JENIS PERLENGKAPAN DAN PENAGANAN BAHAN

Ukuran: px
Mulai penontonan dengan halaman:

Download "JENIS PERLENGKAPAN DAN PENAGANAN BAHAN"

Transkripsi

1 5/8/0 JENIS PERLENGKAPAN DAN PENAGANAN BAHAN PERLENGKAPAN PENGANGKAT Kelompok perlengkapan pengangkat berikut ini mempunyai cirri khas yang berbeda, antara lain: Mesin pengangkat adalah kelompok mesin yang bekerja secara periodic yang didesain sebagai peralatan swa-angkat, atau untuk mengangkat dan memindahkan muatan atau sebagai mekanisme tersendiri bagi crane atau elevator. Crane adalah gabungan mekanisme pengangkat secara terpisah dengan rangka untuk mangangkat atau sekaligus mengangkat dan memindahkan muatan yang dapat dugantungkan secara bebas atau diikatkan pada crane. Elevator adalah kelompok mesin yang bekerja secara periodic untuk mengangkat muatan pada jalur pandu tertentu. TIPE UTAMA ALAT PENGANGKAT ALAT PENGANGKAT Mesin pengangkat Crane Elevator Materi Konstruksi Baja Ringan

2 5/8/0 JENIS UTAMA CRANE CRANE Crane putar yang diam Crane yang bergerak pada rel Crane tanpa lintasan Crane yang dipasang di atas traktor rantai Crane tipe jembatan KARAKTERISTIK UMUM MESIN PENGANGKAT Parameter teknis mesin pngangkat adalah: kapasitas angkat, berat mati mesin tersebut, kcepatan berbagai gerakan mesin, tinggi angkat dan ukuran geometris mesin tersebut, bentangan, panjang dan lebar, dan sebagainya. Q hr nq ton/ jam dengan: n jumlah siklus mesin per jam Q berat muatan, dalam ton Q V Dengan : V kapasitas ember, alat pencengkeram dan sebagainya dalam meter kubik Ψ faktor pengisian γ berat jenis dalam ton/m3 Materi Konstruksi Baja Ringan

3 5/8/0 Q ( Q G) ton Dengan: Q berat muatan, dalam ton G berat ember atau penahan, dalm ton n 3600 t Dengan: Σ ti total waktu yang dibutuhkan Semua jenis crane dan mesin penangkat dapat dibagi lagi menjadi empat kelompok sesuai dngan kondisi operasi dan gabungan faktor berikut: - beban pada mesin - penggunaan mesin harian dan tahunan - faktor kerja relatif (jangka waktu mesin dihidupkan DF%) - temperatur sekitar KARAKTERISTIK KERJA Penggunaan mesin rata-rata (mean) KONDISI OPERASI Beban K beban K tahun Waktu K hari Faktor kerja DF% Tem- Peratur Sekitar C Ringan (L) Sedang (M) Berat (H) Sangat Berat (VH) (shift satu (shift dua) 0.67 (shift dua).0 (shift tiga) Materi Konstruksi Baja Ringan 3

4 5/8/0 Nilai-nilai ini ditentukan dari operasi rata-rata atau data desain. Kerja Nominal Ringan Sedang Berat Sangat Berat Jumlah perubahan operasi per jam PERLENGKAPAN KHUSUS PERMUKAAN DAN OVERHEAD Truk tanpa rel adalah fasilitas transportasi permukaan yang bergerak diatas jalur rel yang sempit Kendaraan yang berbadan sempit adalah fasilitas transportasi permukaan yang bergerak di atas jalur rel yang sempit Peralatan penanganan silang adalah fasilitas transportasi permukaan yang memindahkan kereta rel di dalam ruang lingkup suatu perusahaan Sistem lintasan overhead adalah struktur jalur pembawa/pemindah tau kabel tempat truk yang bermuatan tersebut bergerak KARAKTERISTIK UMUM FASILITAS TRANSPORTASI PERMUKAN DAN OVERHEAD Peralatan permukaan dan overhead Truk tanpa rel Kendaraan yang berbadan sempit Peralatan untuk penanganan silang Sistem lintasan overhead Materi Konstruksi Baja Ringan 4

5 5/8/0 PENGGUNAAN PERLENGKAPAN PENANGANAN BAHAN Fasilitas transpor dipilih sedemikian rupa agar sesauai dengan laju aliran bahan yang menggambarkan sistem umum dari gerak bahan, barang setengah jadi dan produk pada departemen atau pabrik tersebut.. Rantai Lasan rantai lasan (welded) terbuat dari jalinan baja oval yang berurutan. Ukuran utama rantai (gambar 7) adalah : kisar (t), sama dengan panjang bagian dalam mata rantai lebar luar (B), dan diameter batang rantai (d). tergantung pada perbandingan kisar dan diameter batang rantai, rantai lasan diklasifikasikan menjadi rantai mata pendek (t 3d) dan rantai mata panjang (t > 3d). Gambar 7. ukuran utama mata rantai beban Gambar 8.mata rantai menghubungkan rantai beban.. Rantai lasan terbuat dari baja CT. dan CT. 3. Mata rantai untuk rantai lasan dibentuk dengan berbagai macam metode,yaitu pengelasan tempa dan pengelasan tahanan listrik. Dengan pengelasan tempa mata rantai dibuat dari satu batang baja, sedangkan bila menggunakan las tahanan listrik mata rantai terbuat dari dua potong baja lengkung yang dilas temu. Rantai lasan digunakan untuk mesin pengangkat kapasitas kecil (katrol, Derek, dan crane yang digerakan tangan), & sebagai perabot pengangkat utama Rantai lasan mempunyai kelemahan yaknik berat, rentan terhadap sentuhan dan beban lebih, kerusaan yang tiba-tiba, keausan yang berlebihan pada sambungan antar mata rantai, dan hanya digunakan untuk kecepatan rendah Keunggulannya ialah flexible untuk semua arah, dapat menggunakan puli dan drum dengan diameter yang kecil serta desain dan pembuatan yang sederhana Materi Konstruksi Baja Ringan 5

6 5/8/0 Rumus umum untuk memilih tegangan tarik rantai adalah : Ss = Sbr K Dengan Ss = beban aman yang diterima rantai, dalam kg Sbr = beban putus dalam kg K = Faktor keamanan Intensitas keausan yang terjadi pada rantai tegantung pada factor berikut : perbandingan kisaran rantai dengan drum atau puli rantai, tegangan kecepatan puli rantai, sudut belok relative bila rantai tersebut melewati pulinya, keadaan lingkungan kerja dan sebagainya. Rantai las tempa selalu putus pada bagian lasnya. Pada rantai las tahanan listrik yang bermutu tinggi, biasanya mata rantai putus berbentuk putus miring dengan penampang yang bersudut kecil terhadap sumbu memanjang rantai, yang bermula pada bagian bagian tepi batas permukaan kontak mata rantai yang dihubungkan.. Rantai Rol rantai rol terdiri atas pelat yang dihubungengsel pana pena (gambar 9). Rantai untuk beban ringan terbuat dari dua keping plat saja, sedangkan untuk beban berat dapat menggunakan sampai lebih dari keping pelat Gambar 9 rantai rol Rantai rol mempunyai beberapa keunggulan dibandingkan dengan rantai lasan. Karena rantai rol padat maka keandalan operasinya jauh lebih tinggi dibandingkan rantai lasan. Rantai rol mempunyai flexisibelan yang baik sehingga dapat dipakai pada sprocket dengan diameter lebih kecil dan jumlah gigi yang lebih sedikit. Hal ini akan mengurangi ukuran mekanisme dan sekaligus mengurangi harganya. Juga, gesekan pada rantai rol jauh lebih kecil dibandingkan dengan rantai lasan dengan kapasitas angkat yang sama. Kecepatan maximum rantai rol ditentukan oleh standar Negara dan tidak boleh melebihi 0.5 mm/detik. D Nilai factor keamanan K, rasio dan jumlah gigi sprocket untuk rantai las d dan rol diberikan pada table 4. RANTAI Dilas dikalibrasi dan tidak dikalibrasi dilasdikalibrasi pada katrol dilas tidak dikalibrasi tidak mengikat beban Dilas tidak dikalibrasi tidak mengikat beban Roller Table 4 Data rantai yang terseleksi Digerakan Tangan Daya Tangan Daya Factor keama nan K Rasio D d Jumlah minimum gigi pada sprocket Materi Konstruksi Baja Ringan 6

7 5/8/0 3. Tali Rami Tali rami hanya cocok digunakan untuk mesin pengangkat yang digerakan tangan (puli tali) karena sifat mekanisnya yang lemah (cepat aus, kekuatan yang rendah, mudah rusak oleh benda tajam, pengaruh lingkungan dan sebagainya) Tali rami harus memenuhi standar Negara dan terbentuk dari tiga untai rami dan tiap untai terdiri atas beberapa serabut yang berbeda. Arah lilitan untaian harus berlawanan dengan serabut. Berdasarkan metode pembuatan pembuatan dan jumlah untaian tali rami dikelompokan menadi tali polos dan tali kabel. Yang terakhir terbuat dari lilitan 3 buah lilitan yang berbeda. Tali sering dicelupkan pada aspal untuk mengurangi pelapukan. Walaupun tali rami yang dicelupkan pada aspal lebih tahan terhadap pengaruh cuaca, namun jauh lebih berat dan lebih kurang flexible dan kekuatannya berkurang 0% dibanding tali biasa. Kekuatan putusnya membagi tali rami menjadi dua kelas : kelas dan kelas. Pemilihan tali rami. Tali rami dipilih hanya berdasarkan kekuatan tariknya berdasarkan rumus : d S br 4 dengan : d = Diameter keliling dari untai, dalam cm S = Beban pada tali, dalam kg 4. TALI BAJA Tali baja mempunyai keunggulan sebagai berikut :. Lebih ringan;. Lebih tahan terhadap sentakan; 3. Operasi yang tenang walaupun pada kecepatan operasi yang tinggi; 4. Keandalan operasi yang tinggi. Tali baja terbuat dari kawat baja dengan kekuatan ς= 30 sampai 00 kg/mm. Didalam proses pembuatannya kawat baja diberi perlakuan panas tertentu dan digabung dengan penarikan dingin, sehingga menghasilkan sifat mekanis kawat baja yang tinggi. Lapisan dalam tali mengelompokan menjadi : ) Tali pintal silang atau tali biasa; ) Tali pintal parallel atau jenis lang; 3) Tali komposit atau pintal balik. Tali Baja Serba Guna. Tali yang terdapat pada Gambar 3 adalah tali baja konstruksi biasa (kawat seragam) yang berupa kawat anyaman kawat yang sama diameternya Gambar 3. Lapisan serat tali baja. Tali Baja Anti-Puntir. Pada tali ini sebelum dipintal setiap kawat dan untaian dibentuk sesuai dgn kedudukannya didalam tali. Akibatnya tali yang tidak dibebani tidak akan mengalami tegangan internal. Tali ini tidak mempunyai kecenderungan untuk terurai walaupun ujung tali ini tidak disimpul Jenis Tali Baja Puntir mempunyai keunggulan sebagai berikut :. Distribusi beban yang merata pada setiap kawat sehingga tegangan internal yang terjadi minimal.. Lebih fleksibel. 3. Keausan tali lebih kecil bila melewati puli dan digulung pada drum, karena tidak ada untaian atau kawat yang menonjol pada kontur tali, dan keausan kawat terluar seragam; juga kawat yang putus tidak akan mencuat keluar dari tali. 4. Keselamatan operasi yang lebih baik. Gambar 5. Tali anti-puntir dan tali biasa. Materi Konstruksi Baja Ringan 7

8 5/8/0 Tali Baja Dengan Untaian Yang Dipipihkan. Tali ini (Gambar 6) dipakai pada crane yang bekerja pada tempat yang mengalami banyak gesekan dan abrasi. Biasanya tali ini tebuat dari lima buah untaian yang dipipihkan dengan inti kawat yang juga dipipihkan; untaian ini dipintal pada inti yang terbuat dari rami Gambar 6. Tali dengan untaian yang dipipihkan. Tali dengan Anyaman Terkunci. Tali ini banyak digunakan pada crane kabel dan kereta gantung. Tali ini mempunyai keunggulan dalam hal permukaan yang halus, susunan kawat yang padat dan tahan terhadap keausan, kelemahannya adalah tidak fleksibel. Gambar 7. Lilitan tali yang dikunci. Cara mengukur diameter luar tali dapat dilihat pada Gambar 9, yaitu dengan mengukur dua untaian yang berlawanan letaknya. Gambar 9. Cara mengukur diameter tali Tabel 5 Tali Rami untuk Pengangkat Tabel 6 Tali Untuk Crane dan Pengangkat Faktor mula-mula dari keamanan tali terhadap tegangan Faktor mulamula KONSTRUKSI TALI dari keama nan 6 x 9 = 4 + c* 6 x 37 = + c* Posisi Posisi Posisi sej Posisi sej berpoto aj berpoto aj tali terhadap ngan ar ngan ar 6 x 9 = 4 + c Posis Posis i i berp sejaj otongan ar KONSTRUKSI TALI 6 x 37 = 6 x 6 = c + c Posis Posis Posis Posis i i i i berp berp sejaj sejaj otongan otongan ar ar 8 x 7 = 34 + c Posis Posis i i berp sejaj otongan ar Jumlah serat patah sepanjang satu tingkatan setelah tali tegangan tertentu dibuang kurang ' ' Jumlah serat yang patah pada panjang tertentu setelah tali dibuang Kurang Diatas ' diatas Percobaan-percobaan menunjukkan bahwa umur tali sangat D m in dipengaruhi oleh kelelahan. Umur tali dapat ditentukan dengan d memakai perbandingan (D min adalah diameter minimum puli atau drum D m in dan d ialah diameter tali) dan ( -diameter kawat pada tali). Jumlah lengkungan dapat ditentukan dengan cukup akurat bila kita membuat suatu diagram seperti jenis yang ditentukan dalam Gambar. Gambar. Menentukan jumlah lengkungan tali dengan satu puli penggerak. Sistem puli yang banyak digunakan dan jumlah lengkungannya dapat dilihat pada Gambar 3 Gambar 3. menentukan lengkungan untuk berbagai sistem puli pengangkat D Tabel 7 menunjukkan nilai m in d sebagai fungsi jumlah lengkungan. Jumlah lengk unga n Jumlah lengk ungan Jumlah leng kun gan Jumlah lengk ungan Tabel , , Puli Tunggal Puli Ganda Efisiensi Tabel 8 EFISIENSI PULI Gesekan pada Gesekan anguler Jumlah puli permukaa pada Jumlah Jumlah puli yang yang n puli permukaan alu Jumlah alur berputar berpu (faktor puli (faktor r tar resisten resisten satu satu puli) puli 4 0,95 0, ,906 0, ,86 0, ,83 0, ,784 0,873 Materi Konstruksi Baja Ringan 8

9 5/8/0 Tabel 9 Harga Minimum Faktor k dan e yang diizinkan TIPE ALAT PENGANGKAT Digerakkan oleh: Kondisi pengoperasian Faktor K Faktor e. Lokomotif,caterpilar-mounted, traktor dan truk yang mempunyai crane pilar (termasuk excavator yang dioperasikan sebagai crane dan pengangkat mekanik pada daerah konstruksi dan pekerjaan berkala.. Semua tipelain dari crane dan pengangkat mekanis 3. Derek yang dioperasikan dengan tangan, dengan kapasitas beban terangkat diatas ton yang digandeng pada berbagai peralatan otomotif (mobil, truk, dan sebagainya). 4. Pengangkat dengan troli 5. Penjepit mekanis (kecuali untuk puli pada grabs) untuk pengangkat mekanis pada no. 6. Idem untuk pengangkat mekanik pada no. Tangan Daya Daya Daya Tangan Daya Daya Ringan Ringan Medium Berat dan sangat berat Ringan Ringan Medium Berat dan sangat berat ,5 6 4,5 5 5, , Tabel 0 Harga faktor e yang tergantung pada konstruksi tali Konstrusi Tali Biasanya 6 x 9 = 4 + poros Posisi berpotongan Posisi sejajar. Compound 6 x 9 = 4 + poros a). Warrington Posisi berpotongan.. Posisi sejajar b). Seale Posisi berpotongan.. Posisi sejajar Biasanya 6 x 37 = + poros Posisi berpotongan Posisi sejajar. Faktor e,00 0,90 0,90 0,85 0,95 0,85,00 0,90 5. PERHITUNGAN DAYA TAHAN (KEKUATAN BATAS KELELAHAN) TALI KAWAT BAJA DENGAN METODE PROFESOR ZHITKOV Metode perhitungan daya tahan tali kawat yang dijelaskan berikut dihasilkan oleh penelitian bertahun-tahun yang dilakukan di hammer dan sickle works. berbagai konstruksi tali yang berdiameter dari 3 mm sampai 8 mm diuji dengan tiga unit mesin khusus untuk menentukan metalurgi, produksi, desain dan operasi yang mempengaruhi kekuatan tali. Pada tahap pertama, karakteristik umur tali dikumpulkan dari semua pengujian dalam bentuk grafik yang menghasilkan hubungan z = ƒ(ς) dan z = ƒ( ) D d Data ini kemudian dipakai untuk menggambarkan suatu diagram yang menunjukkan hubungan σ = ƒ3 ( ) dengan berbagai D jumlah lengkungan tali (gambar 4) dan untuk d mendapatkan secara matematis rumus desain: D A = = mσcc C d Gambar.4 Diagram untuk menentukan jumlah lengkungan tali Bila kita mengetahui kondisi operasi mekanisme pengangkat, dan telah menentukan umur tali, kita dapat menentukan jumlah lengkungan yang diperbolehkan z dengan rumus : z = a z N β dengan : N = umur tali dalam bulan a = jumlah siklus kerja rata-rata per bulan z = jumlah lengkungan berulang per siklus kerja (mengangkat dan menurunkan) pada tinggi pengangkatan penuh dan lengkungan satu sisi. β = faktor perubahan daya tahan tali akibat mengangkut muatan lebih rendah dari tinggi total dan lebih ringan dari muatan penu Gambar 6. Penggantungan pada majemuk sistem puli Materi Konstruksi Baja Ringan 9

10 5/8/0 Gambar 8 menunjukan faktor-faktor utama yang mempengaruhi mutu tali kawat ba Pengikatan Rantai Beban Lasan Pengikatan Rantai Rol Pengikatan Tali Rami Pengikatan Tali Baja 6. PENGIKATAN RANTAI DAN TALI Gambar 9 Metode pengikatan rantai beban lassan Gambar 30 Pengikatan rantai roller beban Gambar 3 Pengikatan tali rami Gambar 3 Pengikatan tali kawat dalam soket tirus Soket Baji. Tali dilewatkan mengitari baji-baja beralur (Gambar 34a) dan diikat bersama dengan baji kedalam soket rata yang sesuai yang terbuat dari baja tuang. Beban akan menarik tali kedalam soket dan akan menambah daya ikatnya. Mata Pengikat. Tali dililitkan mengelilingi mata pengikat (Gambar 34b) dan ujung bebasnya dililitkan dengan bagian utama tali. Panjang lilitan > 5d dan minimum sepanjang 500 mm. Gambar 34c menunjukan kait yang diikat pada tali dengan mata pengikat. Disamping dililitkan, mata pengikat dapat dikencangkan dengan memakai klip khusus bulldog (bull-dog clip) atau pengapit pada tali kawat (Gambar 35). Jumlah pengapit minimum adalah tiga buah. Gambar 36 menunjukan tali kawat yang diikat pada mata pengikat dengan plat dan baut. Gambar 34 Baji soket tali (a) dan pengikatan dengan alat berlubang (b,c) Gambar 35 Klem bull dog Gambar 36 Tali alat berlubang dengan plat dan sekrup Materi Konstruksi Baja Ringan 0

11 5/8/0 7. PERABOT PENGGANTUNG BEBAN Anduh Rantai. Anduh (sling) ini terbuat dari rantai lasan tak terkalibrasi biasa dengan mata dan kait untuk penggantungan atau cengkeram berbentuk capit untuk mengangkat obyek. Juga digunakan rantai tanpa ujung dan rantai lepas dengan cincin tanpa ujungnya Gambar 38a menunjukan rantai tanpa ujung, Gambar 38b rantai lepas dengan cincin, Gambar 38c - rantai dengan kait dan cincin, Gambar 38d anduh utas dua, Gambar 38e cengkeram berbentuk cakar untuk membentuk lingkaran pada rantai. Gambar 38f menunjukan tong yang diangkat dengan cengkeram rantai berbentuk capit yang memegang bagian ujung tong Anduh rantai terutama digunakan untuk pelayanan kerja berat dan selalu pada temperatur tinggi. Kecuali dipakai pelindung khusus yang terbuat dari logam lunak (Gambar 38g), Anduh rantai biasanya akan merusak sudut (ujung) benda yang dingkat Gambar 38 Anduh rantai Anduh Tali Rami. Tali rami polos yang disimpul mati banyak sekali digunakan untuk menhan muatan pada kait crane. Kekuatannya jauh lebih rendah dibandingkan dengan tali baja, tetapi memiliki keluwesan yang lebih tinggi dan mudah diikat menjadi simpul. Tali rami mudah sekali dirusak oleh ujung tajam benda yang diangkat dan harus dilindungi dengan bantal linak (Gambar 38g) atau alat pelindung khusus lainnya (plat sudut). Metode mengikat dengan tali rami dapat dilihat pada Gambar 39. Anduh Tali Kawat Baja. Umumnya beban yang berat umumnya dingkat dengan anduh tali baja. Dibandingkan dengan rantai, tali baja lebih ringan tetapi terlalu kaku dan cenderung untuk terpuntir. Di samping itu apabila digunakan untuk mengangkat benda yang berujung tajam, tali baja akan melengkung terlalu tajam dan akan cepat aus. Tali baja ini rentan terhadap temperatur yang tinggi. Muatan yang diangkat oleh anduh tali dan rantai harus diikat dengan aman sehingga tidak berpindah posisinya sewaktu bergerak. Gambar 40a menunjukkan anduh tali baja dengan utas tunggal dan gambar 40b menunjukan tali dengan dua dan empat utas. Gambar 40 anduh serat tali baja ALAT TAMBAHAN PENANGANAN MUATAN Materi Konstruksi Baja Ringan

12 5/8/0. URAIAN UMUM Pada crane serbaguna yang mengangkat berbagai bentuk muatan ditangani dengan memakai anduh (sling) rantai yang dikatkan pada kait. Kait tunggal (standar) dan kait tanduk adalah jenis kait yang paling sering dipakai untuk keperluan ini. Kadang-kadang digunakan kait segitiga. Kait standar dan tanduk dibuat dengan ditempa pada cetakan rata atau cetakan tertutup atau dapat juga dibuat dari beberapa plat dengan bentuk kait yang dijadikan satu. Kemampuan Angkat. Kait tempa : Kait standar sampai 50 ton Kait tanduk mulai dari 5 ton ke atas. Kait segitiga dan kait berlapis mempunyai kemampuan angkat diatas 00 ton Pada umumnya, muatan digantung pada anduh berutas-empat dengan dua lilitan tali pada kait (Gambar 6). Q Q P 4 0, 35Q cos 4cos45 Kait sering kali mempunyai bentuk penampang tarapesium yang dibuat lebih lebar di dalam. Materi Konstruksi Baja Ringan

13 5/8/0. KAIT TEMPA STANDAR Perhitungan Dimensi Kait Tegangan tarik : t : kisar ulir d o : diameter luar ulir d : diameter dalam ulir Q t d 4 Tinggi 4Qtminimum : d0 d p : tegangan satuan pada jarak y dari sumbu netral Q : beban pada kait F : luas penampang kritis r : jari-jari kelengkungan pada daerah kritis x : faktor bentuk bentuk penampang H Momen lentur M diasumsikan bernilai positif bila menyebabkan kelengkungan kait bertambah (jari-jarinya berkurang) dan bernilai negatif bila kelengkungannya berkurang. Karena beban cenderung untuk membuka kait, momennya bernilai negatif (Gambar 6a) : M = -Qr = -Q (0,5a + e ) Nilai x didapat dari persamaan : x e F e y y df r untuk trapesium dengan sisi b dan b dan tinggi h akan menjadi x r b b b e r r n e b b b b h h r e Bila kita mengambil nilai h = a, dan bila b dan maka rumus diatas setelah 5n 7 ditransformasikan akan berbentuk x,5n 0,5,0986 n 3 n h a b n dengan mengabaikan perpindahan sumbu netral relaif terhadap pusat massa bagian tersebut diperoleh n h e n 3 Dalam keadaan tersebut rumus diatas dapat digunakan untuk mencari x untuk semua nilai b b Denganmendistribusikan nilai M = -Qr = -Q (0,5a + e ), r = 0,5a + e, y = -e (untuk bagian terdalam yang tertarik) dan y = e (untuk bagian terluar yang tertekan) ke dalam rumus (6) dan kita dapatkan tegangan satuan pada penampang antara titik I dan II. Q Q 0,5a e Q 0,5a e y Q 0,5a e y F Fr Fr x y r F r x y r Q 0,5a e e Q e F r x r e F x a Tegangan maksimum pada bagian terdalam Tegangan maksimum pada bagian terdalam Q e F x a Q e F x a h aman aman Materi Konstruksi Baja Ringan 3

14 5/8/0 Metode Grafik untuk menetukan Faktor x Nilai x adalah jarak dari titik O ke garis vertikal yang bersangkutan; y adalah panjang garis vertikal di dalam bagian penampang. Titik-titik terluar ordinat kemudian dihubungkan dengan suatu garis. Absis titik pusat penampang tersebut ditentukan dengan xc h yxdx 0 h ydx 0 Dengan ; f : luas daerah yang dibatasi oleh kurva F : luas penampang kait Luas penampang daerah f dan F ditentukan dengan memaki planimeter. Dengan meneruskan prosedur yang sama untuk semua garis vertikal akan didapatkan sejumlah titik dan bila titik tersebut dihubungkan, kita akan adapat mencari luas daerah f dan f pada titik C. Perbedaan f -f akan selalu bernilai negatif. Luas daerah f dan f dapat ditentukan dengan memakai planimeter. Faktor x akan sama dengan F y df y r Jarak antara garis nol (netral) adan garis pusat adalah x x Dengan : : jari-jari kelengkungan titik pusat x e e f f F Tegangan aman Tegangan aman satuan yang didapatkan dengan rumus (64) dan (65) tidak boleh melebihi 500 kg/cm untuk baja 0. Penampang III dan IV diperiksa kekuatannya pada sudut maksimum yang diizinkan = 0 dengan cara yang sama seperti Penampang I dan II. Dengan mengabaikan gaya Q geser perhitungan Q untuk gaya tandilakuakn dengan memakai cara yang sama dengan sebelumnya, tetap memakai nilai r dan bukan hubungkan a dimensi yang bersangkutan dari penampang tersebut. Bagian silindris tangkai kait yang masuk ke lubang pada bintang-lintang akan mengalami tegangan tarik. Akan tetapi tegangan lentur akan timbul akibat salah stel sebab itu tegangan yang diizinkan dalam hal ini akan jauh berkembang Materi Konstruksi Baja Ringan 4

15 5/8/0 Beban digantung pada satu tanduk. Tangkai utama akan dibebani lebih dari yang diizinkan, tegangan satuan maksimumnya dapat ditentukan melalui pertimbangan berikut (penampang kritis V-VI) p Q cos p Q sin sh, t pt F DAN sh P sh F Tegangan lentur yang timbul dari momen Akibatnya M lentur a d P( ) ( lentur ) 3 Contoh soal: Memeriksa tegangan pada bagian lengkung kait tanduk tempa. Diketahui: Kapasitas angkat 5 ton; dimensi pada gambar 66..Beban total Q 5TON.Gaya normal pada penampung rumus (69) adalah: Q sin( ) x5.00xsin 77 P 3.750kg. 3cos 3cos45 3.factor Luas penampang F = 5,8 cm Luas daerah tambahan f = 789 cm 3. Absis titik pusat ialah x f 789 6, cm c F 5,8 8 Materi Konstruksi Baja Ringan 5

16 5/8/0 Zambian Luas daerah f 5,7 cm dan f, 7 cm Sehingga factor ( f f ) (5,7,7) x 0,04 f 5,8 Jarak antara titik nol dan titik pusat adalah: x 3,8 0,04 0,04,9 Jarak antara bagian bagian terdalam dengan garis nol cm e xc 6,8,9 5, 5 cm P F 4.Tegangan satuan adalah e x 5,5. cm x a 5,8 0, kg/ II p F x a e e e ,5 0,04 0, kg/ cm Kedua rantai diatas berada dalam batas yang diizinkan. 4. KAIT MATA SEGITIGA PADAT Kait mata pada segitiga padat dipakai pada crane dengan kapasitas angkat yang besar (di atas 0 ton), dan hanya kadang-kadang saja dipakai juga pada crane dengan kapasitas sedang. Kelmahan kait ini adalah anduh yang mengangkat muatan harus dilewatkan kedalam lubang kait tersebut. Kait segitiga ditempa langsung dari satu potong baja utuh. Materi Konstruksi Baja Ringan 6

17 5/8/0 Ditinjau dari segitiga luar (eksternal) kait segitiga dapat ditentukan secara statis, dan dari segi tegangan kait ditentukan secara statis tak tentu. Karena lengkungan bagian bawah dibuat utuh dengan sisinya dan akan mengalami gaya lentur maka bagian sisinya akan terpengaruh gaya lentur tersebut juga. Dari penyelidikan yang dilakukan, momen lentur pada lengkunagan bawah adalah: M Q 6 Momen lentur pada pertemuan kedua sisinya dengan busur ialah M Q 3 Gaya tarik yang bekerja pada bagian sisi ialah Dengan: p Q cos a a - sudut antara kedua sisi Q beban I panjang busur yang diukur sepanjang garis netral Sambungan antara busur, sisi dan tangkainya tidak boleh membentuk sudut yang tajam tetapi harus rata dan halus. Tegangan satuan maksimum pada bagian sumbu dapat ditentukan dengan rumus M P Q lentur M lentur P x W F 6 Dengan: Q a P tan gaya tekan yang bekerja pada busur, dalam kg W momen perlawanan F luas penampang busur Tegangan satuan aman untuk baja 3 adalah 800 kg/ cm aman Materi Konstruksi Baja Ringan 7

18 5/8/0 5. KAIT SEGITIGA BERSENDI Pembuatan kait mata segitiga ternyata mengalami banyak kesulitan dalam proses produksinya. Sehingga untuk menangani beban yang besar kait segitiga bersendi rakitan lebih disukai untuk digunakan. Tegangan satuan pada sambungan kait tiga-sendi rakitan adalah Nilai yang diizinkan adalah 4.00 kg/ cm Q a cos F Tegangan satuan ditentukan sebagai tegangan pada bentangan lengkung P M M e F FR xfr R e Dengan: Dengan Q P x 4 Q a tan M P F luas penampang e jarak antara sambungan netral dengan lapisan yang menerima beban terbesar. Factor x untuk ellips didapat dengan rumus x 4 a R 8 a R a R 6 Dengan: a luas penampang Materi Konstruksi Baja Ringan 8

19 5/8/0 Tegangan pada mata tangkai diperiksa dengan rumus hasil Dengan: P 4 Q a cos bd P D D (tekanan satuan) d d b lebar lubang 6. PERABOT UNTUK MENGGANTUNGKAN KAIT Pemberat kait. Untuk mengangkat muatan ringan (=sampai 5 ton) biasanya kait langsung diikatkan pada takal pengangkat fleksibel. Untuk meredam kejut, kadang-kadang pemberat kait dilengkapi dengan pegas. Penggunaan peredam kejut ini sangat diperlukan untuk crane yang melayani alu tempa. Bantalan kait. Bantalan peluru aksial memungkinkan kait dapat berputar dengan mudah ketika menangani beban diatas 3 ton. Bantalan ini dipasang pada batang lintang dipakai menahan mur kait. Batang lintang untuk kait Batang lintang kait dapat berputar pada pelat sisi rumahnya yang diperkuat dengan setrap atau sekal yang terbuat dari pelat baja. Hal ini akan memungkinkan kait berputar pada dua arah yang saling tegak lurus. Batang lintang ini ditempa dari baja dan diberi trunion (batang gerak) pada ujungnya. Diameter lubang untuk tangkai kait harus sedikit lebih besar dari tangkainya sendiri. Gambar. 70 penampang-lintang untuk kait. Materi Konstruksi Baja Ringan 9

20 5/8/0 6. PERABOT UNTUK MENGGANTUNGKAN KAIT Pemberat kait. Untuk mengangkat muatan ringan (=sampai 5 ton) biasanya kait langsung diikatkan pada takal pengangkat fleksibel. Untuk meredam kejut, kadang-kadang pemberat kait dilengkapi dengan pegas. Penggunaan peredam kejut ini sangat diperlukan untuk crane yang melayani alu tempa. Bantalan kait. Bantalan peluru aksial memungkinkan kait dapat berputar dengan mudah ketika menangani beban diatas 3 ton. Bantalan ini dipasang pada batang lintang dipakai menahan mur kait. Batang lintang untuk kait Batang lintang kait dapat berputar pada pelat sisi rumahnya yang diperkuat dengan setrap atau sekal yang terbuat dari pelat baja. Hal ini akan memungkinkan kait berputar pada dua arah yang saling tegak lurus. Batang lintang ini ditempa dari baja dan diberi trunion (batang gerak) pada ujungnya. Diameter lubang untuk tangkai kait harus sedikit lebih besar dari tangkainya sendiri. Gambar. 70 penampang-lintang untuk kait. Tabel ukuran dan beban untuk bantalan swapenyebaris untuk kait yang mengangkat beban mulai 5 sampai 75 ton kapasitas pengangkat Q d d4 d5 D D k R r Limit beban ton kerja, ton , , , , , , , , , ,5 58, , ,5 Materi Konstruksi Baja Ringan 0

21 5/8/0 Momen lentur maksimumnya adalah Dengan : D = diameter luar cincin dudukan bantalan. Momen perlawanannya adalah maks Q Q d Q x x ( 0,5d ) 4 4 w ( b 6 d) h Tegangan lentur aman lentur = Kg/cm Momen lentur pada trunion batang-lintang : Tekanan satuan antara trunion dan rumah Dengan : s = tabel sakel s = tabel pelat samping M P Q s s x l Q d s s s s Trunion batang-lintang tidak boleh bergerak secara aksial tetapi harus dapat berputar. Pengencangannya dapat dilakukan dengan cincin penyetel yang diikat dengan memakai pena tirus atau cincin belah yang dimasukan ke dalam alur trunion yang dipasang dengan skrup ke strap atau sekal. Momen lentur pada trunion: M maks Q s 0 s l0 D Q M s0 s Gambar 7 penampang-lintang untuk pemasangan dua roda penuntun tali Materi Konstruksi Baja Ringan

22 5/8/0 Gambar 7 Penampang-lintang sakel dengan rumah empat buah roda penuntun. Pada penampang A B (gambar 7) Pada penampang A B Q bs Q b d s Pada penampang A B dipakai rumus lame, tekanan satuannya ialah: Q P ds Tegangan satuan pada permukaan dalam: P R A3 R Tegangan satuan pada permukaan luar: pd B3 R d Tegangan maksimumnya akan terjadi pada permukaan dalam yakni: d d Maka A3 Q 4R ds 4R d d s Q d 4R x 4R d d Perhitungan Kekuatan Batang Lintang Secara Tepat Dengan Metode yang Dikembangkan oleh A.A. Staroselsky Bila batang lintang didesain dengan bantalan anti-gesek, tekanan pada daerah permukaan kontak yang dibebani dapat diasumsikan terbagi merata pada permukaan setengah silinder menurut hukum berikut : P c = p cos Materi Konstruksi Baja Ringan

23 5/8/0 Gambar73 Diagram perhitunganuntuk penampang-lintang Jika P merupakan resultan pada gambar dari persamaan itu kita peroleh : Dan rumus yang dapat digunakan : P p x Kg / cm R N M 4 0, R P 0,034 R PR RUMAH KAIT Rumah kait merupakan keseluruhan takel gantung yang mencakup :alat pengangkat (kait), batang lintang, roda puli bawah, dan pelat rumah sekal tempat gandar roda puli dan pemutar batang lintang diikat Gambar 77 menunjukkan rumah dengan satu buah roda puli dan perabot untuk mencegah tali terlepas Gambar Muatan yang ditangani dalam perusahaan industri dapat dibagi dalam beberapa kelompok sebagai berikut :. Muatan satuan yang biasanya berukuran besar misalnya ; ketel, rakitan mesin, struktur logam, dan lainnya.. Muatan satuan massal ; biled baja coran berukuran besar, hasil, komponen mesin, baja canai, lembaran dan pelat, kotak, tong dan sebagainya. 3. Muatan satuan massal berukuran kecil ; coran, tempa, dan kom[onen mesin berukuran kecil, biji logam, baut, paku keling dan sebagainya. 4. Bahan lepasan ; batu bara, pasir, kokas, gas, abu, tatal, dan sebagainya. 5. Bahan cair ; besi cor cair, baja, dan logam cair lainnya Materi Konstruksi Baja Ringan 3

24 5/8/0 7. pencengkeram crane untuk muatan satuan Faktor penggunaan dan kapasitas penanganan yang lebih tinggi dan perabot pengangkat berbanding langsung dengan waktu yang diperlukan untuk menggantung dan melepaskan muatan. Waktu ini dapat dikurangi dengan penggunaan pencengkeram khusus yang harus :. Sesuai dengan sifat dan bentuk muatan. Mencengkeram dan melepaskan muatan dengan cepat 3. Mempunyai kekuatan dan keandalan mekanis yang memadai 4. Memenuhi syarat keamanan 5. Tidak merusak muatan 6. Mempunyai bobot yang minimum 7. Mudah dalam pengoperasiannya Cengkeram Dan Pengapit Crane Komponen yang serupa misalnya : pasangan roda, as, lembaran dan pelat baja roll kertas, gulungan kawat dan sebagainya ditangani dengan cengkeram yang sesuai bentuknya dengan muatan tersebut. Jenis cengkeram untuk pasangan roda, poros dan gandar tergantung pada panjang dan jumlah komponen yang ditangani sekaligus. Platform Muatan Dan Ember Curah Samping Perabot ini dipakai untuk menangani muatan satuan dalam jumlah besar (kotak bal baja batangan, komponen mesin dan sebagainya) dan juga muatan yang berukuran kecil (briket, batu bata, biji logam dan komponen besi cor berukuran kecil lainnya). Untuk mencegah terjadinya kecelakaan, muatan yang berukuran kecil tidak boleh dipindahkan pada platform dan ember terbuka. Isi platform dan ember dapat dipindahkan dengan crane ke gerbong rata. Biasanya platform, dan ember tersebut ialah jenis yang dapat di lepas atau dicurah. Materi Konstruksi Baja Ringan 4

25 5/8/0 Tang Biasa Dan Swa Jepit Sendiri Kecenderungan untuk mengurangi tenaga kerja untuk menangani muatan satuan sekecil mungkin telah menyebabkan berkembangnya berbagi jenis tang dan cengkeram otomatis lainnya. Pada pronsipnya, tang dibuat bersifat swa jepit, yakni penjepit ini akan menutup sendiri akibat muatan yang ditangani. Tang dibuka secara manual dengan tuas khusus. 8. MAGNET PENGANGKAT ELEKTRIS Magnet pengangkat digunakan sebagai bahan magnetik dalam berbagai bentuk (ingot, batang, rel, baja lembaran dan pelat, pipa, tatal, biji, kotak yang berisi benda benda terbuat dari baja). Magnet pengangkat dapat digunakan secara luas khususnya pada pekerjaan rekasanya metalurgi dan mekanis. Keunggulan utamanya ialah tidak diperlukannya pengikatan muatan secara manual sehingga mengurangi waktu yang diperlukan untuk operasi ini secara drastis. kelemahan magnet peralatan ini yaitu pengurangan kapasitas angakt akibat bobot magnet ini sendiri, akan tetapi alat ini dapat mengatasi muatan yang jumlahnya cukup besar dengan waktu yang minimal dan peningkatan efisiensi pengangkat yang cukup besar. 9. CENGKERAM UNTUK BAHAN LEPASAN Bak. Bak swa curah digantungkan pada kait crane, dan dapat dibalikan / diputar pada trunion horizontal. Bak ini mempunyai kapasitas antara 0,5 3 M 3. Bak Curah Bawah Dan Curah Samping. Dipakai untuk menangani kerikil, pasir, tanha dan sebagianya dengan bantuan crane jenis ini lebih unggul dibandingkan bak miring, karena tidak mencecerkan bahan ketika pencurahan. Bak Dengan Sekop.bak jenis ini berkapasitas 3 m 3 dan untuk penggunaan khusus dapat sampai 8 m 3. Bak ini mempunyai dua buah sekop bersendi dengan alas yang dibulatkan. Ember cengkram.didesain untuk proses pencurahan otomtis tetapi memerlukan tenaga kerja dan mekanisme manual untuk pengoperasiannya. Materi Konstruksi Baja Ringan 5

26 5/8/0 Ember Cengkram Tali Ganda. Operasi pengangkatannya dilakukan oleh satu kelompok tali (atau suatu tali) Ember Cengkram Tauber Dengan Tali Ganda. Terdiri atas bentuk lonceng yang dibentuk oleh dua buah dinding memanjang yang sejajar yang dihubungkan dengan suatu pelat horizontal, Ember Cengkeram Tali Tunggal. Ember cengkeram yang dalam kedua macam operasinya (naik turun, membuka dan menutup) dilakukan dengan satu alat penarik, biasanya tali. Ember Cengkeram yang Digerakkan Motor. Pada ember cengkeram yang digerakkan motor, sekop dibuka dan ditutup dengan rantai ataupun tali yang digerakkan motor yang terpasang pada rangka pemegang itu sendiri. Ember Cengkeram yang Digerakkan Motor dengan Pengangkat Listrik. Sekopnya dikendalikan dengan tali puli yang roda pulinya dipasang pada batang-silang bawah. Ember Cengkeram Khusus. Mempunyai sekop yang berbentuk khusus untuk menyesuaikan diri dengan jenis operasi dan bahan yang akan ditangani. Ember Cengkeram Tangan Majemuk. Bentuknya menyerupai tangga, sekop, atau lebih tepat disebut dengan tangan, alat ini terdiri dari 3 sampai 8 tangan yang dapat mencengkeram bahan bongkahan dengan mudah tanpa merusakkan bahan. 0. METODE UNTUK MENDESAIN EMBER CENGKERAM Sifat bahan curah berikut mempengaruhi parameter alat cengkeram: ukuran dan bentuk bongkahan, kandungan air, viskositas gaya, gesek dalam, berat jenis (bulk weight), derajat ketahanan bahan terhadap penembusan benda asing, dan sebagainya. Metode mendesain cengkeram berdasarkan sifat fisik bahan curah dikatakan ideal. Ketergantungan antara bobot dan kapasitas cengkeram dapat diungkapkan dengan perbandingan sebagai berikut: (a) untuk cengkeram pelayanan ringan (b) Untuk cengkeram pelayanan medium (c) Untuk cengkeram pelayanan berat (d) Untuk cengkeram pelayanan sangat berat Dengan: G gr G gr G gr G gr 0,8V,5V,3V 0,5 0,5 0,5 berat cengkeram, dalam ton, 3V 0,5 G gr kapasitas cengkeram, dalam meter kubik V Materi Konstruksi Baja Ringan 6

27 5/8/0 Dengan memakai diagram perpindahan dari mekanisme cengkeram dan data berat komponennya dapat kita tentukan gaya yang bekerja pada komponen tersebut berdasarkan statika. Data percobaan menyarankan hubungan berat sebagai berikut: G 0, G gr G 0, 5G gr G3 0, 3G gr G G G 3 dengan: berat batang-silang bawah dengan pengimbangan berat sekop berat btang-silang atas dengan batang hubung Dengan gaya yang ditentukan ini diperiksa kekuatan komponen cengkeram, sehingga kita menentukan gaya yang diperlukan untuk menutup sekop tersebut.. PERLENGKAPAN CRANE UNTUK MENANGANI BAHAN CAIR Krusibel (untuk mencairkan paduan baja dan logam lainnya) dibuat dari bahan tahan panas: dan krusibel ini dapat menampung muatan mulai 40 sampai 300 kg logam. Krusibel diangkat dari tanur dan dipindahkan dengan tang garpu. Ladel untuk menangani bahan cair dibuat dari plat baja dan mempunyai lapisan tahan panas. Keamanan dan pelayanan yang mudah (pekerja lebih terlindung terhadap radiasi kalor dibandingkan dengan pelayanan ladel biasa) dan kehilangan kalor yang lebih kecil akibat radiasi (karena drum tertutup) menyebabkan penggunaan ladel drum sangat efektif PERALATAN PENAHAN DAN REM PERALATAN PENAHAN Alat penahan digunakan untuk menahan beban yang sedang diangkat oleh Derek. Peralatan Racet. Jenis peralatan ini terdiri atas roda racet dan sebuah pengunci. Gigi racet dapat diletakkan pada bagian dalam atau luar pada sisi ataupun roda racet. Gigi tersebut dibentuk sedemikian rupa sehingga racet dapat bergerak bebas ketika beban diangkat. Gambar 09 a menunjukkan desain peralatan racet yang paling sering digunakan dengan gigi pada bagian luar roda racet. Materi Konstruksi Baja Ringan 7

28 5/8/0 Penahan terbaik diperoleh pada titik kontak antara garis singgung yang melewati titik putar pengunci dan diameter luar roda racet. Dalam hal ini tekanan pada pengunci diarahkan sepanjang gaya keliling roda racet. Menurut tujuannya roda racet dapat didesain dengan jumlah gigi yang berbeda-beda : z = 6 sampai 8 untuk dongkrak batang dan pinion, racet dan rem yang digerakkan oleh beban yang diangkat (pengangkat dengan penggerak roda cacing). z = sampai 0, untuk penahan racet yang bebas z = 6 sampai 5 atau selebihnya untuk rem jenis racet. Panjang gigi (lebar daerah tumpuan pengunci) dipilih dengan memperhatikan tekanan satuan linear. b = P p dengan : P = gaya keliling p = tekanan satu linear Biasanya tekanan satuan diambil p = kg/cm untuk pengunci baja dan roda racet besi cor dan p = kg/cm untuk pengunci dan roda racet yang terbuat dari baja. Gambar 09 Peralatan racet dengan gigi luar Gigi racet dengan pertemuan pada bagian luar diperiksa terhadap kelenturan dengan rumus : m 3 M zψ *ς lentur + Dengan : m = modul yang setara dengan kisar pada diameter luar dibagi dengan π Materi Konstruksi Baja Ringan 8

29 5/8/0 M = momen gaya yang ditransmisikan dalam kg cm. z = jumlah gigi *ς lentur + = tegangan lentur aman Rumus (95) (lihat gambar 09b) diturunkan sebagai berikut. Anggapan ABCD adalah daerah patahan gigi. Persamaan kekuatan terhadap lentur adalah Ph = a ² b *ς lentur + 6 Biasanya a = m dan h = 0,75 m; b = ψm;p = M dan D = zm D Maka : M 0,75 m = m² ψm *ς lentur + zm 6 dan : m 3 M zψ *ς lentur + Kecepatan keliling roda racet tersebut berbanding lurus dengan diameternya. Karena gaya tumbukan pada pengunci dan gigi meningkat secara proporsional dengan kuadrat kecepatannya, maka peningkatan kecepatan harus dibatasi sampai nilai yang dapat diizinkan. Tumbukan pada kecepatan tinggi dikurangi dengan memakai gigi dan kisar yang lebih kecil; dapat juga sepersekian dipakai dua atau beberapa pengunci yang titik pertemuannya digeser sepersekian bagian kisar, sesuai dengan jumlah penguncinya. Pada perlengkapan racet bebas atau rem jenis roda racet selalu terpasang mati pada poros. Pengunci racet dapat didesain seperti pada Gambar 09 a ataupun dengan bentuk seperti penahan yang ditunjukkan Gambar 09 a. Materi Konstruksi Baja Ringan 9

30 5/8/0 Pengunci diperiksa terhadap tekanan eksentris ataupun tarikan eksentris; ς = M lentur + P W F Dengan : M lentur = P e W = bx² adalah momen ketahanan minimum yang diperlukan (Gambar 09 d) Biasanya pena pengunci (Gambar 0a) dianggap sebagai batang kantilever yang mengalami pembebanan. Persamaan kekuatan ialah : Pl = 0, d³ *ς lentur + Untuk l = b + a dan P = M kita peroleh zm d =,7 M b + a zm *ς lentur + Dengan memperhatikan penggunaan beban tumbukan, biasanya pena racet dibuat dari Baja 45 yang mempunyai tegangan lentur aman yang agak diperkecil. *ς lentur ] = (300 sampai 500) kg/cm² Kondisi yang terbaik untuk pengunci yang bergeser pada gigi racet didapatkan bila φ > ρ dengan ρ adalah sudut gesek (Gambar 0b). Gaya T = P sin φ cenderung mendorong pengunci kea rah akar gigi sedangkan gaya gesek N μ (di mana N = P cos φ) dan daya gesek pada pena pengunci akan melawan gerakan ini. Bila MA = 0 didapatkan (T Nμ) L cos φ Pμ d = 0 Dengan mensubstitusikan nilai T dan N dan menghilangkan cos² φ tan p > 0 ; Maka φ - 0 > 0 atau φ akan menjadi lebih besar dari p. Materi Konstruksi Baja Ringan 30

31 5/8/0 Tabel Konstruksi untuk Profil Gigi dan Roda Racet Tabel memberikan data yang diperlukan untuk konstruksi profil gigi dan roda racet dengan gigi dalam dan luar. Urutan berikut ini dapat dipakai untuk mengkonstruksikan profil gigi luar (lihat Tabel ). Pertama-tama kita gambarkan lingkaran addendum NN dan dendum atau lingkaran kaki SS. Lingkaran NN, yang juga merupakan lingkaran kisar, dibagi dengan kisar t menjadi bagian yang sama besar. Dari sembarang titik bagi tersebut kita menggambarkan tali busur AB = a. Pada tali busur BC kita membuat sudur 30 dari titik C. Kemudian garis tegak lurus LM ditarik pada bagian tengah tali busur BC sampai berpotongan dengan sisi CK pada titik O. Dari titik O kemudian kita gambarkan lingkaran dengan jari-jari OC. Titik E, yang merupakan perpotongan lingkaran ini dengan lingkaran SS, merupakan salah satu titik sudut titik sudut sisi (vertex) dengan sudut 60. Profil gigi-dalam dikonstruksikan sebagai berikut. Pertama digambarkan lingkaran addendum NN dan addendum atau lingkaran kaki SS. Lingkaran NN dibagi dengan kisat t menjadi bagian yang sama panjang. Dari sembarang titik bagi tersebut digambarkan tali busur AB = a. Pada tali busur BC dibuat sudut 0 dari titik C. Kemudian garis tegak lurus LM ditarik pada bagian tengah tali busur BC sampai berpotongan dengan sisi CK pada titik E yang berupa titik perpotongan lingkaran ini dengan lingkaran SS adalah vertex dengan sudut 70. Sumbu titik putar pengunci didapat dengan konstruksi berikut (Gambar 0c). Materi Konstruksi Baja Ringan 3

32 5/8/0 Jarak antara pusat ke pusat OA (antara pusat pengunci dan roda racet) diambil sebagai diameter setengah lingkaran yang perpotongannya pada titik B dengan lingkaran addendum roda akan memberikan kedudukan gigi yang bertemu dengan pengunci dan potongan BA akan merupakan panjang pengunci. Garis BA akan tegak lurus dengan jari-jari racet OB dari persamaan geometris. Biasanya panjang pengunci BA diambil sama dengan t. Pengunci yang tidak bertemu dengan gigi akibat bobot mereka sendiri diberi pemberat tambahan atau pegas (Gambar a). Bila muatan sedang diangkat gigi roda racet akan bergeser di bawah pengunci dan menimbulkan bunyi klik yang tidak diinginkan (terutama bila poros berputar dengan kecepatan tinggi). Bunyi tersebut dapat dihilangkan dengan memakai pengunci yang dikenal sebagai pengunci tanpa bunyi (noiseless), yang beroperasi dengan menggunakan cincin gesek (Gambar b). Pengunci demikian hanya digunakan pada rem racet. Roda racet dengan gigi-dalam dipakai hanya pada roda rem racet. Giginya dicor pada sisi-dalam drum rem yang terpasang bebas pada poros. Satu atau dua buah pengunci dipsang pada tuas yang diikat pada poros dan dioperasikan oleh cincin gesek (Gambar ). Jumlah gigi berkisar dari z = 6 sampai 30. Gigi pada bagian dalam roda racet jauh lebih j auh lebih kuat dibandingkan dengan gigi pada bagian luar. Akibatnya persamaan kekuatan mempunyai bentuk yang berbeda : M zψ *ς lentur + Simbol yang dipakai mewakili nilai yang sama dengan persamaan (95). Materi Konstruksi Baja Ringan 3

33 5/8/0 Penahan gesek. Dibandingkan dengan penahan gigi, penahan gesek mempunyai keunggulan tertentu: beroperasi tanpa bunyi dan tanpa guncangan. Akan tetapi pda penahan jenis ini tekanan pada titik putar pal dan poros lebih tinggi dibandingkan dengan penahan bergigi. Akibatnya penggunaan terbatas dan selalu dipakai bersamaan dengan rem. Gambar 3 menunjukkan penahan gesek dengan gigi-dalam penahan berbentuk baji. Sudut bajinya bisanya diambil sebesar α Koefisien gesek μ 0,. Sudut φ adalah 5 pada nilai rata-rata. Untuk mencegah aksi dua arah dipakai dua buah cakar yang ditempatkan pada kedudukan yang berlawanan pada diameter lingkaran roda geseknya.. Gambar Roda racet dengan gigi dalam Tekanan pada titik putar pengunci adalah :` P0 = P Tan φ Di mana : P = gaya keliling Cakram rem harus diperkuat dengan sirip untuk menahan beban yang ditimbulkan tekanan pengunci. Racet Rol. Biasanya penggunaan racet rol secara meluas dipakai bersamaan dengan rem. Gambar 4a menunjukkan racet rol pada rumah yang terpisah dengan rem. Peralatan racet semacam ini beroperasi sebagai berikut. Poros yang akan ditahan mempunyai bus yang diberi alur sebagai tempat rol 3. Cincin 6 dipasang dengan pasak 5 pada badan 4. Rol 3 tidak menghalangi putaran yang berlawanan arah dengan jarum jam bus bersama dengan poros. Bila poros mulai berputara searah dengan jarum jam akibat muatan (poros mendukung drum yang dililiti tali pengangkat) rol akan tertekan pada alur oleh bus dan ditekan pada cincin tetap 6. Materi Konstruksi Baja Ringan 33

34 5/8/0 Untuk mencegah rol jatuh ke dalam alur akibat bobotnya sendiri dipasang pegas penahan seperti yang ditunjukkan Gambar 4b. Gambar 5 menunjukkan berbagai desain racet rol. Gambar 3 Penahan gesek Gambar 4 Racet Rol Gambar 5 Berbagai desain racet rol Desain Racet Rol (Gambar 6). Rola yang ditekan antara penggerak dan pengikut pada pusat gaya normal N dan N dan daya gesek tangesial μ N dan μn. Dengan roll yang berada pada ketidak seimbangan gaya, resultan R = R. Momem gaya yang ditransmisikan adalah : M = zμn D dengan : z = jumlah rol (biasanya z = 4). Koefisien gesek μ 0,06. Bila μ = tan p > tan α kita dapatkan N < M (N =N = N) z D tan a 3 Akan tetapi, untuk mendapatkan keandalah yang lebih baik, gaya yang bekerja pada sebuah rol diasumsikan sebagai : N = M (98) zd tan a Panjang rol l = N dengan p = 450 kg/cm bila p elemen yang beroperasi dibuat dari baja yang bermutu tinggi dan diperkeras dengan baik. Tabel 3 menyenaraikan dimensi utama racet rol dengan kekerasan Rockwell pada permukaan operasi Rc = 58 sampai 6. Bahan yang dipakai adalah Baja 5 dengan perkerasan kulit (case hardered). Materi Konstruksi Baja Ringan 34

35 5/8/0 Gambar 6 Diagram desain racet rol Tabel 3 Dimensi Utama Rachet Rol Rachet rol dipilih dengan memakai rumus berikut : Naman = 00N 00 nk dengan: n = rupa yang sebenarnya k = factor keamanan, diambil mulai,5 sampai. REM SEPATU Pada mesin pengangkat, rem digunakan untuk mengatur kecepatan penurunan muatan ataupun untuk menahan muatan agar diam. Rem digunakan juga untuk menyerap inersia massa yang bergerak (truk, crane, muatan, dan sebagainya). Tergantung pada kegunaannya rem dapat diklasifikasikan sebagai jenis penahan (parkir), jenis penurunan atau gabungan keduanya. Rem jenis gabungan melayani kedua fungsi penghentian muatan dan mengatur kecepatan penurunan. Rem dapat dibedakan menjadi rem automatis dan rem yang dieprasikan manual. Jenis rem yang termasuk rem manual ialah : rem sepatu atau blok, rem pita, rem kerucut, rem cakram dan rem racet serta rem, dengan gagang pengaman. Jenis rem yang termasuk rem otomatis adalah rem sentrifugal (untuk mengatur kecepatan) dan rem yang digerakkan oleh bobot muatan yang diangkat. Rem sepatu atau blok dapat didesain dengan sepatu luar atau dalam. Rem sepatu luar adalah jenis rem yang umum digunakkan pada mesin pengangkat, sedangkan rem, sepatu dalam hanya ditujukan untuk penggunaan crane yang dipasang pada truk. Materi Konstruksi Baja Ringan 35

36 5/8/0 Prinsip Operasi Rem. Untuk memahami prinsip operasi rem sepatu marilah kita lihat diagram rem sepatu tunggal yang ditunjukkan pada Gambar 7. Karena aksi satu arah sepatu tunggal menimbulkan lenturan pada poros rem, rem sepatu tunggal hanya dapat dipakai untuk menahan momen gaya yang kecil pada penggerak tangan bila diameter poros tidak melebihi 50 mm. Tekanan yang diberikan oleh sepatu besi cor pada roda rem haruslah sedemikian rupa sehingga gaya gesek yang dihasilkan pada permukaan roda mengimbangi gaya kelilingnya. Gambar 7 Diagram untuk rem sepatu tunggal Gambar 8 Diagram untuk rem sepatu ganda Rem sepatu ganda (Gambar 8) sering digunakan pada mekanisme pengangkat, pemindah dan pemutar crane, yang berbeda dengan rem sepatu tunggal, rem sepatu ganda tidak menimbulkan defleksi pada poros rem. Penjepit dan crane yang digerakkan listrik hampir selalu didesain dengan rem sepatu ganda. Rem digerakkan oleh pemberat G dan dilepaskan dengan electromagnet. Akibatnya, pengereman yang permanent hanya bekerja bila electromagnet dinyalakan. Biasanya rangkaian listriknya dibuat saling mengunci antara motor dan magnet secara otomatis menghasilkan aksi pengereman walaupun motor berhenti secara mendadak. Rem sepatu ganda (Gambar 8) beroperasi dengan prinsip kerja sebagai berikut: pemberat G menyebabkan tangkai I bergerak kebawah bersama dengan batang tarik. Batang tarik akan memutar segitiga kaku 3 melalui sendi C. Bila kita asumsikan titik A diam di tempat, titik C bergerak ke bawah; dalam kasus ini titik B akan berpindah ke kanan. Gerakan ini akan ditransimisikan oleh batang tarik 4 dan tuas 6 yang akan mendorong sepatu 8 ke arah roda rem. Bila sepatu 8 sudah tidak dapat bergerak lagi, Materi Konstruksi Baja Ringan 36

BAB II DASAR TEORI. Mesin perajang singkong dengan penggerak motor listrik 0,5 Hp mempunyai

BAB II DASAR TEORI. Mesin perajang singkong dengan penggerak motor listrik 0,5 Hp mempunyai BAB II DASAR TEORI 2.1. Prinsip Kerja Mesin Perajang Singkong. Mesin perajang singkong dengan penggerak motor listrik 0,5 Hp mempunyai beberapa komponen, diantaranya adalah piringan, pisau pengiris, poros,

Lebih terperinci

MESIN PEMINDAH BAHAN PERANCANGAN HOISTING CRANE DENGAN KAPASITAS ANGKAT 5 TON PADA PABRIK PENGECORAN LOGAM

MESIN PEMINDAH BAHAN PERANCANGAN HOISTING CRANE DENGAN KAPASITAS ANGKAT 5 TON PADA PABRIK PENGECORAN LOGAM MESIN PEMINDAH BAHAN PERANCANGAN HOISTING CRANE DENGAN KAPASITAS ANGKAT 5 TON PADA PABRIK PENGECORAN LOGAM SKRIPSI Skripsi Yang Diajukan untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik KURNIAWAN

Lebih terperinci

BAB II DASAR TEORI P = = = 0,35Q

BAB II DASAR TEORI P = = = 0,35Q BAB II DASAR TEORI 2.1 Pengait (Hook) Pada suatu crane hoist dibutuhkan peralatan utama yang terdiri dari Pengait (Hook) dan Rantai (Chain) untuk mengikat maupun menarik beban. Pengait berfungsi sebagai

Lebih terperinci

MAKALAH PESAWAT ANGKAT. Rantai dan Tali

MAKALAH PESAWAT ANGKAT. Rantai dan Tali MAKALAH PESAWAT ANGKAT Rantai dan Tali Disusun oleh : Rungky R. Pratama (02.2010.1.08126) JURUSAN TEKNIK MESIN FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI ADHI TAMA SURABAYA 2013 1. Rantai Lasan rantai

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1. TINJAUAN PUSTAKA Potato peeler atau alat pengupas kulit kentang adalah alat bantu yang digunakan untuk mengupas kulit kentang, alat pengupas kulit kentang yang

Lebih terperinci

PERENCANAAN OVERHEAD TRAVELLING CRANE YANG DIPAKAI PADA PABRIK PELEBURAN BAJA DENGAN KAPASITAS ANGKAT CAIRAN 10 TON

PERENCANAAN OVERHEAD TRAVELLING CRANE YANG DIPAKAI PADA PABRIK PELEBURAN BAJA DENGAN KAPASITAS ANGKAT CAIRAN 10 TON UNIVERSITAS SUMATERA UTARA FAKULTAS TEKNIK DEPARTEMEN TEKNIK MESIN MEDAN TUGAS SARJANA MESIN PEMINDAH BAHAN PERENCANAAN OVERHEAD TRAVELLING CRANE YANG DIPAKAI PADA PABRIK PELEBURAN BAJA DENGAN KAPASITAS

Lebih terperinci

KOPLING. Kopling ditinjau dari cara kerjanya dapat dibedakan atas dua jenis: 1. Kopling Tetap 2. Kopling Tak Tetap

KOPLING. Kopling ditinjau dari cara kerjanya dapat dibedakan atas dua jenis: 1. Kopling Tetap 2. Kopling Tak Tetap KOPLING Defenisi Kopling dan Jenis-jenisnya Kopling adalah suatu elemen mesin yang berfungsi untuk mentransmisikan daya dari poros penggerak (driving shaft) ke poros yang digerakkan (driven shaft), dimana

Lebih terperinci

BAB II TEORI ELEVATOR

BAB II TEORI ELEVATOR BAB II TEORI ELEVATOR 2.1 Definisi Elevator. Elevator atau sering disebut dengan lift merupakan salah satu jenis pesawat pengangkat yang berfungsi untuk membawa barang maupun penumpang dari suatu tempat

Lebih terperinci

MESIN PEMINDAH BAHAN

MESIN PEMINDAH BAHAN MESIN PEMINDAH BAHAN PERANCANGAN DAN ANALISA PERHITUNGAN BEBAN ANGKAT MAKSIMUM PADA VARIASI JARAK LENGAN TOWER CRANE KAPASITAS ANGKAT 3,2 TON TINGGI ANGKAT 40 METER DAN RADIUS LENGAN 70 METER SKRIPSI Skripsi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. buah kabin operator yang tempat dan fungsinya adalah masing-masing. 1) Kabin operator Truck Crane

BAB II TINJAUAN PUSTAKA. buah kabin operator yang tempat dan fungsinya adalah masing-masing. 1) Kabin operator Truck Crane BAB II TINJAUAN PUSTAKA 2.1. Bagian-bagian Utama Pada Truck Crane a) Kabin Operator Seperti yang telah kita ketahui pada crane jenis ini memiliki dua buah kabin operator yang tempat dan fungsinya adalah

Lebih terperinci

BAB II DASAR TEORI 2.1. Prinsip kerja Mesin Penghancur Kedelai 2.2. Gerenda Penghancur Dan Alur

BAB II DASAR TEORI 2.1. Prinsip kerja Mesin Penghancur Kedelai 2.2. Gerenda Penghancur Dan Alur BAB II DASAR TEORI 2.1. Prinsip kerja Mesin Penghancur Kedelai Mesin penghancur kedelai dengan penggerak motor listrik 0,5 Hp, mengapa lebih memilih memekai motor listrik 0,5 Hp karena industri yang di

Lebih terperinci

BAB II DASAR TEORI 2.1 Konsep Perencanaan 2.2 Motor 2.3 Reducer

BAB II DASAR TEORI 2.1 Konsep Perencanaan 2.2 Motor 2.3 Reducer BAB II DASAR TEORI 2.1 Konsep Perencanaan Konsep perencanaan komponen yang diperhitungkan sebagai berikut: a. Motor b. Reducer c. Daya d. Puli e. Sabuk V 2.2 Motor Motor adalah komponen dalam sebuah kontruksi

Lebih terperinci

V. HASIL DAN PEMBAHASAN

V. HASIL DAN PEMBAHASAN V. HASIL DAN PEMBAHASAN A. DESAIN PENGGETAR MOLE PLOW Prototip mole plow mempunyai empat bagian utama, yaitu rangka three hitch point, beam, blade, dan mole. Rangka three hitch point merupakan struktur

Lebih terperinci

PERANCANGAN OVERHEAD TRAVELLING CRANE YANG DIPAKAI DI WORKSHOP PEMBUATAN PABRIK KELAPA SAWIT DENGAN KAPASITAS ANGKAT 10 TON

PERANCANGAN OVERHEAD TRAVELLING CRANE YANG DIPAKAI DI WORKSHOP PEMBUATAN PABRIK KELAPA SAWIT DENGAN KAPASITAS ANGKAT 10 TON TUGAS SARJANA MESIN PEMINDAH BAHAN PERANCANGAN OVERHEAD TRAVELLING CRANE YANG DIPAKAI DI WORKSHOP PEMBUATAN PABRIK KELAPA SAWIT DENGAN KAPASITAS ANGKAT 10 TON OLEH : RAMCES SITORUS NIM : 070421006 FAKULTAS

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN Gambar 14. HASIL DAN PEMBAHASAN Gambar mesin sortasi buah manggis hasil rancangan dapat dilihat dalam Bak penampung mutu super Bak penampung mutu 1 Unit pengolahan citra Mangkuk dan sistem transportasi

Lebih terperinci

IV. PENDEKATAN DESAIN

IV. PENDEKATAN DESAIN IV. PENDEKATAN DESAIN A. Kriteria Desain Alat pengupas kulit ari kacang tanah ini dirancang untuk memudahkan pengupasan kulit ari kacang tanah. Seperti yang telah diketahui sebelumnya bahwa proses pengupasan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Mesin pemindah bahan merupakan salah satu peralatan mesin yang digunakan untuk memindahkan muatan dari lokasi pabrik, lokasi konstruksi, lokasi industri, tempat penyimpanan, pembongkaran

Lebih terperinci

BAB II DASAR TEORI. c) Untuk mencari torsi dapat dirumuskan sebagai berikut:

BAB II DASAR TEORI. c) Untuk mencari torsi dapat dirumuskan sebagai berikut: BAB II DASAR TEORI 2.1 Daya Penggerak Secara umum daya diartikan sebagai suatu kemampuan yang dibutuhkan untuk melakukan sebuah kerja, yang dinyatakan dalam satuan Watt ataupun HP. Penentuan besar daya

Lebih terperinci

BAB II PEMBAHASAN MATERI

BAB II PEMBAHASAN MATERI BAB II PEMBAHASAN MATERI 2.1 Mesin Pemindah Bahan Mesin pemindah bahan merupakan satu diantara peralatan mesinyang digunakan untuk memindahkan muatan di lokasi atau area pabrik, lokasi konstruksi, tempat

Lebih terperinci

BAB III. Metode Rancang Bangun

BAB III. Metode Rancang Bangun BAB III Metode Rancang Bangun 3.1 Diagram Alir Metode Rancang Bangun MULAI PENGUMPULAN DATA : DESAIN PEMILIHAN BAHAN PERHITUNGAN RANCANG BANGUN PROSES PERMESINAN (FABRIKASI) PERAKITAN PENGUJIAN ALAT HASIL

Lebih terperinci

Contoh Soal dan Pembahasan Dinamika Rotasi, Materi Fisika kelas 2 SMA. Pembahasan. a) percepatan gerak turunnya benda m.

Contoh Soal dan Pembahasan Dinamika Rotasi, Materi Fisika kelas 2 SMA. Pembahasan. a) percepatan gerak turunnya benda m. Contoh Soal dan Dinamika Rotasi, Materi Fisika kelas 2 SMA. a) percepatan gerak turunnya benda m Tinjau katrol : Penekanan pada kasus dengan penggunaan persamaan Σ τ = Iα dan Σ F = ma, momen inersia (silinder

Lebih terperinci

ANALISA KEMAMPUAN ANGKAT DAN UNJUK KERJA PADA OVER HEAD CONVEYOR. Heri Susanto

ANALISA KEMAMPUAN ANGKAT DAN UNJUK KERJA PADA OVER HEAD CONVEYOR. Heri Susanto ANALISA KEMAMPUAN ANGKAT DAN UNJUK KERJA PADA OVER HEAD CONVEYOR Heri Susanto ABSTRAK Keinginan untuk membuat sesuatu hal yang baru serta memperbaiki atau mengoptimalkan yang sudah ada adalah latar belakang

Lebih terperinci

BAB II DASAR TEORI. 2.1 Pengertian rangka

BAB II DASAR TEORI. 2.1 Pengertian rangka BAB II DASAR TEORI 2.1 Pengertian rangka Rangka adalah struktur datar yang terdiri dari sejumlah batang-batang yang disambung-sambung satu dengan yang lain pada ujungnya, sehingga membentuk suatu rangka

Lebih terperinci

BAB III PERENCANAAN DAN GAMBAR

BAB III PERENCANAAN DAN GAMBAR BAB III PERENCANAAN DAN GAMBAR 3.1 Flowchart Perencanaan Pembuatan Mesin Pemotong Umbi Proses Perancangan mesin pemotong umbi seperti yang terlihat pada gambar 3.1 berikut ini: Mulai mm Studi Literatur

Lebih terperinci

PERENCANAAN OVERHEAD TRAVELLING CRANE KAPASITAS 10 TON BENTANGAN 25 METER

PERENCANAAN OVERHEAD TRAVELLING CRANE KAPASITAS 10 TON BENTANGAN 25 METER PERENCANAAN OVERHEAD TRAVELLING CRANE KAPASITAS 10 TON BENTANGAN 25 METER Tugas Akhir Diajukan Sebagai Salah Satu Syarat Untuk Menyelesaikan Gelar Kesarjanaan Fakultas Teknik Universitas Muhammadiyah Surakarta

Lebih terperinci

V. HASIL DAN PEMBAHASAN

V. HASIL DAN PEMBAHASAN V. HASIL DAN PEMBAHASAN Semua mekanisme yang telah berhasil dirancang kemudian dirangkai menjadi satu dengan sistem kontrol. Sistem kontrol yang digunakan berupa sistem kontrol loop tertutup yang menjadikan

Lebih terperinci

10Teinik. Template Mesin Pemindahan Bahan Power Point. Sistem Peralatan Tambahan Khusus Kait Pada Mesin Pemindahan Bahan. Ir. H. Pirnadi, MSc. APU.

10Teinik. Template Mesin Pemindahan Bahan Power Point. Sistem Peralatan Tambahan Khusus Kait Pada Mesin Pemindahan Bahan. Ir. H. Pirnadi, MSc. APU. Modul ke: Template Mesin Pemindahan Bahan Power Point Sistem Peralatan Tambahan Khusus Kait Pada Mesin Pemindahan Bahan. Fakultas 10Teinik Ir. H. Pirnadi, MSc. APU. Program Studi Teknik Mesin 2. Peralatan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pengertian dan Prinsip Dasar Alat uji Bending 2.1.1. Definisi Alat Uji Bending Alat uji bending adalah alat yang digunakan untuk melakukan pengujian kekuatan lengkung (bending)

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian pengelasan secara umum a. Pengelasan Menurut Harsono,1991 Pengelasan adalah ikatan metalurgi pada sambungan logam paduan yang dilakukan dalam keadaan lumer atau cair.

Lebih terperinci

BAB II PEMBAHASAN MATERI. dalam setiap industri modern. Desain mesin pemindah bahan yang beragam

BAB II PEMBAHASAN MATERI. dalam setiap industri modern. Desain mesin pemindah bahan yang beragam BAB II PEMBAHASAN MATERI 2.1 Mesin Pemindah Bahan Mesin pemindah bahan merupakan bagian terpadu perlengkapan mekanis dalam setiap industri modern. Desain mesin pemindah bahan yang beragam disebabkan oleh

Lebih terperinci

BAB IV PERHITUNGAN DAN PEMBAHASAN

BAB IV PERHITUNGAN DAN PEMBAHASAN BAB IV PERHITUNGAN DAN PEMBAHASAN 4.1. Perencanaan Tabung Luar Dan Tabung Dalam a. Perencanaan Tabung Dalam Direncanakan tabung bagian dalam memiliki tebal stainles steel 0,6, perencenaan tabung pengupas

Lebih terperinci

MESIN PEMINDAH BAHAN PERENCANAAN TOWER CRANE DENGAN KAPASITAS ANGKAT 7 TON, TINGGI ANGKAT 55 METER, RADIUS 60 M, UNTUK PEMBANGUNAN GEDUNG BERTINGKAT.

MESIN PEMINDAH BAHAN PERENCANAAN TOWER CRANE DENGAN KAPASITAS ANGKAT 7 TON, TINGGI ANGKAT 55 METER, RADIUS 60 M, UNTUK PEMBANGUNAN GEDUNG BERTINGKAT. MESIN PEMINDAH BAHAN PERENCANAAN TOWER CRANE DENGAN KAPASITAS ANGKAT 7 TON, TINGGI ANGKAT 55 METER, RADIUS 60 M, UNTUK PEMBANGUNAN GEDUNG BERTINGKAT. SKRIPSI Skripsi yang Diajukan untuk Melengkapi Syarat

Lebih terperinci

BAB IV PEMBAHASAAN 4.1 PENGERTIAN DAN FUNGSI KOPLING Kopling adalah satu bagian yang mutlak diperlukan pada truk dan jenis lainnya dimana penggerak utamanya diperoleh dari hasil pembakaran di dalam silinder

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 6 BAB II TINJAUAN PUSTAKA 2.1.Perencanaan Rancang Bangun Dalam merencanakan suatu alat bantu, terlebih dahulu kita harus memperhatikan faktor-faktor yang mendasari terlaksananya perencanaan alat bantu

Lebih terperinci

BAB III TEORI PERHITUNGAN. Data data ini diambil dari eskalator Line ( lampiran ) Adapun data data eskalator tersebut adalah sebagai berikut :

BAB III TEORI PERHITUNGAN. Data data ini diambil dari eskalator Line ( lampiran ) Adapun data data eskalator tersebut adalah sebagai berikut : BAB III TEORI PERHITUNGAN 3.1 Data data umum Data data ini diambil dari eskalator Line ( lampiran ) Adapun data data eskalator tersebut adalah sebagai berikut : 1. Tinggi 4 meter 2. Kapasitas 4500 orang/jam

Lebih terperinci

BAB 2 SAMBUNGAN (JOINT ) 2.1. Sambungan Keling (Rivet)

BAB 2 SAMBUNGAN (JOINT ) 2.1. Sambungan Keling (Rivet) BAB SAMBUNGAN (JOINT ).1. Sambungan Keling (Rivet) Pada umumnya mesin mesin terdiri dari beberapa bagian yang disambung-sambung menjadi sebuah mesin yang utuh. Sambungan keling umumnya diterapkan pada

Lebih terperinci

Pembebanan Batang Secara Aksial. Bahan Ajar Mekanika Bahan Mulyati, MT

Pembebanan Batang Secara Aksial. Bahan Ajar Mekanika Bahan Mulyati, MT Pembebanan Batang Secara Aksial Suatu batang dengan luas penampang konstan, dibebani melalui kedua ujungnya dengan sepasang gaya linier i dengan arah saling berlawanan yang berimpit i pada sumbu longitudinal

Lebih terperinci

Bahan poros S45C, kekuatan tarik B Faktor keamanan Sf 1 diambil 6,0 dan Sf 2 diambil 2,0. Maka tegangan geser adalah:

Bahan poros S45C, kekuatan tarik B Faktor keamanan Sf 1 diambil 6,0 dan Sf 2 diambil 2,0. Maka tegangan geser adalah: Contoh soal: POROS:. Tentukan diameter sebuah poros bulat untuk meneruskan daya 0 (kw) pada putaran 450 rpm. Bahan diambil baja dingin S45C. Solusi: Daya P = 0 kw n = 450 rpm f c =,0 Daya rencana = f c

Lebih terperinci

SOAL DINAMIKA ROTASI

SOAL DINAMIKA ROTASI SOAL DINAMIKA ROTASI A. Pilihan Ganda Pilihlah jawaban yang paling tepat! 1. Sistem yang terdiri atas bola A, B, dan C yang posisinya seperti tampak pada gambar, mengalami gerak rotasi. Massa bola A, B,

Lebih terperinci

BAB II DASAR-DASAR DESAIN BETON BERTULANG. Beton merupakan suatu material yang menyerupai batu yang diperoleh dengan

BAB II DASAR-DASAR DESAIN BETON BERTULANG. Beton merupakan suatu material yang menyerupai batu yang diperoleh dengan BAB II DASAR-DASAR DESAIN BETON BERTULANG. Umum Beton merupakan suatu material yang menyerupai batu yang diperoleh dengan membuat suatu campuran yang mempunyai proporsi tertentudari semen, pasir, dan koral

Lebih terperinci

Fungsi Utama Rem: Menghentikan putaran poros Mengatur Putaran Poros Mencegah Putaran yang tak dikehendaki. Fungsi rem selanjutnya?

Fungsi Utama Rem: Menghentikan putaran poros Mengatur Putaran Poros Mencegah Putaran yang tak dikehendaki. Fungsi rem selanjutnya? Fungsi Utama Rem: Menghentikan putaran poros Mengatur Putaran Poros Mencegah Putaran yang tak dikehendaki Fungsi rem selanjutnya? Cara Kerja Rem Rem:: 1. Secara Mekanis : dengan gesekan 2. Secara Listrik

Lebih terperinci

BAB II DASAR TEORI. 2.1 Prinsip Dasar Mesin Pencacah Rumput

BAB II DASAR TEORI. 2.1 Prinsip Dasar Mesin Pencacah Rumput BAB II DASAR TEORI 2.1 Prinsip Dasar Mesin Pencacah Rumput Mesin ini merupakan mesin serbaguna untuk perajang hijauan, khususnya digunakan untuk merajang rumput pakan ternak. Pencacahan ini dimaksudkan

Lebih terperinci

Tujuan Pembelajaran:

Tujuan Pembelajaran: P.O.R.O.S Tujuan Pembelajaran: 1. Mahasiswa dapat memahami pengertian poros dan fungsinya 2. Mahasiswa dapat memahami macam-macam poros 3. Mahasiswa dapat memahami hal-hal penting dalam merancang poros

Lebih terperinci

Penggunaan transmisi sabuk, menurut Sularso (1979 : 163), dapat dibagi menjadi tiga kelompok, yaitu :

Penggunaan transmisi sabuk, menurut Sularso (1979 : 163), dapat dibagi menjadi tiga kelompok, yaitu : SABUK-V Untuk menghubungkan dua buah poros yang berjauhan, bila tidak mungkin digunakan roda gigi, maka dapat digunakan sabuk luwes atau rantai yang dililitkan di sekeliling puli atau sprocket pada porosnya

Lebih terperinci

DIAL TEKAN (DIAL GAUGE/DIAL INDICATOR)

DIAL TEKAN (DIAL GAUGE/DIAL INDICATOR) DIAL TEKAN (DIAL GAUGE/DIAL INDICATOR) Alat ukur dalam dunia teknik sangat banyak. Ada alat ukur pneumatik, mekanik, hidrolik maupun yang elektrik. Termasuk dalam dunia otomotif, banyak juga alat ukur

Lebih terperinci

V. HASIL DAN PEMBAHASAN

V. HASIL DAN PEMBAHASAN V. HASIL DAN PEMBAHASAN 5.1. Pembuatan Prototipe 5.1.1. Modifikasi Rangka Utama Untuk mempermudah dan mempercepat waktu pembuatan, rangka pada prototipe-1 tetap digunakan dengan beberapa modifikasi. Rangka

Lebih terperinci

BAB II PENDEKATAN PEMECAHAN MASALAH. harus mempunyai sebuah perencanaan yang matang. Perencanaan tersebut

BAB II PENDEKATAN PEMECAHAN MASALAH. harus mempunyai sebuah perencanaan yang matang. Perencanaan tersebut BAB II PENDEKATAN PEMECAHAN MASALAH Proses pembuatan rangka pada mesin pemipih dan pemotong adonan mie harus mempunyai sebuah perencanaan yang matang. Perencanaan tersebut meliputi gambar kerja, bahan,

Lebih terperinci

BAB II PEMBAHASAN MATERI. digunakan untuk memindahkan muatan di lokasi atau area pabrik, lokasi

BAB II PEMBAHASAN MATERI. digunakan untuk memindahkan muatan di lokasi atau area pabrik, lokasi 5 BAB II PEMBAHASAN MATERI 2.1 Mesin Pemindah Bahan Mesin pemindah bahan merupakan satu diantara peralatan mesin yang digunakan untuk memindahkan muatan di lokasi atau area pabrik, lokasi konstruksi, tempat

Lebih terperinci

1. Kopling Cakar : meneruskan momen dengan kontak positif (tidak slip). Ada dua bentuk kopling cakar : Kopling cakar persegi Kopling cakar spiral

1. Kopling Cakar : meneruskan momen dengan kontak positif (tidak slip). Ada dua bentuk kopling cakar : Kopling cakar persegi Kopling cakar spiral Kopling tak tetap adalah suatu elemen mesin yang menghubungkan poros penggerak ke poros yang digerakkan degan putaran yang sama dalam meneruskan daya, serta dapat melepaskan hubungan kedua poros tersebut

Lebih terperinci

BAB III PERENCANAAN DAN GAMBAR

BAB III PERENCANAAN DAN GAMBAR BAB III PERENCANAAN DAN GAMBAR 3.1 Diagram Alir Proses Perancangan Proses perancangan mesin peniris minyak pada kacang seperti terlihat pada gambar 3.1 berikut ini: Mulai Studi Literatur Gambar Sketsa

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Mobile Crane Mobile crane adalah Alat pengangkat ( crane) dengan sebuah mesin yang mempunyai struktur traktor atau truck yang dapat dipindahkan dengan mudah karena dukungan

Lebih terperinci

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Untuk Memperoleh Gelar Sarjana Teknik STEVANUS SITUMORANG NIM

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Untuk Memperoleh Gelar Sarjana Teknik STEVANUS SITUMORANG NIM PERANCANGAN TROLLEY DAN SPREADER GANTRY CRANE KAPASITAS ANGKAT 40 TON TINGGI ANGKAT 41 METER YANG DIPAKAI DI PELABUHAN INDONESIA I CABANG BELAWAN INTERNATIONAL CONTAINER TERMINAL (BICT) SKRIPSI Skripsi

Lebih terperinci

IV. PENDEKATAN RANCANGAN

IV. PENDEKATAN RANCANGAN IV. PENDEKATAN RANCANGAN 4.1. Rancang Bangun Furrower Pembuat Guludan Rancang bangun furrower yang digunakan untuk Traktor Cultivator Te 550n dilakukan dengan merubah pisau dan sayap furrower. Pada furrower

Lebih terperinci

Gambar 4.1 Terminologi Baut.

Gambar 4.1 Terminologi Baut. BAB 4 SAMBUNGAN BAUT 4. Sambungan Baut (Bolt ) dan Ulir Pengangkat (Screw) Untuk memasang mesin, berbagai bagian harus disambung atau di ikat untuk menghindari gerakan terhadap sesamanya. Baut, pena, pasak

Lebih terperinci

BAB II TINJAUAN PUSTAKA 2.1. Overhead Crane Overhead Crane merupakan gabungan mekanisme pengangkat secara terpisah dengan rangka untuk mengangkat

BAB II TINJAUAN PUSTAKA 2.1. Overhead Crane Overhead Crane merupakan gabungan mekanisme pengangkat secara terpisah dengan rangka untuk mengangkat 5 BAB II TINJAUAN PUSTAKA 2.1. Overhead Crane Overhead Crane merupakan gabungan mekanisme pengangkat secara terpisah dengan rangka untuk mengangkat sekaligus memindahkan muatan yang dapat digantungkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. perancangan yaitu tahap identifikasi kebutuhan, perumusan masalah, sintetis, analisis,

BAB II TINJAUAN PUSTAKA. perancangan yaitu tahap identifikasi kebutuhan, perumusan masalah, sintetis, analisis, BAB II TINJAUAN PUSTAKA.1 Perancangan Mesin Pemisah Biji Buah Sirsak Proses pembuatan mesin pemisah biji buah sirsak melalui beberapa tahapan perancangan yaitu tahap identifikasi kebutuhan, perumusan masalah,

Lebih terperinci

BAB II DASAR TEORI P =...(2.1)

BAB II DASAR TEORI P =...(2.1) 4 BAB II DASAR TEORI 2.1 Motor Motor adalah suatu komponen utama dari sebuah kontruksi permesinan yang berfungsi sebagai penggerak. Gerakan yang dihasilkan oleh motor adalah sebuah putaran poros. Komponen

Lebih terperinci

BAB II LANDASAN TEORI Alat-alat Pembantu Untuk Meningkatkan Produksi Pada Mesin. dan kecepatannya sayatnya setinggi-tingginya.

BAB II LANDASAN TEORI Alat-alat Pembantu Untuk Meningkatkan Produksi Pada Mesin. dan kecepatannya sayatnya setinggi-tingginya. BAB II LANDASAN TEORI 2.1. Alat-alat Pembantu Untuk Meningkatkan Produksi Pada Mesin 2.1.1. Bubut Senter Untuk meningkatkan produksi, pada tahap pertama kita akan berusaha memperpendek waktu utama. Hal

Lebih terperinci

BAB II LANDASAN TEORI. khususnya permesinan pengolahan makanan ringan seperti mesin pengiris ubi sangat

BAB II LANDASAN TEORI. khususnya permesinan pengolahan makanan ringan seperti mesin pengiris ubi sangat BAB II LANDASAN TEORI.. Pengertian Umum Kebutuhan peralatan atau mesin yang menggunakan teknologi tepat guna khususnya permesinan pengolahan makanan ringan seperti mesin pengiris ubi sangat diperlukan,

Lebih terperinci

MEKANIKA UNIT. Pengukuran, Besaran & Vektor. Kumpulan Soal Latihan UN

MEKANIKA UNIT. Pengukuran, Besaran & Vektor. Kumpulan Soal Latihan UN Kumpulan Soal Latihan UN UNIT MEKANIKA Pengukuran, Besaran & Vektor 1. Besaran yang dimensinya ML -1 T -2 adalah... A. Gaya B. Tekanan C. Energi D. Momentum E. Percepatan 2. Besar tetapan Planck adalah

Lebih terperinci

REKAYASA JALAN REL MODUL 3 : KOMPONEN STRUKTUR JALAN REL DAN PEMBEBANANNYA PROGRAM STUDI TEKNIK SIPIL

REKAYASA JALAN REL MODUL 3 : KOMPONEN STRUKTUR JALAN REL DAN PEMBEBANANNYA PROGRAM STUDI TEKNIK SIPIL REKAYASA JALAN REL MODUL 3 : KOMPONEN STRUKTUR JALAN REL DAN PEMBEBANANNYA OUTPUT : Mahasiswa dapat menjelaskan komponen struktur jalan rel dan kualitas rel yang baik berdasarkan standar yang berlaku di

Lebih terperinci

BAB 7 ULIR DAN PEGAS A. ULIR Hal umum tentang ulir Bentuk ulir dapat terjadi bila sebuah lembaran berbentuk segitiga digulung pada sebuah silinder,

BAB 7 ULIR DAN PEGAS A. ULIR Hal umum tentang ulir Bentuk ulir dapat terjadi bila sebuah lembaran berbentuk segitiga digulung pada sebuah silinder, BAB 7 ULIR DAN PEGAS A. ULIR Hal umum tentang ulir Bentuk ulir dapat terjadi bila sebuah lembaran berbentuk segitiga digulung pada sebuah silinder, ulir pengikat pada umumnya mempunyai profil penampang

Lebih terperinci

IV. PENDEKATAN DESAIN A. KRITERIA DESAIN B. DESAIN FUNGSIONAL

IV. PENDEKATAN DESAIN A. KRITERIA DESAIN B. DESAIN FUNGSIONAL IV. PENDEKATAN DESAIN A. KRITERIA DESAIN Perancangan atau desain mesin pencacah serasah tebu ini dimaksudkan untuk mencacah serasah yang ada di lahan tebu yang dapat ditarik oleh traktor dengan daya 110-200

Lebih terperinci

Macam-macam Tegangan dan Lambangnya

Macam-macam Tegangan dan Lambangnya Macam-macam Tegangan dan ambangnya Tegangan Normal engetahuan dan pengertian tentang bahan dan perilakunya jika mendapat gaya atau beban sangat dibutuhkan di bidang teknik bangunan. Jika suatu batang prismatik,

Lebih terperinci

Bab 4 Perancangan Perangkat Gerak Otomatis

Bab 4 Perancangan Perangkat Gerak Otomatis Bab 4 Perancangan Perangkat Gerak Otomatis 4. 1 Perancangan Mekanisme Sistem Penggerak Arah Deklinasi Komponen penggerak yang dipilih yaitu ball, karena dapat mengkonversi gerakan putaran (rotasi) yang

Lebih terperinci

MESIN PEMINDAH BAHAN

MESIN PEMINDAH BAHAN TUGAS SARJANA MESIN PEMINDAH BAHAN PERENCANAAN LIFT UNTUK KEPERLUAN GEDUNG PERKANTORAN BERLANTAI SEPULUH Oleh : R O I M A N T A S. NIM : 030421007 PROGRAM PENDIDIKAN SARJANA EKSTENSI DEPARTEMEN TEKNIK

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Umum Pesawat angkat atau alat pengangkat merupakan salah satu jenis peralatan yang bekerja secara periodik untuk mengangkat dan memindahkan suatu barang yang mempunyai beban

Lebih terperinci

Manusia menciptakan alat-alat tersebut karena menyadari

Manusia menciptakan alat-alat tersebut karena menyadari Setelah mempelajari materi pesawat sederhana dan penerapannya diharapkan ananda mampu 1. Mendefinisikan pesawat sederhana 2. Membedakan jenis-jenis pesawat sederhana 3. Menjelaskan prinsip kerja pesawat

Lebih terperinci

BAB VI POROS DAN PASAK

BAB VI POROS DAN PASAK BAB VI POROS DAN PASAK Poros merupakan salah satu bagian yang terpenting dari setiap mesin. Hampir semua mesin meneruskan tenaga bersamasama dengan putaran. Peranan utama dalam transmisi seperti itu dipegang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.. Sambungan Sambungan-sambungan pada konstruksi baja hampir tidak mungkin dihindari akibat terbatasnya panjang dan bentuk dari propil propil baja yang diproduksi. Sambungan bisa

Lebih terperinci

BAB II PEMBAHASAN MATERI. industri, tempat penyimpanan dan pembongkaran muatan dan sebagainya. Jumlah

BAB II PEMBAHASAN MATERI. industri, tempat penyimpanan dan pembongkaran muatan dan sebagainya. Jumlah BAB II PEMBAHASAN MATERI 2.1 Mesin Pemindah Bahan Mesin pemindahan bahan merupakan salah satu peralatan mesin yang dugunakan untuk memindahkan muatan dilokasi pabrik, lokasi konstruksi, lokasi industri,

Lebih terperinci

SABUK-V. Penggunaan transmisi sabuk, menurut Sularso (1979 : 163), dapat dibagi menjadi tiga kelompok, yaitu :

SABUK-V. Penggunaan transmisi sabuk, menurut Sularso (1979 : 163), dapat dibagi menjadi tiga kelompok, yaitu : SABUK-V Untuk menghubungkan dua buah poros yang berjauhan, bila tidak mungkin digunakan roda gigi, maka dapat digunakan sabuk luwes atau rantai yang dililitkan di sekeliling puli atau sprocket pada porosnya

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.. Gambaran Umum Mesin pemarut adalah suatu alat yang digunakan untuk membantu atau serta mempermudah pekerjaan manusia dalam hal pemarutan. Sumber tenaga utama mesin pemarut adalah

Lebih terperinci

DINAMIKA PARTIKEL KEGIATAN BELAJAR 1. Hukum I Newton. A. Gaya Mempengaruhi Gerak Benda

DINAMIKA PARTIKEL KEGIATAN BELAJAR 1. Hukum I Newton. A. Gaya Mempengaruhi Gerak Benda KEGIATAN BELAJAR 1 Hukum I Newton A. Gaya Mempengaruhi Gerak Benda DINAMIKA PARTIKEL Mungkin Anda pernah mendorong mobil mainan yang diam, jika dorongan Anda lemah mungkin mobil mainan belum bergerak,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Statika rangka Dalam konstruksi rangka terdapat gaya-gaya yang bekerja pada rangka tersebut. Dalam ilmu statika keberadaan gaya-gaya yang mempengaruhi sistem menjadi suatu obyek

Lebih terperinci

MACAM MACAM SAMBUNGAN

MACAM MACAM SAMBUNGAN BAB 2 MACAM MACAM SAMBUNGAN Kompetensi Dasar Indikator : Memahami Dasar dasar Mesin : Menerangkan komponen/elemen mesin sesuai konsep keilmuan yang terkait Materi : 1. Sambungan tetap 2. Sambungan tidak

Lebih terperinci

PENDEKATAN RANCANGAN Kriteria Perancangan Rancangan Fungsional Fungsi Penyaluran Daya

PENDEKATAN RANCANGAN Kriteria Perancangan Rancangan Fungsional Fungsi Penyaluran Daya IV. PENDEKATAN RANCANGAN 4.1. Kriteria Perancangan Perancangan dynamometer tipe rem cakeram pada penelitian ini bertujuan untuk mengukur torsi dari poros out-put suatu penggerak mula dimana besaran ini

Lebih terperinci

CASIS GEOMETRI RODA. Sistem starter, pengapian, sistem penerangan, sistem tanda dan sistem kelengkapan tambahan

CASIS GEOMETRI RODA. Sistem starter, pengapian, sistem penerangan, sistem tanda dan sistem kelengkapan tambahan Rangka CASIS GEOMETRI RODA 1. Komponen kendaraan Motor : Blok motor dan kepala silinder serta perlengkapannya sistem bahan bakar bensin atau diesel Casis : 1. Sistem kemudi 2. Pegas dan peredam getaran

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Mesin pemindah bahan merupakan salah satu peralatan mesin yang digunakan untuk memindahkan muatan dari lokasi pabrik, lokasi konstruksi, lokasi industri, tempat penyimpanan, pembongkaran

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Mesin Pemindah Bahan Mesin pemindah bahan (material handling equipment) adalah peralatan yang digunakan untuk memindahkan muatan yang berat dari satu tempat ke tempat lain dalam

Lebih terperinci

TRANSMISI RANTAI ROL

TRANSMISI RANTAI ROL TRANSMISI RANTAI ROL Penggunaan: transmisi sabuk > jarak poros > transmisi roda gigi Rantai mengait pada gigi sproket dan meneruskan daya tanpa slip perbandingan putaran tetap Keuntungan: Mampu meneruskan

Lebih terperinci

BAB IV PEMBUATAN DAN PENGUJIAN

BAB IV PEMBUATAN DAN PENGUJIAN BAB IV PEMBUATAN DAN PENGUJIAN 4.1. Proses Pembuatan Proses pembuatan adalah tahap-tahap yang dilakukan untuk mencapai suatu hasil. Dalam proses pembuatan ini dijelaskan bagaimana proses bahan-bahanyang

Lebih terperinci

PEGAS. Keberadaan pegas dalam suatu system mekanik, dapat memiliki fungsi yang berbeda-beda. Beberapa fungsi pegas adalah:

PEGAS. Keberadaan pegas dalam suatu system mekanik, dapat memiliki fungsi yang berbeda-beda. Beberapa fungsi pegas adalah: PEGAS Ketika fleksibilitas atau defleksi diperlukan dalam suatu system mekanik, beberapa bentuk pegas dapat digunakan. Dalam keadaan lain, kadang-kadang deformasi elastis dalam suatu bodi mesin merugikan.

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Kajian Pustaka Conveyor merupakan suatu alat transportasi yang umumnya dipakai dalam proses industri. Conveyor dapat mengangkut bahan produksi setengah jadi maupun hasil produksi

Lebih terperinci

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dalam gerak translasi gaya dikaitkan dengan percepatan linier benda, dalam gerak rotasi besaran yang dikaitkan dengan percepatan

Lebih terperinci

TRANSMISI RANTAI ROL 12/15/2011

TRANSMISI RANTAI ROL 12/15/2011 TRANSMISI RANTAI ROL Penggunaan: transmisi sabuk > jarak poros > transmisi roda gigi Rantai mengait pada gigi sproket dan meneruskan daya tanpa slip perbandingan putaran tetap Mampu meneruskan daya besar

Lebih terperinci

BAB 3 DINAMIKA GERAK LURUS

BAB 3 DINAMIKA GERAK LURUS BAB 3 DINAMIKA GERAK LURUS A. TUJUAN PEMBELAJARAN 1. Menerapkan Hukum I Newton untuk menganalisis gaya-gaya pada benda 2. Menerapkan Hukum II Newton untuk menganalisis gerak objek 3. Menentukan pasangan

Lebih terperinci

BAB II DASAR TEORI. 1. Roda Gigi Dengan Poros Sejajar.

BAB II DASAR TEORI. 1. Roda Gigi Dengan Poros Sejajar. BAB II DASAR TEORI 2.1 Roda Gigi Roda gigi digunakan untuk mentransmisikan daya besar dan putaran yang tepat. Roda gigi memiliki gigi di sekelilingnya, sehingga penerusan daya dilakukan oleh gigi-gigi

Lebih terperinci

SMK PGRI 1 NGAWI TERAKREDITASI: A

SMK PGRI 1 NGAWI TERAKREDITASI: A TEKNIK PEMESINAN SMK PGRI 1 NGAWI TERAKREDITASI: A Jl. Rajawali No. 32, Telp./Faks. : (0351) 746081 Ngawi. Homepage: 1. www.smkpgri1ngawi.sch.id 2. www.grisamesin.wordpress.com Facebook: A. Kecepatan potong

Lebih terperinci

TUGAS MATA KULIAH PERANCANGAN ELEMEN MESIN

TUGAS MATA KULIAH PERANCANGAN ELEMEN MESIN TUGAS MATA KULIAH PERANCANGAN ELEMEN MESIN Dosen : Subiyono, MP MESIN PENGUPAS SERABUT KELAPA SEMI OTOMATIS DISUSUN OLEH : NAMA : FICKY FRISTIAR NIM : 10503241009 KELAS : P1 JURUSAN PENDIDIKAN TEKNIK MESIN

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN BAGIAN BAGIAN CONVEYOR

BAB IV ANALISA DAN PERHITUNGAN BAGIAN BAGIAN CONVEYOR BAB IV ANALISA DAN PERHITUNGAN BAGIAN BAGIAN CONVEYOR Dalam pabrik pengolahan CPO dengan kapasitas 60 ton/jam TBS sangat dibutuhkan peran bunch scrapper conveyor yang berfungsi sebagai pengangkut janjangan

Lebih terperinci

Session 1 Konsep Tegangan. Mekanika Teknik III

Session 1 Konsep Tegangan. Mekanika Teknik III Session 1 Konsep Tegangan Mekanika Teknik III Review Statika Struktur didesain untuk menerima beban sebesar 30 kn Struktur tersebut terdiri atas rod dan boom, dihubungkan dengan sendi (tidak ada momen)

Lebih terperinci

KESEIMBANGAN BENDA TEGAR

KESEIMBANGAN BENDA TEGAR Dinamika Rotasi, Statika dan Titik Berat 1 KESEIMBANGAN BENDA TEGAR Pendahuluan. Dalam cabang ilmu fisika kita mengenal ME KANIKA. Mekanika ini dibagi dalam 3 cabang ilmu yaitu : a. KINE MATI KA = Ilmu

Lebih terperinci

BAB IV PERHITUNGAN KOMPONEN UTAMA ELEVATOR BARANG

BAB IV PERHITUNGAN KOMPONEN UTAMA ELEVATOR BARANG IV PERHITUNGN KOMPONEN UTM ELEVTOR RNG 4.1 Perhitungan obot Pengimbang. obot pengimbang berfungsi meringkankan kerja mesin hoist pada saat mengangkat box. obot pengimbang yang akan kita buat disini adalah

Lebih terperinci

Cara uji kepadatan ringan untuk tanah

Cara uji kepadatan ringan untuk tanah Standar Nasional Indonesia Cara uji kepadatan ringan untuk tanah ICS 93.020 Badan Standardisasi Nasional Daftar isi Daftar isi...i Prakata...ii Pendahuluan... iii 1 Ruang lingkup... 1 2 Acuan normatif...

Lebih terperinci

BAB II PEMBAHASAN MATERI

BAB II PEMBAHASAN MATERI BAB II PEMBAHASAN MATERI Mesin pengangkat yang dimaksud adalah seperangkat alat yang digunakan untuk mengangkat, memindahkan serta menurunkan suatu benda ke tempat lain dengan jangkauan operasi terbatas.

Lebih terperinci

BAB III PROSES PERANCANGAN ROLLER CONVEYOR DI PT. MUSTIKA AGUNG TEKNIK

BAB III PROSES PERANCANGAN ROLLER CONVEYOR DI PT. MUSTIKA AGUNG TEKNIK BAB III PROSES PERANCANGAN ROLLER CONVEYOR DI PT. MUSTIKA AGUNG TEKNIK 3.1 Pengertian Perancangan Perancangan memiliki banyak definisi karena setiap orang mempunyai definisi yang berbeda-beda, tetapi intinya

Lebih terperinci

PERANCANGAN POROS DIGESTER UNTUK PABRIK KELAPA SAWIT DENGAN KAPASITAS OLAH 12 TON TBS/JAM DENGAN PROSES PENGECORAN LOGAM

PERANCANGAN POROS DIGESTER UNTUK PABRIK KELAPA SAWIT DENGAN KAPASITAS OLAH 12 TON TBS/JAM DENGAN PROSES PENGECORAN LOGAM 1 PERANCANGAN POROS DIGESTER UNTUK PABRIK KELAPA SAWIT DENGAN KAPASITAS OLAH 12 TON TBS/JAM DENGAN PROSES PENGECORAN LOGAM SKRIPSI Skripsi Yang Diajukan untuk Melengkapi Syarat Memperoleh Gelar Sarjana

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI. Identifikasi Sistem Kopling dan Transmisi Manual Pada Kijang Innova

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI. Identifikasi Sistem Kopling dan Transmisi Manual Pada Kijang Innova BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1 Tinjauan Pustaka Berikut ini adalah beberapa refrensi yang berkaitan dengan judul penelitian yaitu sebagai berikut: 1. Tugas akhir yang ditulis oleh Muhammad

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Indonesia. Dan hampir setiap orang menyukai kerupuk, selain rasanya yang. ikan, kulit dan dapat juga berasal dari udang.

BAB II TINJAUAN PUSTAKA. Indonesia. Dan hampir setiap orang menyukai kerupuk, selain rasanya yang. ikan, kulit dan dapat juga berasal dari udang. BAB II TINJAUAN PUSTAKA A. Pengertian Kerupuk Kerupuk memang bagian yang tidak dapat dilepaskan dari tradisi masyarakat Indonesia. Dan hampir setiap orang menyukai kerupuk, selain rasanya yang enak harganya

Lebih terperinci