BAB IV TRANSDUSER PANAS

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB IV TRANSDUSER PANAS"

Transkripsi

1 BAB IV TRANSDUSER PANAS TUJUAN PEMBELAJARAN Setelah membaca dan mempelajari bab ini diharapkan mahasiswa dapat untuk : 1. Definisi energi panas, hubungan dari skala remperatur untuk energi panas, kalibrasi skala temperature. 2. Transformasi pembacaan skala temperature antara skala Kelvin, Rankine, Celcius, dan Fahrnheit. 3. Bentuk aplikasi dari sebuah RTD transduser suhu untuk problem khusus dalam ukuran suhu. 4. Bentuk aplikasi dari thermistor untuk untuk problem khusus dalam ukuran suhu. 5. Bentuk aplikasi dari thermo kopel untuk problem khusus dalam ukuran suhu. 6. Penjelasan operasi kepingan bimetal untuk ukuran temperature. 4.1 PENGANTAR Proses kontrol adalah istilah yang digunakan untuk menggambarkan kondisi, alami atau buatan, dengan kualitas fisik yang diatur. Disini tidak ada tanda penyebaran luas dari control dari pada assosiasi suhu dan fenomena panas lainnya. Dalam keadaan alami, beberapa dari tekhnik yang luar biasa dari pengaturan suhu adalah menemukan dalam funsi hidup dari makhluk hidup. Dalam sisi buatan, seseorang telah amat perhatian dengan control suhu sejak api pertama ditemukan untuk pemanas. Pengaturan suhu industi selalu sangat penting dan menjadi tetep lebih, dengan kemajuan tehnologi. 4.2 PENGERTIAN SUHU Materi/benda baik itu padat, cair maupun gas dibangun dari sekumpulan atom-atom. Dari 92 unsur alam diwakili oleh tipe partikel atom. Materi khas yang disekitar kita bukan unsur murni, tetapi kombinasi dari beberapa unsur yang kemudian disebut molekul. Helium adalah unsur alam yang terdiri dari partikel atom. Air terdiri dari kombinasi dua atom hydrogen dan satu atom oksigen. Secara fisik energi panas merupakan hubungan fisik atau interaksi elemen dan molekul dalam partikel sebagai padat, cair, atau gas Energi Panas PADAT Dalam materi padat, atom atom atau molekul sangat kuat tarikan dan ikatan satu sama lain, jadi tidak ada atom yang bergerak jauh dari lokasi partikelnya atau equilbrium position. Kita dapat mengenalkan konsep energi panas dengan mempertimbangkan gerakan molekul. Sebuah benda padat mempunyai molekul yang tidak bergerak, ini berarti, molekul dalam keadaan bebas. Sehingga materi dikatakan mempunyai energi panas nol (W TH = 0). jika kita sekarang menambahkan energi pada materi dengan memanaskannya dapat dikatakan materi mempunyai energi panas terbatas,w TH >0. 48

2 CAIRAN Apabila energi diperbesar pada benda padat maka akan terjadi gerakan yang semakin besar pada molekul-molekul sehingga akan dicapai titik dimana benda akan mencair tetapi masih terjadi ikatan antara molekul yang satu dengan molekul lainnya. GAS Penambahan energi panas akan mempercepat gerakan molekul yang pada akhirnya akan lepas ikatan molekul didalam materi. Ketika molekul sudah tidak saling terikat maka materi akan menjadi gas Suhu Jika kita mengukur energi panas, harus mempunyai beberapa macam unit untuk klasifikasi ukuran,unit asli yang dipergunakan adalah panas dan dingin. Sampai waktu tertentu sudah memuaskan tetapi dalam perkembangannya tidak pas lagi untuk penngunaan secara modern. Unit yang pantas untuk meyatakan ukuran energi adalah joule SKALA SUHU MUTLAK Skala suhu mutlak adalah menyatakan 0 satuan temperature pada materi yang tidak mempunyai energi panas, yang berarti tidak ada gerakan/getaran molekul. Ada dua macam skala yang biasa digunkan, yaitu sklala Kelvin dalam Kelvin (K) dan skala Rankine dalam derajat Renkine ( 0 R). Perbandingan sederhana berhubungan suhu dalam 0 R ke suhu dalam K dapat dilihat pada persamaan 4-1. Table 4.1 menunjukan harga suhu Kelvin dan derajet Renkine pada awal permulaan titik kalibrasi. (1K) = (1 R ) = (1 0 R) kemudian, transformasi antara skala diberikan oleh T(K) = 5 T ( 0 R ) (4-1) Dimana: T(K) = suhu dalama K T( ) R) = suhu dalam 0 R 9 TABEL 4.1 POIN KALIBRASI SKLA SUHU Poin kalibrasi Suhu K 0 R 0 F 0 C Energi panas nol Oksigen : cair/gas Air : padat/cair Air : cair/gas Emas : padat/cair SKALA SUHU RELATIVE Perbedaan skala suhu relative dengan skala absolute hanya pada titik nol nya. Dua skala yang sangat terkenal adalah Celcius ( hubungan ke Kelvin) dan Fahrenheit ( hubungan ke Rankine) dengan temperature indikasi oleh 0 C dan 0 F. tabel

3 menunjukkan variasi skala. Nilai energi yang dinyatakan oleh 1 0 C sama dengan yang dinyatakan oleh 1 0 K hanya titik nolnya yang digeser. T( 0 C) = T(K) (4-2) Demikian pula ukuran 1 0 F adalah sanma sdengan ukuran 1 o R tetapi skalanya berbeda T(1 o F) = T(1 o R) (4-3) Untuk tranformasi Celcius ke o F adalah T(1 o F) = 9/5 T(1 o C) + 32 (4-4) HUBUNGAN KE ENERGI PANAS Hubungan antara suhu dan energi panas dalam joule digunakan konstananta yaitu konstanta Bonltzman. Energi panas W TH W TH = 3/2 kt (4-5) Dimana k = 1.38 x J/K adalah konstanta boltzman. Kecepatan panas rata-rata dari gas molekul oleh ekuasi energi kinetic molekul ke energi panas ½ mv 2 TYH = W TH = 3/2 kt dan v TH = 3 kt (4-6) m dimana m adalah massa molekul (kg) 4.3 RESISTANSI LOGAM DENGAN ALAT TEMPERATUR Salah satu cara untuk menyatakan suhu dalam besaran listrik adalah dengan memanfaatkan perubahan resistansi bahan akibat perubahan suhu. Dalam hal demikian resppon wakttu harus diperhatikan karena untuk mendapatkan ukuran yang tepat harus ditunggu sampai alat/bahan menjadi panas yang seimbang dengan lingkungannya Hubungan Resistansi Logam dengan Suhu Logam adalah komponen atom dalam keadaan padat, atom berada pada posisi seimbang dengan vibrasi lapisan atas disebabkan oleh energi panas. Setiap atom memberikan satu electron, disebut electron valensi, yang dapat bergerak bebas, ini menjadi electron konduksi. Kita mengatakan, untuk materi seluruhnya bahwa pita valensi electron dari pita konduksi elektron dalam materi melebihi dalam energi yang ditunjukkna gambar 4.1a. kebalikan dengan semi konduktor seperli yang diperlihatkan gambar 4.1b. dalam skema yang sama, gambar 4.1c menujukkan bahwa isolator mempunyai perbedaan yang luas antara elektron valensi dan konduksi. Bahan elektron logam bergerak bebas keseluruh materi ini akan menentukan kondisi pada suhu nol mutlak. 50

4 Gambar 4.2 menunjukkan efek penambahan resistansi dengan suhu untuk beberapa logam. Grafik menujukkan resistansi relative dengan suhu untuk logam khusus kemurnian tinggi. Contoh pada suhukonstan (T) menggunakan persamaan l R = ρ (T= konstan) (4-7) A Dimana : R = resistansi (Ω) l = panjang (m) A = luas area (m 2 ) ρ = Resistivitas ( Ω m) suhu (Celcius) Gamabar 4.2 penambahan resistansi logam linear dengan suhu Pada persaman (4-7) prinsip penambahan resistan dengan suhu yaitu dengan mengubah resistansi logam dengan suhu. Jika resistansi logam diketahui sebagai fungsi temperatur, persamaan (4-7) dapat digunkan untuk determinan resistan partikel materi pada suhu sama. Dalam kenyataan kurva yang ditunjukkan oleh gambar 4.2 adalah kurva resistivitas dengan suhu. R( t) ρ( T ) l / A ρ( T ) = = (4-8) R(75 ) ρ(75 ) l / A ρ(75 ) 51

5 4.3.2 Resistansi dengan Aproksimasi Suhu Kurva pada gambar 4.2 menunjukkan kurva sangat mendekati linear. Ini diperlukan untuk mengembangkan aproksimasi analisa persamaan pada resistansi dengan temperature dan partikel logam. APROKSIMASI LINEAR Aproksimasi linear dapat dikembangkan untuk aproksimasi resistansi dengan suhu (R-T). Pada gambar 4.3 kita melihat kurva R T dari beberapa materi. Disini garis lurus digambar antara poit yang mewakili suhu T 1 dan T 2, dan T 0 mewakili titik tengah suhu. Persamaan garis lurus merupakan aproksimasi linear untuk kurva dari T 1 ke T 2. persamaan garisnya adalah R( T ) = R( T0 )[ 1+ α 0 T ] T 1 < T < T 2 (4-9) dimana R(T) = aproksimasi dari resistan pada suhu T R(T 0 ) = resistansi pada suhu T 0 T = T T 0 α 0 = perubahan fraksi dalam resistansi per derajat pada T 0 Alasan untuk menggunkan α 0 sebagai slop fractional dari kurva R T adalah karea ini konstan sehingga dapat digunakan untuk kasus dimensi fisik yang lain ( panjang dan luas) dari beberapa macam kawat. Catatan α 0 tergantung suhu tengah To. Harga α0 dapat ditemukan dari harga resistan dan suhu grafik lain, sebagaimana diperlihatkan gambar 4.2 hambatan (ohm) suhu (Celcius) Gamabr 4.3 garis l linear aproksimasi dari resistan denan suhu antara T 1 dan T 2 1 α 0 =. (slope pada To) (4-10) R( Ta) atau untuk contoh dari gamabr 4.3 α 1 R 2 R1 0 =. R( To) T2 T (4-11) 1 dimana R 2 = resistansi pada T 2 R 1 = resistansi pada T 1 Catatan bahwa α mempunyai invers suhu dan tergantunng scala suhu yang digunakan. APROKSIMASI QUADRAT Aproksimasi kuadrat kurva R-T lebih akurat digunakan pada beberapa jenis tingkatan diantara berapa tingkat suhu. Ini menyangkut keduanya hubungan linear seperti sebelumnya, dan hubungan suhu yang membentuk kotak. Seperti persaman dibawah 4-12 : 52

6 R( T ) = R( To)[1 + α α T (4-12) 2 1 T + 2( ) dimana R(T) = aproksimasi kuadrat dari resistan pada T R(To) = resistan pada T0 α 1= perubahan fractional linear dalam resistan dengansuhu T = T-To α 2 = perubahan fractional linear dalam resistan dengansuhu Harga dari α 1 dan α 2 ditentukan dari tabel atau grafik sebagai indikasi dalam contoh, menggunakan harga resistan dan suhu pada 3 titik. Seperti sebelumnya, keduaα 1 dan α 2 tergantung suhu yang digunakan. Seperti contoh menunjukkan bagaimanan aproksimasi linear dibentuk Tahanan Detektor Suhu Sebuah RTD (resistancy-temperature detector) adalah sebuah transduser suhu yang didasarkan pada prinsip yang telah dijelaskan sebelumnya, yaitu tahanan logam yang naik denagn kenaikan suhu. Logam yang dipakai adalah bervariasi dari platinum yang mampu dipakai berulang-ulang, sangat sensitif, dan sabgat mahal sampai nikel yang tidak dapat dipakai berulang-ulang, lebih sensitif dan lebih murah.] SENSITIVITAS Perhitungan sensitivitas RTD dapat dicatat dari nilai tipical dari perubahan kecil yang linier dalam tahanan dengan suhu. Untuk platinum, nilai ini secara tipical adalah berkisar 0.004/ 0 C dan untuk nikel adalah 0.005/ 0 C. Sehingga, dengan platinum, sebagai contoh sebuah perubahan hanya 0.4Ω akan mengubah 100Ω pada RTD dengan perubahan suhu 1 0 C. Biasanya spesifikasi akan disediakan dalam bentuk informasi kalibrasi dan grafik tahanan versus suhu atau berbentuk tabel harga-harga dari mana sensitivitas dapat ditentukan.untuk material yang sama tetapi nilainya relativ konstan karena merupakan fungsi dari tahanan. TANGGAPAN WAKTU Secara umum, RTD mempunyai tanggapan waktu dari 0.5 sampai 5 datik atau lebih. Lambatnya respon disebabkan lambatnya konduktivitas panas yang membawa perangkat ke keseimbangan panas dengan lingkungannya. Umumya, kontanta waktu ditentukan oleh kondisi free air atau kondisi oil bath. Dalam kasus pembentukan, ada kontak panas dan karenanya, respon lambat, dan akhirnya kontak panas yang baik dan respon cepat. Nilai ini memberikan range dari tanggapan waktu sampai yang diharapkan sesuai dengan aplikasi. KONSTRUKSI Sebuah RTD, tentunya denagn mudah digambarkan sebagai sebuah kawat yang resistansinya dimonitor sebagai fungsi suhu. Konstruksi ini serupa dengan gulungan kawat atau potongan kawat untuk mencapai ukuran kecil dan meningkatkan konduktivitas panas untuk mengurangi tanggapan waktu. Dalam beberapa kasus, gulungan terlindungi dari lingkungan oleh lapisan atau kaleng pelindung yang meningkatkan tanggapan waktu tetapi memerlukan perlawanan terhadap lingkungan. 53

7 PENGKONDISI SINYAL. Dengan perubahan fraksional yang sangat kecil dari resistansi dengan suhu (0.4%), RTD pada umumnya digunakan pada rangkaian jembatan dengan semua kondisi yang dideteksi secara akurat. Untuk aplikasi proses kontrol, jembatan memerlukan self-nulling. Output dari rangkaian nulling menghasilkan keluaran kontroller dari 4 sampai 20 ma atau 10 sampai 50 ma. Gambar 4.4 mengilustrasikan ciri-ciri penting dari sistem demikian. Baris kompensasi pada kaki R 3 jembatan diperlukan ketika panjang timah adlah sangat panjang sehingga gradien panas pada kaki RTD menyebabkan perubahan pada baris resistansi. Perubahan ini akan menyebabkan keterlambatan informasi kesalahan, sebagai akibat perubahan resistansi RTD. Dengan menggunakan garis kompensasi, perubahan resistansi yang sama juga muncul pada R 3. Umpan balik dari kontroller dapat terjadi dalam beberapa bentuk, tergantung dari perubahan penyetingan R 2 menuju sumber arus yang menyediakan arus nol sebagaimana pada rangkaian jembatan seimbang. Karena RTD adalah resistansi, maka ada daya terdissipasi I 2 R oleh peralatan itu sendiri yang menyebabkan sedikit efek panas, atau pemanasan sendiri. Hal ini juga dapat menyebabkan pembacaan yang salah. Jadi, arus yang menuju RTD harus dijaga cukup rendah dan konstan untuk menghindari pemanasan sendiri. Secara mendasar, konstanta dissipasi biasanya disediakan pada spesifikasi RTD. Angka ini berhubungan dengan kebutuhan daya untuk meningkatkan suhu RTD per satu derajat. Jadi, konstanta dissipasi 25mW/ 0 C menunjukkan bahwa jika rugi daya I 2 R pada RTD sama dengan 25 mw, kemudian RTD akan terpanaskan dengan 1 0 C. Konstanta dissipasi biasanya ditentukan oleh dua kondisi, udara bebas dan well-stirred oil bath. Hal ini disebabkan perbedaan dalam kapasitas media untuk membawa panas keluar dari perangkat. Kenaikan Suhu pemanasan sendiri dapat ditemukan dari daya dissipasi oleh RTD dan konstanta dissipasi. P T = (4-13) dimana P D T = kenaikan suhu karena pemanasan sendiri dalam 0 C P = dissipasi daya pada RTD dalam W P = konstanta dissipasi dari RTD dalam W/ 0 C P D Gambar 4.4 garis kompensasi pada rangkaian pengkondisi sinyal RTD 54

8 4.4 THERMISTOR Thermistor adalah salah satu tipe lain dari transduser suhu yang mengukur suhu melalui perubahan resistansi bahan. Karakteristik perangkat ini sangat berbeda dengan RTD, dan tergantung pada perilaku khusus antara tahanan dengan suhu semikonduktor Tahanan versus suhu semikonduktor Dalam perbandingan logam, elektron pada bahan semikonduktor meloncat menuju molekulnya dengan energi yang cukup sehingga tidak ada elektron yang diberikan dari pita valensi ke pita konduksi. Dapat dikatakan celah energi W g berada diantara elektron valensi dan konduksi sebagaimana ditunjukkan pada gambar 4.1b. Dengan demikian bahan akan berlaku sebagai sebuah isolator karena tidak ada elektron konduksi untuk membawa arus menuju bahan. Hal ini hanya benar jika tidak ada energi panas pada contoh, pada suhu 0 0 K. Apabila suhu bahan mengalami peningkatan, molekul akan bervibrasi (bergetar). Pada kasus semikonduktor, vibrasi menghasilkan energi tambahan pada elektron valensi. Apabila energi sama atau melebihi celah energi Wg, elektron ini menjadi bebas dari molekul. Jadi, elektron sekarang berada pada pita konduksi dan bebas membawa arus menuju bahan. Selama suhu masih mengalami kenaikan terus-menerus, semakin banyak energi elektron yang memasuki pita konduksi. Hal ini menjelaskan bahwa semikonduktor menjadi konduktor arus yang lebih baik ketika suhunya naik, yang menyebabkan resistansinya menurun. Dari penjelasan ini dapat digambarkan penurunan tahanan semikonduktor dari suhu rendah sampai suhu tinggi. Hal ini berkebalikan dengan logam. Perbedaan yang penting, bahwa perubahan tahanan pada semikonduktor adlah nonlinier sebagaimana ditunjukkan pada gambar 4.5. Penyebab semikonduktor mempunyai perilaku seperti ini adalah celah energi antara pita konduksi dan valensi adalah cukup kecil untuk mengalirkan panas electron meloncati celah. Sebagai catatan penting bahwa efek yang dijelaskan memerlukan energi untuk menyediakan energi yang cukup untuk mengatasi celah energi Wg. Secara umum, bahan dikelompokkan sebagai semikonduktor ketika celah energi adalah ev(1ev = 1.6x10-19 J). Sebagai contoh yang telah benar adalah bahan silicon yang mempunyai celah energi Wg =1.107 ev. Ketika dipanaskan bahan ini berubah dari isolator menajdi konduktor. Hubungan energi panas yang merubah hal ini dapat ditentukan dengan persamaan (4-5) dan konversi joule ke ev, yaitu: untuk T = 0 K, WTH = 0.0eV untuk T = 100 K, WTH = 0.013eV untuk T = 300 K, W = 0.039eV TH Dengan rata-rata energi panas sebesar ev, jumlah elektron yang cukup akan mencapai level konduksi bahan untuk menjadi konduktor. Pada isolator sejati, celah enrginya sangat besar sehingga tidak cukup energi untuk meloncati atau mengatasi celah enrgi ini. 55

9 Gambar 4.5 Grafik Tahanan Versus Suhu Dari Bahan Semikonduktor Thermistor Termistor adalag tranduscer suhu yang telah dikembangkan berdasarkan prinsip tahanan semikonduktor yang berubah dengan adanya perubahan temperatur. Bahan semikonduktor tertentu digunakan untuk bervariasi untuk mengakomodasi range temperatur, sensitivitas, range tahanan, dan faktor lainnya. Perangkat ini biasanya diproduksi secara massa untuk konfigurasi tertentu, dan tabel serta grafik tahanan versus suhu disediakan untuk tujuan kalibrasi. SENSITIVITAS Sensitivitas termistor adalah faktor penting dalam aplikasi. Perubahan tahanan 10% per o C adalah tidak umum. Sehingga termistor dengan tahanan nominal 10KΩ pada suhu yang sama dapat berubah denagan 1KΩ untuk perubahan suhu 1 o C. Ketika digunakan dalam rangkaian jembatan pendeteksi nol, sensitivitas dapat memberikan kontrol, pada prinsipnya kurang dari 1 o C. KONSTRUKSI Karena termistor adalah semikonduktor penting, maka dapat dibuat dalam berbagai bentuk. Sehingga, bentuk umum seperti disk, manik-manik, batangbervariasi dalam ukuran dari bentuk manik berdiameter 1mm sampai diameter beberapa centimeter. Dengan variasi doping dan menggunakan bahan semikonduktor yang berbeda, akan diperoleh harga tahanan dengan range yang lebar pada suhu tertentu. WAKTU RESPON Waktu respon sebuah termistor tergantung pada jumlah bahan yang digunakan dan keadaan lingkungan. Sehingga, untuk termistor berbentuk manik pada keadaan oil 56

10 bath, responnya adalah 0.5 detik. Termistor yang sama pada udara mempunyai waktu respon 10 detik. Ketika dilindungi dalam teflon atau bahan yang lain untuk perlindungan melawan keadaaa lingkungan, waktu respon akan meningkat. PENGKONDISI SINYAL Karena termistor menunjukkan perubahan tahanan yang besar dengan suhu, maka ada banyak kemungkinan aplikasi rangakian. Dalam beberapa kasus, bagaimanapun juga, rangkaian jembatan dengan deteksi nol digunakan karena keadaan nonlinier dari termistor membuatnya sulit digunakan untuk sebagai pengukur aktual. Karena perangkat ini adalah tahanan, perhatian untuk memastikan bahwa daya terdissipasi pada termistor tidak melebihi batas yang ditentukan atau kemungkinan interferensi dengan lingkungan yang mempengaruhi pengukuran suhu. Konstanta dissipasi adlah bagian termistor sebab daya dalam miliwatt diperluakan untuk pencapaian suhu termistor 1 o C diatas linkungan. Harga dasar bervariasi dari 1mW/ o C pada udara bebas sampai 10mW/ o C atau lebih pada kamar minyak. 4.5 THERMOKOPEL Pada bab sebelumnya, kita telah membahas perubahan tahanan bahan sebagai fungsi waktu. Misal perubahan tahanan didasarkan pada variabel parameter pada pengukuran tahanan. Ada ketergantuangan lain dari tingkah laku listrik dari bahan pada suhu yang dibentuk oleh basis pengukuran suhu. Efek ini dikarakterisasi oleh transduser penghasil tegangan dalam emf yang diproduksi yang sebanding dengan suhu. Emf ditentukan hampir linier dengan suhu dan dapat diperbaharui untuk konstanta bahan. Perangkat yang mengukur suhu pada basis termoelektrik disebut termokopel Efek Termoelektrik Teori dasar dari efek termokopel ditemukan dari sifat perpindahan listrik dan panas dari logam yang berbeda. Dalam keadaan tertentu, ketika suhu yang berbeda diberikan pada logam, vibrasi dan pergerakan atom elektron diakibatkan dalam cara perbedaan potensial pada bahan. Perbedaan potensial ini dihubungkan dengan fakta bahwa elektron lebih panas. arus yang bervariasi untuk logam yang berbeda pada suhu yang sama disebabkan perbedaan konduktivitas panasnya. Jika rangakaian tertutup oleh hubungan konduktor, arus akan ditemukan yang mengalir pada loop tertutup. Deskripsi yang tepat tentang efek ini adalah emf ada karena keberadaan arus yang mengalir dalam rangkaian. Pada gambar 4.6a, kita lihat reprsentasi gambar dari efek ini di mana dua logam yang berbeda A dan B digunakan pada lup tertuttup yang dihubungkan dengan temperatur T1 dan T2. kita tidak dapat membuat lup tertutup dengan logam yang sama karena perbedaan potensial pada masing-masing kaki akan menjadi sama, yang menyebablab tidak adanya tegangan emf. Sebagai catatan adlah emf dihasilakan sebanding dengan perbedaan suhu diantara dua titik. 57

11 Gambar 4.6. Efek Seebeck dan Efek Peltier. EFEK SEEBECK Dengan menggunakan teori zat padat kondisi diatas dapat dianalisa untuk menunjukkan bahwa emf dapat diberikan dengan integral temperatur. T 2 ε = ( QA QB ) dt T1 dimana ε = emf yang dihasilkan dalam volt T1,T2 = temperatur ssambungan dalam o K Q A,Q B = konstanta perpindahan panas dari dua logam Persamaan tersebut, yang menggambarkan efek seebeck, menunjukkan bahwa emf yang dihasilkan sebanding dengan perubahan temperatur, dan perbedaan konstanta perpindahan panas. Sehingga jika logamnya sama maka emf samadengan nol, dan jika temperatur sama emf juga nol. Dalam praktek, akan ditemukan dua konstanta Q A dan Q B yang hampir tidak tergantung dari temperatur dan hubungannya hampir linier. ε = α( T ) 2 T1 dimana α = konstanta dalam volt/ o K T1,T2 = temperatur ssambungan dalam o K EFEK PELTIER Sesuatu tang menarik dan kadaang-kadang diperluakn untuk perluasan yang mempunyai sifat sama dengan termoelektrik yang telah didiskusikan di atas terjadi ketika efek seebeck balik dipertimbangkan. Dalam kasus ini, kita membuat lup tertutup dari dua logam yang berbeda, A dan B sebagaimana sebelumnya. Sekarang tegangan eksternal diberikan ke sistem untuk menghasilkan arus yang mengalir dalam rangkaian sebagaiman ditunjukkan dalam gambar 4.6b. karena perbadaan sifat perpindahan elektrotermal dari logam, maka ditemukan bahwa slah satu sambungan akan terpanaskan dan sambungan yang alain akan menjadi terdinginkan, sehingga perangkat ini disebut refrigrator,. Proses ini berdasarkan pada efek peltier. 58

12 4.5.2 Termokopel Untuk menggunakan efek seebeck sebagai dasar dari transduser suhu, kita perlu menetapkan hubungan antara emf terukur dari termokopel dan suhu yang tidak diketahui. Kita pertama melihat bahwa satu temperatur harus bisa diketahui karena tegangan seebeck sebanding dengan differensial suhu pada sambungan. Lebih jauh setiap sambungan dari logam yang berbeda yang dibuat dengan loop termokopel entuk perangakat pengukuran, perluasan, dan sebagainya akan memberikan kontribusi emf tergantung pada perbedaan logam, dan variasi suhu sambungan. Untuk menyediakan keluaran yang pasti berdasar suhu yang diukur, digunakan sebuah susunan seperti pada gambar 4.7a. gambar ini menjelaskan bahwa pengukuran sambungan T M terbuka ke lingkungan yang suhunya akan diukur. Sambungan ini dibentuk oleh dua logam A dan B. Dua sambungan yang lain dibentuk oleh logam C, yang kemudian dihubungkan ke perlengkapan pengukuran. Referensi sambungan ditentukan secara bersama, yang disebut dengan T R. Ketika emf terukur, menyebabkan tegangan jatuh pada elemen resistif. Pada susunan ini tegangan rangkaian terbuka terukur (pada impedansi tinggi) yang selanjutnya sebuah fungsi perbedann temperatur(t M -T R ) dan tipe dari logam A dan B. Tegangan dihasilkan mempunyai magnitud yang tergantung pada magnitudo absolut pada perubahan suhu dan polaritas tergantung pada temperatur mana yang lebih besar. (a) (b) Gambar 4.7. (a) sistem termokopel tiga kawat, (b) sistem termokopel dengan perluasan TIPE-TIPE TERMOKOPEL Konfigurasi standar tertentu dari termokopel menggunakan logam tertentu telah diadopsi dan memberikan penandaan, sebagai contoh ditunjukkan dalam tabel 4.2. masing-masing tipe mempunyai penjelasan-penjelasan,seperti range, linieritas. Keadaan lingkungan, sensitivitas dan sebagainya, yang dipilih tergentung dari aplikasi yang dibuat. Pada stiap tipe, variasi ukuran konduktor diterapkan untuk kasusu tertentu, misalnya pengukuran oven, lokasi pengukuran tinggi, dan sebagainya. Kurva tegangan dan temperatur ditunukkan pada gambar 4.8 yang menunjukkan suhu referensi pada 25 o C dan beberapa tipe dari termokopel. Kita dapat memberikan catatn penting dari kurva yang ada. Pertama, kita lihat bahwa tipe J dan K mempunyai slope yang besar, sehinnga mempunyai sensitivita syang tinggi, membuat pengukura lebih mudah. Untuk tipe R dan S slopenya kecil dan sensitivitasnya rendah. Mereka mepunyai keuntungan penting seperti range pengukuran yang lebih besar, termasuk suhu yang sangat tinggi dan merupakan bahan yang sangat lembam. Penjelasan lain dari kurva adalah kurvanya tidak linier. 59

13 TABEL TERMOKOPEL Tabel termokopel secara sederhana meberikan tegangan yang dihasilakan oleh termokopel ketika sambungan referensi berada pada referensi suhu tertentu, dan pengukuran sambungan pada suhu yang ditentukan. Berdasarka tabel, sebagai contoh kita lihat untuk tipe J pada suhu 210 o C dengan refernsi 0 o C, maka tegangannya adalah : V(210 o C) = mv Tipe Bahan Kisaran Normal J T K E S R Iron-konstantan Copper-kostantan Chromel-alumel Chromel-konstantan 90% platinum+10% rhodium-platinum 87% platinum + 13% rhodium - platinum o C o C o C o C o C o C Tipe J TC output (mv) Tipe E Tipe R Temperatur ( 0 C) Gambar 4.8.Kurva tegangan TC dengan Temperatur menunjukkan sensitivitas dan nonlinearitas tipe thermocouple yang berbeda. Jika kita mengukur tegangan mv dengan tipe S dengan referensi 0 0 C, dapat kita lihat pada tabel bahwa T(4.768 mv) = C (tipe S, ref 0 0 C) Dalam pengukuran sebenarnya, nilai tegangan yang terukur tidaklah selalu tepat seperti nilai dalam tabel. Jika hal ini terjadi, kita harus melakukan interpolasi terhadap nilai-nilai dalam tabel. Secara umum, nilai temperatur dapat ditemukan dengan menggunakan persamaan interpolasi berikut: TH TL T M = T L + (V M - V L ) (4-14) VH VL Dari persamaan diatas, tegangan terukur V M terletak antara tegangan V H yang lebih tinggi dan tegangan V L yang lebih rendah, dimana V H dan V L terdapat dalam tabel. Temperatur yang sesuai dengan nilai tegangan ini adalah T H dan T L, seperti ditunjukkan pada contoh

14 PERUBAHAN TABEL REFERENSI Meskipun tabel thermocouple telah disiapkan untuk temperatur junction tertentu, tetapi dimungkinkan penggunaan tabel ini untuk temperatur referensi yang berbeda dengna cara penggeseran skala tabel. Kunci yang harus diingat adalah bahwa tegangan harus sesuai dengan perbedaan antara referensi dan pengukuran temperatur junction. Dengan demikian, jika suatu nilai referensi baru lebih besar dari tabel referensi, semua tegangan pada tabel akan lebih rendah untuk thermocouple ini. Nilai ini akan dijadikan sebagai nilai referensi baru. Misalkan kita mempunyai TC tipe J dengan referensi 30 0 C. Pada tabel dengan referensi 0 0 C, tipe J pada 30 0 C akan menghasilkan 1.54 mv. Ini berarti pada temperatur berapapun dengan TC ini akan menghasilkan tegangan 1.54 mv kurang dari yang terdapat pada tabel. Sehingga, mengacu pada tabel, C menghasilkan V = = mv C menghasilkan V = mv C menghasilkan V = = mv Dengan cara yang sama, jika referensi baru lebih rendah dari referensi, semua tegangan pada tabel akan menjadi lebih besar. Sebagai contoh, misalkan suatu thermocouple tipe K dengan referensi 26 0 C. Pertama, dengan interpolasi, dapat ditentukan tegangan yang sesuai pada tabel dengan referensi 0 0 C. V( C) = (-26+30) V(-26 0 C) = mv (tipe K, 0 0 C ref) Kemudian, setiap tegangan pada tabel harus ditambahkan dengan 0.98 mv, sehingga C menghasilkan V = = mv C menghasilkan V = = 7.11 mv C menghasilkan V = = mv Transducer Thermocouple Penggunaan termokopel untuk transducer temperatur telah berkembang dari proses dasar dengan termokopel yang masih kasar, ke teknik pembuatan secara seksama. SENSITIVITAS Dari tabel ditunjukkan bahwa range tegangan termokopel kurang dari 100 mv. Sensitivitas terutama tergantung dari tipe sinyal yang diterapkan dan juga termokopel itu sendiri. Dari gambar 4.8, terlihat bahwa tipe berikut mempunyai sensitivitas yang terbaik dan terjelek. Tipe J : 0.05 mv/ 0 C Tipe R : mv/ 0 C KONSTRUKSI Kebanyakan suatu termokopel merupakan suatu hasil penyatuan atau penggulungan junction antara dua metal. Tetapi ada juga termokopel yang dibungkus didalam lapisan pelindung atau bahkan disegel dalam kaca untuk melindungi dari lingkungan yang bisa merusak. Ukuran kabel dari termokopel ditentukan oleh aplikasinya, antara lain kabel #10, atau kabel #30 AWG atau kabel mikro 0.02 mm. 61

15 l 0 T > T 0 KONDISI SINYAL Secara umum, elemen paling penting dalam pengkondisian sinyal TC adalah kebutuhan untuk melakukan pengukuran pada impedansi tinggi. Meskipun resistansi dc internal dari TC sangat kecil, tegangan yang dihasilkan juga sangat kecil. Dengan demikian, jika arus tingi dialirkan ke TC, bisa terjadi kesalahan pembacaan sekian persen. Tegangan TC juga diukur dengan sirkuit potensiometer, dijelaskan dalam bab 2, dimana dapat dilakukan pengukuran pada impedansi tertentu secara efektif. Perkembangan teknik modern telah memungkinkan pengukuran alat secara elektronik seperti penggunaan electrometer yang mengandung transistor efek medan dengan sifat impedansi inputnya yang tinggi atau konfigurasi op-amp yang tepat dengan impedansi input yang tinggi. Faktor lain dari pentingnya penggunaan TC adalah kebutuhan akan pengetahuan referensi temperatur dari junction. Dalam banyak aplikasi, terutama penggunaan medan, termometer digunakan untuk menentukan temperatur lokal. Faktor koreksi, seperti yang telah dibicarakan pada bagian sebelumnya, digunakan untuk membuktikan tegangan TC yang telah terukur dimana digunakan untuk menentukan temperatur. Dalam beberapa kasus, dibutuhkan untuk menempatkan junction referensi pada point jauh dari pengukuran junction. Sebagai contoh, jika temperatur pada sekitar pengukuran junction bervariasi dalam range yang lebar. Pada kasus ini, extension wires (kabel tambahan) digunakan, yang terbentuk dari materil yang sama dengan TC itu sendiri TRANSDUCER SUHU YANG LAIN Bimetal Strip Transducer temperatur jenis ini mempunyai karakteristik: kurang akurat, mempunyai histerisis, respon waktu yang lambat, dan berharga rendah. Alat ini sering digunakan dalam banyak aplikasi, terutama jika siklus on/off lebih diinginkan daripada kontrol yang kontinyu. PERTAMBAHAN PANAS Kita telah mengetahui bahwa semakin besar energi panas akan menyebabkan molekul dari suatu padatan mengalami kenaikan amplitudo dan frekuensi. Sifat ini diharapkan untuk dapat berkolaborasi dengan penambahan volume padatan, karena molekul cenderung untuk menempati volume yang lebih besar. Efek ini bervariasi antara material karena berbagai faktor, termasuk ukuran dan berat molekul, struktur pola, dan yang lainnya. Sehingga jika kita mempunyai batang dengan panjang l 0 pada temperatur T 0 seperti ditunjukkan pada gambar 4.10, dan temperatur naik ke T, maka batang akan mengalami pertambahan panjang menjadi l, l = l 0 [1 + γ T] (4-16) dimana T = T T 0 dan γ adalah koefisien pertambahan panjang dari bahan. Beberapa nilai koefisien pertambahan ditunjukkan pada tabel 4.3. T 0 l > l 0 Gambar Suatu padatan mengalami penambahan panjang sesuai dengan temperatur. 62

16 Tabel 4.3. Koefisien Ekspansi Termal Material Aluminium Copper Steel Beryllium/Copper Koefisien Ekspansi / 0 C / 0 C / 0 C / 0 C TRANSDUCER BIMETAL Transducer suhu yang telah dibicarakan diatas terjadi jika dua material dengan dua koefisien pertambahan panas berbeda diikat bersama. Kemudian, jika dipanaskan, laju pertambahan yang berbeda menyebabkan pembengkokan konstruksi batang, seperti yang ditunjukkan pada gambar Gambar Suatu strip bimetal akan melengkung jika temperatur berubah karena perbedaan koefisien pertambahan panas Termometer Gas Prinsip operasi dari termometer gas berdasarkan hukum dasar dari gas-gas. Secara umum, jika suatu gas diletakkan pada kontainer pada volume konstan dengan tekanan dan temperatur bervaraisi, kemudian rasio tekanan dan temperatur konstan, ρ 1 ρ = 2 (4.-17) T1 T2 dimana ρ 1, T 1 = tekanan dan temperatur absolut pada kondisi 1 ρ 2, T 2 = tekanan dan temperatur absolut pada kondisi 2 Karena bersifat mengubah temperatur secara langsung menjadi sinyal tekanan, termometer gas terutama berfungsi dalam sistem pneumatic. Keunggulan transducer seperti ini karena tidak terdapat bagian yang harus dipindahkan, dan tidak diperlukan rangsangan elektrik. Untuk aplikasi proses kontrol digital atau analog, bagaimanapun juga diperlukan suatu converter untuk mengubah tekanan menjadi sinyal elektrik Termometer Tekanan Uap Termometer tekanan uap, seperti halnya termometer gas, mengubah temperatur menjadi tekanna, tetapi dalam proses yang berbeda. Jika suatu bejana diisi dengan cairan, maka ruangan diatas cairan akan dipenuhi oleh uap dari cairan tersebut pada tekanan tertentu sesuai dengan temperatur. Jika temperatur naik, semakin banyak cairan akan menguap dan tekanan juga akan naik. Penurunan temperatur akan menghasilkan pengembunan dari uap, dan tekanannya akan turun. Dengan demikian, 63

17 dapat disimpulkan bahwa tekanan uap tergantung pada temperatur. Material yang berbeda akan mempunyai curva tekanan-temperatur yang berbeda pula. Gambar 4.12 menunjukkan sebuah kurva tekanan-temperatur dari metil klorida. Gambar Kurva tekanan uap metil klorida Termometer pertambahan cairan Seperti juga sifat padatan dalam penambahan dimensi terhadap temperatur, cairan juga mengalami penambahan volume seiring dengan perubahan temperatur. Hubungan yang terbentuk dari sifat ini adalah V(T) = V(T 0 )[1 + β T] (4-18) dimana V(T) = volume saat temperatur T V(T 0 ) = volume saat temperatur T 0 T = T T 0 β = koefisien pertambahan volume Transducer temperatur jenis ini tidak terlalu sering digunakan dalam proses kontrol karena diperlukan proses transduksi lebih jauh untuk mengubah temperatur menjadi sinyal elektrik. 4.7 PERTIMBANGAN PERANCANGAN Dalam perancangan sistem proses kontrol, semua kebutuhan harus disiapkan untuk tiap elemen dalam sistem. Perancangan tiap elemen itu sendiri, yang disebut subsistem, melibatkan pemasangan yang teliti terhadap tiap karakteristik dari tiap elemen. Bahkan dalam perancangan sistem monitoring, yang bukan merupakan sistem terintegrasi, diperlukan pencocokan transducer untuk lingkungna pengukuran dan sinyal output yang dibutuhkan. Berhubungan dengan hal ini, kita dapat melakukan prosedur perancangan transducer temperatur dengan langkah-langkah berikut: 1. Identifikasi kondisi lingkungan pengkuran. Hal ini termasuk nilai nominal dan range dari pengukuran tempereratur, kondisi fisik dari lingkungan 64

18 dimana pengukuran dilakukan, kecepatan pengukuran yang dibutuhkan, dan hal-hal lain yang harus dipertimbangkan. 2. Identifikasi sinyal output yang dibutuhkan. Dalam kebanyakan aplikasi, output yang keluar berupa arus standar 4-20 ma atau tegangan yang berskala untuk mewakili range temperatur hasil pengukuran. 3. Memilih transducer temperatur yang tepat. Terutama berdasarkan dari hasil oleh langkah pertama, suatu transducer yang telah cocok dengan spesifikasi range, lingkungan dan seterusnya telah dipilih. Untuk beberapa kasus, faktorfaktor seperti harga dan ketersediaan juga penting dalam pemilihan transducer. 4. Merancang Kondisi Sinyal yang dibutuhkan. Dengan menggunakan teknik pengkondisian sinyal seperti dalam bab 2 dan bab 3, transduksi temperatur secara langsung diubah menjadi sinyal output sinyal yang dibutuhkan. 65

4.5 THERMOKOPEL Efek Termoelektri

4.5 THERMOKOPEL Efek Termoelektri bath, responnya adalah 0.5 detik. Termistor yang sama pada udara mempunyai waktu respon 10 detik. Ketika dilindungi dalam teflon atau bahan yang lain untuk perlindungan melawan keadaaa lingkungan, waktu

Lebih terperinci

DASAR PENGUKURAN LISTRIK

DASAR PENGUKURAN LISTRIK DASAR PENGUKURAN LISTRIK OUTLINE 1. Objektif 2. Teori 3. Contoh 4. Simpulan Objektif Teori Tujuan Pembelajaran Mahasiswa mampu: Menjelaskan dengan benar mengenai prinsip RTD. Menjelaskan dengan benar mengenai

Lebih terperinci

DASAR PENGUKURAN LISTRIK

DASAR PENGUKURAN LISTRIK DASAR PENGUKURAN LISTRIK OUTLINE 1. Objektif 2. Teori 3. Contoh 4. Simpulan Objektif Teori Contoh Simpulan Tujuan Pembelajaran Mahasiswa mampu: Menjelaskan dengan benar mengenai energi panas dan temperatur.

Lebih terperinci

Gambar 2.20 Rangkaian antarmuka Hall-Effect

Gambar 2.20 Rangkaian antarmuka Hall-Effect D = Konstanta ketebalan Gambar 2.19 Cara kerja Hall-Effect Sensor Gambar 2.20 Rangkaian antarmuka Hall-Effect Dari persamaan terlihat V H berbanding lurus dengan I dan B. Jika I dipertahankan konstan maka

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. MATERI Sensor dan Tranduser

Institut Teknologi Sepuluh Nopember Surabaya. MATERI Sensor dan Tranduser Institut Teknologi Sepuluh Nopember Surabaya MATERI Sensor dan Tranduser Contoh Soal Ringkasan Latihan Assessment Pada sistem pengendalian loop tertutup, terkadang bentuk energi dari sinyal keluaran plant

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sejarah Termoelektrik Fenomena termoelektrik pertama kali ditemukan tahun 1821 oleh ilmuwan Jerman, Thomas Johann Seebeck. Ia menghubungkan tembaga dan besi dalam sebuah rangkaian.

Lebih terperinci

Fisika Panas 2 SKS. Adhi Harmoko S, M.Kom

Fisika Panas 2 SKS. Adhi Harmoko S, M.Kom Fisika Panas 2 SKS Adhi Harmoko S, M.Kom Apa yang dapat diterangkan dari fenomena ini? Mengapa? Ban atau balon dapat meletus bila panas? Mengapa? Gelas menjadi panas setelah dituangi kopi panas? Pertanyaan?

Lebih terperinci

TEMPERATUR. dihubungkan oleh

TEMPERATUR. dihubungkan oleh 49 50 o F. Temperatur pada skala Fahrenheit dan Celcius TEMPERATUR 1. Teori atom zat mendalilkan bahwa semua zat terdiri dari kesatuan kecil yang disebut atom, yang biasanya berdiameter 10-10 m.. Massa

Lebih terperinci

BAB II DASAR THERMOELECTRIC GENERATOR

BAB II DASAR THERMOELECTRIC GENERATOR BAB II DASAR THERMOELECTRIC GENERATOR 2. 1. Konsep Thermoelectric Modul thermoelectric yaitu alat yang mengubah energi panas dari gradien temperatur menjadi energi listrik atau sebaliknya dari energi listrik

Lebih terperinci

Gelas menjadi panas setelah dituangi air panas

Gelas menjadi panas setelah dituangi air panas BAB- 11 TERMODINAMIKA Apa yang dapat Anda terangkan dari fenomena ini? Mengapa? Gelas menjadi panas setelah dituangi air panas Mengapa? Bongkahan es mengecil lalu bertahan pada ukurannya Es Batu Apa yang

Lebih terperinci

PENGUKURAN TEMPERATUR

PENGUKURAN TEMPERATUR PENGUKURAN TEMPERATUR CONTENTS PENDAHULUAN RESISTANCE TEMPERATURE DETECTOR (RTD) THERMISTOR TERMOKOPEL METODE KALIBRASI INTRODUCTION TEMPERATUR TIDAK SEPERTI BESARAN LAIN (PANJANG, WAKTU, MASSA) ADALAH

Lebih terperinci

LAPORAN INDIVIDU PRAKTIKUM PENGUKURAN TERMOMETER

LAPORAN INDIVIDU PRAKTIKUM PENGUKURAN TERMOMETER LAPORAN INDIVIDU PRAKTIKUM PENGUKURAN TERMOMETER I. TUJUAN 1.Mahasiswa mengenal dan mengetahui penggunaan termometer digital dan analog. 2.Mahasiswa mampu mengukur suhu dengan menggunakan termometer digital

Lebih terperinci

JOBSHEET SENSOR SUHU (PTC, NTC, LM35)

JOBSHEET SENSOR SUHU (PTC, NTC, LM35) JOBSHEET SENSOR SUHU (PTC, NTC, LM35) A. TUJUAN Setelah melakukan praktikum ini, Mahasiswa diharapkan dapat: 1. Mengetahui pengertian rangkaian Sensor Suhu LM 35, PTC dan NTC terhadap besaran fisis. 2.

Lebih terperinci

BAB II LANDASAN TEORI. Sistem kontrol adalah proses pengaturan ataupun pengendalian

BAB II LANDASAN TEORI. Sistem kontrol adalah proses pengaturan ataupun pengendalian BAB II LANDASAN TEORI II.1. Sistem Kontrol Sistem kontrol adalah proses pengaturan ataupun pengendalian terhadap satu atau beberapa besaran (variabel, parameter) sehingga berada pada suatu harga atau dalam

Lebih terperinci

Gambar 11 Sistem kalibrasi dengan satu sensor.

Gambar 11 Sistem kalibrasi dengan satu sensor. 7 Gambar Sistem kalibrasi dengan satu sensor. Besarnya debit aliran diukur dengan menggunakan wadah ukur. Wadah ukur tersebut di tempatkan pada tempat keluarnya aliran yang kemudian diukur volumenya terhadap

Lebih terperinci

LVDT (Linear Variable Differensial Transformer)

LVDT (Linear Variable Differensial Transformer) LVDT (Linear Variable Differensial Transformer) LVDT merupakan sebuah transformator yang memiliki satu kumparan primer dan dua kumparan sekunder. Ketiga buah kumparan tadi, diletakkan simetris pada sebuah

Lebih terperinci

Sensor Thermal. M. Khairudin. Jogjakarta State University

Sensor Thermal. M. Khairudin. Jogjakarta State University Sensor Thermal Sensor Thermal Pada aplikasi pendeteksian atau pengukuran tertentu, dapat dipilih salah satu tipe sensor dengan pertimbangan : 1. Penampilan (Performance) 2. Kehandalan (Reliable) dan 3.

Lebih terperinci

SENSOR DAN TRANDUSER. Aktuator C(s) Sensor / Tranduser

SENSOR DAN TRANDUSER. Aktuator C(s) Sensor / Tranduser SENSOR DAN TRANDUSER PENGANTAR Pada sistem pengaturan loop tertutup, terkadang bentuk energi dari sinyal keluaran plant tidak sama dengan bentuk energi dari sinyal masukan sehingga tidak dapat dibandingkan,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sejarah dan Pengenalan Fenomena termoelektrik pertama kali ditemukan tahun 1821 oleh seorang ilmuwan Jerman, Thomas Johann Seebeck. Ia menghubungkan tembaga dan besi dalam sebuah

Lebih terperinci

BAB II LANDASAN TEORI. membandingkan tersebut tiada lain adalah pekerjaan pengukuran atau mengukur.

BAB II LANDASAN TEORI. membandingkan tersebut tiada lain adalah pekerjaan pengukuran atau mengukur. BAB II LANDASAN TEORI II.I. Pengenalan Alat Ukur. Pengukuran merupakan suatu aktifitas dan atau tindakan membandingkan suatu besaran yang belum diketahui nilainya atau harganya terhadap besaran lain yang

Lebih terperinci

RANCANG BANGUN TERMOMETER SUHU TINGGI DENGAN TERMOKOPEL

RANCANG BANGUN TERMOMETER SUHU TINGGI DENGAN TERMOKOPEL RANCANG BANGUN TERMOMETER SUHU TINGGI DENGAN TERMOKOPEL Oleh: Yusman Wiyatmo dan Budi Purwanto Jurusan Pendidikan Fisika FMIPA UNY ABSTRAK Tujuan yang akan dicapai melaui penelitian ini adalah: 1) membuat

Lebih terperinci

Analisis Elektromotansi Termal antara Pasangan Logam Aluminium, Nikrom dan Platina sebagai Termokopel

Analisis Elektromotansi Termal antara Pasangan Logam Aluminium, Nikrom dan Platina sebagai Termokopel Analisis Elektromotansi Termal antara Pasangan Logam Aluminium, Nikrom dan Platina sebagai Termokopel Annisa Diasyari 1,*, Bidayatul Armynah 1, Bannu 1 Jurusan Fisika, FMIPA, Universitas Hasanuddin 1 Email:

Lebih terperinci

BAB II RESISTANCE TEMPERATURE DETECTOR. besaran suatu temperatur/suhu dengan menggunakan elemen sensitif dari kawat

BAB II RESISTANCE TEMPERATURE DETECTOR. besaran suatu temperatur/suhu dengan menggunakan elemen sensitif dari kawat BAB II RESISTANCE TEMPERATURE DETECTOR Resistance Temperature Detector (RTD) atau dikenal dengan Detektor Temperatur Tahanan adalah sebuah alat yang digunakan untuk menentukan nilai atau besaran suatu

Lebih terperinci

SUHU DAN KALOR OLEH SAEFUL KARIM JURUSAN PENDIDIKAN FISIKA FPMIPA UPI

SUHU DAN KALOR OLEH SAEFUL KARIM JURUSAN PENDIDIKAN FISIKA FPMIPA UPI SUHU DAN KALOR OLEH SAEFUL KARIM JURUSAN PENDIDIKAN FISIKA FPMIPA UPI SUHU DAN PENGUKURAN SUHU Untuk mempelajari KONSEP SUHU dan hukum ke-nol termodinamika, Kita perlu mendefinisikan pengertian sistem,

Lebih terperinci

LAPORAN PRAKTIKUM FISIKA DASAR II HUKUM OHM

LAPORAN PRAKTIKUM FISIKA DASAR II HUKUM OHM LAPORAN PRAKTIKUM FISIKA DASAR II HUKUM OHM Oleh Nama NPM Semester : Yestri Hidayati : A1E011062 : II. B Tanggal Praktikum : Jum at, 06 April 2012 UNIVERSITAS BENGKULU FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN

Lebih terperinci

PRINSIP KERJA, CARA KERJA DAN PENERAPAN APLIKASI TRANSFORMATOR DIFFERENSIAL TUGAS PENGUKURAN TEKNIK KELOMPOK IV

PRINSIP KERJA, CARA KERJA DAN PENERAPAN APLIKASI TRANSFORMATOR DIFFERENSIAL TUGAS PENGUKURAN TEKNIK KELOMPOK IV PRINSIP KERJA, CARA KERJA DAN PENERAPAN APLIKASI TRANSFORMATOR DIFFERENSIAL TUGAS PENGUKURAN TEKNIK KELOMPOK IV 1. Torang Ridho S 0806368906 2. Deni Mulia Noventianus 0906604722 3. Mohammad Adiwirabrata

Lebih terperinci

TEMPERATUR. Air dingin. Air hangat. Fisdas1_Temperatur, Sabar Nurohman, M.Pd

TEMPERATUR. Air dingin. Air hangat. Fisdas1_Temperatur, Sabar Nurohman, M.Pd TEMPERATUR A. TEMPERATUR; Sebuah Kuantitas Makroskopis Secara kualitatif, temperatur dari sebuah objek (benda) dapat diketahui dengan merasakan sensasii panas atau dinginnya benda tersebut pada saat disentuh.

Lebih terperinci

LAPORAN PRAKTIKUM INSTRUMENTASI DAN PENGUKURAN KONVERSI TEMPERATUR KE ARUS DAN TEGANGAN MENGGUNAKAN PERALATAN TIME MEASUREMENT

LAPORAN PRAKTIKUM INSTRUMENTASI DAN PENGUKURAN KONVERSI TEMPERATUR KE ARUS DAN TEGANGAN MENGGUNAKAN PERALATAN TIME MEASUREMENT LAPORAN PRAKTIKUM INSTRUMENTASI DAN PENGUKURAN KONVERSI TEMPERATUR KE ARUS DAN TEGANGAN MENGGUNAKAN PERALATAN TIME MEASUREMENT DISUSUN OLEH : Nama : Abellio N. Sitompul NIM ` : 061340411637 Kelas : 3 EGB

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Teknologi dalam era globalisasi setiap harinya mengalami perkembangan yang dinamis, salah satu bentuk dari perkembangan teknologi tersebut terutama di bidang industri

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dibahas mengenai teori teori yang mendasari perancangan dan peralisasian pemanfaatkan modul termoelektrik generator untuk mengisi baterai ponsel. Teori teori yang

Lebih terperinci

CHAPTER I PREFACE CHAPTER II BASE OF THEORY

CHAPTER I PREFACE CHAPTER II BASE OF THEORY CHAPTER I PREFACE 1.1 Historical- Background Pada 1.2 Problem Identification 1.3 Objective 2.1 Historical of Thermoelectric CHAPTER II BASE OF THEORY Termoelektrik ditemukan pertama kali pada tahun 1821,

Lebih terperinci

Modul - 4 SEMIKONDUKTOR

Modul - 4 SEMIKONDUKTOR Modul - 4 SEMIKONDUKTOR Disusun Sebagai Materi Pelatihan Guru-Guru SMA/MA Provinsi Nangro Aceh Darussalam Disusun oleh: Dr. Agus Setiawan, M.Si Dr. Dadi Rusdiana, M.Si Dr. Ida Hamidah, M.Si Dra. Ida Kaniawati,

Lebih terperinci

IV. Arus Listrik. Sebelum tahun 1800: listrik buatan hanya berasal dari friksi (muatan statis) == tidak ada kegunaan praktis

IV. Arus Listrik. Sebelum tahun 1800: listrik buatan hanya berasal dari friksi (muatan statis) == tidak ada kegunaan praktis IV. Arus Listrik Sebelum tahun 1800: listrik buatan hanya berasal dari friksi (muatan statis) == tidak ada kegunaan praktis listrik alam kilat Pada tahun 1800: Alessandro Volta menemukan baterai listrik

Lebih terperinci

1. Perpotongan antara garis beban dan karakteristik dioda menggambarkan: A. Titik operasi dari sistem B. Karakteristik dioda dibias forward

1. Perpotongan antara garis beban dan karakteristik dioda menggambarkan: A. Titik operasi dari sistem B. Karakteristik dioda dibias forward 1. Perpotongan antara garis beban dan karakteristik dioda menggambarkan: A. Titik operasi dari sistem B. Karakteristik dioda dibias forward C. Karakteristik dioda dibias reverse D. Karakteristik dioda

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Dasar Perpindahan Kalor Perpindahan kalor terjadi karena adanya perbedaan suhu, kalor akan mengalir dari tempat yang suhunya tinggi ke tempat suhu rendah. Perpindahan

Lebih terperinci

05 Pengukuran Besaran Listrik INSTRUMEN PENUNJUK ARUS BOLAK BALIK

05 Pengukuran Besaran Listrik INSTRUMEN PENUNJUK ARUS BOLAK BALIK 05 Pengukuran Besaran Listrik INSTRUMEN PENUNJUK ARUS BOLAK BALIK 5.1 Pendahuluan Gerak d Arsonval akan memberi respons terhadap nilai rata-rata atau searah (dc) melalui kumparan putar. Jika kumparan tersebut

Lebih terperinci

BAB I TEORI RANGKAIAN LISTRIK DASAR

BAB I TEORI RANGKAIAN LISTRIK DASAR BAB I TEORI RANGKAIAN LISTRIK DASAR I.1. MUATAN ELEKTRON Suatu materi tersusun dari berbagai jenis molekul. Suatu molekul tersusun dari atom-atom. Atom tersusun dari elektron (bermuatan negatif), proton

Lebih terperinci

Dioda Semikonduktor dan Rangkaiannya

Dioda Semikonduktor dan Rangkaiannya - 2 Dioda Semikonduktor dan Rangkaiannya Missa Lamsani Hal 1 SAP Semikonduktor tipe P dan tipe N, pembawa mayoritas dan pembawa minoritas pada kedua jenis bahan tersebut. Sambungan P-N, daerah deplesi

Lebih terperinci

Gambar 2.1 Sebuah modul termoelektrik yang dialiri arus DC. ( https://ferotec.com. (2016). www. ferotec.com/technology/thermoelectric)

Gambar 2.1 Sebuah modul termoelektrik yang dialiri arus DC. ( https://ferotec.com. (2016). www. ferotec.com/technology/thermoelectric) BAB II. TINJAUAN PUSTAKA Modul termoelektrik adalah sebuah pendingin termoelektrik atau sebagai sebuah pompa panas tanpa menggunakan komponen bergerak (Ge dkk, 2015, Kaushik dkk, 2016). Sistem pendingin

Lebih terperinci

Tidak Pengujian Rangkaian Termometer Digital BAB IV. HASIL DAN PEMBAHASAN Hasil Karakterisasi

Tidak Pengujian Rangkaian Termometer Digital BAB IV. HASIL DAN PEMBAHASAN Hasil Karakterisasi 15 Program ini yang nantinya akan mengolah tegangan analog dari sensor menjadi sebuah kode-kode digital. Hasil pengolahan data dari ADC tersebut ditampilkan pada layar LCD untuk pengukuran suhu dalam bentuk

Lebih terperinci

SUHU DAN PANAS. Apakah itu hari musim panas?atau musim dingin malam beku. Tubuh perlu disimpan dengan suhu yang konstan.

SUHU DAN PANAS. Apakah itu hari musim panas?atau musim dingin malam beku. Tubuh perlu disimpan dengan suhu yang konstan. SUHU DAN PANAS SUHU DAN PANAS Apakah itu hari musim panas?atau musim dingin malam beku. Tubuh perlu disimpan dengan suhu yang konstan. SUHU DAN KESETIMBANGAN TERMAL Konsep suhu berakar pada ide-ide kualitatif

Lebih terperinci

Optimasi Diameter dan Panjang Kawat Koil Sebagai Kandidat Sensor Suhu Semen Sapi Berbasis RTD-C

Optimasi Diameter dan Panjang Kawat Koil Sebagai Kandidat Sensor Suhu Semen Sapi Berbasis RTD-C Optimasi Diameter dan Panjang Kawat Koil Sebagai Kandidat Sensor Suhu Semen Sapi Berbasis RTD-C Toni Kus Indratno 1, Moh. Toifur 2 1 Pendidikan Fisika, FKIP, Universitas Ahmad Dahlan, Yogyakarta 2 Fisika

Lebih terperinci

PENGUKURAN DAN INSTRUMENTASI THERMINOLOGY TEMPERATURE / SUHU

PENGUKURAN DAN INSTRUMENTASI THERMINOLOGY TEMPERATURE / SUHU THERMINOLOGY PENGUKURAN DAN INSTRUMENTASI THERMAL SENSOR TEMPERATURE / SUHU 1) The degree of hotness or coldness of a body or environment. 2) A measure of the average kinetic energy of the particles in

Lebih terperinci

Sistem Akuisisi Data Suhu Multipoint Dengan Mikrokontroler

Sistem Akuisisi Data Suhu Multipoint Dengan Mikrokontroler Sistem Akuisisi Data Suhu Multipoint Dengan Mikrokontroler Mytha Arena 1, Arif Basuki 2 Dosen Jurusan Teknik Elektro STTNAS Yogyakarta Jln. Babarsari, Depok, Sleman, Yogyakarta 55281. mytha98@yahoo.com

Lebih terperinci

BAB II DASAR TEORI Gambar 2.1. Diagram skematik termokopel Gambar 2.2. Pengukuran EMF

BAB II DASAR TEORI Gambar 2.1. Diagram skematik termokopel Gambar 2.2. Pengukuran EMF BAB II DASAR TEORI Pada bab ini akan dibahas beberapa teori pendukung yang digunakan sebagai acuan dalam merealisasikan sistem. Teori-teori yang digunakan dalam pembuatan skripsi ini terdiri dari Termokopel,

Lebih terperinci

PENDINGIN TERMOELEKTRIK

PENDINGIN TERMOELEKTRIK BAB II DASAR TEORI 2.1 PENDINGIN TERMOELEKTRIK Dua logam yang berbeda disambungkan dan kedua ujung logam tersebut dijaga pada temperatur yang berbeda, maka akan ada lima fenomena yang terjadi, yaitu fenomena

Lebih terperinci

UJI FUNGSI ALAT PENGENDALI SUHU TIPE TZ4ST-R4C SEBAGAI PERANGKAT PENGKONDISIAN SINYAL

UJI FUNGSI ALAT PENGENDALI SUHU TIPE TZ4ST-R4C SEBAGAI PERANGKAT PENGKONDISIAN SINYAL UJI FUNGSI ALAT PENGENDALI SUHU TIPE TZ4ST-R4C SEBAGAI PERANGKAT PENGKONDISIAN SINYAL Saminto, Untung Margono, Ihwanul Aziz, Sugeng Riyanto - BATAN Yogyakarta ptapb@batan.go.id ABSTRAK UJI FUNGSI PENGENDALI

Lebih terperinci

Suhu dan kalor 1 SUHU DAN KALOR

Suhu dan kalor 1 SUHU DAN KALOR Suhu dan kalor 1 SUHU DAN KALOR Pengertian Sifat Termal Zat. Sifat termal zat ialah bahwa setiap zat yang menerima ataupun melepaskan kalor, maka zat tersebut akan mengalami : - Perubahan suhu / temperatur

Lebih terperinci

DAFTAR ISI. DAFTAR ISI... i. KEPEMILIKAN DAN PENGESAHAN... iii UNIT I. KETIDAKPASTIAN PENGUKURAN... 1 UNIT II. APLIKASI OP-AMP 1...

DAFTAR ISI. DAFTAR ISI... i. KEPEMILIKAN DAN PENGESAHAN... iii UNIT I. KETIDAKPASTIAN PENGUKURAN... 1 UNIT II. APLIKASI OP-AMP 1... DAFTAR ISI DAFTAR ISI... i KEPEMILIKAN DAN PENGESAHAN... iii UNIT I. KETIDAKPASTIAN PENGUKURAN... 1 UNIT II. APLIKASI OP-AMP 1... 7 UNIT III. APLIKASI OP-AMP PENGUAT TAK MEMBALIK... 12 UNIT IV. APLIKASI

Lebih terperinci

BAB IV METODE PENGUJIAN CIGARETTE SMOKE FILTER

BAB IV METODE PENGUJIAN CIGARETTE SMOKE FILTER BAB IV METODE PENGUJIAN CIGARETTE SMOKE FILTER 4.1 TUJUAN PENGUJIAN Tujuan dari pengujian Cigarette Smoke Filter ialah untuk mengetahui seberapa besar kinerja penyaringan yang dihasilkan dengan membandingkan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI II.1. Teori Pengukuran Temperatur Pengukuran adalah proses menetapkan standar untuk setiap besaran yang tidak terdefinisi. Standar tersebut dapat berupa barang yang nyata, dengan

Lebih terperinci

: Arus listrik, tumbukan antar elektron, panas, hukum joule, kalorimeter, transfer energi.

: Arus listrik, tumbukan antar elektron, panas, hukum joule, kalorimeter, transfer energi. HUKUM JOULE PANAS YANG DITIMBULKAN OLEH ARUS LISTRIK (L1) ZAHROTUN NISA 1413100014 JURUSAN KIMIA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA ABSTRAK Telah

Lebih terperinci

MAKALAH BENGKEL ELEKTRONIKA PENDETEKSI KEBAKARAN DENGAN MENGGUNAKAN SENSOR SUHU LM355. Oeh:

MAKALAH BENGKEL ELEKTRONIKA PENDETEKSI KEBAKARAN DENGAN MENGGUNAKAN SENSOR SUHU LM355. Oeh: MAKALAH BENGKEL ELEKTRONIKA PENDETEKSI KEBAKARAN DENGAN MENGGUNAKAN SENSOR SUHU LM355 Oeh: Fatimah N. H. Kusnanto Mukti W. Edi Prasetyo M0209025 M0209031 M0210019 JURUSAN FISIKA FAKULTAS MATEMATIKA DAN

Lebih terperinci

Pemuaian adalah bertambahnya ukuran suatu benda karena pengaruh perubahan suhu atau bertambahnya ukuran suatu benda karena menerima kalor.

Pemuaian adalah bertambahnya ukuran suatu benda karena pengaruh perubahan suhu atau bertambahnya ukuran suatu benda karena menerima kalor. 1. C. PRINSIP TEORI Pemuaian adalah bertambahnya ukuran suatu benda karena pengaruh perubahan suhu atau bertambahnya ukuran suatu benda karena menerima kalor. Pemuaian terjadi pada 3 zat yaitu pemuaian

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Dalam Bab IV ini akan dipaparkan hasil penelitian aplikasi multimode fiber

BAB IV HASIL DAN PEMBAHASAN. Dalam Bab IV ini akan dipaparkan hasil penelitian aplikasi multimode fiber BAB IV HASIL DAN PEMBAHASAN Dalam Bab IV ini akan dipaparkan hasil penelitian aplikasi multimode fiber coupler sebagai sistem sensor suhu dengan menggunakan probe baja. Terdapat dua hasil penelitian, yang

Lebih terperinci

TERMOKOPEL (P3) NABIL AHMAD RIZALDI JURUSAN KIMIA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA

TERMOKOPEL (P3) NABIL AHMAD RIZALDI JURUSAN KIMIA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA TERMOKOPEL (P3) NABIL AHMAD RIZALDI 1413100109 JURUSAN KIMIA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2014 ABSTRAK Telah dilakukan percobaan termokopel

Lebih terperinci

TUGAS MATA KULIAH ILMU MATERIAL UMUM THERMAL PROPERTIES

TUGAS MATA KULIAH ILMU MATERIAL UMUM THERMAL PROPERTIES TUGAS MATA KULIAH ILMU MATERIAL UMUM THERMAL PROPERTIES Nama Kelompok: 1. Diah Ayu Suci Kinasih (24040115130099) 2. Alfiyan Hernowo (24040115140114) Mata Kuliah Dosen Pengampu : Ilmu Material Umum : Dr.

Lebih terperinci

Perpindahan Panas. Perpindahan Panas Secara Konduksi MODUL PERKULIAHAN. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh 02

Perpindahan Panas. Perpindahan Panas Secara Konduksi MODUL PERKULIAHAN. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh 02 MODUL PERKULIAHAN Perpindahan Panas Secara Konduksi Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh Teknik Teknik Mesin 02 13029 Abstract Salah satu mekanisme perpindahan panas adalah perpindahan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dibahas secara singkat mengenai teori dasar yang digunakan dalam merealisasikan suatu alat yang memanfaatkan energi terbuang dari panas setrika listrik untuk disimpan

Lebih terperinci

PENGUKURAN SUHU, PENGUKURAN TEKANAN dan KALIBRASI INSTRUMENTASI

PENGUKURAN SUHU, PENGUKURAN TEKANAN dan KALIBRASI INSTRUMENTASI PENGUKURAN SUHU, PENGUKURAN TEKANAN dan KALIBRASI INSTRUMENTASI ABDILLAH SETYO PAMBUDI 1611069 TEKNIK MESIN S1 FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI NASIONAL MALANG PENGUKURAN SUHU, PENGUKURAN

Lebih terperinci

FISIKA TERMAL Bagian I

FISIKA TERMAL Bagian I FISIKA TERMAL Bagian I Temperatur Temperatur adalah sifat fisik dari materi yang secara kuantitatif menyatakan tingkat panas atau dingin. Alat yang digunakan untuk mengukur temperatur adalah termometer.

Lebih terperinci

7. Menerapkan konsep suhu dan kalor. 8. Menerapkan konsep fluida. 9. Menerapkan hukum Termodinamika. 10. Menerapkan getaran, gelombang, dan bunyi

7. Menerapkan konsep suhu dan kalor. 8. Menerapkan konsep fluida. 9. Menerapkan hukum Termodinamika. 10. Menerapkan getaran, gelombang, dan bunyi Standar Kompetensi 7. Menerapkan konsep suhu dan kalor 8. Menerapkan konsep fluida 9. Menerapkan hukum Termodinamika 10. Menerapkan getaran, gelombang, dan bunyi 11. Menerapkan konsep magnet dan elektromagnet

Lebih terperinci

ΔL = ΔT. α. L 1. ΔA = ΔT. β. A 1 PEMUAIAN

ΔL = ΔT. α. L 1. ΔA = ΔT. β. A 1 PEMUAIAN PEMUAIAN Pengertian Pemuaian Pada pembicaraan tentang suhu pernah dibicarakan bahwa suhu mempengaruhi gerak partikel suatu benda. Benda yang bersuhu tinggi gerak partikelnya lebih cepat dari pada benda

Lebih terperinci

LAPORAN RESMI PRAKTEK KERJA LABORATORIUM 1

LAPORAN RESMI PRAKTEK KERJA LABORATORIUM 1 LAPORAN RESMI PRAKTEK KERJA LABORATORIUM 1 KODE: L - 4 JUDUL PERCOBAAN : ARUS DAN TEGANGAN PADA LAMPU FILAMEN TUNGSTEN DI SUSUN OLEH: TIFFANY RAHMA NOVESTIANA 24040110110024 LABORATORIUM FISIKA DASAR FAKULTAS

Lebih terperinci

Struktur atom merupakan satuan dasar materi yang terdiri dari inti atom beserta awan elektron bermuatan negatif yang mengelilinginya.

Struktur atom merupakan satuan dasar materi yang terdiri dari inti atom beserta awan elektron bermuatan negatif yang mengelilinginya. Struktur atom merupakan satuan dasar materi yang terdiri dari inti atom beserta awan elektron bermuatan negatif yang mengelilinginya. Inti atom mengandung campuran proton (bermuatan positif) dan neutron

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Instrumentasi Secara terminologi instrumentasi dapat diartikan sebagai ilmu yang mempelajari teknik penggunaan peralatan (instrument) untuk mengukur dan mengatur harga

Lebih terperinci

BAB I PENDAHULUAN. Pertumbuhan jumlah penduduk dan teknologi yang pesat, menjadikan

BAB I PENDAHULUAN. Pertumbuhan jumlah penduduk dan teknologi yang pesat, menjadikan BAB I PENDAHULUAN 1.1 Latar Belakang Pertumbuhan jumlah penduduk dan teknologi yang pesat, menjadikan kebutuhan energi listrik semakin besar. Namun, energi listrik yang diproduksi masih belum memenuhi

Lebih terperinci

FISIKA TERMAL(1) Yusron Sugiarto

FISIKA TERMAL(1) Yusron Sugiarto FISIKA TERMAL(1) Yusron Sugiarto MENU HARI INI TEMPERATUR KALOR DAN ENERGI DALAM PERUBAHAN FASE Temperatur adalah sifat fisik dari materi yang secara kuantitatif menyatakan tingkat panas atau dingin. Alat

Lebih terperinci

Oleh Marojahan Tampubolon,ST STMIK Potensi Utama

Oleh Marojahan Tampubolon,ST STMIK Potensi Utama Oleh Marojahan Tampubolon,ST STMIK Potensi Utama Sensor Sensor merupakan suatu alat/device yang berfungsi mengubah suatu besaran fisik (kecepatan,suhu,intensitas cahaya) dan besaran kimia (molaritas, mol)

Lebih terperinci

KEGIATAN BELAJAR 6 SUHU DAN KALOR

KEGIATAN BELAJAR 6 SUHU DAN KALOR KEGIATAN BELAJAR 6 SUHU DAN KALOR A. Pengertian Suhu Suhu atau temperature adalah besaran yang menunjukkan derajat panas atau dinginnya suatu benda. Pengukuran suhu didasarkan pada keadaan fisis zat (

Lebih terperinci

SOAL UN FISIKA DAN PENYELESAIANNYA 2005

SOAL UN FISIKA DAN PENYELESAIANNYA 2005 2. 1. Seorang siswa melakukan percobaan di laboratorium, melakukan pengukuran pelat tipis dengan menggunakan jangka sorong. Dari hasil pengukuran diperoleh panjang 2,23 cm dan lebar 36 cm, maka luas pelat

Lebih terperinci

BAB VI INSTRUMEN PENGKONDISI SINYAL

BAB VI INSTRUMEN PENGKONDISI SINYAL BAB VI INSTRUMEN PENGKONDISI SINYAL Pengkondisian sinyal merupakan suatu konversi sinyal menjadi bentuk yang lebih sesuai yang merupakan antarmuka dengan elemen-elemen lain dalam suatu kontrol proses.

Lebih terperinci

HASIL DAN PEMBAHASAN. Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC)

HASIL DAN PEMBAHASAN. Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC) 39 HASIL DAN PEMBAHASAN Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC) Hasil karakterisasi dengan Difraksi Sinar-X (XRD) dilakukan untuk mengetahui jenis material yang dihasilkan disamping menentukan

Lebih terperinci

MODUL I SENSOR SUHU. 3. Alat Alat Praktikum Alat praktikum meliputi : Sensor suhu Exacon D-OS3; Modul Pengolah Sinyal Multimeter Pemanas

MODUL I SENSOR SUHU. 3. Alat Alat Praktikum Alat praktikum meliputi : Sensor suhu Exacon D-OS3; Modul Pengolah Sinyal Multimeter Pemanas 1 MODUL I SENSOR SUHU 1. Pendahuluan Sensor suhu adalah alat yang digunakan untuk mengubah besaran panas menjadi besaran listrik yang dapat dengan mudah dianalisis besarnya. Ada beberapa metode yang digunakan

Lebih terperinci

BAB II Dasar Teori BAB II DASAR TEORI

BAB II Dasar Teori BAB II DASAR TEORI II DSR TEORI 2. Termoelektrik Fenomena termoelektrik pertama kali ditemukan tahun 82 oleh ilmuwan Jerman, Thomas Johann Seebeck. Ia menghubungkan tembaga dan besi dalam sebuah rangkaian. Di antara kedua

Lebih terperinci

ANALISIS LANJUTAN. Tingkat Energi & Orbit Elektron. Pita Energi Semikonduktor Intrinsik. Pita Energi Pada Semikonduktor Ter-Doping

ANALISIS LANJUTAN. Tingkat Energi & Orbit Elektron. Pita Energi Semikonduktor Intrinsik. Pita Energi Pada Semikonduktor Ter-Doping Tingkat Energi & Orbit Elektron ANALISIS LANJUTAN Pita Energi Semikonduktor Intrinsik Pita Energi Pada Semikonduktor Ter-Doping Elektronika 1 23 Irwan Arifin 2004 P-N Junction Elektronika 1 24 Irwan Arifin

Lebih terperinci

Uji Kekerasan Material dengan Metode Rockwell

Uji Kekerasan Material dengan Metode Rockwell Uji Kekerasan Material dengan Metode Rockwell 1 Ika Wahyuni, 2 Ahmad Barkati Rojul, 3 Erlin Nasocha, 4 Nindia Fauzia Rosyi, 5 Nurul Khusnia, 6 Oktaviana Retna Ningsih Jurusan Fisika, Fakultas Sains dan

Lebih terperinci

SNMPTN 2011 Fisika KODE: 559

SNMPTN 2011 Fisika KODE: 559 SNMPTN 2011 Fisika KODE: 559 SOAL PEMBAHASAN 1. Gerakan sebuah mobil digambarkan oleh grafik kecepatan waktu berikut ini. 1. Jawaban: DDD Percepatan ketika mobil bergerak semakin cepat adalah. (A) 0,5

Lebih terperinci

Termometri dan Kalorimetri

Termometri dan Kalorimetri Termometri dan Kalorimetri 1 Termometri adalah cara penentuan temperatur/suhu Kalorimetri/Kalorimeter cara penentuan jumlah panas Hygrometri/Hygrometer cara penentuan kelembaban udara Suhu adalah ukuran

Lebih terperinci

Fisika Umum (MA101) Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa

Fisika Umum (MA101) Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa Fisika Umum (MA101) Topik hari ini: Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa Kalor Hukum Ke Nol Termodinamika Jika benda A dan B secara terpisah berada dalam kesetimbangan termal

Lebih terperinci

D. 30 newton E. 70 newton. D. momentum E. percepatan

D. 30 newton E. 70 newton. D. momentum E. percepatan 1. Sebuah benda dengan massa 5 kg yang diikat dengan tali, berputar dalam suatu bidang vertikal. Lintasan dalam bidang itu adalah suatu lingkaran dengan jari-jari 1,5 m Jika kecepatan sudut tetap 2 rad/s,

Lebih terperinci

SUHU DAN PERUBAHAN. A. Bagaimana Mengetahui Suhu Suatu Benda?

SUHU DAN PERUBAHAN. A. Bagaimana Mengetahui Suhu Suatu Benda? SUHU DAN PERUBAHAN A. Bagaimana Mengetahui Suhu Suatu Benda? Kalian tentunya pernah mandi menggunakan air hangat, bukan? Untuk mendapatkan air hangat tersebut kita mencampur air dingin dengan air panas.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI II.1. Temperatur Temperatur adalah suatu penunjukan nilai panas atau nilai dingin yang dapat diperoleh/diketahui dengan menggunakan suatu alat yang dinamakan termometer. Termometer

Lebih terperinci

BAB II TEGANGAN TINGGI. sehingga perlu penjelasan khusus mengenai pengukuran ini. Ada tiga jenis tegangan

BAB II TEGANGAN TINGGI. sehingga perlu penjelasan khusus mengenai pengukuran ini. Ada tiga jenis tegangan BAB II TEGANGAN TINGGI 2.1 Umum Pengukuran tegangan tinggi berbeda dengan pengukuran tegangan rendah, sehingga perlu penjelasan khusus mengenai pengukuran ini. Ada tiga jenis tegangan tinggi yang akan

Lebih terperinci

Please purchase PDFcamp Printer on to remove this watermark.

Please purchase PDFcamp Printer on  to remove this watermark. Soal-soal latihan ismillahirrahmaannirrahiim Katakan pada hati kalian bahwa aku bisa dengan pertolongan llah SWY, karena sesunggungnyaa llah SWT itu dekat dan sesuai pesangkaan hamba-nya I. Pilihlah jawaban

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-321) Topik hari ini (minggu 15) Temperatur Skala Temperatur Pemuaian Termal Gas ideal Kalor dan Energi Internal Kalor Jenis Transfer Kalor Termodinamika Temperatur? Sifat Termometrik?

Lebih terperinci

12/3/2013 FISIKA THERMAL I

12/3/2013 FISIKA THERMAL I FISIKA THERMAL I 1 Temperature Our senses, however, are unreliable and often mislead us Jika keduanya sama-sama diambil dari freezer, apakah suhu keduanya sama? Mengapa metal ice tray terasa lebih dingin?

Lebih terperinci

BAB I PENDAHULUAN. logam menjadi satu akibat adanya energi panas. Teknologi pengelasan. selain digunakan untuk memproduksi suatu alat, pengelasan

BAB I PENDAHULUAN. logam menjadi satu akibat adanya energi panas. Teknologi pengelasan. selain digunakan untuk memproduksi suatu alat, pengelasan BAB I PENDAHULUAN A. Latar Belakang Pengelasan adalah suatu proses penggabungan logam dimana logam menjadi satu akibat adanya energi panas. Teknologi pengelasan selain digunakan untuk memproduksi suatu

Lebih terperinci

RINGKASAN MATERI TEGANGAN DAN TAHANAN LISTRIK

RINGKASAN MATERI TEGANGAN DAN TAHANAN LISTRIK RINGKASAN MATERI TEGANGAN DAN TAHANAN LISTRIK Ano/ppl/2012 RINGKASAN MATERI TEGANGAN DAN TAHANAN LISTRIK Mata Pelajaran Bahan Kajian Kelas/semester Potensi Dasar : Dasardasar listrik dan elektronika :

Lebih terperinci

BAB II LANDASAN TEORI. tidak terdefinisi. Standar tersebut dapat berupa barang yang nyata, dengan syarat

BAB II LANDASAN TEORI. tidak terdefinisi. Standar tersebut dapat berupa barang yang nyata, dengan syarat BAB II LANDASAN TEORI II. 1. Teori Pengukuran II.1.1. Pengertian Pengukuran Pengukuran adalah proses menetapkan standar untuk setiap besaran yang tidak terdefinisi. Standar tersebut dapat berupa barang

Lebih terperinci

BAB I PENDAHULUAN Termistor

BAB I PENDAHULUAN Termistor BAB I PENDAHULUAN A. Latar Belakang Termistor (Tahanan Termal) adalah salah satu jenis sensor suhu yang mempunyai koefisien temperatur yang tinggi, dimana komponen ini dapat mengubah nilai resistansi karena

Lebih terperinci

ELEKTRONIKA. Bab 2. Semikonduktor

ELEKTRONIKA. Bab 2. Semikonduktor ELEKTRONIKA Bab 2. Semikonduktor DR. JUSAK Konduktor Konduktor adalah sebuah bahan/elemen yang mempunyai kemampuan menghantarkan listrik. Salah satu contoh bahan koduktor adalah tembaga. Nukleus atom tembaga

Lebih terperinci

Experiment indonesian (Indonesia) Loncatan manik-manik - Sebuah model transisi fase dan ketidak-stabilan (10 poin)

Experiment indonesian (Indonesia) Loncatan manik-manik - Sebuah model transisi fase dan ketidak-stabilan (10 poin) Q2-1 Loncatan manik-manik - Sebuah model transisi fase dan ketidak-stabilan (10 poin) Sebelum mengerjakan soal ini, kalian baca lebih dahulu Petunjuk Umum pada amplop yang terpisah. Pendahuluan Transisi

Lebih terperinci

TUGAS AKHIR RANCANG BANGUN COOL BOX BERBASIS HYBRID TERMOELEKTRIK

TUGAS AKHIR RANCANG BANGUN COOL BOX BERBASIS HYBRID TERMOELEKTRIK TUGAS AKHIR RANCANG BANGUN COOL BOX BERBASIS HYBRID TERMOELEKTRIK Diajukan guna melengkapi sebagian syarat dalam mencapai gelar Sarjana Strata Satu (S1) Disusun Oleh Nama : Daniel Sidabutar NIM : 41313110087

Lebih terperinci

SOAL DAN PEMBAHASAN FINAL SESI II LIGA FISIKA PIF XIX TINGKAT SMP/MTS SEDERAJAT

SOAL DAN PEMBAHASAN FINAL SESI II LIGA FISIKA PIF XIX TINGKAT SMP/MTS SEDERAJAT SOAL DAN PEMBAHASAN FINAL SESI II LIGA FISIKA PIF XIX TINGKAT SMP/MTS SEDERAJAT 1. USAHA Sebuah benda bermassa 50 kg terletak pada bidang miring dengan sudut kemiringan 30 terhadap bidang horizontal. Jika

Lebih terperinci

Pemodelan Sistem Kontrol Motor DC dengan Temperatur Udara sebagai Pemicu

Pemodelan Sistem Kontrol Motor DC dengan Temperatur Udara sebagai Pemicu Pemodelan Sistem Kontrol Motor DC dengan Temperatur Udara sebagai Pemicu Brilliant Adhi Prabowo Pusat Penelitian Informatika, LIPI brilliant@informatika.lipi.go.id Abstrak Motor dc lebih sering digunakan

Lebih terperinci

BAB IV HASIL DAN ANALISA PENGUJIAN THERMOELECTRIC GENERATOR

BAB IV HASIL DAN ANALISA PENGUJIAN THERMOELECTRIC GENERATOR BAB IV HASIL DAN ANALISA PENGUJIAN THERMOELECTRIC GENERATOR 4.1 HASIL DAN ANALISA PENGUJIAN Pengujian yang dilakukan menghasilkan data-data berupa waktu, arus ouput, tegangan output, daya output, temperature

Lebih terperinci

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS 2.1 Konsep Dasar Perpindahan Panas Perpindahan panas dapat terjadi karena adanya beda temperatur antara dua bagian benda. Panas akan mengalir dari

Lebih terperinci

PENGUJIAN TEGANGAN TEMBUS MEDIA ISOLASI UDARA DAN MEDIA ISOLASI MINYAK TRAFO MENGGUNAKAN ELEKTRODA BIDANG

PENGUJIAN TEGANGAN TEMBUS MEDIA ISOLASI UDARA DAN MEDIA ISOLASI MINYAK TRAFO MENGGUNAKAN ELEKTRODA BIDANG PENGUJIAN TEGANGAN TEMBUS MEDIA ISOLASI UDARA DAN MEDIA ISOLASI MINYAK TRAFO MENGGUNAKAN ELEKTRODA BIDANG Zainal Abidin Teknik Elektro Politeknik Bengkalis Jl. Bathin Alam, Sei-Alam, Bengkalis Riau zainal@polbeng.ac.id

Lebih terperinci

Evaluasi Belajar Tahap Akhir F I S I K A Tahun 2005

Evaluasi Belajar Tahap Akhir F I S I K A Tahun 2005 Evaluasi Belajar Tahap Akhir F I S I K A Tahun 2005 EBTA-SMK-05-01 Bahan dimana satu arah berfungsi sebagai konduktor dan pada arah yang lain berfungsi sebagai isolator A. konduktor B. isolator C. semi

Lebih terperinci