BAB II TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1. Definisi Torsi Erwin (2009) berpendapat bahwa torsi adalah puntir yang terjadi pada batang lurus apabila batang tersebut dibebani momen yang cenderung menghasilkan rotasi terhadap sumbu longitudinal batang. Sebagai contoh dalam kehidupan sehari-hari yaitu jika seseorang memutar obeng, maka tangannya memberikan torsi ke obeng. Gambar 2.1 Arah kerja torsi sesuai kaidah tangan kanan dan panah lengkung Demikian pula halnya dengan komponen struktur suatu bangunan. Jika diperhatikan lebih seksama, sebenarnya balok-balok pada bangunan mengalami torsi akibat beban-beban pada pelat. Demikian pula halnya dengan kolom. Namun torsi pada kolom kebanyakan diakibatkan oleh gaya-gaya yang arahnya horizontal seperti gaya angin ataupun gempa. Berikut ini beberapa ilustrasi yang memperlihatkan adanya torsi yang terjadi pada balok dan kolom. Torsi timbul karena adanya gaya-gaya yang membentuk kopel yang cenderung memuntir batang terhadap sumbu longitudinalnya. Seperti diketahui 6

2 dari statika, momen kopel merupakan hasil kali dari gaya dan jarak tegak lurus antara garis kerja gaya. Satuan untuk momen pada USCS adalah (lb-ft) dan (lbin), sedangkan untuk satuan SI adalah (N.m). Untuk mudahnya, momen kopel sering dinyatakan dengan vektor dalam bentuk panah berkepala ganda. Panah ini berarah tegak lurus bidang yang mengandung kopel, sehingga dalam hal ini kedua panah sejajar dengan sumbu batang. Arah momen ditunjukkan dengan kaidah tangan kanan untuk vektor momen yaitu dengan menggunakan tangan kanan, empat jari selain jempol dilipat untuk menunjukkan momen sehingga jempol akan menunjuk arah vektor. Representasi momen yang lain adalah dengan menggunakan panah lengkung yang mempunyai arah torsi. Momen yang menghasilkan puntir pada suatu batang disebut momen puntir atau momen torsi. Batang yang menyalurkan daya melalui rotasi disebut poris atau as (shaft). Dalam tugas akhir ini, shaft yang akan dibahas secara khusus adalah shaft yang dalam bidang teknik struktur bangunan banyak dijumpai yaitu pada balok dan kolom struktur beton bertulang Elastisitas Elastisitas ialah sifat suatu bahan apabila gaya luar mengakibatkan perubahan bentuk (deformation) tidak melebihi batas tertentu, maka perubahan bentuk akan hilang setelah gaya dilepas. Hampir semua bahan teknik memiliki sifat elastisitas ini (Erwin,2009). Dalam pembahasan torsi dalam tugas akhir ini, bahan-bahan akan dianggap bersifat elastis sempurna yaitu benda akan kembali seperti semula secara utuh setelah gaya yang bekerja padanya dilepas. 7

3 2.3. Tegangan Tegangan didefinisikan sebagai intensitas gaya yang bekerja pada tiap satuan luas bahan. Untuk menjelaskan ini, maka akan ditinjau sebuah benda yang dalam keadaan setimbang seperti terlihat pada Gambar 2.2. Akibat kerja gaya luar, dan, maka akan terjadi gaya dalam di antara benda. Untuk mempelajari besar gaya ini pada titik sembarang O, maka benda diandaikan dibagi menjadi dua bagian A dan B oleh penampang mm yang melalui titik O (Erwin,2009). Gambar 2.2. Benda Tampang Sembarang yang Dibebani Oleh Gaya-gaya Luar Kemudian tinjaulah salah satu bagian ini, misalnya A. Bagian ini dapat dinyatakan dalam keadaan setimbang akibat gaya luar, dan, dan gaya dalam terbagi di sepanjang penampang mm yang merupakan kerja 8

4 bahan. Oleh karena intensitas distribusi ini, tegangan dapat diperoleh dengan membagi gaya tarik total P dengan luas potongan penampang A. Untuk memperoleh besar gaya yang bekerja pada luasan kecil δa, misalnya dari potongan penampang mm pada titik O, dapat diamati bahwa gaya yang bekerja pada elemen luas ini diakibatkan oleh kerja bahan bagian B terhadap bagian A yang dapat diubah menjadi sebuah resultante δp. Apabila tekanan diberikan pada luas elemen δa, harga batas δp/ δa akan menghasilkan besar tegangan yang bekerja pada potongan penampang mm pada titik O dan arah batas resultante δp adalah arah tegangan. Umumnya arah tegangan ini miring terhadap luas δa tempat gaya bekerja sehingga dapat diuraikan menjadi dua komponen tegangan yaitu tegangan normal yang tegak lurus terhadap luas dan tegangan geser yang bekerja pada bidang luas δa. Tegangan normal dinotasikan dengan huruf dan tegangan geser dengan huruf. Untuk menunjukkan arah bidang dimana tegangan tersebut bekerja, digunakan subscript terhadap huruf-huruf ini. Tegangan normal menggunakan sebuah subscript yang menunjukkan arah tegangan yang sejajar terhadap sumbu koordinat tersebut, sedangkan tegangan geser menggunakan dua buah subscript dimana huruf pertama menunjukkan arah normal terhadap bidang yang ditinjau dan huruf kedua menunjukkan arah komponen tegangan. Gambar 2.3 menunjukkan arah komponen-komponen tegangan yang bekerja pada suatu elemen kubus kecil pada titik O pada Gambar

5 Gambar 2.3. Komponen-komponen Tegangan yang Bekerja pada Kubus Kecil Untuk menjelaskan tegangan yang bekerja pada keenam sisi elemen ini diperlukan tiga simbol untuk tegangan normal dan simbol untuk tegangan geser. Dengan meninjau kesetimbangan elemen secara sederhana, maka jumlah simbol tegangan geser dapat dikurangi menjadi tiga. Gambar 2.4. Potongan Melintang Kubus yang Melalui Titik P 10

6 Apabila momen gaya yang bekerja pada elemen terhadap garis yang melalui titik tengah C dan sejajar sumbu x, maka hanya tegangan permukaan yang diperlihatkan pada Gambar 2.4. yang perlu ditinjau. Gaya benda, seperti berat elemen, dapat diabaikan karena semakin kecil ukuran elemen, maka gaya benda yang bekerja padanya berkurang sebesar ukuran linier pangkat tiga. Sedangkan gaya permukaan berkurang sebesar ukuran linear kuadrat. Oleh karena itu, untuk elemen yang sangat kecil, besar gaya benda sangat kecil jika dibandingkan dengan gaya permukaan sehingga dapat dihilangkan ketika menghitung momen. Dengan cara yang sama, orde momen akibat ketidak-merataan distribusi gaya normal lebih tinggi dibandingkan dengan orde momen akibat gaya geser dan menjadi nol dalam limit. Juga gaya pada masing-masing sisi dapat ditinjau sebagai luas sisi kali tegangan di tengah. Jika ukuran elemen kecil pada Gambar 2.4. adalah dx, dy, dz, maka momen gaya terhadap P, maka persamaan kesetimbangan elemen ini adalah : (2.1) didapatkan : Dua persamaan lain dapat diperoleh dengan cara yang sama sehingga (2.2) Dengan demikian enam besaran cukup untuk menjelaskan tegangan yang bekerja pada koordinat bidang melalui sebuah titik. Besaran-besaran ini disebut komponen tegangan pada suatu titik. 11

7 Jika kubus pada Gambar 2.3. diberikan suatu komponen gaya per satuan volume sebesar X, Y, Z pada masing-masing sumbu x, y, dan z maka gambar komponen tegangan dalam Gambar 2.3. akan menjadi seperti pada Gambar 2.5. di bawah ini. Gambar 2.5. Komponen-komponen Tegangan yang bekerja pada kubus kecil dimana Gaya Luar per Satuan Volume yang Bekerja Sesudah dibagi dengan, maka akan didapatkan persamaan kesetimbangan yaitu: 12

8 Persamaan (2.3) ini harus dipenuhi di semua titik di seluruh volume benda. Tegangan berubah di seluruh volume benda, dan apabila sampai pada permukaan, tegangan-tegangan ini harus sedemikian rupa sehingga setimbang dengan gaya luar yang bekerja pada permukaan benda (Timoshenko, S., 1958) Regangan Erwin (2009) menyatakan bahwa regangan didefinisikan sebagai suatu perbandingan antara perubahan dimensi suatu bahan dengan dimensi awalnya. Karena merupakan rasio antara dua panjang, maka regangan ini merupakan besaran tak berdimensi, artinya regangan tidak mempunyai satuan. Dengan demikian, regangan dinyatakan hanya dengan suatu bilangan, tidak bergantung pada sistem satuan apapun. Harga numerik dari regangan biasanya sangat kecil karena batang yang terbuat dari bahan struktural hanya mengalami perubahan panjang yang kecil apabila dibebani. Dalam membahas perubahan bentuk benda elastis, selalu dianggap bahwa benda terkekang sepenuhnya sehingga tidak bisa bergerak sebagai benda kaku sehingga tidak mungkin ada perpindahan partikel benda tanpa perubahan bentuk benda tersebut. Pada pembahasan ini yang ditinjau hanya perubahan bentuk yang kecil yang biasa terjadi pada struktur teknik. Perpindahan kecil partikel yang berubah bentuk ini diuraikan ke dalam komponen u, v, w berturut-turut sejajar dengan sumbu koordinat. Besar komponen ini dianggap sangat kecil dan bervariasi di seluruh volume benda. 13

9 Gambar 2.6. Elemen Kecil Berdimensi dx dy dz Tinjau elemen kecil dx dy dz dari sebuah benda elastis seperti terlihat pada Gambar 2.6. Apabila benda mengalami perubahan bentuk dan u, v, w merupakan komponen perpindahan titik P, perpindahan titik di dekatnya, A, dalam arah x pada sumbu x adalah orde pertama dalam dx, yaitu u + (δu/δx) dx akibat pertambahan fungsi u sebesar (δu/δx) dx sesuai dengan pertambahan panjang elemen PA akibat perubahan bentuk adalah (δu/δx) dx. Sedangkan satuan perpanjangan (unit elongation) pada titik P dalam arah x adalah (δu/δx). Dengan cara yang sama, maka diperoleh satuan perpanjangan dalam arah y dan z adalah (δv/δy) dan (δw/δz). Gambar 2.7. Perpindahan Titik P, A, dan B 14

10 Sekarang tinjaulah pelentingan sudut antara elemen PA dan PB dalam Gambar 2.7. Apabila u dan v adalah perpindahan titik P dalam arah x dan y, perpindahan titik A dalam arah y dan titik B dalam arah x berturut-turut adalah v + (δv/δx) dx dan u + (δu/δy) dy. Akibat perpindahan ini, maka P A merupakan arah baru elemen PA yang letaknya miring terhadap arah awal dengan sudut kecil yang ditunjukkan pada gambar, yaitu sama dengan (δv/δx). Dengan cara yang sama arah P B miring terhadap PB dengan sudut kecil (δu/δy). Dari sini dapat dilihat bahwa sudut awal APB yaitu sudut antara kedua elemen PA dan PB berkurang sebesar (δv/δx) + (δu/δy). Sudut ini adalah regangan geser (shearing strain) antara bidang xz dan yz. Regangan geser antara bidang xy dan xz dan yx dan yz dapat diperoleh dengan cara yang sama. Selanjutnya kita menggunakan huruf untuk satuan perpanjangan dan huruf y untuk regangan geser. Untuk menunjukkan arah regangan digunakan subscript yang sama terhadap huruf ini sama seperti untuk komponen tegangan. Kemudian diperoleh dari pembahasan di atas beberapa besaran berikut: (2.4) Keenam besaran ini disebut sebagai komponen regangan geser (Timoshenko, S., 1958). 15

11 2.5. Hukum Hooke Hubungan linear antara komponen tegangan dan komponen regangan umumnya dikenal sebagai hukum Hooke. Satuan perpanjangan elemen hingga batas proporsional diberikan oleh: (2.5) dimana E adalah modulus elastisitas dalam tarik (modulus of elasticity in tension). Bahan yang digunakan di dalam struktur biasanya memiliki modulus yang sangat besar dibandingkan dengan tegangan izin, dan besar perpanjangannya sangat kecil. Perpanjangan elemen dalam arah x ini akan diikuti dengan pengecilan pada komponen melintang yaitu (2.6) dimana adalah suatu konstanta yang disebut dengan ratio Poisson (Poisson s Ratio). Untuk sebagian besar bahan, ratio poisson dapat diambil sama dengan 0,25. Untuk struktur baja biasanya diambil sama dengan 0,3. Apabila elemen di atas mengalami kerja tegangan normal secara serempak, terbagi rata di sepanjang sisinya, komponen resultante regangan dapat diperoleh dari persamaan (2.5) dan (2.6) yaitu: [ ( )] [ ] (2.7) [ ( )] Pada persamaan (2.7), hubungan antara perpanjangan dan tegangan sepenuhnya didefinisikan oleh konstanta fisik yaitu E dan. Konstanta yang sama 16

12 dapat juga digunakan untuk mendefinisikan hubungan antara regangan geser dan tegangan geser (Timoshenko, S., 1958). b b a o c o c d Gambar 2.8. Perubahan Bentuk Segi Empat Parallelogram Tinjaulah kasus khusus yaitu perubahan bentuk segi empat paralellogram dimana,, dan. Potonglah sebuah elemen abcd dengan bidang yang sejajar dengan sumbu x dan terletak 45 terhadap sumbu y dan z (Gambar 2.8). Dengan menjumlah gaya sepanjang dan tegak lurus bc, bahwa tegangan normal pada sisi elemen ini nol dan tegangan geser pada sisi ini adalah: ( ) (2.8) Kondisi tegangan seperti itu disebut geser murni (pure shear). Pertambahan panjang elemen tegak Ob sama dengan berkurangnya panjang elemen mendatar Oa dan Oc, dan dengan mengabaikan besaran kecil dari orde 17

13 kedua, kita bisa menyimpulkan bahwa panjang elemen ab dan bc tidak berubah selama terjadinya perubahan bentuk. Sudut antara sisi ab dan bc berubah dan besar regangan geser yang bersangkutan bisa diperoleh dari segitiga Obc. Sesudah perubahan bentuk akan didapatkan: ( ) Untuk yang kecil, dan ( ), maka : ( ) ( ) ( ) ( ) ( ) ( ) ( ) Maka diperoleh : Sedangkan jika nilai-nilai,, dan disubstitusikan ke dalam persamaan (2.7) maka akan diperoleh : [ ] [ ] Maka diperoleh hubungan antara regangan dengan regangan geser : (2.9) Hubungan antara regangan dan tegangan geser didefinisikan oleh konstanta E dan v yaitu: (2.10) 18

14 Jika digunakan notasi : (2.11) Maka persamaan (2.10) akan menjadi : (2.12) dimana konstanta G didefinisikan oleh persamaan (2.11), dan disebut modulus elastisitas dalam geser (modulus of elasticity in shear) atau modulus kekakuan (modulus of rigidity). Apabila tegangan geser bekerja ke semua sisi elemen, seperti terlihat pada Gambar 2.4, pelentingan sudut antara dua sisi yang berpotongan hanya tergantung kepada komponen tegangan geser yang bersangkutan dan diperoleh (Timoshenko, S., 1958). : 2.6. Analogi Membran Elastis oleh Prandtl (Soap Film Analogy) Untuk pembahasan analogi membran ini, potonglah suatu bukaan pada potongan melintang dari elemen yang mengalami torsi untuk diselidiki. Anggaplah bukaan ini ditutupi oleh sejenis membran elastis yang homogen, seperti selaput sabun, dan kerjakan suatu tekanan pada salah satu sisi membran. 19

15 y D A dx B dy C O x z O S P S x Gambar 2.9. Analogi Selaput Sabun (Soap Film Analogy) Kemudian tinjaulah suatu elemen membran elastis ABCD dengan dimensi dx dy seperti ditunjukkan pada Gambar 2.9. Dengan menggunakan z sebagai besaran perpindahan lateral dari membran elastis, p adalah tekanan lateral dalam gaya per satuan luas, dan S sebagai tegangan inisial dalam gaya per satuan panjang, maka gaya vertical murni yang diakibatkan oleh tegangan S yang bekerja sepanjang sisi AD dan BC dari membran (dengan mengasumsikan perpindahan yang terjadi adalah sangat kecil sehingga nilai sin α tan α ) berturut-turut adalah : ( ) ( ) ( ) 20

16 Dengan cara yang sama akan diperoleh gaya vertikal murni yang diakibatkan oleh tegangan S yang bekerja sepanjang sisi AB dan DC berturut-turut adalah ( ) Jika keempat gaya vertikal di atas dijumlahkan maka akan diperoleh persamaan membran untuk elemen dx dy adalah sebagai berikut ( ) ( ) ( ) ( ) (2.13) Persamaan (2.13) ini dikenal sebagai persamaan Analogi Membran Prandtl. Persamaan ini kemudian akan digunakan untuk menyelesaikan persamaan torsi untuk tampang persegi (Erwin, 2009).. 21

17 2.7. Analisis Torsi Pada Tampang Sembarang (Metode Semi-Invers Saint- Venant) x P P β T z y Gambar Elemen Torsi dengan Tampang Sembarang Anggap suatu bahan yang mengalami torsi dengan suatu potongan melintang seragam dari tampang sembarang seperti terlihat pada Gambar 2.10 Tegangan yang didistribusikan pada ujung-ujung yaitu dan akan menghasilkan torsi sebesar T. Pada umumnya, semua distribusi tegangan pada ujung potongan akan menghasilkan torsi. Menurut Saint-Venant, distribusi tegangan pada potongan yang cukup jauh dari ujung bergantung hanya pada besar momen torsi dan tidak tergantung pada distribusi tegangan pada ujungnya. Oleh karena itu, untuk suatu elemen torsi panjang, distribusi tegangan pada ujung tidak akan mempengaruhi distribusi pada bagian makro dari elemen torsi. Metode Saint-Venant dimulai dengan suatu perkiraan komponen perpindahan akibat torsi. Perkiraan ini didasarkan pada perubahan geometri yang terjadi pada elemen torsi yang terdeformasi. Saint-Venant mengasumsikan tiap elemen torsi lurus dengan tampang tetap selalu memiliki suatu sumbu putar yang tegak lurus terhadap potongan melintangnya yang bertindak sebagai poros kaku pada pusatnya. Dalam hal ini, poros diambil sejajar dengan sumbu z. 22

18 Tinjau suatu titik P dengan koordinat (x, y, z) dari pusat O sebelum mengalami deformasi. Setelah mengalami deformasi akibat torsi, P bergerak ke P, P akan berpindah sejauh w sejajar sumbu z karena warping (distorsi ke arah luar bidang) dari potongan melintang dan berpindah sejauh u dan v sejajar sumbu x dan sumbu y karena rotasi dasar potongan melintang di mana P berada dengan sudut puntir sebesar β terhadap poros. Sedangkan sudut puntir β ini bervariasi menurut jarak z dari poros. Dapat dituliskan bahwa dβ/dz sebagai suatu laju puntiran. Maka pada jarak z dari pusat O, sudut puntir adalah sebesar β =. Gambar Potongan Melintang Suatu Elemen Torsi Dengan mengacu pada Gambar 2.11., diperoleh : [ ] [ ] dan 23

19 [ ] [ ] Untuk perpindahan yang sangat kecil, akan diperoleh nilai-nilai sin β = β dan cos β = 1, maka : Sedangkan untuk komponen w diambil : Dimana adalah fungsi warping. Setelah komponen perpindahan ini diperoleh, maka kita akan mensubstitusikan nilai-nilai u, v, dan w ke dalam persamaan (2.4) dan diperoleh: [ ] [ ] [ ] * + * + Tinjau kembali persamaan (2.3). Untuk komponen yang mengalami torsi murni,,,,,,, sehingga dari persamaan (2.3) didapatkan : 24

20 Persamaan (2.15.a) dan (2.15.b) menunjukkan bahwa dan tidak tergantung pada z dam komponen tegangan harus memenuhi persamaan (2.15.c). Oleh karena itu, diambil persamaan tegangan geser ini menjadi : menjadi : Kemudian kedua persamaan diatas disubstitusikan ke persamaan (2.15.c) ( ) ( ) Hasil dari ruas kiri persamaan ini juga memberikan nilai nol, hal ini menunjukkan bahwa persamaan (2.16) yang diambil memenuhi persamaan (2.15.c). Tinjau kembali persamaan (2.14). jika masing-masing dan didiferensiasi parsial-kan terhadap y dan x, maka diperoleh : * + * + 25

21 * + (2.17.a) * + (2.17.b) Jika persamaan (2.17.a) dengan (2.17.b), maka akan diperoleh : (2.18) Substitusikan hubungan antara regangan geser dengan tegangan geser pada persamaan (2.4) ke dalam persamaan (2.18), maka akan diperoleh: ( ) ( ) (2.19) Maka didapatkan suatu persamaan yang kemudian akan kita kenal sebagai persamaan torsi : ( ) ( ) (2.20) Persamaan (2.20) akan digunakan untuk menurunkan fungsi torsi dengan bantuan persamaan analogi membran Prandtl yang telah diturunkan sebelumnya. Karena permukaan elemen torsi ini bebas dari gaya lateral, maka resultan dari gaya geser τ pada potongan melintang dari elemen torsi pada keliling potongan ini harus berarah tegak lurus terhadap garis normalnya. Kedua komponen tegangan geser dan yang bekerja pada potongan melintang dengan sisi-sisi dx, dy, dan dx dapat dinyatakan dengan : 26

22 y S R x O dx s dy α ds α y R S dy y O x Gambar 2.12 Potongan Melintang Elemen Torsi Dengan mengacu pada Gambar 2.12 (2.21) Karena komponen tegangan geser pada arah n sesuai gambar pada keliling elemen harus bernilai nol, maka proyeksi dan dalam arah normal adalah : (2.22) 27

23 Maka didapat : Dari penyelesaian ini menunjukkan bahwa nilai konstan di sepanjang keliling S. Karena tegangan merupakan turunan partial dari, maka nilai kontan ini dapat dianggap nol. Distribusi dan pada potongan melintang yang dibahas harus memenuhi ketiga persamaan berikut (Erwin, 2009).: (2.23.a) (2.23.b) ( ) ( ) (2.23.c) 2.8. Hubungan Momen Torsi dengan Fungsi Torsi Dengan menyelesaikan persamaan 2.23.c, maka akan diperoleh hubungan antara momen torsi dengan fungsi torsi. Ambillah salah satu komponen integral dari persamaan (2.23.c). Karena fungsi tegangan tidak bervariasi dalam arah y untuk sebuah garis setebal dy seperti tampak pada Gambar Turunan parsial dapat digantikan dengan suatu turunan total sehingga diperoleh : * + Mengingat nilai pada tepi-tepi elemen, maka diperoleh : 28

24 Langkah yang sama dilakukan untuk komponen lain dari integral pada persamaan (2.23.c) sehingga diperoleh : Dengan menjumlahkan kedua komponen ini, maka diperoleh hubungan antara momen torsi dengan fungsi torsi yaitu (Erwin, 2009). : * + (2.24) 2.9. Torsi pada Tampang Lingkaran Gambar 2.13 Tampang Lingkaran Selama Diberi Puntir Tetap Pada gambar 2.13 ukuran dari permukaan tampang lingkaran selama diberi puntir tetap. Diameter dan panjangnya juga tidak berubah dengan catatan bahwa sudut puntirnya kecil. Cakram seperti Gambar 2.13.b akan mengikuti arah regangan. Ada putaran pada bagian bawah tampang terhadap bagian atas tampang membentuk sudut, dimana adalah besar putaran dari potongan mn terhadap ujung. Elemen persegi abcd dari pinggir cakram seperti pada Gambar 2.13.b., panjang sisinya tetap sama namun sudut pada pertemuan sisi dengan sisinya yang berubah. Elemen ini bisa 29

25 disebut dalam keadaan geser murni dan besar dari regangan gesernya didapat dari segitiga kecil cac : Karena c c membentuk lengkungan kecil dengan jari-jari d/2 sesuai dengan perbedaan dalam sudut putaran dari dua tampang yang berdekatan, maka c c = (d/2) dan diperoleh Untuk balok yang berputar karena torsi pada ujungnya, sudut puntirnya sebanding dengan panjang bentang dan besar tetap. Besarnya sudut puntir persatuan panjang balok dinotasikan sebagai θ. Lalu, dari persamaan (2.25) didapatkan : Tegangan geser yang bekerja pada sisi-sisi elemen dan menghasilkan geser pada arah tersebut. Besar tegangan gesernya didapat dari persamaan (2.12) yaitu : Karena d/2 = r, maka dihasilkan : Timoshenko (1958) menyatakan bahwa kesetimbangan bagian dari balok diantara bagian bawah dan potongan mn pada Gambar 2.13.a dapat disimpulkan bahwa tegangan geser yang tersebar pada tampang sama dengan nilai kopel dan 30

26 berlawanan dengan momen torsi Gambar 2.13.c gaya gesernya yaitu. Untuk tiap elemen pada luasan da pada. Momen terhadap gaya tersebut adalah. Maka momen torsinya yaitu Dimana Momen inersia polar dari tampang lingkaran dengan, maka: Jika v merupakan sudut puntir maka : Substitusikan persamaan (2.30) ke persamaan (2.28), sehingga : Torsi pada Tampang Segi Empat 31

27 Johannes, T. (2014) mengatakan bahwa secara umum, khusus tampang segi empat, persamaan inersia torsinya yaitu : α Dimana, α = koefisien untuk mencari J a = tinggi penampang b = lebar penampang Untuk mencari tegangan geser akibat torsi pada tampang segi empat, dapat dihitung dengan rumus : τ τ τ Dimana, β Keterangan,, β, X = koefisien untuk mencari tegangan geser a = tinggi penampang b = lebar penampang τ = tegangan geser maksimum akibat torsi τ = tegangan geser pada sisi terpendek 32

28 Gambar Diagram Tegangan Torsi pada Tampang Segi Empat Tabel 2.1. koefisien α, β, X berdasarkan perbandingan a/b a/b α β X 1 0, , , , , , , , , , , Tulangan Torsi pada Beton Bertulang Batang beton bertulang yang menerima gaya torsi besar akan runtuh secara mendadak jika tidak diberikan tulangan torsi. Penambahan tulangan torsi tidak mengubah besar torsi yang akan menyebabkan retak tarik diagonal, melainkan mencegah batang tersebut terpisah. Oleh karena itu, tulangan torsi ini akan mampu menahan momen torsi yang cukup besar tanpa runtuh. Pengujian 33

29 menunjukkan bahwa tulangan longitudinal dan sengkang tertutup (atau spiral) perlu dipasang untuk menahan sejumlah retak tarik diagonal yang terjadi pada seluruh permukaan dari batang yang menerima gaya torsi cukup besar (Jack C. McCormac, 2004) Momen Torsi yang Harus Ditinjau dalam Desain Beton Bertulang Jack C. McCormac (2004) menyatakana bahwa momen torsi dikenal sebagai torsi keseimbangan dan torsi kompatibilitas. Berikut penjelasannya : Torsi keseimbangan. Untuk struktur statis tertentu, hanya ada satu alur di mana momen torsi dapat dipindahkan ke tumpuan. Jenis momen torsi ini disebut torsi keseimbangan atau torsi statis tertentu dan tidak dapat direduksi oleh redistribusi gaya dalam atau oleh rotasi batang. Torsi kompatibilitas. Momen torsi pada bagian tertentu dari struktur statis tak tentu dapat direduksi cukup besar jika bagian struktur tersebut retak akibat torsi dan berotasi. Hasilnya adalah redistribusi gaya dalam struktur. Dalam beberapa bagian dari struktur yang ditinjau memuntir untuk mempertahankan deformasi dari kompatibilitas struktur Tegangan Torsi pada Beton Bertulang Tegangan torsi ditambahkan pada tegangan geser pada satu sisi dari balok dan dikurangkan dari tegangan geser pada sisi lainnya seperti terlihat pada Gambar

30 Gambar Tegangan Torsi dan Geser dalam Balok Berongga Tegangan torsi mendekati pusat balok pejal sangat rendah. Oleh karenanya, balok berongga diasumsikan mempunyai kekuatan torsi yang hampir sama seperti balok pejal dengan dimensi luar yang sama (Jack C. McCormac, 2004). Dalam penampang pejal, tegangan geser akibat torsi terkonsentrasi pada tube luar dari batang, sebagaimana ditunjukkan dalam Gambar 2.16(a), sedangkan tegangan geser akibat tersebar sepanjang lebar penampang solid, sebagaimana ditunjukkan pada Gambar 2.16(b). Akibatnya, kedua jenis tegangan geser akibat geser dan torsi dikombinasikan dengan rumus akar pangkat dua yang ditunjukkan dalam subbab berikutnya. Gambar Tegangan Torsi dan Geser dalam Balok Pejal 35

31 Setelah retak, ketahanan beton terhadap torsi diasumsikan untuk diabaikan. Retak torsi cenderung membentuk spiral di sekeliling batang membentuk sudut sekitar 45 dengan sumbu longitudinal batang. Torsi diasumsikan ditahan oleh rangka batang ruang efektif yang terletak di luar tube dari batang beton. Rangka ini diperlihatkan pada Gambar Tulangan longitudinal di sudut batang dan sengkang transversal tertutup bekerja sebagai batang tarik dalam rangka tersebut, sedangkan beton diagonal di antara sengkang yang bekerja sebagai batang tekan. Beton yang retak masih mampu memikul tegangan tekan (Jack C. McCormac, 2004). Gambar Rangka Batang Ruang Fiktif Tulangan Torsi yang Disyaratkan Peraturan SNI Perencanaan tulangan beton bertulang terhadap torsi didasarkan pada analogi tube dinding tipis dengan rangka batang ruang di mana beton bagian dalam atau inti diabaikan. Setelah torsi menyebabkan batang retak, ketahanannya terhadap torsi hampir seluruhnya diberikan oleh sengkang tertutup dan tulangan longitudinal yang terletak dekat permukaan batang. Setelah terjadi retak, beton diasumsikan mempunyai kekuatan torsi yang dapat diabaikan (Jack C. McCormac, 2004).. 36

32 Dalam SNI subbab a dinyatakan bahwa pengaruh torsi dapat diabaikan untuk batang non-pratekan jika : ( ) Dimana = luas yang dibatasi oleh keliling luar penampang beton = keliling luar penampang beton Kekuatan Momen Torsi pada Beton Bertulang Dimensi elemen yang menerima geser dan torsi dibatasi oleh aturan SNI sehingga retak yang tak terlihat tereduksi dan untuk mencegah kehancuran pada permukaan beton yang disebabkan tegangan tekan miring. Hal ini dicapai dengan persamaan berikut, di mana bagian kiri menggambarkan tegangan geser karena geser dan torsi. Jumlah kedua tegangan ini dalam elemen tertentu tidak boleh lebih dari tegangan yang akan menyebabkan retak geser. Dalam rumus ini, (Persamaan 46 SNI ). Untuk penampang pejal yaitu : ( ) ( ) ( ) Dimana = gaya geser terfaktor pada penampang = lebar badan balok = jarak dari serat tekan terluar ke titik berat tulangan tarik longitudinal, tapi tidak perlu kurang dari 0,8h untuk penampang bulat dan elemen prategang 37

33 = momen puntir terfaktor pada penampang = keliling dari garis pusat tulangan sengkang torsi terluar = luas daerah yang dibatasi oleh garis pusat tulangan sengkang torsi terluar = kuat geser nominal yang disumbangkan oleh beton Kuat leleh rencana untuk tulangan puntir non-prategang tidak boleh melebihi 400 Mpa Perencanaan Tulangan Torsi Peraturan SNI mensyaratkan bahwa luas sengkang yang digunakan untuk menahan torsi dapat dihitung dengan persamaan berikut: Dimana = luas bruto yang dibatasi oleh lintasan aliran geser = Peraturan SNI mensyaratkan bahwa luas tulangan longitudinal yang digunakan untuk menahan torsi dapat dihitung dengan persamaan berikut: Dimana ( ) = kuat leleh tulangan torsi longitudinal Retak pada Balok Beton Bertulang Dua teori yang sangat berbeda digunakan untuk menjelaskan kekuatan dari beton bertulang dalam menahan torsi. Teori yang pertama berdasarkan pada teori skew bending oleh Lessig yang dikembangkan kembali oleh Hsu yang mana merupakan dasar bagi peraturan perencanaan torsi pada ACI Teori ini berasumsi bahwa sebagian gaya geser dan torsi ditahan oleh beton dan sebagian 38

34 lagi ditahan oleh tulangan. Pola keruntuhannya diasumsikan menghasilkan pembengkokan pada permukaan yang miring dari retakan yang menyebar ke tiga dari empat sisi balok seperti pada Gambar 2.18 dan 2.19 (James G. Macgregor, 1997). Gambar Pola Retak Akibat Torsi Murni Menurut ACI tentang peraturan distribusi penulangan pada balok dan pelat satu arah yang berdasarkan persamaan Gergely- Lutz yaitu : Dimana w = lebar retak dengan satuan 0,001 in = faktor kedalaman; harga rata-rata = 1,20 = ketebalan penutup ke lapis tulangan yang pertama(in) = tegangan maksimum (ksi) dalam baja pada saat tingkat beban layan dengan 0,6 untuk dipergunakan jika tidak ada perhitungan yang tersedia A = luas tarik penampang efektif ( ) 39

35 Gambar Teori Skew Bending Metode Elemen Hingga Yerri Susatio (2004) menyatakan bahwa metode elemen hingga adalah metode numerik yang digunakan untuk menyelesaikan permasalahan teknik dan problem matematis dari suatu gejala fisis. Tipe masalah teknis dan matematis fisis yang dapat diselesaikan dengan metode elemen hingga terbagi dalam dua kelompok, yaitu kelompok analisa struktur dan kelompok masalah-masalah non struktur. Tipe-tipe permasalahan struktur seperti : 1. Analisa tegangan, meliputi analisa truss dan frame serta masalah-masalah yang berhubungan dengan tegangan-tegangan yang terkonsentrasi 2. Buckling 3. Analisa getaran Secara umum langkah-langkah yang dilakukan dalam menggunakan metode elemen hingga dirumuskan sebagai berikut: 1. Pemilihan tipe elemen dan diskritisasi 2. Pemilihan fungsi pemindah/fungsi interpolasi 40

36 3. Mencari hubungan strain/displacement dan stress/strain 4. Dapatkan matrik kekakuan dari elemen yang dibuat 5. Gunakan persamaan kesetimbangan {F}=[k]{d} 6. Selesaikan persamaan pada langkah 5, dengan menghitung harga yang belum diketahui 7. Hitung strain dan stress dari tiap elemen 8. Interpretasikan kembali hasil-hasil perhitungan yang diperoleh Peranan ANSYS dalam Bidang Engineering Muhammad Daud Pinem (2013) menyatakan bahwa ANSYS adalah salah satu perangkat lunak berbasiskan metode elemen hingga yang dipakai untuk menganalisa masalah-masalah rekayasa (engineering). ANSYS dapat berjalan di platform Windows dan Linux. Elemen-elemen yang bisa dieksekusi dengan ANSYS dalam bidang struktural yaitu : a) Link Elemen link secara umum dapat dipakai di beberapa jenis permasalahan struktur yang dimodelkan seperti garis. Salah satunya yaitu batang dan pegas. b) Beam Elemen beam dapat menyelesaikan permasalahan struktur yang dimodelkan seperti balok. Elemen ini dapat menerima tarik, tekan, dan tekuk. c) Solid Elemen solid digunakan untuk permodelan tiga dimensi struktur pejal. Elemen ini memiliki plastisitas, susut, rangkak, kekakuan, defleksi dan regangan. 41

37 d) Pipe Elemen pipe ini memiliki karakter tekuk, tekan, torsi, dan tekuk. e) Shell Elemen shell dapat mencari translasi dan rotasi ke semua arah. Elemen ini berbentuk seperti lapisan-lapisan sehingga cocok untuk menganalisis komposit. 42

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA II.1. Konsep Elemen Hingga BAB II TINJAUAN PUSTAKA Struktur dalam istilah teknik sipil adalah rangkaian elemen-elemen yang sejenis maupun yang tidak sejenis. Elemen adalah susunan materi yang mempunyai

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA II.1 Umum dan Latar Belakang Kolom merupakan batang tekan tegak yang bekerja untuk menahan balok-balok loteng, rangka atap, lintasan crane dalam bangunan pabrik dan sebagainya yang

Lebih terperinci

Bab 5 Puntiran. Gambar 5.1. Contoh batang yang mengalami puntiran

Bab 5 Puntiran. Gambar 5.1. Contoh batang yang mengalami puntiran Bab 5 Puntiran 5.1 Pendahuluan Pada bab ini akan dibahas mengenai kekuatan dan kekakuan batang lurus yang dibebani puntiran (torsi). Puntiran dapat terjadi secara murni atau bersamaan dengan beban aksial,

Lebih terperinci

PUNTIRAN. A. pengertian

PUNTIRAN. A. pengertian PUNTIRAN A. pengertian Puntiran adalah suatu pembebanan yang penting. Sebagai contoh, kekuatan puntir menjadi permasalahan pada poros-poros, karena elemen deformasi plastik secara teori adalah slip (geseran)

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Torsi. Pertemuan - 7

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Torsi. Pertemuan - 7 Mata Kuliah : Mekanika Bahan Kode : TSP 05 SKS : 3 SKS Torsi Pertemuan - 7 TIU : Mahasiswa dapat menghitung besar tegangan dan regangan yang terjadi pada suatu penampang TIK : Mahasiswa dapat menghitung

Lebih terperinci

BAB I TEGANGAN DAN REGANGAN

BAB I TEGANGAN DAN REGANGAN BAB I TEGANGAN DAN REGANGAN.. Tegangan Mekanika bahan merupakan salah satu ilmu yang mempelajari/membahas tentang tahanan dalam dari sebuah benda, yang berupa gaya-gaya yang ada di dalam suatu benda yang

Lebih terperinci

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek DAFTAR NOTASI A g = Luas bruto penampang (mm 2 ) A n = Luas bersih penampang (mm 2 ) A tp = Luas penampang tiang pancang (mm 2 ) A l =Luas total tulangan longitudinal yang menahan torsi (mm 2 ) A s = Luas

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. karbon, baja paduan rendah mutu tinggi, dan baja paduan. Sifat-sifat mekanik dari

BAB 2 TINJAUAN PUSTAKA. karbon, baja paduan rendah mutu tinggi, dan baja paduan. Sifat-sifat mekanik dari BAB 2 TINJAUAN PUSTAKA II.1. Material baja Baja yang akan digunakan dalam struktur dapat diklasifikasikan menjadi baja karbon, baja paduan rendah mutu tinggi, dan baja paduan. Sifat-sifat mekanik dari

Lebih terperinci

ANALISIS TORSI PADA TAMPANG PERSEGI PANJANG DAN APLIKASI PADA KOMPONEN STRUKTUR BETON BERTULANG DENGAN MENGGUNAKAN ELEMEN GRID

ANALISIS TORSI PADA TAMPANG PERSEGI PANJANG DAN APLIKASI PADA KOMPONEN STRUKTUR BETON BERTULANG DENGAN MENGGUNAKAN ELEMEN GRID ANALISIS TORSI PADA TAMPANG PERSEGI PANJANG DAN APLIKASI PADA KOMPONEN STRUKTUR BETON BERTULANG DENGAN MENGGUNAKAN ELEMEN GRID Tugas Akhir Diajukan untuk melengkapi tugas-tugas dan memenuhi Syarat untuk

Lebih terperinci

ANALISA BALOK SILANG DENGAN GRID ELEMEN PADA STRUKTUR JEMBATAN BAJA

ANALISA BALOK SILANG DENGAN GRID ELEMEN PADA STRUKTUR JEMBATAN BAJA ANALISA BALOK SILANG DENGAN GRID ELEMEN PADA STRUKTUR JEMBATAN BAJA Tugas Akhir Diajukan untuk melengkapi tugas-tugas dan memenuhi Syarat untuk menempuh ujian sarjana Teknik Sipil Disusun oleh: SURYADI

Lebih terperinci

BAB II LANDASAN TEORI CORE WALL

BAB II LANDASAN TEORI CORE WALL BAB II LANDASAN TEORI CORE WALL.1. Karakterisitik Bentuk dan Letak Core Wall Struktur core wall yang bisa dijumpai dalam aplikasi konstruksi bangunan tinggi dewasa ini ada bermacam-macam. Antara lain adalah

Lebih terperinci

Tegangan Dalam Balok

Tegangan Dalam Balok Mata Kuliah : Mekanika Bahan Kode : TSP 05 SKS : SKS Tegangan Dalam Balok Pertemuan 9, 0, TIU : Mahasiswa dapat menghitung tegangan yang timbul pada elemen balok akibat momen lentur, gaya normal, gaya

Lebih terperinci

Pembebanan Batang Secara Aksial. Bahan Ajar Mekanika Bahan Mulyati, MT

Pembebanan Batang Secara Aksial. Bahan Ajar Mekanika Bahan Mulyati, MT Pembebanan Batang Secara Aksial Suatu batang dengan luas penampang konstan, dibebani melalui kedua ujungnya dengan sepasang gaya linier i dengan arah saling berlawanan yang berimpit i pada sumbu longitudinal

Lebih terperinci

BAB 4 Tegangan dan Regangan pada Balok akibat Lentur, Gaya Normal dan Geser

BAB 4 Tegangan dan Regangan pada Balok akibat Lentur, Gaya Normal dan Geser BAB 4 Tegangan dan Regangan pada Balok akibat Lentur, Gaya Normal dan Geser 4.1 Tegangan dan Regangan Balok akibat Lentur Murni Pada bab berikut akan dibahas mengenai respons balok akibat pembebanan. Balok

Lebih terperinci

KONTRIBUSI BALOK ANAK TERHADAP KEKAKUAN STRUKTUR PADA BALOK DENGAN PEMODELAN GRID

KONTRIBUSI BALOK ANAK TERHADAP KEKAKUAN STRUKTUR PADA BALOK DENGAN PEMODELAN GRID KONTRIBUSI BALOK ANAK TERHADAP KEKAKUAN STRUKTUR PADA BALOK DENGAN PEMODELAN GRID Tugas Akhir Diajukan untuk melengkapi tugas-tugas dan memenuhi Syarat untuk menempuh ujian sarjana Teknik Sipil Disusun

Lebih terperinci

L p. L r. L x L y L n. M c. M p. M g. M pr. M n M nc. M nx M ny M lx M ly M tx. xxi

L p. L r. L x L y L n. M c. M p. M g. M pr. M n M nc. M nx M ny M lx M ly M tx. xxi DAFTAR SIMBOL a tinggi balok tegangan persegi ekuivalen pada diagram tegangan suatu penampang beton bertulang A b luas penampang bruto A c luas penampang beton yang menahan penyaluran geser A cp luasan

Lebih terperinci

DAFTAR NOTASI. xxvii. A cp

DAFTAR NOTASI. xxvii. A cp A cp Ag An Atp Al Ao Aoh As As At Av b bo bw C C m Cc Cs d DAFTAR NOTASI = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas bruto penampang (mm²) = Luas bersih penampang (mm²) = Luas penampang

Lebih terperinci

III. TEGANGAN DALAM BALOK

III. TEGANGAN DALAM BALOK . TEGANGAN DALA BALOK.. Pengertian Balok elentur Balok melentur adalah suatu batang yang dikenakan oleh beban-beban yang bekerja secara transversal terhadap sumbu pemanjangannya. Beban-beban ini menciptakan

Lebih terperinci

D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Eksentrisitas dari pembebanan tekan pada kolom atau telapak pondasi

D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Eksentrisitas dari pembebanan tekan pada kolom atau telapak pondasi DAFTAR NOTASI A cp = Luas yang dibatasi oleh keliling luar penampang beton, mm 2 Ag = Luas bruto penampang (mm 2 ) An = Luas bersih penampang (mm 2 ) Atp = Luas penampang tiang pancang (mm 2 ) Al = Luas

Lebih terperinci

BAB II TEORI DASAR. Gambar 2.1 Tipikal struktur mekanika (a) struktur batang (b) struktur bertingkat [2]

BAB II TEORI DASAR. Gambar 2.1 Tipikal struktur mekanika (a) struktur batang (b) struktur bertingkat [2] BAB II TEORI DASAR 2.1. Metode Elemen Hingga Analisa kekuatan sebuah struktur telah menjadi bagian penting dalam alur kerja pengembangan desain dan produk. Pada awalnya analisa kekuatan dilakukan dengan

Lebih terperinci

xxv = Kekuatan momen nominal untuk lentur terhadap sumbu y untuk aksial tekan yang nol = Momen puntir arah y

xxv = Kekuatan momen nominal untuk lentur terhadap sumbu y untuk aksial tekan yang nol = Momen puntir arah y DAFTAR NOTASI A cp = Luas yang dibatasi oleh keliling luar penampang beton, mm² Ag = Luas bruto penampang (mm²) An = Luas bersih penampang (mm²) Atp = Luas penampang tiang pancang (mm²) Al = Luas total

Lebih terperinci

FISIKA XI SMA 3

FISIKA XI SMA 3 FISIKA XI SMA 3 Magelang @iammovic Standar Kompetensi: Menerapkan konsep dan prinsip mekanika klasik sistem kontinu dalam menyelesaikan masalah Kompetensi Dasar: Merumuskan hubungan antara konsep torsi,

Lebih terperinci

DAFTAR NOTASI. = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas penampang tiang pancang (mm²)

DAFTAR NOTASI. = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas penampang tiang pancang (mm²) DAFTAR NOTASI A cp Acv Ag An Atp Al Ao Aoh As As At Av b = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas bruto penampang

Lebih terperinci

DAFTAR NOTASI. A cp. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

DAFTAR NOTASI. A cp. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom DAFTAR NOTASI A cp Acv Ag An Atp Al Ao Aoh As As At Av b bo bw C Cc Cd = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom (mm²) = Luas bruto

Lebih terperinci

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom A cp Acv Ag An Atp Al Ao Aoh As As At Av b bo bw C Cc Cs d DAFTAR NOTASI = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom (mm²) = Luas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA A. Deskripsi umum Desain struktur merupakan salah satu bagian dari keseluruhan proses perencanaan bangunan. Proses desain merupakan gabungan antara unsur seni dan sains yang membutuhkan

Lebih terperinci

l l Bab 2 Sifat Bahan, Batang yang Menerima Beban Axial

l l Bab 2 Sifat Bahan, Batang yang Menerima Beban Axial Bab 2 Sifat Bahan, Batang yang Menerima Beban Axial 2.1. Umum Akibat beban luar, struktur akan memberikan respons yang dapat berupa reaksi perletakan tegangan dan regangan maupun terjadinya perubahan bentuk.

Lebih terperinci

BAB II DASAR-DASAR DESAIN BETON BERTULANG. Beton merupakan suatu material yang menyerupai batu yang diperoleh dengan

BAB II DASAR-DASAR DESAIN BETON BERTULANG. Beton merupakan suatu material yang menyerupai batu yang diperoleh dengan BAB II DASAR-DASAR DESAIN BETON BERTULANG. Umum Beton merupakan suatu material yang menyerupai batu yang diperoleh dengan membuat suatu campuran yang mempunyai proporsi tertentudari semen, pasir, dan koral

Lebih terperinci

BAB II TINJAUAN KEPUSTAKAAN

BAB II TINJAUAN KEPUSTAKAAN BAB II TINJAUAN KEPUSTAKAAN II.1 Tegangan Lentur pada balok II.1.1 Umum Pada kasus yang umum terjadi dapat dilihat ketika sebuah balok lurus yang menerima beban-beban lateral mengalami momen lentur dan

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA II.1. Umum Dalam merencanakan suatu struktur, tegangan puntir ( torsi ) & warping merupakan salah satu tegangan yang berpengaruh. Meskipun pengaruhnya bersifat sekunder, namun tidak

Lebih terperinci

Pertemuan IV II. Torsi

Pertemuan IV II. Torsi Pertemuan V. orsi.1 Definisi orsi orsi mengandung arti untir yang terjadi ada batang lurus aabila dibebani momen (torsi) yang cendrung menghasilkan rotasi terhada sumbu longitudinal batang, contoh memutar

Lebih terperinci

ELEMEN-ELEMEN STRUKTUR BANGUNAN

ELEMEN-ELEMEN STRUKTUR BANGUNAN ELEMEN-ELEMEN BANGUNAN Struktur bangunan adalah bagian dari sebuah sistem bangunan yang bekerja untuk menyalurkan beban yang diakibatkan oleh adanya bangunan di atas tanah. Fungsi struktur dapat disimpulkan

Lebih terperinci

Pertemuan V,VI III. Gaya Geser dan Momen Lentur

Pertemuan V,VI III. Gaya Geser dan Momen Lentur Pertemuan V,VI III. Gaya Geser dan omen entur 3.1 Tipe Pembebanan dan Reaksi Beban biasanya dikenakan pada balok dalam bentuk gaya. Apabila suatu beban bekerja pada area yang sangat kecil atau terkonsentrasi

Lebih terperinci

TULANGAN GESER. tegangan yang terjadi

TULANGAN GESER. tegangan yang terjadi TULANGAN GESER I. PENDAHULUAN Semua elemen struktur balok, baik struktur beton maupun baja, tidak terlepas dari masalah gaya geser. Gaya geser umumnya tidak bekerja sendirian, tetapi berkombinasi dengan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Kolom Kolom beton murni dapat mendukung beban sangat kecil, tetapi kapasitas daya dukung bebannya akan meningkat cukup besar jika ditambahkan tulangan longitudinal. Peningkatan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut :

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut : 4 BAB II TINJAUAN PUSTAKA 2.1.Pembebanan Struktur Perencanaan struktur bangunan gedung harus didasarkan pada kemampuan gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam Peraturan

Lebih terperinci

BAB I PENDAHULUAN. fisik menuntut perkembangan model struktur yang variatif, ekonomis, dan aman. Hal

BAB I PENDAHULUAN. fisik menuntut perkembangan model struktur yang variatif, ekonomis, dan aman. Hal BAB I PENDAHULUAN 1.1 Umum Ilmu pengetahuan yang berkembang pesat dan pembangunan sarana prasarana fisik menuntut perkembangan model struktur yang variatif, ekonomis, dan aman. Hal tersebut menjadi mungkin

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Umum. Berkembangnya kemajuan teknologi bangunan bangunan tinggi disebabkan

BAB I PENDAHULUAN. 1.1 Umum. Berkembangnya kemajuan teknologi bangunan bangunan tinggi disebabkan BAB I PENDAHULUAN 1.1 Umum Berkembangnya kemajuan teknologi bangunan bangunan tinggi disebabkan oleh kebutuhan ruang yang selalu meningkat dari tahun ke tahun. Semakin tinggi suatu bangunan, aksi gaya

Lebih terperinci

DAFTAR NOTASI. Luas penampang tiang pancang (mm²). Luas tulangan tarik non prategang (mm²). Luas tulangan tekan non prategang (mm²).

DAFTAR NOTASI. Luas penampang tiang pancang (mm²). Luas tulangan tarik non prategang (mm²). Luas tulangan tekan non prategang (mm²). DAFTAR NOTASI A cp Ag An Atp Luas yang dibatasi oleh keliling luar penampang beton (mm²). Luas bruto penampang (mm²). Luas bersih penampang (mm²). Luas penampang tiang pancang (mm²). Al Luas total tulangan

Lebih terperinci

PERANCANCANGAN STRUKTUR BALOK TINGGI DENGAN METODE STRUT AND TIE

PERANCANCANGAN STRUKTUR BALOK TINGGI DENGAN METODE STRUT AND TIE PERANCANCANGAN STRUKTUR BALOK TINGGI DENGAN METODE STRUT AND TIE Nama : Rani Wulansari NRP : 0221041 Pembimbing : Winarni Hadipratomo, Ir UNIVERSITAS KRISTEN MARANATHA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL

Lebih terperinci

PEGAS. Keberadaan pegas dalam suatu system mekanik, dapat memiliki fungsi yang berbeda-beda. Beberapa fungsi pegas adalah:

PEGAS. Keberadaan pegas dalam suatu system mekanik, dapat memiliki fungsi yang berbeda-beda. Beberapa fungsi pegas adalah: PEGAS Ketika fleksibilitas atau defleksi diperlukan dalam suatu system mekanik, beberapa bentuk pegas dapat digunakan. Dalam keadaan lain, kadang-kadang deformasi elastis dalam suatu bodi mesin merugikan.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2. 1 Umum Gaya gempa sangat berbahaya karena gerakan tiba-tiba pelepasan energi tegangan yang kemudian dipindahkan melalui tanah dalam bentuk gelombang getaran elastis yang dipancarkan

Lebih terperinci

DAFTAR ISI. LEMBAR JUDUL... i KATA PENGANTAR... UCAPAN TERIMA KASIH... iii. DAFTAR ISI... iv DAFTAR TABEL... DAFTAR GAMBAR... ABSTRAK...

DAFTAR ISI. LEMBAR JUDUL... i KATA PENGANTAR... UCAPAN TERIMA KASIH... iii. DAFTAR ISI... iv DAFTAR TABEL... DAFTAR GAMBAR... ABSTRAK... DAFTAR ISI HALAMAN LEMBAR JUDUL... i KATA PENGANTAR...... ii UCAPAN TERIMA KASIH......... iii DAFTAR ISI...... iv DAFTAR TABEL...... v DAFTAR GAMBAR...... vi ABSTRAK...... vii BAB 1PENDAHULUAN... 9 1.1.Umum...

Lebih terperinci

Macam-macam Tegangan dan Lambangnya

Macam-macam Tegangan dan Lambangnya Macam-macam Tegangan dan ambangnya Tegangan Normal engetahuan dan pengertian tentang bahan dan perilakunya jika mendapat gaya atau beban sangat dibutuhkan di bidang teknik bangunan. Jika suatu batang prismatik,

Lebih terperinci

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom A cp Acv Ag An Atp Al Ao Aoh As As At Av b bo bw C Cc Cs d DAFTAR NOTASI = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom (mm²) = Luas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Komponen Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu

Lebih terperinci

Gambar 2.1 Rangka dengan Dinding Pengisi

Gambar 2.1 Rangka dengan Dinding Pengisi BAB II TINJAUAN PUSTAKA 2.1. Dinding Pengisi 2.1.1 Definisi Dinding pengisi yang umumnya difungsikan sebagai penyekat, dinding eksterior, dan dinding yang terdapat pada sekeliling tangga dan elevator secara

Lebih terperinci

Mekanika Bahan TEGANGAN DAN REGANGAN

Mekanika Bahan TEGANGAN DAN REGANGAN Mekanika Bahan TEGANGAN DAN REGANGAN Sifat mekanika bahan Hubungan antara respons atau deformasi bahan terhadap beban yang bekerja Berkaitan dengan kekuatan, kekerasan, keuletan dan kekakuan Tegangan Intensitas

Lebih terperinci

menahan gaya yang bekerja. Beton ditujukan untuk menahan tekan dan baja

menahan gaya yang bekerja. Beton ditujukan untuk menahan tekan dan baja BAB II TINJAUAN PUSTAKA 2.1. Umum Menurut SK SNI T-l5-1991-03, beton bertulang adalah beton yang diberi tulangan dengan luasan dan jumlah yang tidak kurang dari nilai minimum yang diisyaratkan dengan atau

Lebih terperinci

BAB II STUDI LITERATUR

BAB II STUDI LITERATUR BAB II STUDI LITERATUR. PENDAHULUAN Pada struktur pelat satu-arah beban disalurkan ke balok kemudian beban disalurkan ke kolom. Jika balok menyatu dengan ketebalan pelat itu sendiri, menghasilkan sistem

Lebih terperinci

Pertemuan I,II,III I. Tegangan dan Regangan

Pertemuan I,II,III I. Tegangan dan Regangan Pertemuan I,II,III I. Tegangan dan Regangan I.1 Tegangan dan Regangan Normal 1. Tegangan Normal Konsep paling dasar dalam mekanika bahan adalah tegangan dan regangan. Konsep ini dapat diilustrasikan dalam

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Kuat Tekan Beton SNI 03-1974-1990 memberikan pengertian kuat tekan beton adalah besarnya beban per satuan luas, yang menyebabkan benda uji beton hancur bila dibebani dengan gaya

Lebih terperinci

= keliling dari pelat dan pondasi DAFTAR NOTASI. = tinggi balok tegangan beton persegi ekivalen. = luas penampang bruto dari beton

= keliling dari pelat dan pondasi DAFTAR NOTASI. = tinggi balok tegangan beton persegi ekivalen. = luas penampang bruto dari beton DAI'TAH NOTASI DAFTAR NOTASI a = tinggi balok tegangan beton persegi ekivalen Ab = luas penampang satu bentang tulangan, mm 2 Ag Ah AI = luas penampang bruto dari beton = luas dari tulangan geser yang

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Kuat Tekan Beton Sifat utama beton adalah memiliki kuat tekan yang lebih tinggi dibandingkan dengan kuat tariknya. Kekuatan tekan beton adalah kemampuan beton untuk menerima

Lebih terperinci

ANALISIS DAKTILITAS BALOK BETON BERTULANG

ANALISIS DAKTILITAS BALOK BETON BERTULANG ANALISIS DAKTILITAS BALOK BETON BERTULANG Bobly Sadrach NRP : 9621081 NIRM : 41077011960360 Pembimbing : Daud Rahmat Wiyono, Ir., M.Sc FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS KRISTEN MARANATHA

Lebih terperinci

Desain Struktur Beton Bertulang Tahan Gempa

Desain Struktur Beton Bertulang Tahan Gempa Mata Kuliah : Struktur Beton Lanjutan Kode : TSP 407 SKS : 3 SKS Desain Struktur Beton Bertulang Tahan Gempa Pertemuan 13, 14 TIU : Mahasiswa dapat mendesain berbagai elemen struktur beton bertulang TIK

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Baja Baja merupakan bahan konstruksi yang sangat baik, sifat baja antara lain kekuatannya yang sangat besar dan keliatannya yang tinggi. Keliatan (ductility) ialah kemampuan

Lebih terperinci

Contoh Soal dan Pembahasan Dinamika Rotasi, Materi Fisika kelas 2 SMA. Pembahasan. a) percepatan gerak turunnya benda m.

Contoh Soal dan Pembahasan Dinamika Rotasi, Materi Fisika kelas 2 SMA. Pembahasan. a) percepatan gerak turunnya benda m. Contoh Soal dan Dinamika Rotasi, Materi Fisika kelas 2 SMA. a) percepatan gerak turunnya benda m Tinjau katrol : Penekanan pada kasus dengan penggunaan persamaan Σ τ = Iα dan Σ F = ma, momen inersia (silinder

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1. Kuat Tekan Beton Kekuatan tekan adalah kemampuan beton untuk menerima gaya tekan persatuan luas. Kuat tekan beton mengidentifikasikan mutu dari sebuah struktur. Semakin tinggi

Lebih terperinci

MODUL KULIAH STRUKTUR BETON BERTULANG I LENTUR PADA PENAMPANG 4 PERSEGI. Oleh Dr. Ir. Resmi Bestari Muin, MS

MODUL KULIAH STRUKTUR BETON BERTULANG I LENTUR PADA PENAMPANG 4 PERSEGI. Oleh Dr. Ir. Resmi Bestari Muin, MS MODUL KULIAH STRUKTUR BETON BERTULANG I Minggu ke : 2 LENTUR PADA PENAMPANG 4 PERSEGI Oleh Dr. Ir. Resmi Bestari Muin, MS PRODI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL dan PERENCANAAN UNIVERSITAS MERCU BUANA

Lebih terperinci

STRUKTUR CANGKANG I. PENDAHULULUAN

STRUKTUR CANGKANG I. PENDAHULULUAN STRUKTUR CANGKANG I. PENDAHULULUAN Cangkang adalah bentuk struktural berdimensi tiga yang kaku dan tipis serta yang mempunyai permukaan lengkung. Permukaan cangkang dapat mempunyai bentuk sembarang. Bentuk

Lebih terperinci

TEGANGAN DAN REGANGAN GESER. Tegangan Normal : Intensitas gaya yang bekerja dalam arah yang tegak lurus permukaan bahan

TEGANGAN DAN REGANGAN GESER. Tegangan Normal : Intensitas gaya yang bekerja dalam arah yang tegak lurus permukaan bahan TEGANGAN DAN REGANGAN GESER Tegangan Normal : Intensitas gaya yang bekerja dalam arah yang tegak lurus permukaan bahan Tegangan geser : Intensitas gaya yang bekerja dalam arah tangensial terhadap permukaan

Lebih terperinci

BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT

BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT 2.1 KONSEP PERENCANAAN STRUKTUR GEDUNG RAWAN GEMPA Pada umumnya struktur gedung berlantai banyak harus kuat dan stabil terhadap berbagai macam

Lebih terperinci

BAB DINAMIKA ROTASI DAN KESEIMBANGAN BENDA TEGAR

BAB DINAMIKA ROTASI DAN KESEIMBANGAN BENDA TEGAR BAB DNAMKA OTAS DAN KESEMBANGAN BENDA TEGA. SOA PHAN GANDA. Dengan menetapkan arah keluar bidang kertas, sebagai arah Z positif dengan vektor satuan k, maka torsi total yang bekerja pada batang terhadap

Lebih terperinci

BAB III PEMODELAN STRUKTUR

BAB III PEMODELAN STRUKTUR BAB III Dalam tugas akhir ini, akan dilakukan analisis statik ekivalen terhadap struktur rangka bresing konsentrik yang berfungsi sebagai sistem penahan gaya lateral. Dimensi struktur adalah simetris segiempat

Lebih terperinci

II. LENTURAN. Gambar 2.1. Pembebanan Lentur

II. LENTURAN. Gambar 2.1. Pembebanan Lentur . LENTURAN Pembebanan lentur murni aitu pembebanan lentur, baik akibat gaa lintang maupun momen bengkok ang tidak terkombinasi dengan gaa normal maupun momen puntir, ditunjukkan pada Gambar.. Gambar.(a)

Lebih terperinci

A. Pendahuluan. Dalam cabang ilmu fisika kita mengenal MEKANIKA. Mekanika ini dibagi dalam 3 cabang ilmu yaitu :

A. Pendahuluan. Dalam cabang ilmu fisika kita mengenal MEKANIKA. Mekanika ini dibagi dalam 3 cabang ilmu yaitu : BAB VI KESEIMBANGAN BENDA TEGAR Standar Kompetensi 2. Menerapkan konsep dan prinsip mekanika klasik sistem kontinu dalam menyelesaikan masalah Kompetensi Dasar 2.1 Menformulasikan hubungan antara konsep

Lebih terperinci

.1. Kekuatan Bahan BAB ANALISIS TEGANGAN DAN REGANGAN Suatu sistem struktur yang menanggung beban luar (external forces) akan menyebabkan timbulnya gaya dalam (internal forces) pada elemen-elemen penyusun

Lebih terperinci

BAB III LANDASAN TEORI. dasar ke permukaan tanah untuk suatu situs, maka situs tersebut harus

BAB III LANDASAN TEORI. dasar ke permukaan tanah untuk suatu situs, maka situs tersebut harus BAB III LANDASAN TEORI 3.1 Perencanaan Beban Gempa 3.1.1 Klasifikasi Situs Dalam perumusan kriteria desain seismik suatu bangunan di permukaan tanah atau penentuan amplifikasi besaran percepatan gempa

Lebih terperinci

BAB 2. TINJAUAN PUSTAKA

BAB 2. TINJAUAN PUSTAKA BAB 2. TINJAUAN PUSTAKA Teori garis leleh ini dikemukakan oleh A.Ingerslev (1921-1923) kemudian dikembangkan oleh K.W. Johansen (1940). Teori garis leleh ini popular dipakai di daerah asalnya yaitu daerah

Lebih terperinci

BAB III LANDASAN TEORI. A. Pembebanan

BAB III LANDASAN TEORI. A. Pembebanan BAB III LANDASAN TEORI A. Pembebanan Dalam perancangan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku sehingga diperoleh suatu struktur bangunan yang aman secara konstruksi. Struktur

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Kolom. Pertemuan 14, 15

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Kolom. Pertemuan 14, 15 Mata Kuliah : Mekanika Bahan Kode : TS 05 SKS : 3 SKS Kolom ertemuan 14, 15 TIU : Mahasiswa dapat melakukan analisis suatu elemen kolom dengan berbagai kondisi tumpuan ujung TIK : memahami konsep tekuk

Lebih terperinci

Perancangan Struktur Atas P7-P8 Ramp On Proyek Fly Over Terminal Bus Pulo Gebang, Jakarta Timur. BAB II Dasar Teori

Perancangan Struktur Atas P7-P8 Ramp On Proyek Fly Over Terminal Bus Pulo Gebang, Jakarta Timur. BAB II Dasar Teori BAB II Dasar Teori 2.1 Umum Jembatan secara umum adalah suatu konstruksi yang berfungsi untuk menghubungkan dua bagian jalan yang terputus oleh adanya beberapa rintangan seperti lembah yang dalam, alur

Lebih terperinci

BAB 1 BESARAN VEKTOR. A. Representasi Besaran Vektor

BAB 1 BESARAN VEKTOR. A. Representasi Besaran Vektor BAB 1 BESARAN VEKTOR TUJUAN PEMBELAJARAN 1. Menjelaskan definisi vektor, dan representasinya dalam sistem koordinat cartesius 2. Menjumlahan vektor secara grafis dan matematis 3. Melakukan perkalian vektor

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan BAB II TINJAUAN PUSTAKA 2.1.Pembebanan Struktur Dalam perencanaan struktur bangunan harus mengikuti peraturanperaturan pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman. Pengertian

Lebih terperinci

DAFTAR ISI. Halaman Judul Pengesahan Persetujuan Surat Pernyataan Kata Pengantar DAFTAR TABEL DAFTAR GAMBAR DAFTAR NOTASI DAFTAR LAMPIRAN

DAFTAR ISI. Halaman Judul Pengesahan Persetujuan Surat Pernyataan Kata Pengantar DAFTAR TABEL DAFTAR GAMBAR DAFTAR NOTASI DAFTAR LAMPIRAN DAFTAR ISI Halaman Judul i Pengesahan ii Persetujuan iii Surat Pernyataan iv Kata Pengantar v DAFTAR ISI vii DAFTAR TABEL x DAFTAR GAMBAR xiv DAFTAR NOTASI xviii DAFTAR LAMPIRAN xxiii ABSTRAK xxiv ABSTRACT

Lebih terperinci

PERHITUNGAN BALOK DENGAN PENGAKU BADAN

PERHITUNGAN BALOK DENGAN PENGAKU BADAN PERHITUNGAN BALOK DENGAN PENGAKU BADAN A. DATA BAHAN [C]2011 : M. Noer Ilham Tegangan leleh baja (yield stress ), f y = 240 MPa Tegangan sisa (residual stress ), f r = 70 MPa Modulus elastik baja (modulus

Lebih terperinci

C. Momen Inersia dan Tenaga Kinetik Rotasi

C. Momen Inersia dan Tenaga Kinetik Rotasi C. Momen Inersia dan Tenaga Kinetik Rotasi 1. Sistem Diskrit Tinjaulah sistem yang terdiri atas 2 benda. Benda A dan benda B dihubungkan dengan batang ringan yang tegar dengan sebuah batang tegak yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA. yang biasanya dari struktur cangkang terbagi tiga, yaitu : a) Permukaan Rotasional, yaitu bentuk permukaan yang berasal dari

BAB II TINJAUAN PUSTAKA. yang biasanya dari struktur cangkang terbagi tiga, yaitu : a) Permukaan Rotasional, yaitu bentuk permukaan yang berasal dari BAB II TINJAUAN PUSTAKA 2.1. Struktur Cangkang Menurut (Schodeck, 1998), pengertian cangkang merupakan suatu bentuk struktur berdimensi tiga yang tipis dan kaku serta memiliki permukaan lengkung. Permukaan

Lebih terperinci

BAB II METODE ELEMEN HINGGA PADA STRUKTUR. 2.1 Jenis - Jenis Struktur pada Bangunan Teknik Sipil

BAB II METODE ELEMEN HINGGA PADA STRUKTUR. 2.1 Jenis - Jenis Struktur pada Bangunan Teknik Sipil BAB II METODE ELEMEN HINGGA PADA STRUKTUR 2.1 Jenis - Jenis Struktur pada Bangunan Teknik Sipil Struktur 1D (satu dimensi) adalah suatu idealisasi dari bentuk struktur yang sebenarnya dimana struktur dianggap

Lebih terperinci

BESARAN VEKTOR. Gb. 1.1 Vektor dan vektor

BESARAN VEKTOR. Gb. 1.1 Vektor dan vektor BAB 1 BESARAN VEKTOR Tujuan Pembelajaran 1. Menjelaskan definisi vektor, dan representasinya dalam sistem koordinat cartesius 2. Menjumlahkan vektor secara grafis dan dengan vektor komponen 3. Melakukan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. yang lebih bawah hingga akhirnya sampai ke tanah melalui fondasi. Karena

BAB II TINJAUAN PUSTAKA. yang lebih bawah hingga akhirnya sampai ke tanah melalui fondasi. Karena BAB II TINJAUAN PUSTAKA Kolom adalah batang tekan vertikal dari rangka struktural yang memikul beban dari balok. Kolom meneruskan beban-beban dari elevasi atas ke elevasi yang lebih bawah hingga akhirnya

Lebih terperinci

Saat mempelajari gerak melingkar, kita telah membahas hubungan antara kecepatan sudut (ω) dan kecepatan linear (v) suatu benda

Saat mempelajari gerak melingkar, kita telah membahas hubungan antara kecepatan sudut (ω) dan kecepatan linear (v) suatu benda 1 Benda tegar Pada pembahasan mengenai kinematika, dinamika, usaha dan energi, hingga momentum linear, benda-benda yang bergerak selalu kita pandang sebagai benda titik. Benda yang berbentuk kotak misalnya,

Lebih terperinci

BAB 1 Keseimban gan dan Dinamika Rotasi

BAB 1 Keseimban gan dan Dinamika Rotasi BAB 1 Keseimban gan dan Dinamika Rotasi titik berat, dan momentum sudut pada benda tegar (statis dan dinamis) dalam kehidupan sehari-hari.benda tegar (statis dan Indikator Pencapaian Kompetensi: 3.1.1

Lebih terperinci

LANDASAN TEORI. Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan

LANDASAN TEORI. Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan BAB III LANDASAN TEORI 3.1. Tinjauan Umum Menurut Supriyadi dan Muntohar (2007) dalam Perencanaan Jembatan Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan mengumpulkan data dan informasi

Lebih terperinci

LENTUR PADA BALOK PERSEGI ANALISIS

LENTUR PADA BALOK PERSEGI ANALISIS LENTUR PADA BALOK PERSEGI ANALISIS Ketentuan Perencanaan Pembebanan Besar beban yang bekerja pada struktur ditentukan oleh jenis dan fungsi dari struktur tersebut. Untuk itu, dalam menentukan jenis beban

Lebih terperinci

MAKALAH PRESENTASI DEFORMASI LENTUR BALOK. Untuk Memenuhi Tugas Matakuliah Mekanika Bahan Yang Dibina Oleh Bapak Tri Kuncoro ST.MT

MAKALAH PRESENTASI DEFORMASI LENTUR BALOK. Untuk Memenuhi Tugas Matakuliah Mekanika Bahan Yang Dibina Oleh Bapak Tri Kuncoro ST.MT MAKALAH PRESENTASI DEFORMASI LENTUR BALOK Untuk Memenuhi Tugas Matakuliah Mekanika Bahan Yang Dibina Oleh Bapak Tri Kuncoro ST.MT Oleh : M. Rifqi Abdillah (150560609) PROGRAM STUDI SI TEKNIK SIPIL JURUSAN

Lebih terperinci

BAB III LANDASAN TEORI. A. Pembebanan Pada Pelat Lantai

BAB III LANDASAN TEORI. A. Pembebanan Pada Pelat Lantai 8 BAB III LANDASAN TEORI A. Pembebanan Pada Pelat Lantai Dalam penelitian ini pelat lantai merupakan pelat persegi yang diberi pembebanan secara merata pada seluruh bagian permukaannya. Material yang digunakan

Lebih terperinci

DAFfAR NOTASI. = Luas total tulangan longitudinal yang menahan torsi ( batang. = Luas dari tulangan geser dalam suatu jarak s. atau luas dari tulangan

DAFfAR NOTASI. = Luas total tulangan longitudinal yang menahan torsi ( batang. = Luas dari tulangan geser dalam suatu jarak s. atau luas dari tulangan NOTASI 1 DAFfAR NOTASI a = Tinggi blok tegangan beton persegi ekivalen Ab = Luas penampang satu batang tulangan. mm 2 Ag Ah AI = Luas penampang bruto dari beton = Luas dari tulangan geser yang pararel

Lebih terperinci

Henny Uliani NRP : Pembimbing Utama : Daud R. Wiyono, Ir., M.Sc Pembimbing Pendamping : Noek Sulandari, Ir., M.Sc

Henny Uliani NRP : Pembimbing Utama : Daud R. Wiyono, Ir., M.Sc Pembimbing Pendamping : Noek Sulandari, Ir., M.Sc PERENCANAAN SAMBUNGAN KAKU BALOK KOLOM TIPE END PLATE MENURUT TATA CARA PERENCANAAN STRUKTUR BAJA UNTUK BANGUNAN GEDUNG (SNI 03 1729 2002) MENGGUNAKAN MICROSOFT EXCEL 2002 Henny Uliani NRP : 0021044 Pembimbing

Lebih terperinci

BAB I PENDAHULUAN. Dinding ( wall ) adalah suatu struktur padat yang membatasi dan melindungi

BAB I PENDAHULUAN. Dinding ( wall ) adalah suatu struktur padat yang membatasi dan melindungi BAB I PENDAHULUAN I.1 Umum Dinding ( wall ) adalah suatu struktur padat yang membatasi dan melindungi suatu area pada konstruksi seperti rumah, gedung bertingkat, dan jenis konstruksi lainnya. Umumnya,

Lebih terperinci

KONSEP DAN METODE PERENCANAAN

KONSEP DAN METODE PERENCANAAN 24 2 KONSEP DAN METODE PERENCANAAN A. Perkembangan Metode Perencanaan Beton Bertulang Beberapa kajian awal yang dilakukan pada perilaku elemen struktur beton bertulang telah mengacu pada teori kekuatan

Lebih terperinci

II. KAJIAN PUSTAKA. gaya-gaya yang bekerja secara transversal terhadap sumbunya. Apabila

II. KAJIAN PUSTAKA. gaya-gaya yang bekerja secara transversal terhadap sumbunya. Apabila II. KAJIAN PUSTAKA A. Balok dan Gaya Balok (beam) adalah suatu batang struktural yang didesain untuk menahan gaya-gaya yang bekerja secara transversal terhadap sumbunya. Apabila beban yang dialami pada

Lebih terperinci

BAB III LANDASAN TEORI. untuk bangunan gedung (SNI ) dan tata cara perencanaan gempa

BAB III LANDASAN TEORI. untuk bangunan gedung (SNI ) dan tata cara perencanaan gempa BAB III LANDASAN TEORI 3.1. Pembebanan Beban yang ditinjau dan dihitung dalam perancangan gedung ini adalah beban hidup, beban mati dan beban gempa. 3.1.1. Kuat Perlu Beban yang digunakan sesuai dalam

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Komponen Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu

Lebih terperinci

2- ELEMEN STRUKTUR KOMPOSIT

2- ELEMEN STRUKTUR KOMPOSIT 2- ELEMEN STRUKTUR KOMPOSIT Pendahuluan Elemen struktur komposit merupakan struktur yang terdiri dari 2 material atau lebih dengan sifat bahan yang berbeda dan membentuk satu kesatuan sehingga menghasilkan

Lebih terperinci

PLATE GIRDER A. Pengertian Pelat Girder

PLATE GIRDER A. Pengertian Pelat Girder PLATE GIRDER A. Pengertian Pelat Girder Dalam penggunaan profil baja tunggal (seperti profil I) sebagai elemen lentur jika ukuran profilnya masih belum cukup memenuhi karena gaya dalam (momen dan gaya

Lebih terperinci

tegangan tekan disebelah atas dan tegangan tarik di bagian bawah, yang harus ditahan oleh balok.

tegangan tekan disebelah atas dan tegangan tarik di bagian bawah, yang harus ditahan oleh balok. . LENTUR Bila suatu gelagar terletak diatas dua tumpuan sederhana, menerima beban yang menimbulkan momen lentur, maka terjadi deformasi (regangan) lentur. Pada kejadian momen lentur positif, regangan tekan

Lebih terperinci

ANALISIS CELLULAR BEAM DENGAN METODE PENDEKATAN DIBANDINGKAN DENGAN PROGRAM ANSYS TUGAS AKHIR. Anton Wijaya

ANALISIS CELLULAR BEAM DENGAN METODE PENDEKATAN DIBANDINGKAN DENGAN PROGRAM ANSYS TUGAS AKHIR. Anton Wijaya ANALISIS CELLULAR BEAM DENGAN METODE PENDEKATAN DIBANDINGKAN DENGAN PROGRAM ANSYS TUGAS AKHIR Diajukan untuk melengkapi syarat penyelesaian Pendidikan sarjana teknik sipil Anton Wijaya 060404116 BIDANG

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan

BAB II TINJAUAN PUSTAKA. pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan BAB II TINJAUAN PUSTAKA 2.1 Umum Gempa adalah fenomena getaran yang diakibatkan oleh benturan atau pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan (fault zone). Besarnya

Lebih terperinci