BAB IV HASIL DAN PEMBAHASAN. Pengujian dilakukan dengan beberapa variabel tetap seperti lubang buang sebesar

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB IV HASIL DAN PEMBAHASAN. Pengujian dilakukan dengan beberapa variabel tetap seperti lubang buang sebesar"

Transkripsi

1 BAB IV HASIL DAN PEMBAHASAN A. Kondisi Pengujian Pengujian dilakukan dengan beberapa variabel tetap seperti lubang buang sebesar 0,12 m. Penentuan besarnya diameter lubang buang merupakan hasil dari pengujian pada penelitian sebelumnya, pada kondisi alat yang sama dan variabel yang sama, diameter lubang buang 0,12 m menghasilkan nilai efisiensi tertinggi. Tinggi level air dipertahankan pada level 0,2 m, sehingga jumlah debit yang terpakai pada setiap variasi jarak sudu dengan lubang buang akan berubah seiring dengan besarnya jarak tersebut. Cara mempertahankan tinggi level tersebut adalah dengan menaikkan dan menurunkan pegas daya pompa setelah didapat tinggi level air yang diinginkan pegas ditahan. Hasil pengamatan dan perhitungan ditabelkan sebagai berikut: B. Data Hasil Pengujian 1. Data Hasil Pengukuran Aktual Dengan menggunakan persamaan 2 nt 60 kita dapat menentukan besarnya daya poros yang dihasilkan. Untuk variasi jumlah sudu persamaan yang diberikan pun sama. Besarnya daya poros ini ditentukan oleh besarnya torsi

2 50 dan putaran poros yang dihasilkan. Untuk menentukan efisiensi terlebih dahulu harus diketahui besarnya daya hidrolis (potensial air). Daya hidrolis dalam penelitian ini besarnya ditentukan oleh debit dan head (jarak permukaan air atas dengan jarak permukaan air bawah). Untuk menghitung daya hidrolis dapat ditentukan dengan persamaan hasil perhitungan tersebut dapat kita lihat pada tabel-tabel dibawah ini. Tabel 5. Pada jumlah sudu 3 dengan variasi jarak sudu dengan lubang buang. Jarak sudu (m) Torsi (Nm) Rpm Hasil Perhitungan Aktual Jumlah Sudu 3 Daya Poros (Watt) ω (rad/sec) Debit (m 3 /s) Daya Hidrolik (Watt) Efisiensi (%) 0,03 0, ,74 4,792 6, , , ,28 0,06 0,767 64,94 5,213 6, , ,914 11,87 0,09 0, ,22 6,209 6, , , ,045 0,12 0, ,44 4,905 6, , , ,81

3 51 Tabel 6. Pada jumlah sudu 4 dengan variasi jarak sudu dengan lubang buang. Jarak Hasil perhitungan aktual jumlah sudu 4 sudu Daya Daya (m) Torsi Rpm Poros ω Debit Hidrolik Efisiensi (Nm) (Watt) (rad/sec) (m 3 /s) (Watt) (%) 0,03 0, ,52 5,858 7, , ,086 13,29 0,06 0, ,92 6,468 7, , ,554 14,52 0,09 1, ,46 7,448 7, , ,019 16,54 0,12 0, ,86 6,074 6, , ,707 13,90 Tabel 7. Pada jumlah sudu 6 dengan variasi jarak sudu dengan lubang buang. Hasil Perhitungan Aktual Jumlah Sudu 6 Jarak sudu Daya Daya (m) Torsi Rpm Poros ω Debit Hidrolik Efisiensi (Nm) (Watt) (rad/sec) (m 3 /s) (Watt) (%) 0,03 0,73 69,38 5,266 7, , , ,11 0,06 0, ,74 5,695 7, , , ,90 0,09 0,976 67,22 6,867 7, , , ,47 0,12 0, ,28 5,440 6, , , ,85 2. Analisa dan Pembahasan Aktual Putaran poros yang dihasilkan menurun seiring dengan bertambahnya jarak sudu dengan lubang buang. Putaran tertinggi terjadi pada jarak sudu dengan lubang buang sebesar 0,03 m. Pada sebuah vortex kecepatan semakin bertambah seiring dengan semakin dekatnya dengan pusat vortex, tekanan

4 52 akibat grafitasi meningkat seiring dengan kedalaman air ditinjau dari permukaan. Berdasarkan sifat vortex yang menyatakan bahwa tekanan fluida dalam sebuah vortex bernilai paling rendah dipusatnya dimana pada kondisi ini kecepatannya paling tinggi, dan naik secara bertahap sesuai dengan pengaruh jarak dari pusat. Sehingga semakin besar jarak sudu dengan lubang buang akan membuat luas area yang terkena sudu semakin kecil, hal ini terjadi karena jarak dengan pusat vortex semakin besar, yang pada akhirnya akan membuat putaran poros yang dihasilkan menurun. Proses pengambilan data aktual dengan memvariasikan jarak sudu dengan lubang buang seperti terlihat pada gambar 37, dari gambar tersebut dapat kita lihat bahwa terjadi kenaikan nilai torsi seiring dengan bertambahnya jarak sudu dengan lubang buang. Namun pada jarak sudu dengan lubang buang sebesar 0,12 m torsi kembali menurun, ini terjadi karena sudu tenggelam sebagian. Hal ini menyebabkan luas bidang kontak berkurang, yang mengakibatkan berkurangnya pula daya yang diterima sudu. Nilai torsi terbesar didapat pada jarak sudu dengan lubang buang sebesar 0,09 m. Terlihat pada grafik bahwa pada semua jumlah sudu, nilai torsi berada pada titik puncak. Pada jarak ini sudu turbin tenggelam dan debit yang terpakai pun cukup besar sehingga torsi yang dihasilkan menjadi besar. Selain itu jumlah sudu juga berpengaruh atas naiknya nilai torsi, semakin banyak jumlah sudu nilai torsi pun ikut bertambah. Namun demikian kenaikan nilai torsi sangat dipengaruhi oleh luas bidang kontak air, sehingga

5 53 jumlah sudu yang banyak tidak selalu menghasilkan torsi yang terbesar. Hal ini tampak pada sudu 6, walaupun memiliki jumlah sudu terbanyak namun tenyata torsi yang dihasilkan lebih kecil dibandingkan dengan jumlah sudu 4. Berbeda dengan torsi yang terjadi pada sudu 3, walaupun luas bidang kontak air tiap sudu paling besar tetapi nilai torsi yang dihasilkan justru paling kecil. Nilai torsi tertinggi yang dihasilkan terjadi pada jumlah sudu 4. Walaupun terjadi penurunan luas bidang kontak air dengan sudu, namun torsi yang dihasilkan adalah terbesar. Ini terjadi karena kecepatan pada kondisi ini paling besar sehingga debit aliran yang diterima adalah yang paling optimal dibandingkan dengan sudu 3 dan 6. Pada sudu 3 debit sebagian langsung turun melalui lubang buang sebelum menumbuk sudu, sedangkan pada sudu 6 terjadi pengurangan energi karena kecepatan aliran yang diterima sudu turun selain itu juga karena ada debit aliran yang berada diantara celah sudu yang justru menghambat putaran poros. Gambar 37. Grafik hubungan jarak sudu dengan lubang buang terhadap torsi aktual

6 54 Pada gambar 38 dapat kita lihat bahwa pola yang terjadi mirip dengan pola yang terjadi pada grafik pada gambar 37, artinya daya poros terbesar terjadi pada jarak sudu dengan lubang buang 0,09 m, sedangkan pada jarak sudu dengan lubang 0,03 m besarnya daya poros bernilai lebih kecil. Daya poros secara metematis dapat ditulis sebagai : nt Pb 2 60 Dengan demikian dapat kita katakan bahwa daya poros berbanding lurus dengan putaran poros dengan torsi, sehingga semakin besar torsi yang dan putaran poros maka semakin besar pula daya poros yang dihasilkan. Jika kita amati pada sudu 4 terjadi kenaikan daya poros sebesar 0,478 watt dari jarak sudu dengan lubang 0,03 m ke 0,06 m, dan kenikan daya poros sebesar 1,658 watt dari jarak sudu dengan lubang buang 0,03 m ke 0,09 m. Daya poros terkecil terjadi pada sudu 3 dengan jarak sudu terhadap lubang buang 0,12 m. Hal ini disebabkan pada kondisi ini putaran yang didapat adalah paling kecil, begitu juga dengan torsi yang dihasilkan juga mengalami penurunan. Dengan demikian daya poros secara otomatis akan mengalami penurunan.

7 55 Gambar 38. Grafik hubungan jarak sudu dengan lubang buang terhadap daya poros aktual. Efisiensi adalah perbandingan antara daya output yang dihasilkan berbanding dengan input yang diberikan. Variasi jarak sudu terhadap lubang buang terbaik berada pada jarak 0,09 m, pada kondisi ini sudu tenggelam penuh, jarak sudu terhadap lubang buang juga tidak terlalu jauh artinya pada kondisi ini kecepatan aliran masih sangat tinggi. Selain itu pada jarak ini tidak mengganggu proses keluarnya air melalui lubang buang, karena jika terlalu dekat justru akan membuat pembebanan yang diterima sudu semakin kecil. Jumlah sudu terbaik didapat pada jumlah sudu 4. Jumlah sudu ini mempunyai jarak antar sudu yang tidak terlalu besar sehingga energi yang terima menjadi optimal, selain itu luas bidang kontak juga tidak terlalu kecil. Sehingga gaya yang diterima tiap permukaan kontak sudu menjadi merata yang pada akhirnya jumlah total torsi menjadi besar, namun demikian bukan berarti semakin banyak sudu semakin besar pula torsi yang didapat. Semakin banyak

8 56 jumlah sudu maka luas permukaan kontak akan semakin kecil, sehingga pada kondisi tertentu semakin banyak sudu akan membuat torsi yang dihasilkan bernilai nol, karena tidak ada lagi luas bidang kontak air dengan permukaan sudu. Kenaikan efisiensi terhadap variasi jarak sudu dengan lubang buang bisa kita lihat pada gambar 39, terlihat bahwa pada sudu 4 terjadi kenaikan sebesar 1,39% dari jarak sudu dengan lubang buang 0,03 m ke jarak sudu dengan lubang buang 0,06. Dan kenaikan sebesar 2,02% dari jarak sudu dengan lubang buang 0,06 m ke jarak sudu dengan lubang buang 0,09. Efisiensi tertinggi terjadi pada sudu 4 sebesar 16,54% pada jarak sudu dengan lubang buang 0,09 m seperti yang terlihat pada gambar 39 grafik hubungan jarak sudu dengan lubang buang terhadap Efisiensi aktual. Hal tersebut terjadi karena dari daya yang dihasilkan pada kondisi ini yang merupakan daya terbesar yang dihasilkan turbin. Gambar 39. Grafik hubungan jarak sudu dengan lubang buang terhadap Efisiensi aktual

9 57 C. Data Hasil Pehitungan Teoritik 1. Kondisi Perhitungan Teoritik Data perhitungan teoritik didapatkan dari beberapa parameter pengukuran aktual yang kemudian di hitung secara teoritik menggunakan beberapa formula. Parameter aktual yang dipakai dalam perhitungan teoritik adalah debit, putararan poros, luas bidang kontak air dengan sudu. Kemudian setelah itu dihitung gaya yang bekerja pada sudu, torsi, daya poros yang dihasilkan, daya hidrolis, dan yang terakhir efisiensi. Untuk variasi jumlah sudu persamaan yang diberikan pun sama yaitu : F P A df pda df p drdz Dalam perhitungan ini, tinjauan kita adalah vortex bebas, sehingga formula distribusi tekanan yang digunakan dalam perhitungan adalah : 2 C 2 P g H z 2gr 2 C 2 df g H z drdz 2gr Sehingga untuk perhitungan gaya yang bekerja pada sudu digunakan formula sebagai berikut: 2. Analisa dan Pembahasan Data Teoritik Dari data hasil perhitungan teoritik, nilai torsi terbesar didapat pada jarak sudu dengan lubang buang 0,03 m, kemudian terus menurun seiring dengan

10 58 semakin besarya jarak sudu buang. Ini tejadi karena torsi sangat dipengaruhi oleh gaya dan jarak titik bidang gaya. Sedangkan gaya sangat dipengaruhi oleh tekanan dan luas bidang kontak. Artinya semakin luas bidang kontak dan tekanan maka akan memperbesar torsi yang dihasilkan. Nilai torsi tertinggi didapat pada jumlah sudu 4 sebesar 3,8024 Nm pada jarak sudu dengan lubang 0,03 m. Hal ini terjadi karena distribusi tekanan yang terjadi pada sudu merupakan fungsi dari jari-jari dan z sehingga dapat dikatakan bahwa semakin besar z maka semakin kecil tekanan yang terjadi dan mengakibatkan semakin kecil pula gaya yang diterima oleh sudu. Grafik hubungan jarak sudu dengan lubang terhadap torsi dapat dilihat pada gambar 40. Gambar 40. Grafik hubungan jarak sudu dengan lubang buang terhadap torsi teoritik

11 59 Daya poros merupakan daya yang dihasilkan dari perkalian kecepatan sudut dengan torsi secara teoritik. Sehingga besarnya daya poros sangat bergantung pada besarnya tori dan kecepatan sudut yang dihasilkan. Dapat kita lihat pada gambar 41, bahwa pola grafik yang terbentuk mirip dengan pola grafik torsi, artinya besarnya daya poros tertinggi terjadi pada jarak sudu dengan lubang buang 0,03 m, dan menurun seiring dengan bertambahnya jarak sudu dengan lubang buang. Pada variasi jumlah sudu didapat jumlah sudu 4 adalah jumlah sudu terbaik untuk menghasilkan daya poros tertinggi. Daya poros secara metematis dapat ditulis sebagai : nt Pb 2 60 T Dengan demikian torsi dan dan kecepatan sudutlah yang paling berpengaruh dalam menentukan besarnya nilai daya poros. Gambar 41. Grafik hubungan jarak sudu dengan lubang buang terhadap daya poros teoritik.

12 60 Efisiensi terbaik didapat pada jumlah sudu 4, sebesar 53,76% pada jarak sudu dengan lubang buang 0,03 m. Ini terjadi karena pada jumlah sudu ini nilai kecepatan sudut dan torsi yang dihasilkan adalah sangat besar sehingga daya poros yang dihasilkan juga besar. Sedangkan efisiensi terkecil terjadi pada jumlah sudu 6 dan jarak sudu dengan lubang buang 0,12 m, sebesar 10,165%. hal ini terjadi karena pada kondisi ini sudu tenggelam sebagian, dan putaran yang dihasilkan juga kecil. Gambar 42. Grafik hubungan jarak sudu dengan lubang buang terhadap Efisiensi teoritik D. Analisa Perbandingan Data Aktual Dengan Teoritik 1. Torsi Besarnya torsi pada perhitungan teoritik terlihat lebih besar jika dibandingkan dengan torsi pada aktual. Ini terjadi karena pada data aktual torsi didapat dari pembacaan torsimeter. Sedangkan pada perhitungan teoritis besarnya torsi

13 61 dipengaruhi oleh besarnya gaya yang bekerja pada sudu, luas bidang kontak air dengan sudu, serta letak titik bidang gaya. Sehingga terlihat pada gambar 43 (b) bahwa nilai torsi teoritik adalah lebih besar dibandingkan dengan kondisi aktual. Ada hal menarik jika kita amati pola garis torsi pada grafik torsi aktual dengan teoritis. Tampak pada grafik torsi aktual, torsi tertinggi di dapat pada jumlah sudu 4 buah, dengan jarak sudu dengan lubang sebesar 0,09 m. sedangkan pada grafik teoritis torsi tertinggi didapat pada jumlah sudu 4 buah, dengan jarak sudu terhadap lubang buang 0,03 m kemudian turun seiring dengan semakin besarnya jarak sudu dengan lubang buang. Perbedaan pola grafik torsi aktual dengan teoritis terjadi karena kajian teoritis yang dilakukan masih dasar dan sederhana. Data-data pada kajian teoritik diambil dari data aktual, seperti luas area bidang kontak air dengan sudu dan kecepatan putaran poros. Hal ini dilakukan karena peneliti mengalami kesulitan untuk mengetahui profil vortex yang terbentuk sehingga dalam menentukan kecepatan sudut teoritis berdasarkan data kecepatan putaran poros aktual. Selain itu gaya yang diterima sudu turbin diasumsikan tegak lurus terhadap permukaan sudu turbin. Hal ini dilakukan karena peneliti tidak dapat mengetahui profil aliran vortex yang menumbuk sudu turbin. Sehingga terjadi perbedaan yang mendasar antara grafik torsi aktual dengan teoritis.

14 62 (a) (b) Gambar 43. Grafik Perbandingan torsi actual terhadap torsi teoritik (a) grafik jarak sudu dengan lubang buang terhadap torsi ( aktual) (b) grafik jarak sudu dengan lubang buang terhadap torsi (teoritik) 2. Daya Poros Hal mendasar yang membuat perbedaan pola grafik daya poros aktual dengan teoritis diantaranya adalah keterbatasan variabel yang diketahui dalam menentukan perhitungan pada kajian teoritik. Kajian teoritik yang seharusnya menggunakan segitiga kecepatan tetapi tidak dilakukan. Hal ini disebabkan pada kondisi aktual kecepatan aliran air yang menumbuk tidak dapat di ukur, karena alat ukur yang dipasang akan tertabrak sudu ketika dilakukan pengukuran. Sehingga kecepatan aliran air yang berputar diasumsikan sama dengan kecepatan putar poros. Pada kajian aktual daya poros didapat dari hasil pengukuran, yang nilainya merupakan sebuah nilai dimana semua parameter yang mempengaruhi kinerja turbin sudah terangkum dalam besarnya nilai torsi dan putaran poros. Sedangkan pada kajian teoritik ada beberapa parameter yang belum dikaji

15 63 lebih mendalam, hal ini disebabkan karena keterbatasan parameter yang diketahui dalam penelitian. Pada kajian teoritik terlihat bahwa nilai daya poros tertinggi berada pada jarak sudu dengan lubang buang sebeswar 0,03 m. Hal ini terjadi karena pada perhitungan kita asumsikan pada bagian belakang dinding sudu dalam keadaan kosong, artinya gaya yang bekerja pada sudu hanya menabrak bagian depan sudu dan tidak ada hambatan pada bagian belakang sudu. Pada kondisi aktualnya pada bagian belakang sudu tergenang air, dengan luas permukaan dan massa tertentu, sehingga jika kita tinjau dengan tekanan hidrostatis pada bagian tersebut akan terjadi tekanan pada dinding belakang sudu yang nilainya akan menjadi negatif bagi gaya yang bekerja pada bagian depan sudu. Besarnya nilai gaya tersebut sangat dipengaruhi oleh kedalaman sudu, semakin besar luas bidang kontak dan kedalaman sudu yang tergenang maka semakin besar pula nilai gaya yang bekerja pada bagian belakang sudu. Hal ini mengakibatkan semakin besar pula gaya negatif yang menjadi hambatan pada sudu.

16 64 Perbedaan tersebut dapat dilihat secara visual pada gambar 44, grafik perbandingan daya poros aktual dan daya poros teoritik. (a) (b) Gambar 44. Grafik Perbandingan daya poros actual terhadap daya poros teoritik (a) grafik jarak sudu dengan lubang buang terhadap daya poros (aktual) (b) grafik sudu dengan lubang buang terhadap daya poros (teoritik) 3. Efisiensi Efisiensi terbesar pada kondisi aktual adalah pada jumlah sudu 4 buah, begitu pula pada kajian teoritik. Artinya disini bisa dikatakan bahwa jumlah sudu 4 adalah sudu terbaik untuk menghasilkan efisiensi tertinggi. Namun demikian walaupun pada kondisi teoritik efisiensi menurun seiring dengan semakin besarnya jarak sudu dengan lubang buang, hal itu dikarenakan tekanan hidrostatis yang bekerja pada dinding belakang sudu yang tidak diketahui besarnya. Sebaliknya pada kondisi aktual efisiensi terus naik seiring dengan bertambah besarnya jarak sudu dengan lubang buang dan memiliki nilai efisiensi tertinggi pada jarak sudu dengan lubang buang 0,09 m.

17 65 Gambar 45. (a) (b) Grafik Perbandingan Efisiensi actual terhadap Efisiensi teoritik (a) grafik jarak sudu dengan lubang buang terhadap efisiensi (aktual) (b) grafik sudu dengan lubang buang terhadap efisiensi (teoritik)

DAFTAR ISI DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR SIMBOL... A. Latar Belakang B. Tujuan dan Manfaat C. Batasan Masalah...

DAFTAR ISI DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR SIMBOL... A. Latar Belakang B. Tujuan dan Manfaat C. Batasan Masalah... i DAFTAR ISI Halaman DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR SIMBOL... i iv v viii I. PENDAHULUAN A. Latar Belakang... 1 B. Tujuan dan Manfaat... 2 C. Batasan Masalah... 2 D. Sistematika

Lebih terperinci

PENGUJIAN PROTOTIPE TURBIN HEAD SANGAT RENDAH PADA SUATU SALURAN ALIRAN AIR

PENGUJIAN PROTOTIPE TURBIN HEAD SANGAT RENDAH PADA SUATU SALURAN ALIRAN AIR PENGUJIAN PROTOTIPE TURBIN HEAD SANGAT RENDAH PADA SUATU SALURAN ALIRAN AIR Ridwan Arief Subekti 1, Anjar Susatyo 2 1 Pusat Penelitian Tenaga Listrik dan Mekatronik, LIPI, Bandung ridw001@lipi.go.id 2

Lebih terperinci

BAB IV PENGOLAHAN DATA

BAB IV PENGOLAHAN DATA BAB IV PENGOLAHAN DATA 4.1 Data Hasil Percobaan PENGUKURAN POMPA SENTRIFUGAL Pengujian Pompa Tunggal Putaran = 2100 rpm No Ps Pd Pd-Ps h Q Head N/m2 N/m2 N/m2 mmhg m3/dt m 1-4000 60000 64000 0 0 6.53061

Lebih terperinci

II. TINJAUAN PUSTAKA. digalakan penemuan-penemuan atau pemanfatan-pemanfaatan energi-energi

II. TINJAUAN PUSTAKA. digalakan penemuan-penemuan atau pemanfatan-pemanfaatan energi-energi II. TINJAUAN PUSTAKA A. Energi Secara global telah diketahui bersama bahwa sumber energi tak terbaharui semakin berkurang keberadaannya maka sudah selayaknya untuk dicari dan digalakan penemuan-penemuan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN digilib.uns.ac.id BAB IV HASIL DAN PEMBAHASAN 4.1. Hasil Pengujian Turbin Cross Flow Tanpa Sudu Pengarah Pengujian turbin angin tanpa sudu pengarah dijadikan sebagai dasar untuk membandingkan efisiensi

Lebih terperinci

KAJI EKSPERIMENTAL KINERJA TURBIN AIR HASIL MODIFIKASI POMPA SENTRIFUGAL UNTUK PEMBANGKIT LISTRIK TENAGA MIKROHIDRO

KAJI EKSPERIMENTAL KINERJA TURBIN AIR HASIL MODIFIKASI POMPA SENTRIFUGAL UNTUK PEMBANGKIT LISTRIK TENAGA MIKROHIDRO B.11. Kaji eksperimental kinerja turbin air hasil modifikasi... KAJI EKSPERIMENTAL KINERJA TURBIN AIR HASIL MODIFIKASI POMPA SENTRIFUGAL UNTUK PEMBANGKIT LISTRIK TENAGA MIKROHIDRO Gatot Suwoto Program

Lebih terperinci

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Ray Posdam J Sihombing 1, Syahril Gultom 2 1,2 Departemen

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Diagram Alir Penelitian Urutan langkah-langkah pengujian turbin Savonius mengacu pada diagram dibawah ini: MULAI Studi Pustaka Pemilihan Judul Penelitian Penetapan Variabel

Lebih terperinci

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik GIBRAN

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik GIBRAN Rancang Bangun Turbin Vortex Dengan Casing Berpenampang Lingkaran Yang Menggunakan Sudu Diameter 46cm Pada 3 Variasi Jarak Antara Sudu Dan Saluran Keluar SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2013

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2013 UJI PERFORMANSI TURBIN VORTEX MENGGUNAKAN VARIASI DIMENSI SUDU 2 DAN 3 DAN LUAS SALURAN BUANG SERTA KETINGGIAN DARI DASAR CASING SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Pengertian Umum Turbin Air Secara sederhana turbin air adalah suatu alat penggerak mula dengan air sebagai fluida kerjanya yang berfungsi mengubah energi hidrolik dari aliran

Lebih terperinci

Panduan Praktikum Mesin-Mesin Fluida 2012

Panduan Praktikum Mesin-Mesin Fluida 2012 PERCOBAAN TURBIN PELTON A. TUJUAN PERCOBAAN Tujuan dari pelaksanaan percobaan ini adalah untuk mempelajari prinsip kerja dan karakteristik performance turbin air (pelton). Karakteristik performance turbin

Lebih terperinci

SOAL TRY OUT FISIKA 2

SOAL TRY OUT FISIKA 2 SOAL TRY OUT FISIKA 2 1. Dua benda bermassa m 1 dan m 2 berjarak r satu sama lain. Bila jarak r diubah-ubah maka grafik yang menyatakan hubungan gaya interaksi kedua benda adalah A. B. C. D. E. 2. Sebuah

Lebih terperinci

PENGARUH VARIASI DIAMETER NOSEL TERHADAP TORSI DAN DAYA TURBIN AIR

PENGARUH VARIASI DIAMETER NOSEL TERHADAP TORSI DAN DAYA TURBIN AIR TURBO Vol. 6 No. 1. 2017 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo PENGARUH VARIASI DIAMETER NOSEL TERHADAP TORSI DAN

Lebih terperinci

PENGUKURAN ALIRAN TUNAK PADA SALURAN TERBUKA DAN PENGUJIAN KARAKTERISTIK DASAR POMPA TURBIN. Disusun Oleh : Latif Wahyu

PENGUKURAN ALIRAN TUNAK PADA SALURAN TERBUKA DAN PENGUJIAN KARAKTERISTIK DASAR POMPA TURBIN. Disusun Oleh : Latif Wahyu PENGUKURAN ALIRAN TUNAK PADA SALURAN TERBUKA DAN PENGUJIAN KARAKTERISTIK DASAR POMPA TURBIN Disusun Oleh : Latif Wahyu 121724015 POLITEKNIK NEGERI BANDUNG BANDUNG 2014 PENGUKURAN ALIRAN TUNAK PADA SALURAN

Lebih terperinci

Pengaruh Variasi Tebal Sudu Terhadap Kinerja Kincir Air Tipe Sudu Datar

Pengaruh Variasi Tebal Sudu Terhadap Kinerja Kincir Air Tipe Sudu Datar Pengaruh Variasi Tebal Sudu Terhadap Kinerja Kincir Air Tipe Sudu Datar Slamet Wahyudi, Dhimas Nur Cahyadi, Purnami Jurusan Teknik Mesin Fakultas Teknik Universitas Brawijaya Jl. MT. Haryono 167, Malang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Teori Pompa Sentrifugal 2.1.1. Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1.1 Turbin Air Turbin air adalah turbin dengan media kerja air. Secara umum, turbin adalah alat mekanik yang terdiri dari poros dan sudu-sudu. Sudu tetap atau stationary blade, tidak

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dijelaskan perancangan sistem serta realisasi perangkat keras pada perancangan skripsi ini. 3.1. Gambaran Alat Alat yang akan direalisasikan adalah sebuah alat

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1. Hasil Analisa. Dari hasil pengambilan data performasi turbin air dari modifikasi blower angin sentrifugal yang dilakukan di Belik (pemandian sumber air) yang beralamat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Angin Angin adalah gerakan udara yang terjadi di atas permukaan bumi. Angin terjadi karena adanya perbedaan tekanan udara, ketinggian dan temperatur. Semakin besar

Lebih terperinci

BAB III METODE PENELITIAN. Bahan yang digunakan pada penelitian ini adalah :

BAB III METODE PENELITIAN. Bahan yang digunakan pada penelitian ini adalah : BAB III METODE PENELITIAN 3.1. Bahan dan Alat 3.1.1. Bahan Penelitian Bahan yang digunakan pada penelitian ini adalah : Air 3.1.2. Alat Penelitian Alat yang digunakan dalam penelitian ini dapat dilihat

Lebih terperinci

PROGRAM PENDIDIKAN SARJANA EKSTENSI DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2014

PROGRAM PENDIDIKAN SARJANA EKSTENSI DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2014 PRESTASI RANCANG BANGUN TURBIN VORTEX DENGAN CASING BERPENAMPANG LINGKARAN PADA SUDU BERDIAMETER 32 CM UNTUK 3 VARIASI JARAK SUDU DENGAN SALURAN KELUAR SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat

Lebih terperinci

PENGARUH VARIASI BENTUK SUDU TERHADAP KINERJA TURBIN AIR KINETIK (Sebagai Alternatif Pembangkit Listrik Daerah Pedesaan)

PENGARUH VARIASI BENTUK SUDU TERHADAP KINERJA TURBIN AIR KINETIK (Sebagai Alternatif Pembangkit Listrik Daerah Pedesaan) TURBO Vol. 5 No. 1. 2016 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo PENGARUH VARIASI BENTUK SUDU TERHADAP KINERJA TURBIN

Lebih terperinci

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik MARULITUA SIDAURUK NIM

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik MARULITUA SIDAURUK NIM ANALISIS DAN SIMULASI VARIASI SUDUT SUDU-SUDU TURBIN IMPULS TERHADAP DAYA MEKANIS YANG DIHASILKAN TURBIN SEBAGAI PEMBANGKIT TENAGA UAP PADA PKS KAPASITAS 30 TON TBS/JAM SKRIPSI Skripsi Yang Diajukan Untuk

Lebih terperinci

grafik hubungan antara sudut datang air (θ) dengan torsi yang dihasilkan dari setiap putaran turbin yang ditentukan sebagai berikut :

grafik hubungan antara sudut datang air (θ) dengan torsi yang dihasilkan dari setiap putaran turbin yang ditentukan sebagai berikut : BAB V HASIL DAN PEMBAHASAN Dari data yang diperoleh melalui simulasi dan analisis screw turbin melalui software autodeks CFD 2013 maka data yang didapat dapat di buat menjadi grafik sebagai berikut : 5.1

Lebih terperinci

RANCANG BANGUN TURBIN PELTON UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO DENGAN VARIASI BENTUK SUDU

RANCANG BANGUN TURBIN PELTON UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO DENGAN VARIASI BENTUK SUDU PKMT-2-16-1 RANCANG BANGUN TURBIN PELTON UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO DENGAN VARIASI BENTUK SUDU Pamungkas Irwan N, Franciscus Asisi Injil P, Karwanto, Samodra Wasesa Jurusan Teknik

Lebih terperinci

III.METODOLOGI PENELITIAN. Penelitian ini dilakukan mulai 26 Januari sampai 14 mei 2012 di Laboraorium

III.METODOLOGI PENELITIAN. Penelitian ini dilakukan mulai 26 Januari sampai 14 mei 2012 di Laboraorium III.METODOLOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilakukan mulai 26 Januari sampai 14 mei 2012 di Laboraorium Mekanika Fluida Teknik Mesin Universitas Lampung. B. Penyiapan Bahan

Lebih terperinci

BAB I PENDAHULUAN. penting bagi masyarakat. Salah satu manfaatnya adalah untuk. penerangan. Keadaan kelistrikan di Indonesia sekarang ini sangat

BAB I PENDAHULUAN. penting bagi masyarakat. Salah satu manfaatnya adalah untuk. penerangan. Keadaan kelistrikan di Indonesia sekarang ini sangat BAB I PENDAHULUAN 1.1. Latar Belakang Energi listrik merupakan energi yang mempunyai peranan penting bagi masyarakat. Salah satu manfaatnya adalah untuk penerangan. Keadaan kelistrikan di Indonesia sekarang

Lebih terperinci

RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN PENGUJIAN BENTUK SUDU TERHADAP TORSI DAN DAYA TURBIN YANG DIHASILKAN

RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN PENGUJIAN BENTUK SUDU TERHADAP TORSI DAN DAYA TURBIN YANG DIHASILKAN TURBO Vol. 6 No. 1. 2017 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN

Lebih terperinci

BAB IV ANALISA DATA DAN PERHITUNGAN

BAB IV ANALISA DATA DAN PERHITUNGAN BAB IV ANALISA DATA DAN PERHITUNGAN 4.1 Pengambilan data Pengambilan data dilakukan pada tanggal 11 Desember 212 di Laboratorium Proses Produksi dengan data sebagai berikut : 1. Kecepatan angin (v) = 3

Lebih terperinci

BAB I PENGUJIAN TURBIN AIR FRANCIS

BAB I PENGUJIAN TURBIN AIR FRANCIS BAB I PENGUJIAN TURBIN AIR FRANCIS 1.1 Pendahuluan 1.1.1 Latar Belakang Seiring dengan perkembang teknologi yang semakin maju, banyak diciptakan peralatan peralatan yang inovatif serta tepat guna. Dalam

Lebih terperinci

Pengaruh Variasi Ketinggian Aliran Sungai Terhadap Kinerja Turbin Kinetik Bersudu Mangkok Dengan Sudut Input 10 o

Pengaruh Variasi Ketinggian Aliran Sungai Terhadap Kinerja Turbin Kinetik Bersudu Mangkok Dengan Sudut Input 10 o Pengaruh Variasi Ketinggian Aliran Sungai Terhadap Kinerja Turbin Kinetik Bersudu Mangkok Dengan Sudut Input 10 o Asroful Anam Jurusan Teknik Mesin S-1 FTI ITN Malang, Jl. Raya Karanglo KM 02 Malang E-mail:

Lebih terperinci

UNJUK KERJA TURBIN AIR TIPE CROSS FLOW DENGAN VARIASI DEBIT AIR DAN SUDUT SERANG NOSEL

UNJUK KERJA TURBIN AIR TIPE CROSS FLOW DENGAN VARIASI DEBIT AIR DAN SUDUT SERANG NOSEL UNJUK KERJA TURBIN AIR TIPE CROSS FLOW DENGAN VARIASI DEBIT AIR DAN SUDUT SERANG NOSEL Yudi Setiawan, Irfan Wahyudi, Erwin Nandes Jurusan Teknik Mesin, Universitas Bangka Belitung Jl.Merdeka no. 04 Pangkalpinang

Lebih terperinci

LABORATORIUM SATUAN OPERASI

LABORATORIUM SATUAN OPERASI LABORATORIUM SATUAN OPERASI SEMESTER GENAP TAHUN AJARAN 2013-2014 MODUL : Pompa Sentrifugal PEMBIMBING : Ir. Unung Leoanggraini, MT Praktikum : 10 Maret 2014 Penyerahan : 17 Maret 2014 (Laporan) Oleh :

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian dasar tentang turbin air Turbin berfungsi mengubah energi potensial fluida menjadi energi mekanik yang kemudian diubah lagi menjadi energi listrik pada generator.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN USTAKA 2.1. engertian Dasar Tentang Turbin Air Kata turbin ditemukan oleh seorang insinyur yang bernama Claude Bourdin pada awal abad 19, yang diambil dari terjemahan bahasa latin dari

Lebih terperinci

ANALISIS PERBANDINGAN DAYA PADA SALURAN PEMBAWA UNTUK SUPLAI TURBIN ULIR ARCHIMEDES

ANALISIS PERBANDINGAN DAYA PADA SALURAN PEMBAWA UNTUK SUPLAI TURBIN ULIR ARCHIMEDES ANALISIS PERBANDINGAN DAYA PADA SALURAN PEMBAWA UNTUK SUPLAI TURBIN ULIR ARCHIMEDES Zulkiffli Saleh 1*, M. Fauzan Syafitra 2 1,2 Program Studi Teknik Elektro, Fakultas Teknik, Universitas Muhammadiyah

Lebih terperinci

BAB II DASAR TEORI. E p = Energi potensial (joule) m =Massa benda (kg) g = Percepatan gravitasi (m/s 2 ) h = Ketinggian benda (m)

BAB II DASAR TEORI. E p = Energi potensial (joule) m =Massa benda (kg) g = Percepatan gravitasi (m/s 2 ) h = Ketinggian benda (m) BAB II DASAR TEORI 2.1 Sumber Energi 2.1.1 Energi Potensial Energi potensial adalah energi yang dimiliki suatu benda akibat pengaruh tempat atau kedudukan dari benda tersebut Rumus yang dipakai dalam energi

Lebih terperinci

ANALISA PERANCANGAN TURBIN VORTEX DENGAN CASING BERPENAMPANG SPIRAL DAN LINGKARAN DENGAN 3 VARIASI DIMENSI SUDU

ANALISA PERANCANGAN TURBIN VORTEX DENGAN CASING BERPENAMPANG SPIRAL DAN LINGKARAN DENGAN 3 VARIASI DIMENSI SUDU ANALISA PERANCANGAN TURBIN VORTEX DENGAN CASING BERPENAMPANG SPIRAL DAN LINGKARAN DENGAN 3 VARIASI DIMENSI SUDU SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik INDRA

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.. Dasar Teori Pompa Sentrifugal... Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan gaya sentrifugal.

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Diagram Alir Penelitian Urutan langkah-langkah pengujian turbin Savonius mengacu pada diagram dibawah ini: Gambar 3.1 Diagram alir penelitian Gambar 3.2 Diagram alir penelitian

Lebih terperinci

Publikasi Online Mahsiswa Teknik Mesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018)

Publikasi Online Mahsiswa Teknik Mesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018) Publikasi Online Mahsiswa Teknik Mesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018) ANALISA PENGARUH JUMLAH SUDU DAN LAJU ALIRAN TERHADAP PERFORMA TURBIN KAPLAN Ari Rachmad Afandi 421204156

Lebih terperinci

KAJI EKSPERIMEN TURBIN ANGIN POROS HORIZONTAL TIPE KERUCUT TERPANCUNG DENGAN VARIASI SUDUT SUDU UNTUK PEMBANGKIT LISTRIK TENAGA ANGIN

KAJI EKSPERIMEN TURBIN ANGIN POROS HORIZONTAL TIPE KERUCUT TERPANCUNG DENGAN VARIASI SUDUT SUDU UNTUK PEMBANGKIT LISTRIK TENAGA ANGIN KAJI EKSPERIMEN TURBIN ANGIN POROS HORIZONTAL TIPE KERUCUT TERPANCUNG DENGAN VARIASI SUDUT SUDU UNTUK PEMBANGKIT LISTRIK TENAGA ANGIN Bono Jurusan Teknik Mesin Politeknik Negeri Semarang Jl. Prof. H. Sudarto,

Lebih terperinci

III. METODOLOGI PENELITIAN. Pembuatan alat penelitian ini dilakukan di Bengkel Berkah Jaya, Sidomulyo,

III. METODOLOGI PENELITIAN. Pembuatan alat penelitian ini dilakukan di Bengkel Berkah Jaya, Sidomulyo, 31 III. METODOLOGI PENELITIAN A. Tempat Pembuatan Dan Pengujian Pembuatan alat penelitian ini dilakukan di Bengkel Berkah Jaya, Sidomulyo, Lampung Selatan. Kemudian perakitan dan pengujian dilakukan Lab.

Lebih terperinci

Prestasi Kincir Angin Savonius dengan Penambahan Buffle

Prestasi Kincir Angin Savonius dengan Penambahan Buffle Prestasi Kincir Angin Savonius dengan Penambahan Buffle Halim Widya Kusuma 1,*, Rengga Dwi Cahya Hidayat 1, Muh Hamdani 1, 1 1 Teknik Mesin S1, Fakultas Teknologi Industri, Institut Teknologi Nasional

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA 2.1. Penelitian Terdahulu Menurut Muhammad As ad Abidin, Rudy Soenoko, Djoko Sutikno [2], pada penelitiannya mengenai pengaruh besar sudut kelengkungan sudu terhadap unjuk kerja

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Pompa Pompa adalah peralatan mekanis yang digunakan untuk menaikkan cairan dari dataran rendah ke dataran tinggi atau untuk mengalirkan cairan dari daerah bertekanan

Lebih terperinci

BAB III PERENCAAN DAN GAMBAR

BAB III PERENCAAN DAN GAMBAR BAB III PERENCAAN DAN GAMBAR 3.1 Diagram Alur Perencanaan Proses perancangan alat pencacah rumput gajah seperti terlihat pada diagram alir berikut ini: Mulai Pengamatan dan Pengumpulan Perencanaan Menggambar

Lebih terperinci

BAB I PENDAHULUAN. pemanfaatan energi listrik juga digunakan untuk kebutuhan lainnya

BAB I PENDAHULUAN. pemanfaatan energi listrik juga digunakan untuk kebutuhan lainnya BAB I PENDAHULUAN 1.1. Latar Belakang Energi listrik merupakan energi yang mempunyai peranan penting terutama pada kehidupan masyarakat. Salah satu pemanfaatan energi listrik adalah untuk penerangan, selain

Lebih terperinci

KINERJA YANG DIHASILKAN OLEH KINCIR AIR ARUS BAWAH DENGAN SUDU BERBENTUK MANGKOK. *Luther Sule

KINERJA YANG DIHASILKAN OLEH KINCIR AIR ARUS BAWAH DENGAN SUDU BERBENTUK MANGKOK. *Luther Sule KINERJA YANG DIHASILKAN OLEH KINCIR AIR ARUS BAWAH DENGAN SUDU BERBENTUK MANGKOK *Luther Sule *Kompleks Perumahan Dosen Unhas EB.17 Tamalanrea, Jurusan Mesin Fakultas Teknik Universitas Hasanuddin, Jl.

Lebih terperinci

ANALISIS VARIASI SUDUT SUDU-SUDU TURBIN IMPULS TERHADAP DAYA MEKANIS TURBIN UNTUK PEMBANGKIT LISTRIK TENAGA UAP

ANALISIS VARIASI SUDUT SUDU-SUDU TURBIN IMPULS TERHADAP DAYA MEKANIS TURBIN UNTUK PEMBANGKIT LISTRIK TENAGA UAP ANALISIS VARIASI SUDUT SUDU-SUDU TURBIN IMPULS TERHADAP DAYA MEKANIS TURBIN UNTUK PEMBANGKIT LISTRIK TENAGA UAP SKRIPSI Skripsi ini Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik OLEH

Lebih terperinci

BAB IV ANALISA DATA DAN PERHITUNGAN

BAB IV ANALISA DATA DAN PERHITUNGAN BAB IV ANALISA DATA DAN PERHITUNGAN 4.1 Pengambilan Data Pengambilan data dilakukan pada tanggal 11 Desember 2012 Januari 2013 di Laboratorium Proses Produksi dengan data sebagai berikut : 1. Kecepatan

Lebih terperinci

BAB I PENDAHULUAN. yang inovatif dan tepat guna. Salah satu contoh dalam bidang

BAB I PENDAHULUAN. yang inovatif dan tepat guna. Salah satu contoh dalam bidang BAB I PENDAHULUAN 1.1 LATAR BELAKANG Dalam kemajuan teknologi sekarang ini banyak dibuat peralatanperalatan yang inovatif dan tepat guna. Salah satu contoh dalam bidang teknik mesin terutama dalam bidang

Lebih terperinci

LAMPIRAN. Mulai. Dipasang pulley dan v-belt yang sesuai. Ditimbang kelapa parut sebanyak 2 kg. Dihidupkan mesin pemeras santan sistem screw press

LAMPIRAN. Mulai. Dipasang pulley dan v-belt yang sesuai. Ditimbang kelapa parut sebanyak 2 kg. Dihidupkan mesin pemeras santan sistem screw press LAMPIRAN Lampiran 1. Flowchart pelaksanaan penelitian Mulai Dipasang pulley dan v-belt yang sesuai Ditimbang kelapa parut sebanyak Dihidupkan mesin pemeras santan sistem screw press Dimasukkan kelapa perut

Lebih terperinci

KAJI EKSPERIMENTAL KINERJA TURBIN CROSSFLOW BERBASIS KONSTRUKSI SILINDER (DRUM) POROS VERTIKAL UNTUK POTENSI ARUS SUNGAI

KAJI EKSPERIMENTAL KINERJA TURBIN CROSSFLOW BERBASIS KONSTRUKSI SILINDER (DRUM) POROS VERTIKAL UNTUK POTENSI ARUS SUNGAI B.10. Kaji eksperimental kinerja turbin crossflow... (Sahid) KAJI EKSPERIMENTAL KINERJA TURBIN CROSSFLOW BERBASIS KONSTRUKSI SILINDER (DRUM) POROS VERTIKAL UNTUK POTENSI ARUS SUNGAI Sahid Program Studi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pembangkit Listrik Tenaga Air Pembangkit Listrik Tenaga Air (PLTA) adalah pembangkit yang mengandalkan energi potensial dan kinetik dari air untuk menghasilkan energi listrik.

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISIS

BAB IV PENGUJIAN DAN ANALISIS BAB IV PENGUJIAN DAN ANALISIS Pada bab ini akan dibahas mengenai pengujian alat serta analisis dari hasil pengujian. Tujuan dilakukan pengujian adalah mengetahui sejauh mana kinerja hasil perancangan yang

Lebih terperinci

PENGUJIAN TURBIN AIR FRANCIS

PENGUJIAN TURBIN AIR FRANCIS PENGUJIAN TURBIN AIR FRANCIS BAB I PENDAHULUAN 1.1 Latar Belakang Seiring dengan perkembangan teknologi yang semakin maju, banyak diciptakan peralatan peralatan yang inovatif serta tepat guna. Dalam bidang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 15 BAB II TINJAUAN PUSTAKA Kompresor merupakan suatu komponen utama dalam sebuah instalasi turbin gas. Sistem utama sebuah instalasi turbin gas pembangkit tenaga listrik, terdiri dari empat komponen utama,

Lebih terperinci

DESAIN DAN PERHITUNGAN TEORITIS POMPA SENTRIFUGAL DENGAN STUDI KASUS DI PT. CHAROEN POKPHAND INDONESIA

DESAIN DAN PERHITUNGAN TEORITIS POMPA SENTRIFUGAL DENGAN STUDI KASUS DI PT. CHAROEN POKPHAND INDONESIA DESAIN DAN PERHITUNGAN TEORITIS POMPA SENTRIFUGAL DENGAN STUDI KASUS DI PT. CHAROEN POKPHAND INDONESIA Briyan Oktama 1, Tulus Burhanudin Sitorus 2 1,2 Departemen Teknik Mesin, Fakultas Teknik, Universitas

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro

BAB II TINJAUAN PUSTAKA. 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro BAB II TINJAUAN PUSTAKA 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro Pembangunan sebuah PLTMH harus memenuhi beberapa kriteria seperti, kapasitas air yang cukup baik dan tempat yang memadai untuk

Lebih terperinci

BAB IV PENGOLAHAN DATA DAN ANALISA DATA

BAB IV PENGOLAHAN DATA DAN ANALISA DATA BAB IV PENGOLAHAN DATA DAN ANALISA DATA 4.1 DATA Selama penelitian berlangsung, penulis mengumpulkan data-data yang mendukung penelitian serta pengolahan data selanjutnya. Beberapa data yang telah terkumpul

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial fluida, atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

Jurusan Fisika, Fakultas MIPA Universitas Negeri Jakarta Jl. Pemuda No.10, Rawamangun, Jakarta Timur *

Jurusan Fisika, Fakultas MIPA Universitas Negeri Jakarta Jl. Pemuda No.10, Rawamangun, Jakarta Timur * Pengujian Prototipe Model Turbin Air Sederhana Dalam Proses Charging 4 Buah Baterai 1.2 Volt Yang Disusun Seri Pada Sistem Pembangkit Listrik Alternatif Tenaga Air Fitrianto Nugroho *, Iwan Sugihartono,

Lebih terperinci

PERANCANGAN DAN PENGUJIAN TURBIN KAPLAN PADA KETINGGIAN (H) 4 M SUDUT SUDU PENGARAH 30 DENGAN VARIABEL PERUBAHAN DEBIT (Q) DAN SUDUT SUDU JALAN

PERANCANGAN DAN PENGUJIAN TURBIN KAPLAN PADA KETINGGIAN (H) 4 M SUDUT SUDU PENGARAH 30 DENGAN VARIABEL PERUBAHAN DEBIT (Q) DAN SUDUT SUDU JALAN PERANCANGAN DAN PENGUJIAN TURBIN KAPLAN PADA KETINGGIAN (H) 4 M SUDUT SUDU PENGARAH 30 DENGAN VARIABEL PERUBAHAN DEBIT (Q) DAN SUDUT SUDU JALAN NASKAH PUBLIKASI Disusun oleh : ANDI SUSANTO NIM : D200 080

Lebih terperinci

Jurnal Ilmiah TEKNIK DESAIN MEKANIKA Vol. 6 No. 3, Juli 2017 ( )

Jurnal Ilmiah TEKNIK DESAIN MEKANIKA Vol. 6 No. 3, Juli 2017 ( ) Jurnal Ilmiah TEKNIK DESAIN MEKANIKA Vol. 6 No. 3, Juli 2017 (294 298) Pengaruh Variasi Sudut Sudu Segitiga Terhadap Performansi Kincir Air Piko Hidro Budiartawan K. 1, Suryawan A. A. A. 2, Suarda M. 3

Lebih terperinci

Kata Kunci : PLTMH, Sudut Nozzle, Debit Air, Torsi, Efisiensi

Kata Kunci : PLTMH, Sudut Nozzle, Debit Air, Torsi, Efisiensi ABSTRAK Ketergantungan pembangkit listrik terhadap sumber energi seperti solar, gas alam dan batubara yang hampir mencapai 75%, mendorong dikembangkannya energi terbarukan sebagai upaya untuk memenuhi

Lebih terperinci

a. Turbin Impuls Turbin impuls adalah turbin air yang cara kerjanya merubah seluruh energi air(yang terdiri dari energi potensial + tekanan +

a. Turbin Impuls Turbin impuls adalah turbin air yang cara kerjanya merubah seluruh energi air(yang terdiri dari energi potensial + tekanan + Turbin air adalah alat untuk mengubah energi potensial air menjadi menjadi energi mekanik. Energi mekanik ini kemudian diubah menjadi energi listrik oleh generator.turbin air dikembangkan pada abad 19

Lebih terperinci

BAB I PENDAHULUAN. Dalam pembuatan alat simulator radiator sebagai bentuk eksperimen. Dan

BAB I PENDAHULUAN. Dalam pembuatan alat simulator radiator sebagai bentuk eksperimen. Dan BAB I PENDAHULUAN 1.1. Latar Belakang Dalam pembuatan alat simulator radiator sebagai bentuk eksperimen. Dan team membuat alat simulator radiator agar dapat digunakan dan dimanfaatkan sebagai praktikum

Lebih terperinci

HYDRO POWER PLANT. Prepared by: anonymous

HYDRO POWER PLANT. Prepared by: anonymous HYDRO POWER PLANT Prepared by: anonymous PRINSIP DASAR Cara kerja pembangkit listrik tenaga air adalah dengan mengambil air dalam jumlah debit tertentu dari sumber air (sungai, danau, atau waduk) melalui

Lebih terperinci

PENGARUH KECEPATAN SUDUT TERHADAP EFISIENSI POMPA SENTRIFUGAL JENIS TUNGGAL

PENGARUH KECEPATAN SUDUT TERHADAP EFISIENSI POMPA SENTRIFUGAL JENIS TUNGGAL TURBO Vol. 4 No. 2. 2015 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/ummojs/index.php/turbo PENGARUH KECEPATAN SUDUT TERHADAP EFISIENSI

Lebih terperinci

PEMBUATAN TURBIN MIKROHIDRO TIPE CROSS-FLOW SEBAGAI PEMBANGKIT LISTRIK DI DESA BUMI NABUNG TIMUR

PEMBUATAN TURBIN MIKROHIDRO TIPE CROSS-FLOW SEBAGAI PEMBANGKIT LISTRIK DI DESA BUMI NABUNG TIMUR PEMBUATAN TURBIN MIKROHIDRO TIPE CROSS-FLOW SEBAGAI PEMBANGKIT LISTRIK DI DESA BUMI NABUNG TIMUR Mafrudin 1), Dwi Irawan 2). 1, 2) Jurusan Teknik Mesin Universitas Muhammadiyah Metro Jl. Ki Hajar Dewantara

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN 4.1. Konstruksi Mesin Pengupas Kulit Kentang

BAB IV HASIL DAN PEMBAHASAN 4.1. Konstruksi Mesin Pengupas Kulit Kentang BAB IV HASIL DAN PEMBAHASAN 4.1. Konstruksi Mesin Pengupas Kulit Kentang 1 7 2 6 5 3 4 Gambar 4.1. Desain Mesin Pengupas Kulit Kentang Komponen-komponen inti yang ada pada mesin pengupas kulit kentang

Lebih terperinci

BAB I PENDAHULUAN. melakukan sebuah usaha seperti foto kopi, rental komputer dan. warnet. Kebutuhan energi lisrik yang terus meningkat membuat

BAB I PENDAHULUAN. melakukan sebuah usaha seperti foto kopi, rental komputer dan. warnet. Kebutuhan energi lisrik yang terus meningkat membuat BAB I PENDAHULUAN 1.1. Latar Belakang Energi listrik merupakan kebutuhan pokok sekarang ini karena selain sebagai penerangan juga digunakan untuk melakukan sebuah usaha seperti foto kopi, rental komputer

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Cara Kerja Alat Cara kerja Mesin pemisah minyak dengan sistem gaya putar yang di control oleh waktu, mula-mula makanan yang sudah digoreng di masukan ke dalam lubang bagian

Lebih terperinci

PERANCANGAN TURBIN STRAIGHT BLADE DARRIEUS DENGAN TIGA SUDU

PERANCANGAN TURBIN STRAIGHT BLADE DARRIEUS DENGAN TIGA SUDU EKSERGI Jurnal Teknik Energi Vol No. Mei 05; 4-46 ERANANGAN TURBIN STRAIGHT BLADE DARRIEUS DENGAN TIGA SUDU Supriyo rogram Studi Teknik Konversi Energi oliteknik Negeri Semarang Jl. rof. H. Sudarto, S.H.,

Lebih terperinci

PENGUJIAN PENGARUH VARIASI JUMLAH DAN JARAK ANTAR DISK PADA RANCANG BANGUN TURBIN TESLA DENGAN KAPASITAS AIR KONSTAN

PENGUJIAN PENGARUH VARIASI JUMLAH DAN JARAK ANTAR DISK PADA RANCANG BANGUN TURBIN TESLA DENGAN KAPASITAS AIR KONSTAN PENGUJIAN PENGARUH VARIASI JUMLAH DAN JARAK ANTAR DISK PADA RANCANG BANGUN TURBIN TESLA DENGAN KAPASITAS AIR KONSTAN SKRIPSI Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik DIUSULKAN OLEH

Lebih terperinci

II. TINJAUAN PUSTAKA. A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH)

II. TINJAUAN PUSTAKA. A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) 6 II. TINJAUAN PUSTAKA A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Pembangkit Listrik Tenaga Mikrohidro (PLTMH), adalah suatu pembangkit listrik skala kecil yang menggunakan tenaga air

Lebih terperinci

PENGGUNAAN BENTUK SUDU SETENGAH SILINDER ELLIPTIK UNTUK MENINGKATKAN EFISIENSI TURBIN SAVONIUS

PENGGUNAAN BENTUK SUDU SETENGAH SILINDER ELLIPTIK UNTUK MENINGKATKAN EFISIENSI TURBIN SAVONIUS 5 PENGGUNAAN BENTUK SUDU SETENGAH SILINDER ELLIPTIK UNTUK MENINGKATKAN EFISIENSI TURBIN SAVONIUS Muhammad Irsyad Jurusan Teknik Mesin Universitas Lampung Keywords : Turbin Angin Savonius Sudu Elliptik

Lebih terperinci

ANALISIS PENGUJIAN SIMULATOR TURBIN AIR SKALA MIKRO

ANALISIS PENGUJIAN SIMULATOR TURBIN AIR SKALA MIKRO ANALISIS PENGUJIAN SIMULATOR TURBIN AIR SKALA MIKRO Oleh Bambang hermani bang2hermani@gmail.com. TM-Untag-Crb ABSTRAK Pengkajian rancang bangun simulator turbin air skala mikro dimaksudkan untuk penanding

Lebih terperinci

Bab IV Analisis dan Pengujian

Bab IV Analisis dan Pengujian Bab IV Analisis dan Pengujian 4.1 Analisis Simulasi Aliran pada Profil Airfoil Simulasi aliran pada profil airfoil dimaskudkan untuk mencari nilai rasio lift/drag terhadap sudut pitch. Simulasi ini tidak

Lebih terperinci

BAB III PERENCANAAN DAN GAMBAR

BAB III PERENCANAAN DAN GAMBAR BAB III PERENCANAAN DAN GAMBAR 3.1 Flowchart Perencanaan Pembuatan Mesin Pemotong Umbi Proses Perancangan mesin pemotong umbi seperti yang terlihat pada gambar 3.1 berikut ini: Mulai mm Studi Literatur

Lebih terperinci

DRAFT PATENT LINTASAN RANTAI BERBENTUK SEGITIGA PYTHAGORAS PADA ALAT PEMBANGKIT ENERGI MEKANIK DENGAN MENGGUNAKAN ENERGI POTENSIAL AIR

DRAFT PATENT LINTASAN RANTAI BERBENTUK SEGITIGA PYTHAGORAS PADA ALAT PEMBANGKIT ENERGI MEKANIK DENGAN MENGGUNAKAN ENERGI POTENSIAL AIR DRAFT PATENT LINTASAN RANTAI BERBENTUK SEGITIGA PYTHAGORAS PADA ALAT PEMBANGKIT ENERGI MEKANIK DENGAN MENGGUNAKAN ENERGI POTENSIAL AIR Oleh : Dr Suhartono S.Si M.Kom 1 Deskrisi LINTASAN RANTAI BERBENTUK

Lebih terperinci

Turbin Reaksi Aliran Ke Luar

Turbin Reaksi Aliran Ke Luar Turbin Reaksi Aliran Ke Luar Turbin reaksi aliran keluar adalah turbin reaksi dimana air masuk di tengah roda dan kemudian mengalir ke arah luar melalui sudu (gambar 8). Gambar 8. Turbin reaksi aliran

Lebih terperinci

BAB IV PEMODELAN POMPA DAN ANALISIS

BAB IV PEMODELAN POMPA DAN ANALISIS BAB IV PEMODELAN POMPA DAN ANALISIS Berdasarkan pemodelan aliran, telah diketahui bahwa penutupan LCV sebesar 3% mengakibatkan perubahan kondisi aliran. Kondisi yang paling penting untuk dicermati adalah

Lebih terperinci

BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER

BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER 4.1 Perhitungan Blower Untuk mengetahui jenis blower yang digunakan dapat dihitung pada penjelasan dibawah ini : Parameter yang diketahui : Q = Kapasitas

Lebih terperinci

BAB I PENDAHULUAN. Dalam kehidupan manusia pompa diperlukan dalam berbagai. bidang, selain dalam bidang industri, pertambangan, pertanian dan

BAB I PENDAHULUAN. Dalam kehidupan manusia pompa diperlukan dalam berbagai. bidang, selain dalam bidang industri, pertambangan, pertanian dan 1 BAB I PENDAHULUAN 1.1. Latar Belakang Dalam kehidupan manusia pompa diperlukan dalam berbagai bidang, selain dalam bidang industri, pertambangan, pertanian dan rumah tangga. Pompa memang sangat penting

Lebih terperinci

BAB I PENDAHULUAN. hampir meliputi di segala bidang kegiatan meliputi: pertanian, industri, rumah

BAB I PENDAHULUAN. hampir meliputi di segala bidang kegiatan meliputi: pertanian, industri, rumah BAB I PENDAHULUAN 1.1. Latar Belakang Penulisan Dewasa ini penggunaan pompa mempunyai peranan sangat luas, hampir meliputi di segala bidang kegiatan meliputi: pertanian, industri, rumah tangga, sebagai

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Fluida Fluida diartikan sebagai suatu zat yang dapat mengalir. Istilah fluida mencakup zat cair dan gas karena zat cair seperti air atau zat gas seperti udara dapat mengalir.

Lebih terperinci

DAFTAR ISI HALAMAN JUDUL... SAMPUL DALAM... HALAMAN PENGESAHAN... HALAMAN PERNYATAAN... INTISARI... ABSTRACT... KATA PENGANTAR... DAFTAR ISI...

DAFTAR ISI HALAMAN JUDUL... SAMPUL DALAM... HALAMAN PENGESAHAN... HALAMAN PERNYATAAN... INTISARI... ABSTRACT... KATA PENGANTAR... DAFTAR ISI... DAFTAR ISI HALAMAN JUDUL... i SAMPUL DALAM... ii HALAMAN PENGESAHAN... iii HALAMAN PERNYATAAN... iv INTISARI... iv ABSTRACT... v KATA PENGANTAR... vii DAFTAR ISI... ix DAFTAR GAMBAR... xv DAFTAR TABEL...

Lebih terperinci

DAFTAR ISI COVER LEMBAR PENGESAHAN ABSTRAK KATA PENGANTAR DAFTAR GAMBAR DAFTAR TABEL DAFTAR GRAFIK

DAFTAR ISI COVER LEMBAR PENGESAHAN ABSTRAK KATA PENGANTAR DAFTAR GAMBAR DAFTAR TABEL DAFTAR GRAFIK DAFTAR ISI COVER LEMBAR PENGESAHAN ABSTRAK ABSTRACT KATA PENGANTAR DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR GRAFIK i iii v vii ix xi xiii BAB I PENDAHULUAN 1 1.1 Latar Belakang 1 1.2 Perumusan Masalah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pengertian dan Prinsip Dasar Alat uji Bending 2.1.1. Definisi Alat Uji Bending Alat uji bending adalah alat yang digunakan untuk melakukan pengujian kekuatan lengkung (bending)

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISIS

BAB IV PENGUJIAN DAN ANALISIS BAB IV PENGUJIAN DAN ANALISIS Pada bab ini akan dibahas mengenai pengujian dan analisa dari setiap modul yang mendukung sistem secara keseluruhan. Tujuan dari pengujian ini adalah untuk mengetahui apakah

Lebih terperinci

AKTUATOR AKTUATOR 02/10/2016. Rian Rahmanda Putra Fakultas Ilmu Komputer Universitas Indo Global Mandiri

AKTUATOR AKTUATOR 02/10/2016. Rian Rahmanda Putra Fakultas Ilmu Komputer Universitas Indo Global Mandiri AKTUATOR Rian Rahmanda Putra Fakultas Ilmu Komputer Universitas Indo Global Mandiri AKTUATOR Istilah yang digunakan untuk mekanisme yang menggerakkan robot. Aktuator dapat berupa hidrolik, pneumatik dan

Lebih terperinci

Gambar 2.1. Grafik hubungan TSR (α) terhadap efisiensi turbin (%) konvensional

Gambar 2.1. Grafik hubungan TSR (α) terhadap efisiensi turbin (%) konvensional BAB II DASAR TEORI Bab ini berisi dasar teori yang berhubungan dengan perancangan skripsi antara lain daya angin, daya turbin angin, TSR (Tip Speed Ratio), aspect ratio, overlap ratio, BHP (Break Horse

Lebih terperinci

BAB V PENUTUP 5.1 Kesimpulan Saran... 57

BAB V PENUTUP 5.1 Kesimpulan Saran... 57 DAFTAR ISI Halaman SAMPUL DALAM... i PERSYARATAN GELAR... ii LEMBAR PERNYATAAN ORISINALITAS... iii LEMBAR PENGESAHAN... iv UCAPAN TERIMAKASIH... v ABSTRAK... vii ABSTRACT... viii DAFTAR ISI... ix DAFTAR

Lebih terperinci

Turbin Parson adalah jenis turbin reaksi yang paling sederhana dan banyak digunakan. Turbin mempunyai komponen-komponen utama sebagai berikut:

Turbin Parson adalah jenis turbin reaksi yang paling sederhana dan banyak digunakan. Turbin mempunyai komponen-komponen utama sebagai berikut: B. TURBIN REAKSI Pada turbin reaksi, uap masuk ke roda dengan tekanan tertentu dan mengalir pada sudu. Uap ketika meluncur, memutar sudu dan membuatnya bergerak. Kenyataannya, runner turbin berotasi karena

Lebih terperinci

PENGARUH JUMLAH SUDU DAN VARIASI KEMIRINGAN PADA SUDUT SUDU TERHADAP DAYA YANG DIHASILKAN PADA TURBIN KINETIK POROS HORIZONTAL SKRIPSI

PENGARUH JUMLAH SUDU DAN VARIASI KEMIRINGAN PADA SUDUT SUDU TERHADAP DAYA YANG DIHASILKAN PADA TURBIN KINETIK POROS HORIZONTAL SKRIPSI Artikel Skripsi PENGARUH JUMLAH SUDU DAN VARIASI KEMIRINGAN PADA SUDUT SUDU TERHADAP DAYA YANG DIHASILKAN PADA TURBIN KINETIK POROS HORIZONTAL SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh

Lebih terperinci

PEMODELAN TURBIN CROSS-FLOW UNTUK DIAPLIKASIKAN PADA SUMBER AIR DENGAN TINGGI JATUH DAN DEBIT KECIL

PEMODELAN TURBIN CROSS-FLOW UNTUK DIAPLIKASIKAN PADA SUMBER AIR DENGAN TINGGI JATUH DAN DEBIT KECIL PEMODELAN TURBIN CROSS-FLOW UNTUK DIAPLIKASIKAN PADA SUMBER AIR DENGAN TINGGI JATUH DAN DEBIT KECIL Oleh: Mokhamad Tirono ABSTRAK : Telah dilakukan suatu upaya memodifikasi dan rekayasa turbin jenis cross-flow

Lebih terperinci