bentuk dan ukuran diperlihatkan pada gambar 2c. 6. Nomor bantalan yang dipilih adalah 4vv bantalan gelinding dengan rol ganda tertutup. Bentuk dan ukuran bantalan ini diperlihatkan pada gambar 2d. 7. Bentuk lengan turbin yang dipilih adalah elips untuk menghindari restitan pada saat turbin beroperasi. Bentuk dan ukuran bantalan ini diperlihatkan pada gambar 2e. B. SARAN 1. Perlu diteliti karakteristik arus laut untuk jangka waktu minimal 1 tahun agar dapat mendukung kinerja turbin yang lebih baik. 2. Pada saat turbin akan diterapkan di daerah pesisir, karakteristik geografis pesisir dan pasang surut serta pasang naik harus diketahui agar kinerja turbin lebih maksimal. Daftar Pustaka Ai Yuningsih dan Achmad Masduki, Potensi Energi Arus Laut untuk Pembangkit Tenaga Listrik di Kawasan Pesisir Flores Timur, NTT. Jurnal Ilmu dan Teknologi Kelautan Tropis, Vol. 3, No. 1. Duma Hasan, Kaji Eksperimen dan Teoritis Terhadap Hubungan Defleksi Lateral dan Radial Poros Pada Berbagai Jenis Tumpuan. Hasil penelitian hibah fundamental DIKTI. Fritz Dietzel Turbin, pompa, dan kompresor. Terjemahan oleh Dakso Sriyono. Jakarta. Erlangga. Hamrock, Schmid, Jacobson Fundamentals of Machine Elments. New York:McGRAW-HILL. International editions. Jac. Stolk, C. Kros Elemen mesin. Terjemahan Hendarsin dan Abdul Rachman A Jakarta. Erlangga. Ray et al A Brief Overview of tides in the Indonesia Sea. Sularso, Suga Kiyokatsu, Dasar Perencanaan dan Pemilihan Elemen Mesin Jakarta: PT. Pradnya paramita. Spotts, M. F. Design of Mechine Elements. New Jersey: Englewood Cliffs. Syahir Mahmud, Pembuatan Modul PLTA Sederhana Sebagai Sarana Pembelajaran Mata Kuliah Pembangkitan Energi Elektrik. Hasil penelitian LPPM Universitas Atma Jaya Makassar. Victus Kolo Koten, Syahir Mahmud, Analisis Pemanfaatan Multi Energi Terbarukan Sebagai Pembangkit Listrik Skala Ruma Tangga di Kota Makassar. Hasil penelitian LITBANG Sulawesi Selatan. Victus Kolo Koten, Kaji Ekperimen Dan Teoritis Terhadap Hubungan Defleksi Lateral Dan Radial Poros Brlubang Pada System Cantilever Beam. Hasil penelitian dosen muda, DIKTI. 148

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.. Gambaran Umum Mesin pemarut adalah suatu alat yang digunakan untuk membantu atau serta mempermudah pekerjaan manusia dalam hal pemarutan. Sumber tenaga utama mesin pemarut adalah

Lebih terperinci

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Ray Posdam J Sihombing 1, Syahril Gultom 2 1,2 Departemen

Lebih terperinci

PENERBITAN ARTIKEL ILMIAH MAHASISWA Universitas Muhammadiyah Ponorogo

PENERBITAN ARTIKEL ILMIAH MAHASISWA Universitas Muhammadiyah Ponorogo PENERBITAN ARTIKEL ILMIAH MAHASISWA Universitas Muhammadiyah Ponorogo PENGARUH VARIASI JUMLAH STAGE TERHADAP KINERJA TURBIN ANGIN SUMBU VERTIKAL SAVONIUS TIPE- L Krisna Slamet Rasyid, Sudarno, Wawan Trisnadi

Lebih terperinci

ANALISA PUTARAN RODA GIGI PADA KINCIR AIR TERHADAP TEGANGAN YANG DIHASILKAN GENERATOR MINI DC

ANALISA PUTARAN RODA GIGI PADA KINCIR AIR TERHADAP TEGANGAN YANG DIHASILKAN GENERATOR MINI DC ANALISA PUTARAN RODA GIGI PADA KINCIR AIR TERHADAP TEGANGAN YANG DIHASILKAN GENERATOR MINI DC Sugeng Triyanto Teknik Mesin Fakultas Teknologi Industri Universitas Gunadarma ABSTRAKSI Kata kunci : Putaran,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1.1 Turbin Air Turbin air adalah turbin dengan media kerja air. Secara umum, turbin adalah alat mekanik yang terdiri dari poros dan sudu-sudu. Sudu tetap atau stationary blade, tidak

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Pengujian dilakukan dengan beberapa variabel tetap seperti lubang buang sebesar

BAB IV HASIL DAN PEMBAHASAN. Pengujian dilakukan dengan beberapa variabel tetap seperti lubang buang sebesar BAB IV HASIL DAN PEMBAHASAN A. Kondisi Pengujian Pengujian dilakukan dengan beberapa variabel tetap seperti lubang buang sebesar 0,12 m. Penentuan besarnya diameter lubang buang merupakan hasil dari pengujian

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1. TINJAUAN PUSTAKA Potato peeler atau alat pengupas kulit kentang adalah alat bantu yang digunakan untuk mengupas kulit kentang, alat pengupas kulit kentang yang

Lebih terperinci

PENGARUH VARIASI BENTUK SUDU TERHADAP KINERJA TURBIN AIR KINETIK (Sebagai Alternatif Pembangkit Listrik Daerah Pedesaan)

PENGARUH VARIASI BENTUK SUDU TERHADAP KINERJA TURBIN AIR KINETIK (Sebagai Alternatif Pembangkit Listrik Daerah Pedesaan) TURBO Vol. 5 No. 1. 2016 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo PENGARUH VARIASI BENTUK SUDU TERHADAP KINERJA TURBIN

Lebih terperinci

PENGUJIAN PROTOTIPE TURBIN HEAD SANGAT RENDAH PADA SUATU SALURAN ALIRAN AIR

PENGUJIAN PROTOTIPE TURBIN HEAD SANGAT RENDAH PADA SUATU SALURAN ALIRAN AIR PENGUJIAN PROTOTIPE TURBIN HEAD SANGAT RENDAH PADA SUATU SALURAN ALIRAN AIR Ridwan Arief Subekti 1, Anjar Susatyo 2 1 Pusat Penelitian Tenaga Listrik dan Mekatronik, LIPI, Bandung ridw001@lipi.go.id 2

Lebih terperinci

BAB II TINJAUAN PUSTAKA. perancangan yaitu tahap identifikasi kebutuhan, perumusan masalah, sintetis, analisis,

BAB II TINJAUAN PUSTAKA. perancangan yaitu tahap identifikasi kebutuhan, perumusan masalah, sintetis, analisis, BAB II TINJAUAN PUSTAKA.1 Perancangan Mesin Pemisah Biji Buah Sirsak Proses pembuatan mesin pemisah biji buah sirsak melalui beberapa tahapan perancangan yaitu tahap identifikasi kebutuhan, perumusan masalah,

Lebih terperinci

Gambar 2.1. Grafik hubungan TSR (α) terhadap efisiensi turbin (%) konvensional

Gambar 2.1. Grafik hubungan TSR (α) terhadap efisiensi turbin (%) konvensional BAB II DASAR TEORI Bab ini berisi dasar teori yang berhubungan dengan perancangan skripsi antara lain daya angin, daya turbin angin, TSR (Tip Speed Ratio), aspect ratio, overlap ratio, BHP (Break Horse

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Angin Angin adalah gerakan udara yang terjadi di atas permukaan bumi. Angin terjadi karena adanya perbedaan tekanan udara, ketinggian dan temperatur. Semakin besar

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Diagram Alir Penelitian Urutan langkah-langkah pengujian turbin Savonius mengacu pada diagram dibawah ini: Gambar 3.1 Diagram alir penelitian Gambar 3.2 Diagram alir penelitian

Lebih terperinci

TURBIN ANGIN POROS VERTIKAL UNTUK PENGGERAK POMPA AIR

TURBIN ANGIN POROS VERTIKAL UNTUK PENGGERAK POMPA AIR TURBIN ANGIN POROS VERTIKAL UNTUK PENGGERAK POMPA AIR Slamet Riyadi, Mustaqim, Ahmad Farid Progdi Teknik Mesin Fakultas Universitas Pancasakti Tegal Email: mesinftups@gmail.com ABSTRAK Angin merupakan

Lebih terperinci

MESIN PERAJANG SINGKONG

MESIN PERAJANG SINGKONG PROPOSAL MERENCANA MESIN MESIN PERAJANG SINGKONG Diajukan oleh : 1. Aan Setiawan ( 04033088 ) 2. Muhammad Wibowo ( 04033146 ) 3. Wisnu Kusuma Wardhani ( 04033159 ) 4. Andi Mardiyansah ( 04033160 ) kepada

Lebih terperinci

BAB II DASAR TEORI 2.1 Konsep Perencanaan 2.2 Motor 2.3 Reducer

BAB II DASAR TEORI 2.1 Konsep Perencanaan 2.2 Motor 2.3 Reducer BAB II DASAR TEORI 2.1 Konsep Perencanaan Konsep perencanaan komponen yang diperhitungkan sebagai berikut: a. Motor b. Reducer c. Daya d. Puli e. Sabuk V 2.2 Motor Motor adalah komponen dalam sebuah kontruksi

Lebih terperinci

UNJUK KERJA TURBIN ANGIN SAVONIUS DUA TINGKAT EMPAT SUDU LENGKUNG L

UNJUK KERJA TURBIN ANGIN SAVONIUS DUA TINGKAT EMPAT SUDU LENGKUNG L SNTMUT - 1 ISBN: 97--71-- UNJUK KERJA TURBIN ANGIN SAVONIUS DUA TINGKAT EMPAT SUDU LENGKUNG L Syamsul Bahri W 1), Taufan Arif Adlie 1), Hamdani ) 1) Jurusan Teknik Mesin Fakultas Teknik Universitas Samudra

Lebih terperinci

PERANCANGAN TURBIN STRAIGHT BLADE DARRIEUS DENGAN TIGA SUDU

PERANCANGAN TURBIN STRAIGHT BLADE DARRIEUS DENGAN TIGA SUDU EKSERGI Jurnal Teknik Energi Vol No. Mei 05; 4-46 ERANANGAN TURBIN STRAIGHT BLADE DARRIEUS DENGAN TIGA SUDU Supriyo rogram Studi Teknik Konversi Energi oliteknik Negeri Semarang Jl. rof. H. Sudarto, S.H.,

Lebih terperinci

Lampiran 1 Analisis aliran massa serasah

Lampiran 1 Analisis aliran massa serasah LAMPIRAN 84 85 Lampiran 1 Analisis aliran massa serasah 1. Aliran Massa Serasah Tebu 3 a. Bulk Density serasah tebu di lahan, ρ lahan = 7.71 kg/m b. Kecepatan maju mesin, Vmesin = 0.3 m/s c. Luas penampang

Lebih terperinci

BAB II DASAR TEORI Sistem Transmisi

BAB II DASAR TEORI Sistem Transmisi BAB II DASAR TEORI Dasar teori yang digunakan untuk pembuatan mesin pemotong kerupuk rambak kulit adalah sistem transmisi. Berikut ini adalah pengertian-pengertian dari suatu sistem transmisi dan penjelasannya.

Lebih terperinci

KAJI EKSPERIMENTAL KINERJA TURBIN ANGIN VERTIKAL MULTIBLADE TIPE SUDU CURVED PLATE PROFILE DILENGKAPI RUMAH ROTOR DAN EKOR SEBAGAI PENGARAH ANGIN

KAJI EKSPERIMENTAL KINERJA TURBIN ANGIN VERTIKAL MULTIBLADE TIPE SUDU CURVED PLATE PROFILE DILENGKAPI RUMAH ROTOR DAN EKOR SEBAGAI PENGARAH ANGIN B.. Kaji eksperimental kinerja turbin angin vertikal multiblade tipe... (Yusuf D. Herlambang ) KAJI EKSPERIMENTAL KINERJA TURBIN ANGIN VERTIKAL MULTIBLADE TIPE SUDU CURVED PLATE PROFILE DILENGKAPI RUMAH

Lebih terperinci

PERENCANAAN MESIN PEMECAH KEMIRI DENGAN KAPASITAS 50 KG/JAM SKRIPSI

PERENCANAAN MESIN PEMECAH KEMIRI DENGAN KAPASITAS 50 KG/JAM SKRIPSI Artikel Skripsi PERENCANAAN MESIN PEMECAH KEMIRI DENGAN KAPASITAS 50 KG/JAM SKRIPSI Diajukan untuk memenuhi salah satu syarat guna memperoleh gelar Sarjana (S1) Program Studi Teknik Mesin Fakultas Teknik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Cara Kerja Alat Cara kerja Mesin pemisah minyak dengan sistem gaya putar yang di control oleh waktu, mula-mula makanan yang sudah digoreng di masukan ke dalam lubang bagian

Lebih terperinci

Lampiran 1. Analisis Kebutuhan Daya Diketahui: Massa silinder pencacah (m)

Lampiran 1. Analisis Kebutuhan Daya Diketahui: Massa silinder pencacah (m) LAMPIRAN 74 75 Lampiran 1. Analisis Kebutuhan Daya Diketahui: Massa silinder pencacah (m) : 15,4 kg Diameter silinder pencacah (D) : 37,5cm = 0,375 m Percepatan gravitasi (g) : 9,81 m/s 2 Kecepatan putar

Lebih terperinci

KAJI EKSPERIMENTAL KINERJA TURBIN ZANETTE BERBASIS SUDU EKOR IKAN TUNA

KAJI EKSPERIMENTAL KINERJA TURBIN ZANETTE BERBASIS SUDU EKOR IKAN TUNA EKSERGI Jurnal Teknik Energi Vol 1 No. 2 Mei 214; 39-43 KAJI EKSPERIMENTAL KINERJA TURBIN ZANETTE BERBASIS SUDU EKOR IKAN TUNA Lanang K 1), Fariha Z 1), Febrian Indra P 1), Imam Agus Y 1), Syaiful Amiien

Lebih terperinci

BAB II TINJAUAN PUSTAKA. digunakan untuk mencacah akan menghasikan serpihan. Alat pencacah ini

BAB II TINJAUAN PUSTAKA. digunakan untuk mencacah akan menghasikan serpihan. Alat pencacah ini BAB II TINJAUAN PUSTAKA A. Definisi Alat Pencacah plastik Alat pencacah plastik polipropelen ( PP ) merupakan suatu alat yang digunakan untuk mencacah akan menghasikan serpihan. Alat pencacah ini memiliki

Lebih terperinci

JURNAL ANALISA PENGARUH SUDUT PENGARAH ALIRAN DAN DEBIT ALIRAN TERHADAP KINERJA TURBIN KINETIK TIPE POROS VERTIKAL

JURNAL ANALISA PENGARUH SUDUT PENGARAH ALIRAN DAN DEBIT ALIRAN TERHADAP KINERJA TURBIN KINETIK TIPE POROS VERTIKAL JURNAL ANALISA PENGARUH SUDUT PENGARAH ALIRAN DAN DEBIT ALIRAN TERHADAP KINERJA TURBIN KINETIK TIPE POROS VERTIKAL THE INFLUENCE ANALYSIS OF CURRENT STEERING ANGLE AND THE CURRENT RATE OF FLOW TOWARD KINETIC

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pengertian dan Prinsip Dasar Alat uji Bending 2.1.1. Definisi Alat Uji Bending Alat uji bending adalah alat yang digunakan untuk melakukan pengujian kekuatan lengkung (bending)

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Proses perancangan suatu alat ataupun mesin yang baik, diperlukan perencanaan yang cermat dalam pendesainan dan ukuran. Teori teori yang berhubungan dengan alat yang dibuat perlu

Lebih terperinci

ANALISA PERANCANGAN TURBIN VORTEX DENGAN CASING BERPENAMPANG SPIRAL DAN LINGKARAN DENGAN 3 VARIASI DIMENSI SUDU

ANALISA PERANCANGAN TURBIN VORTEX DENGAN CASING BERPENAMPANG SPIRAL DAN LINGKARAN DENGAN 3 VARIASI DIMENSI SUDU ANALISA PERANCANGAN TURBIN VORTEX DENGAN CASING BERPENAMPANG SPIRAL DAN LINGKARAN DENGAN 3 VARIASI DIMENSI SUDU SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik INDRA

Lebih terperinci

BAB III PEMBAHASAN, PERHITUNGAN DAN ANALISA

BAB III PEMBAHASAN, PERHITUNGAN DAN ANALISA BAB III PEMBAHASAN, PERHITUNGAN DAN ANALISA 3.1 Perancangan awal Perencanaan yang paling penting dalam suatu tahap pembuatan hovercraft adalah perancangan awal. Disini dipilih tipe penggerak tunggal untuk

Lebih terperinci

KINERJA YANG DIHASILKAN OLEH KINCIR AIR ARUS BAWAH DENGAN SUDU BERBENTUK MANGKOK. *Luther Sule

KINERJA YANG DIHASILKAN OLEH KINCIR AIR ARUS BAWAH DENGAN SUDU BERBENTUK MANGKOK. *Luther Sule KINERJA YANG DIHASILKAN OLEH KINCIR AIR ARUS BAWAH DENGAN SUDU BERBENTUK MANGKOK *Luther Sule *Kompleks Perumahan Dosen Unhas EB.17 Tamalanrea, Jurusan Mesin Fakultas Teknik Universitas Hasanuddin, Jl.

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dijelaskan perancangan sistem serta realisasi perangkat keras pada perancangan skripsi ini. 3.1. Gambaran Alat Alat yang akan direalisasikan adalah sebuah alat

Lebih terperinci

RANCANG BANGUN MESIN PENCACAH SAMPAH ORGANIK SKALA KECIL MENJADI PUPUK

RANCANG BANGUN MESIN PENCACAH SAMPAH ORGANIK SKALA KECIL MENJADI PUPUK RANCANG BANGUN MESIN PENCACAH SAMPAH ORGANIK SKALA KECIL MENJADI PUPUK DOSEN PEMBIMBING : Ir. Suhariyanto, MT INSTRUKTUR PEMBIMBING : Miftahulal Huda, ST, M.pd DISUSUN OLEH : M. Faizin 2108039020 Arizal

Lebih terperinci

Desain Turbin Angin Sumbu Horizontal

Desain Turbin Angin Sumbu Horizontal Desain Turbin Angin Sumbu Horizontal A. Pendahuluan Angin merupakan sumberdaya alam yang tidak akan habis.berbeda dengan sumber daya alam yang berasal dari fosil seperti gas dan minyak. Indonesia merupakan

Lebih terperinci

PRINSIP KERJA TENAGA ANGIN TURBIN SAVOUNIUS DI DEKAT PANTAI KOTA TEGAL

PRINSIP KERJA TENAGA ANGIN TURBIN SAVOUNIUS DI DEKAT PANTAI KOTA TEGAL PRINSIP KERJA TENAGA ANGIN TURBIN SAVOUNIUS DI DEKAT PANTAI KOTA TEGAL Soebyakto Dosen Fakultas Teknik Universitas Pancasakti Tegal E-mail : soebyakto@gmail.com ABSTRAK Tenaga angin sering disebut sebagai

Lebih terperinci

KAJI EKSPERIMENTAL KINERJA TURBIN AIR HASIL MODIFIKASI POMPA SENTRIFUGAL UNTUK PEMBANGKIT LISTRIK TENAGA MIKROHIDRO

KAJI EKSPERIMENTAL KINERJA TURBIN AIR HASIL MODIFIKASI POMPA SENTRIFUGAL UNTUK PEMBANGKIT LISTRIK TENAGA MIKROHIDRO B.11. Kaji eksperimental kinerja turbin air hasil modifikasi... KAJI EKSPERIMENTAL KINERJA TURBIN AIR HASIL MODIFIKASI POMPA SENTRIFUGAL UNTUK PEMBANGKIT LISTRIK TENAGA MIKROHIDRO Gatot Suwoto Program

Lebih terperinci

JURNAL PERENCANAAN DAN PERHITUNGAN MESIN PEMIPIL JAGUNG DENGAN KAPASITAS 300 KG/JAM

JURNAL PERENCANAAN DAN PERHITUNGAN MESIN PEMIPIL JAGUNG DENGAN KAPASITAS 300 KG/JAM JURNAL PERENCANAAN DAN PERHITUNGAN MESIN PEMIPIL JAGUNG DENGAN KAPASITAS 300 KG/JAM PLANNING AND CALCULATION COM SHELLER MACHINE WITH A CAPACITY OF 300 KG/HOUR Oleh: MUHAMMAD AZIIS LYAN SETYAJI 11.1.03.01.0057

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Turbin Angin Turbin angin adalah suatu sistem konversi energi angin untuk menghasilkan energi listrik dengan proses mengubah energi kinetik angin menjadi putaran mekanis rotor

Lebih terperinci

PERENCANAAN MESIN BENDING HEAT EXCHANGER VERTICAL PIPA TEMBAGA 3/8 IN

PERENCANAAN MESIN BENDING HEAT EXCHANGER VERTICAL PIPA TEMBAGA 3/8 IN PERENCANAAN MESIN BENDING HEAT EXCHANGER VERTICAL PIPA TEMBAGA 3/8 IN Dani Prabowo Jurusan Teknik Mesin Fakultas Teknik Universitas Negeri Jakarta E-mail: daniprabowo022@gmail.com Abstrak Perencanaan ini

Lebih terperinci

IV. ANALISIS TEKNIK. Pd n. Besarnya tegangan geser yang diijinkan (τ a ) dapat dihitung dengan persamaan :

IV. ANALISIS TEKNIK. Pd n. Besarnya tegangan geser yang diijinkan (τ a ) dapat dihitung dengan persamaan : A. POROS UTAMA IV. ANALISIS TEKNIK Menurut Sularso dan K. Suga (1997), untuk menghitung besarnya diameter poros yang digunakan adalah dengan menentukan daya rencana Pd (kw) dengan rumus : Pd = fcp (kw)...

Lebih terperinci

PENGARUH JUMLAH SUDU DAN VARIASI KEMIRINGAN PADA SUDUT SUDU TERHADAP DAYA YANG DIHASILKAN PADA TURBIN KINETIK POROS HORIZONTAL SKRIPSI

PENGARUH JUMLAH SUDU DAN VARIASI KEMIRINGAN PADA SUDUT SUDU TERHADAP DAYA YANG DIHASILKAN PADA TURBIN KINETIK POROS HORIZONTAL SKRIPSI Artikel Skripsi PENGARUH JUMLAH SUDU DAN VARIASI KEMIRINGAN PADA SUDUT SUDU TERHADAP DAYA YANG DIHASILKAN PADA TURBIN KINETIK POROS HORIZONTAL SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh

Lebih terperinci

RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN PENGUJIAN BENTUK SUDU TERHADAP TORSI DAN DAYA TURBIN YANG DIHASILKAN

RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN PENGUJIAN BENTUK SUDU TERHADAP TORSI DAN DAYA TURBIN YANG DIHASILKAN TURBO Vol. 6 No. 1. 2017 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN

Lebih terperinci

PERENCANAAN MESIN PENGUPAS KULIT KEDELAI DENGAN KAPASITAS 100 KG/JAM

PERENCANAAN MESIN PENGUPAS KULIT KEDELAI DENGAN KAPASITAS 100 KG/JAM PERENCANAAN MESIN PENGUPAS KULIT KEDELAI DENGAN KAPASITAS 100 KG/JAM SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana Teknik (S.T) Pada Program Studi Teknik Mesin Fakultas

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Meningkatnya konsumsi bahan bakar khususnya bahan bakar fosil sangat mempengaruhi peningkatan harga jual bahan bakar tersebut. Sehingga pemerintah berupaya mencari

Lebih terperinci

BAB I PENDAHULUAN. Kincir angin pertama kali digunakan untuk membangkitkan listrik dibangun

BAB I PENDAHULUAN. Kincir angin pertama kali digunakan untuk membangkitkan listrik dibangun BAB I PENDAHULUAN 1.1 Latar Belakang Kincir angin pertama kali digunakan untuk membangkitkan listrik dibangun oleh P. La Cour dari Denmark diakhir abad ke-19. Setelah perang dunia I, layar dengan penampang

Lebih terperinci

BAB III PERANCANGAN SISTEM TRANSMISI RODA GIGI DAN PERHITUNGAN. penelitian lapangan, dimana tujuan dari penelitian ini adalah :

BAB III PERANCANGAN SISTEM TRANSMISI RODA GIGI DAN PERHITUNGAN. penelitian lapangan, dimana tujuan dari penelitian ini adalah : BAB III PERANCANGAN SISTEM TRANSMISI RODA GIGI DAN PERHITUNGAN 3. Metode Penelitian Metode penelitian yang dipakai dalam perancangan ini adalah metode penelitian lapangan, dimana tujuan dari penelitian

Lebih terperinci

RANCANG BANGUN TURBIN PELTON UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO DENGAN VARIASI BENTUK SUDU

RANCANG BANGUN TURBIN PELTON UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO DENGAN VARIASI BENTUK SUDU PKMT-2-16-1 RANCANG BANGUN TURBIN PELTON UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO DENGAN VARIASI BENTUK SUDU Pamungkas Irwan N, Franciscus Asisi Injil P, Karwanto, Samodra Wasesa Jurusan Teknik

Lebih terperinci

PERENCANAAN MESIN PERAJANG APEL KAPASITAS 60 KG/JAM

PERENCANAAN MESIN PERAJANG APEL KAPASITAS 60 KG/JAM PERENCANAAN MESIN PERAJANG APEL KAPASITAS 60 KG/JAM SKRIPSI Diajukan untuk memenuhi salah satu syarat guna memperoleh gelar Sarjana (S1) Program Studi Teknik Mesin Fakultas Teknik Universtas Nusantara

Lebih terperinci

PENGUJIAN PROTOTYPE ALAT KONVERSI ENERGI MEKANIK DARI LAJU KENDARAAN SEBAGAI SUMBER ENERGI LISTRIK DENGAN VARIASI PEMBEBANAN INTISARI

PENGUJIAN PROTOTYPE ALAT KONVERSI ENERGI MEKANIK DARI LAJU KENDARAAN SEBAGAI SUMBER ENERGI LISTRIK DENGAN VARIASI PEMBEBANAN INTISARI PENGUJIAN PROTOTYPE ALAT KONVERSI ENERGI MEKANIK DARI LAJU KENDARAAN SEBAGAI SUMBER ENERGI LISTRIK DENGAN VARIASI PEMBEBANAN M. Samsul Ma arif Program Studi Teknik Mesin, Fakultas Teknik, Universitas Muhammadiyah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Teori Pompa Sentrifugal 2.1.1. Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian dasar tentang turbin air Turbin berfungsi mengubah energi potensial fluida menjadi energi mekanik yang kemudian diubah lagi menjadi energi listrik pada generator.

Lebih terperinci

DAFTAR ISI DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR SIMBOL... A. Latar Belakang B. Tujuan dan Manfaat C. Batasan Masalah...

DAFTAR ISI DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR SIMBOL... A. Latar Belakang B. Tujuan dan Manfaat C. Batasan Masalah... i DAFTAR ISI Halaman DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR SIMBOL... i iv v viii I. PENDAHULUAN A. Latar Belakang... 1 B. Tujuan dan Manfaat... 2 C. Batasan Masalah... 2 D. Sistematika

Lebih terperinci

BAB VI POROS DAN PASAK

BAB VI POROS DAN PASAK BAB VI POROS DAN PASAK Poros merupakan salah satu bagian yang terpenting dari setiap mesin. Hampir semua mesin meneruskan tenaga bersamasama dengan putaran. Peranan utama dalam transmisi seperti itu dipegang

Lebih terperinci

BAB II. 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro. lebih kecil. Menggunakan turbin, generator yang kecil yang sama seperti halnya PLTA.

BAB II. 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro. lebih kecil. Menggunakan turbin, generator yang kecil yang sama seperti halnya PLTA. BAB II LANDASAN TEORI 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro Pembangkit Listrik Tenaga Mikrohydro atau biasa disebut PLTMH adalah pembangkit listrik tenaga air sama halnya dengan PLTA, hanya

Lebih terperinci

PERENCANAAN MESIN PENGADUK UDANG NAGET OTOMATIS

PERENCANAAN MESIN PENGADUK UDANG NAGET OTOMATIS PERENCANAAN MESIN PENGADUK UDANG NAGET OTOMATIS (1) Sobar Ihsan, (2) Muhammad Marsudi (1)(2) Prodi Teknik Mesin, Prodi Teknik Industri, Fakultas Teknik, Universitas Islam Kalimantan MAB Jln. Adhyaksa (Kayutangi)

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN UJI EKSPERIMENTAL PENGARUH PROFIL DAN JUMLAH SUDU PADA VARIASI KECEPATAN ANGIN TERHADAP DAYA DAN PUTARAN TURBIN ANGIN SAVONIUS MENGGUNAKAN SUDU PENGARAH DENGAN LUAS SAPUAN ROTOR 0,90 M 2 SKRIPSI Skripsi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Poros Poros merupakan bagian yang terpenting dari suatu mesin. Hampir semua mesin meneruskan tenaga dan putarannya melalui poros. Setiap elemen mesin yang berputar, seperti roda

Lebih terperinci

RANCANG BANGUN TURBIN ANGIN SAVONIUS 200 WATT

RANCANG BANGUN TURBIN ANGIN SAVONIUS 200 WATT Seminar SENATIK Nasional Vol. II, 26 Teknologi November Informasi 2016, ISSN: dan 2528-1666 Kedirgantaraan (SENATIK) Vol. II, 26 November 2016, ISSN: 2528-1666 KoE- 71 RANCANG BANGUN TURBIN ANGIN SAVONIUS

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Diagram Alir Penelitian Urutan langkah-langkah pengujian turbin Savonius mengacu pada diagram dibawah ini: MULAI Studi Pustaka Pemilihan Judul Penelitian Penetapan Variabel

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Perancangan (desain) saat ini sangat diperlukan untuk memulai pembuatan suatu benda, Metodelogi desain telah dimulai antara dasawarsa 1950 sampai 1960-an, diawali

Lebih terperinci

2 a) Viskositas dinamik Viskositas dinamik adalah perbandingan tegangan geser dengan laju perubahannya, besar nilai viskositas dinamik tergantung dari

2 a) Viskositas dinamik Viskositas dinamik adalah perbandingan tegangan geser dengan laju perubahannya, besar nilai viskositas dinamik tergantung dari VARIASI JARAK NOZEL TERHADAP PERUAHAN PUTARAN TURIN PELTON Rizki Hario Wicaksono, ST Jurusan Teknik Mesin Universitas Gunadarma ASTRAK Efek jarak nozel terhadap sudu turbin dapat menghasilkan energi terbaik.

Lebih terperinci

ANALISIS POTENSI KINCIR ANGIN SAVONIUS SEBAGAI PENGGERAK POMPA SUBMERSIBLE

ANALISIS POTENSI KINCIR ANGIN SAVONIUS SEBAGAI PENGGERAK POMPA SUBMERSIBLE ANALISIS POTENSI KINCIR ANGIN SAVONIUS SEBAGAI PENGGERAK POMPA SUBMERSIBLE OLEH : PHOBI KEVIN 06 118 045 Skripsi Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Teknologi Pertanian FAKULTAS TEKNOLOGI

Lebih terperinci

BAB I PENGUJIAN TURBIN AIR FRANCIS

BAB I PENGUJIAN TURBIN AIR FRANCIS BAB I PENGUJIAN TURBIN AIR FRANCIS 1.1 Pendahuluan 1.1.1 Latar Belakang Seiring dengan perkembang teknologi yang semakin maju, banyak diciptakan peralatan peralatan yang inovatif serta tepat guna. Dalam

Lebih terperinci

BAB II 2 LANDASAN TEORI. 2.1 Turbin Air

BAB II 2 LANDASAN TEORI. 2.1 Turbin Air BAB II 2 LANDASAN TEORI 2.1 Turbin Air Turbin air atau pada mulanya kincir air adalah suatu alat yang sudah sejak lama digunakan untuk keperluan industri. Pada mulanya yang dipertimbangkan adalah ukuran

Lebih terperinci

PENGARUH VARIASI DIAMETER NOSEL TERHADAP TORSI DAN DAYA TURBIN AIR

PENGARUH VARIASI DIAMETER NOSEL TERHADAP TORSI DAN DAYA TURBIN AIR TURBO Vol. 6 No. 1. 2017 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo PENGARUH VARIASI DIAMETER NOSEL TERHADAP TORSI DAN

Lebih terperinci

SISTEM PERENCANAAN DAN PERANCANGAN TURBIN ANGIN SUMBU VERTIKAL SAVONIUS DENGAN BLADE TIPE L

SISTEM PERENCANAAN DAN PERANCANGAN TURBIN ANGIN SUMBU VERTIKAL SAVONIUS DENGAN BLADE TIPE L SISTEM PERENCANAAN DAN PERANCANGAN TURBIN ANGIN SUMBU VERTIKAL SAVONIUS DENGAN BLADE TIPE L Oleh Hendriansyah 23410220 Pembimbing : Dr. Ridwan, MT. Latar Belakang Energi angin merupakan salah satu energi

Lebih terperinci

PERENCANAAN PEMBANGUNAN SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO (PLTMH) DI KINALI PASAMAN BARAT

PERENCANAAN PEMBANGUNAN SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO (PLTMH) DI KINALI PASAMAN BARAT PERENCANAAN PEMBANGUNAN SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO (PLTMH) DI KINALI PASAMAN BARAT Oleh : Sulaeman 1 dan Ramu Adi Jaya Dosen Teknik Mesin 1 Mahasiswa Teknik Mesin Jurusan Teknik Mesin

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN BAGIAN BAGIAN CONVEYOR

BAB IV ANALISA DAN PERHITUNGAN BAGIAN BAGIAN CONVEYOR BAB IV ANALISA DAN PERHITUNGAN BAGIAN BAGIAN CONVEYOR Dalam pabrik pengolahan CPO dengan kapasitas 60 ton/jam TBS sangat dibutuhkan peran bunch scrapper conveyor yang berfungsi sebagai pengangkut janjangan

Lebih terperinci

PEMANFAATAN MULTI ENERGI TERBARUKAN SEBAGAI PEMBANGKIT LISTRIK SKALA RUMAH TANGGA DI KOTA MAKASSAR

PEMANFAATAN MULTI ENERGI TERBARUKAN SEBAGAI PEMBANGKIT LISTRIK SKALA RUMAH TANGGA DI KOTA MAKASSAR PEMANFAATAN MULTI ENERGI TERBARUKAN SEBAGAI PEMBANGKIT LISTRIK SKALA RUMAH TANGGA DI KOTA MAKASSAR ABSTRAK Victus Kolo Koten 2, Syahir Mahmud 3 2,3 Jurusan Teknik Mesin, Fakultas Teknik, Universitas Atma

Lebih terperinci

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik MARULITUA SIDAURUK NIM

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik MARULITUA SIDAURUK NIM ANALISIS DAN SIMULASI VARIASI SUDUT SUDU-SUDU TURBIN IMPULS TERHADAP DAYA MEKANIS YANG DIHASILKAN TURBIN SEBAGAI PEMBANGKIT TENAGA UAP PADA PKS KAPASITAS 30 TON TBS/JAM SKRIPSI Skripsi Yang Diajukan Untuk

Lebih terperinci

BAB I PENDAHULUAN. hampir meliputi di segala bidang kegiatan meliputi: pertanian, industri, rumah

BAB I PENDAHULUAN. hampir meliputi di segala bidang kegiatan meliputi: pertanian, industri, rumah BAB I PENDAHULUAN 1.1. Latar Belakang Penulisan Dewasa ini penggunaan pompa mempunyai peranan sangat luas, hampir meliputi di segala bidang kegiatan meliputi: pertanian, industri, rumah tangga, sebagai

Lebih terperinci

BAB III METODOLOGI PENGUKURAN

BAB III METODOLOGI PENGUKURAN BAB III METODOLOGI PENGUKURAN Kincir angin merupakan salah satu mesin konversi energi yang dapat merubah energi kinetic dari gerakan angin menjadi energi listrik. Energi ini dibangkitkan oleh generator

Lebih terperinci

Panduan Praktikum Mesin-Mesin Fluida 2012

Panduan Praktikum Mesin-Mesin Fluida 2012 PERCOBAAN TURBIN PELTON A. TUJUAN PERCOBAAN Tujuan dari pelaksanaan percobaan ini adalah untuk mempelajari prinsip kerja dan karakteristik performance turbin air (pelton). Karakteristik performance turbin

Lebih terperinci

Rancang Bangun Alat Uji Impak Metode Charpy

Rancang Bangun Alat Uji Impak Metode Charpy Rancang Bangun Alat Uji Impak Metode Charpy Amud Jumadi 1, Budi Hartono 1, Gatot Eka Pramono 1 1 Program Studi Teknik Mesin, Fakultas Teknik Universitas Ibn Khaldun Bogor Corresponding author : Amudjumadi91@gmail.com

Lebih terperinci

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik GIBRAN

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik GIBRAN Rancang Bangun Turbin Vortex Dengan Casing Berpenampang Lingkaran Yang Menggunakan Sudu Diameter 46cm Pada 3 Variasi Jarak Antara Sudu Dan Saluran Keluar SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi

Lebih terperinci

BAB II DASAR TEORI. c) Untuk mencari torsi dapat dirumuskan sebagai berikut:

BAB II DASAR TEORI. c) Untuk mencari torsi dapat dirumuskan sebagai berikut: BAB II DASAR TEORI 2.1 Daya Penggerak Secara umum daya diartikan sebagai suatu kemampuan yang dibutuhkan untuk melakukan sebuah kerja, yang dinyatakan dalam satuan Watt ataupun HP. Penentuan besar daya

Lebih terperinci

BAB II LANDASAN TORI

BAB II LANDASAN TORI BAB II LANDASAN TORI Proses perancangan suatu alat ataupun yang mesin yang baik, diperlukan perencanaan yang cermat dalam perhitungan dan ukuran. Teori teori yang berhubungan dengan alat yang dibuat perlu

Lebih terperinci

BAB IV PERHITUNGAN PERANCANGAN

BAB IV PERHITUNGAN PERANCANGAN BAB IV PERHITUNGAN PERANCANGAN Pada tahap perancangan mesin Fitting valve spindle pada bab sebelumnya telah dihasilkan rancangan yang sesuai dengan daftar kehendak. Yang dijabarkan menjadi beberapa varian

Lebih terperinci

APLIKASI METODE FUNGSI TRANSFER PADA ANALISIS KARAKTERISTIK GETARAN BALOK KOMPOSIT (BAJA DAN ALUMINIUM) DENGAN SISTEM TUMPUAN SEDERHANA

APLIKASI METODE FUNGSI TRANSFER PADA ANALISIS KARAKTERISTIK GETARAN BALOK KOMPOSIT (BAJA DAN ALUMINIUM) DENGAN SISTEM TUMPUAN SEDERHANA APLIKASI METODE UNGSI TRANSER PADA ANALISIS KARAKTERISTIK GETARAN BALOK KOMPOSIT (BAJA DAN ALUMINIUM) DENGAN SISTEM TUMPUAN SEDERHANA Naharuddin, Abdul Muis Laboratorium Bahan Teknik, Jurusan Teknik Mesin

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian pengelasan secara umum a. Pengelasan Menurut Harsono,1991 Pengelasan adalah ikatan metalurgi pada sambungan logam paduan yang dilakukan dalam keadaan lumer atau cair.

Lebih terperinci

PERENCANAAN MIKROHIDRO DENGAN TURBIN KAPLAN SEBAGAI PENGGERAK MULA PADA DEBIT (Q) 0,52 m 3 /s DAN KETINGGIAN (H) 2,65 m

PERENCANAAN MIKROHIDRO DENGAN TURBIN KAPLAN SEBAGAI PENGGERAK MULA PADA DEBIT (Q) 0,52 m 3 /s DAN KETINGGIAN (H) 2,65 m ABSTRAKSI PERENCANAAN MIKROHIDRO DENGAN TURBIN KAPLAN SEBAGAI PENGGERAK MULA PADA DEBIT (Q) 0,52 m 3 /s DAN KETINGGIAN (H) 2,65 m Oleh : ARIF IMAM NUGROHO NIM : D 200 010 132 JURUSAN TEKNIK MESIN FAKULTAS

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN digilib.uns.ac.id BAB IV HASIL DAN PEMBAHASAN 4.1. Hasil Pengujian Turbin Cross Flow Tanpa Sudu Pengarah Pengujian turbin angin tanpa sudu pengarah dijadikan sebagai dasar untuk membandingkan efisiensi

Lebih terperinci

Bab IV Analisis dan Pengujian

Bab IV Analisis dan Pengujian Bab IV Analisis dan Pengujian 4.1 Analisis Simulasi Aliran pada Profil Airfoil Simulasi aliran pada profil airfoil dimaskudkan untuk mencari nilai rasio lift/drag terhadap sudut pitch. Simulasi ini tidak

Lebih terperinci

PERENCANAAN MESIN PERAJANG SINGKONG DENGAN KAPASITAS 150 Kg/JAM SKRIPSI

PERENCANAAN MESIN PERAJANG SINGKONG DENGAN KAPASITAS 150 Kg/JAM SKRIPSI PERENCANAAN MESIN PERAJANG SINGKONG DENGAN KAPASITAS 150 Kg/JAM SKRIPSI Diajukan kepada untuk memenuhi salah satu persyaratan dalam menyelesaikan program Sarjana Teknik Mesin Oleh : HAFIZH ARDHIAN PUTRA

Lebih terperinci

PERANCANGAN CAKE BREAKER SCREW CONVEYOR PADA PENGOLAHAN KELAPA SAWIT DENGAN KAPASITAS PABRIK 60 TON TBS PER JAM

PERANCANGAN CAKE BREAKER SCREW CONVEYOR PADA PENGOLAHAN KELAPA SAWIT DENGAN KAPASITAS PABRIK 60 TON TBS PER JAM KARYA AKHIR PERANCANGAN CAKE BREAKER SCREW CONVEYOR PADA PENGOLAHAN KELAPA SAWIT DENGAN KAPASITAS PABRIK 60 TON TBS PER JAM SURANTA GINTING 025202007 KARYA AKHIR YANG DIAJUKAN UNTUK MEMENUHI SALAH SATU

Lebih terperinci

BAB IV PERHITUNGAN DAN PERANCANGAN ALAT. Data motor yang digunakan pada mesin pelipat kertas adalah:

BAB IV PERHITUNGAN DAN PERANCANGAN ALAT. Data motor yang digunakan pada mesin pelipat kertas adalah: BAB IV PERHITUNGAN DAN PERANCANGAN ALAT 4.1 Perhitungan Rencana Pemilihan Motor 4.1.1 Data motor Data motor yang digunakan pada mesin pelipat kertas adalah: Merek Model Volt Putaran Daya : Multi Pro :

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Angin adalah salah satu bentuk energi yang tersedia di alam dan tidak akan pernah habis. Pada dasarnya angin terjadi karena ada perbedaan suhu antara lokasi

Lebih terperinci

BAB 1 PENDAHULUAN. Pemanfaatan potesi energi terbarukan saat ini semakin banyak

BAB 1 PENDAHULUAN. Pemanfaatan potesi energi terbarukan saat ini semakin banyak BAB 1 PENDAHULUAN 1.1. Latar Belakang Pemanfaatan potesi energi terbarukan saat ini semakin banyak mendapatkan perhatian di kalangan ilmuan maupun di sektor industri. Hal ini disebabkan karena timbulnya

Lebih terperinci

ANALISA PEMANFAATAN POTENSI ANGIN PESISIR SEBAGAI PEMBANGKIT LISTRIK

ANALISA PEMANFAATAN POTENSI ANGIN PESISIR SEBAGAI PEMBANGKIT LISTRIK ANALISA PEMANFAATAN POTENSI ANGIN PESISIR SEBAGAI PEMBANGKIT LISTRIK Ahmad Farid 1, Mustaqim 2, Hadi Wibowo 3 1,2,3 Dosen Teknik Mesin Fakultas Teknik Universitas Pancasakti Tegal Abstrak Kota Tegal dikenal

Lebih terperinci

BAB IV PERHITUNGAN DAN PEMBAHASAN

BAB IV PERHITUNGAN DAN PEMBAHASAN BAB IV PERHITUNGAN DAN PEMBAHASAN 4.1. Perencanaan Tabung Luar Dan Tabung Dalam a. Perencanaan Tabung Dalam Direncanakan tabung bagian dalam memiliki tebal stainles steel 0,6, perencenaan tabung pengupas

Lebih terperinci

LAPORAN TUGAS AKHIR RANCANG BANGUN PROTOTYPE TURBIN ANGIN VERTIKAL DARRIEUS TIPE H

LAPORAN TUGAS AKHIR RANCANG BANGUN PROTOTYPE TURBIN ANGIN VERTIKAL DARRIEUS TIPE H LAPORAN TUGAS AKHIR RANCANG BANGUN PROTOTYPE TURBIN ANGIN VERTIKAL DARRIEUS TIPE H DISUSUN OLEH : Yos Hefianto Agung Prastyo 41311010005 PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MERCU BUANA

Lebih terperinci

BAB IV PROSES, HASIL, DAN PEMBAHASAN. panjang 750x lebar 750x tinggi 800 mm. mempermudah proses perbaikan mesin.

BAB IV PROSES, HASIL, DAN PEMBAHASAN. panjang 750x lebar 750x tinggi 800 mm. mempermudah proses perbaikan mesin. BAB IV PROSES, HASIL, DAN PEMBAHASAN A. Desain Mesin Desain konstruksi Mesin pengaduk reaktor biogas untuk mencampurkan material biogas dengan air sehingga dapat bercampur secara maksimal. Dalam proses

Lebih terperinci

BAB III PERENCANAAN DAN GAMBAR

BAB III PERENCANAAN DAN GAMBAR BAB III PERENCANAAN DAN GAMBAR 3.1 Flowchart Perencanaan Pembuatan Mesin Pemotong Umbi Proses Perancangan mesin pemotong umbi seperti yang terlihat pada gambar 3.1 berikut ini: Mulai mm Studi Literatur

Lebih terperinci

PERFORMANSI TURBIN ANGIN SAVONIUS DENGAN EMPAT SUDU UNTUK MENGGERAKKAN POMPA SKRIPSI

PERFORMANSI TURBIN ANGIN SAVONIUS DENGAN EMPAT SUDU UNTUK MENGGERAKKAN POMPA SKRIPSI PERFORMANSI TURBIN ANGIN SAVONIUS DENGAN EMPAT SUDU UNTUK MENGGERAKKAN POMPA SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik ALVI SYUKRI 090421064 PROGRAM PENDIDIKAN

Lebih terperinci

DESIGN AND MANUFACTURE OF PROTOTYPES DUA TIPE ROTOR TURBIN ANGIN SUMBU VERTIKAL SEBAGAI OBJEK PENELITIAN STUDI EKSPERIMENTAL

DESIGN AND MANUFACTURE OF PROTOTYPES DUA TIPE ROTOR TURBIN ANGIN SUMBU VERTIKAL SEBAGAI OBJEK PENELITIAN STUDI EKSPERIMENTAL DESIGN AND MANUFACTURE OF PROTOTYPES DUA TIPE ROTOR TURBIN ANGIN SUMBU VERTIKAL SEBAGAI OBJEK PENELITIAN STUDI EKSPERIMENTAL Ahmad Marabdi Siregar 1 * 1 Dosen Program Studi Teknik Mesin Fakultas Teknik

Lebih terperinci

Bab 5 Puntiran. Gambar 5.1. Contoh batang yang mengalami puntiran

Bab 5 Puntiran. Gambar 5.1. Contoh batang yang mengalami puntiran Bab 5 Puntiran 5.1 Pendahuluan Pada bab ini akan dibahas mengenai kekuatan dan kekakuan batang lurus yang dibebani puntiran (torsi). Puntiran dapat terjadi secara murni atau bersamaan dengan beban aksial,

Lebih terperinci

BAB II DASAR TEORI. 2.1 Konsep Perencanaan Sistem Transmisi Motor

BAB II DASAR TEORI. 2.1 Konsep Perencanaan Sistem Transmisi Motor BAB II DASAR TEORI 2.1 Konsep Perencanaan Sistem Transmisi Pada perancangan suatu kontruksi hendaknya mempunyai suatu konsep perencanaan. Untuk itu konsep perencanaan ini akan membahas dasar-dasar teori

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro

BAB II TINJAUAN PUSTAKA. 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro BAB II TINJAUAN PUSTAKA 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro Pembangunan sebuah PLTMH harus memenuhi beberapa kriteria seperti, kapasitas air yang cukup baik dan tempat yang memadai untuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial fluida, atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci