Teknik Pemintalan Elektrik untuk Pembuatan Nanoserat: dari Pemodelan hingga Eksperimen

Ukuran: px
Mulai penontonan dengan halaman:

Download "Teknik Pemintalan Elektrik untuk Pembuatan Nanoserat: dari Pemodelan hingga Eksperimen"

Transkripsi

1 Jurnal Nanosains & Nanoteknologi ISSN Edisi Khusus, Agustus 2009 Teknik Pemintalan Elektrik untuk Pembuatan Nanoserat: dari Pemodelan hingga Eksperimen Khairurrijal a,#, Muhammad M. Munir b,1, Sahrul Saehana a,2, Ferry Iskandar c, dan Mikrajuddin Abdullah a a Kelompok Keahlian Fisika Material Elektronik, b Kelompok Keahlian Fisika Teoretik Energi Tinggi dan Instrumentasi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Teknologi Bandung Jalan Ganesa 10, Bandung 40132, Indonesia; c Departemen Teknik Kimia, Universitas Hiroshima, Kagamiyama, Higashi Hiroshima , Jepang # Diterima Editor : 20 Mei 2009 Diputuskan Publikasi : 26 Mei 2009 Abstrak Kemajuan mutakhir dalam bidang pemintalan elektrik telah direview sekilas dengan fokus pada riset yang telah dilakukan oleh kelompok kami. Bagian pertama memperkenalkan prinsip dasar pemintalan elektrik. Kemudian, pemodelan dan simulasi proses pemintalan elektrik dijelaskan di bagian kedua. Bagian terakhir, prosedur eksperimental umum untuk menghasilkan nanoserat polimer khususnya nanoserat poly(vinyl pyrrolidone) (PVP) dan nanoserat keramik/komposit seperti nanoserat indium tin oxide (ITO) serta sejumlah masalah teknis yang sering ditemui dalam pemintalan elektrik juga didiskusikan. Kata Kunci: Pemintalan elektrik (electro spinning), nanoserat, poly(vinyl pyrrolidone), indium tin oxide. 1. Pengantar Nanoserat (nanofiber), yang merupakan salah satu bentuk jenis material satu dimensi (1D) di samping nanokawat (nanowire), nanotabung (nanotube), nanosabuk (nanobelt), dan nanospiral, dapat dihasilkan dari beragam prekursor polimer maupun keramik dan memiliki luas permukaan spesifik yang sangat tinggi karena jejari kecilnya. Karakteristik ini disertai fungsionalitas dari beragam polimer dan keramik sendiri mengakibatkan nanoserat dengan beragam sifat dapat digunakan untuk beragam aplikasi maju. Sejumlah besar metoda fisika dan kimia, yang kebanyakan didasarkan pada pendekatan-pendekatan dasar-atas (bottom-up approache dan pola (template), telah ditunjukkan berhasil membuat nanostruktur 1D dengan berbagai komposisi dengan mengontrol prosesproses nukleasi dan pertumbuhan [1-3]. Pendekatanpendekatan puncak-bawah (top-down approache seperti litografi foton (photolithography), litografi lunak (soft lithography), dan pemintalan elektrik (electrospinning) telah juga digunakan untuk menghasilkan nanostruktur 1D [4-10]. Saat ini, di antara berbagai pendekatan puncak-bawah tersebut, teknik pemintalan elektrik adalah yang paling langsung menghasilkan nanoserat kontinu dalam skala besar, cepat, dan mudah serta jejari nanoserat dapat diatur dari skala nanometer hingga mikrometer. Sesungguhnya teknik pemintalan elektrik telah dipatenkan pada tahun 1934 [11]. Namun demikian, teknik ini belum dikenal dengan baik hingga diperkenalkan pada dekade lalu [12-13]. Beberapa ulasan kritis tentang nanoserat yang dihasilkan dengan teknik pemintalan elektrik dan berbagai aplikasinya dalam rekayasa jaringan, membran, katalis, konduktor transparan, fotoluminesens, dan lain-lain telah dipublikasikan [5], [7-10], [14-30]. Makalah ini menyajikan secara singkat kemajuan mutakhir dalam bidang ini dengan fokus pada riset yang telah dilakukan oleh kelompok kami. Setelah memperkenalkan prinsip dasar pemintalan elektrik, makalah ini mengupas pemodelan dan simulasi proses pemintalan elektrik serta prosedur eksperimental umum untuk menghasilkan nanoserat polimer dan keramik/komposit. Sejumlah masalah atau kesulitan teknis yang sering ditemui dalam pemintalan elektrik juga akan didiskusikan. 2. Cara Kerja Pemintalan Elektrik Seperti kebanyakan proses pemintalan konvensional yang digunakan di industri serat, pemintalan elektrik juga melibatkan pelepasan jet larutan kental atau lelehan dari sebuah saluran kecil (orifice). Penarikan dan pemadatan jet tersebut membentuk serat tipis dan seragam. Namun demikian, tidak seperti proses-proses pemintalan konvensional yang menggunakan gaya mekanis untuk proses penarikan, proses penarikan pada pemintalan elektrik menggunakan interaksi elektrostatik. Desain generik sebuah sistem pemintalan elektrik, seperti ditunjukkan dalam Gambar 1, terdiri dari 3 komponen utama:. Sebuah spinneret, yang biasanya terbuat dari logam hipodermik,. Sebuah catu daya tegangan tinggi, dan (c). Sebuah kolektor yang konduktif secara listrik, yang biasanya menggunakan lembaran aluminium. Larutan untuk pemintalan tersebut 1

2 J. Nano Saintek. Edisi Khusus, Agust ditempatkan dalam sebuah syringe plastik, yang dihubungkan ke logam tersebut. Syringe tersebut dihubungkan ke sebuah pompa syringe sehingga laju aliran larutan dapat dijaga untuk mendapatkan mutu serat hasil pemintalan. Dalam beberapa kasus, seperti untuk nanoserat keramik, kondisi lingkungan seperti kelembaban dan temperatur harus juga dijaga sehingga proses pemintalan harus dalam sebuah kotak tertutup. Bentuk dan ragam material kolektor dapat beragam, yang bergantung pada penggunaan akhir serat hasil. Syringe Pompa Syringe Sumber Tegangan Tinggi Pelat logam serat spinneret Gambar 1 Skema sistem pemintalan elektrik dengan komponen utama: spinneret untuk menghasilkan jet larutan, sumber tegangan tinggi untuk memberi muatan listrik dan menarik jet tesebut, dan kolektor untuk mengumpulkan serat-serat hasil. Sebuah kuantitas sangat penting dari nanoserat adalah jejarinya. Telah ditunjukkan sebelumnya bahwa jejari nanoserat dipengaruhi oleh tegangan permukaan dan laju aliran larutan [31] serta arus listrik [31], [32]. Oleh karena itu, pengontrolan arus listrik yang mengalir selama proses pemintalan elektrik menjadi hal yang utama. USB/RS-232 USB/RS-232 Syringe Pompa Syringe Sumber Teg. Tinggi Gambar 2. Otomasi pengontrolan arus selama proses pemintalan elektrik. Komponen sistem kontrol adalah pengontrol yang dilakukan komputer, aktuator oleh sumber tegangan tinggi, plant berupa dua pelat logam dan jet serta serat di antara keduanya, dan umpan balik yang dilakukan oleh ADC. jet USB AIN0 MUX ADC Kolektor FPGA AIN7 USB controller & CPU AGND Gambar 2 memberikan skema perangkat keras untuk menjaga arus listrik konstan selama proses pemintalan elektrik. Sistem tersebut membentuk kontrol lup tertutup, yang terdiri dari: pengontrol, aktuator, plant, dan umpan balik. Komputer dengan bertindak sebagai pengontrol. Aksi kontrol yang digunakan adalah proportional-integral-derivative (PID), yang berupa sebuah program yang disimpan di komputer. Sumber tegangan tinggi yang dilengkapi saluran komunikasi RS- 232 atau USB sebagai aktuator. Dua pelat logam beserta jet dan nanoserat di antar kedua pelat tersebut adalah plant yang hendak dikontrol. Arus yang dibaca oleh ADC yang dilengkapi saluran komunikasi RS-232 atau USB berlaku sebagai umpan balik dalam proses pengontrolan tersebut. Komunikasi antara komputer dan pompa syringe untuk memberikan laju pengeluaran konstan larutan dari syringe. Telah didapatkan bahwa arus listrik yang mengalir dalam plant tersebut stabil. Dengan sistem pengontrolan PID tersebut, arus yang diinginkan dapat dicapai dalam waktu sekitar 2 detik untuk berbagai nilai arus yang diinginkan seperti ditunjukkan dalam Gambar 3. Untuk arus yang diinginkan antara 45 hingga 100 na, tegangan tinggi yang dicatu ke plant adalah antara 8 hingga 15 kv. Stabilitas arus yang dinginkan sangat tinggi seperti telah dilaporkan sebelumnya [33]. Tegangan (kv) (c) (d) Waktu ( (e) (f) (g) Arus (na) Gambar 3. Arus dan tegangan sebagai fungsi waktu untuk berbagai arus yang diinginkan. Arus yang diinginkan I ref dicapai dalam waktu sekitar 2 detik. I ref = 100 na, I ref = 45 na, (c) I ref = 55 na, (d) I ref = 65 na, (e) I ref = 75 na, (f) I ref = 85 na, dan (g) I ref = 95 na. Akibat pemberian tegangan tinggi tersebut, larutan yang keluar dari ujung lubang (orifice) membentuk jet larutan dan bermuatan listrik. Jet yang masih bersentuhan dengan lubang ujung berbentuk kerucut dan disebut sebagai jet kerucut (cone jet) atau kerucut Taylor (Taylor cone) dan bagian yang lebih jauh

3 J. Nano Saintek. Edisi Khusus, Agust disebut jet saja seperti dijelaskan oleh Gambar 4. yang diambil dengan menggunakan kamera CCD. Dalam perjalanan di antara kedua pelat logam tersebut, jet larutan mengalami pemadatan karena penguapan dan tiba di kolektor sebagai serat-serat yang bertumpukan. Dengan SEM (scanning electron microscope) serat-serat yang terkumpul di kolektor tersebut diperiksa dan contoh citranya diperlihatkan dalam Gambar 4.. Homogenitas jejari nanoserat yang dihasilkan dengan sistem pengontrolan arus di atas sangat tinggi seperti telah dilaporkan baru-baru ini [34]. Jet kerucut Jet 2 µm Gambar 4.. Anatomi jet yang keluar dari lubang ujung (orifice). Bagian jet yang paling dekat dengan ujung adalah jet kerucut sesuai dengan bentuknya dan yang lebih jauh dinamakan jet saja.. Citra SEM nanoserat hasil yang terkumpul di kolektor. Jejari nanoserat tersebut seragam. 3. Model dan Simulasi Pemintalan Elektrik Salah satu tujuan pemodelan dan simulasi suatu proses adalah untuk membantu eksperimen proses tersebut di laboratorium. Dalam kasus proses pemintalan elektrik, pemodelan dan simulasi dilakukan untuk menentukan pengaruh parameter-parameter terhadap proses tersebut, membantu mengatasi masalah ketidakstabilan pembengkokan jet, dan mencari parameter optimum untuk fabrikasi nanoserat dengan proses tersebut. Seperti penyemprotan elektrik (electrospray), pemintalan elektrik adalah sebuah teknik yang berbasis interaksi elektrostatik. Bila sebuah tegangan tinggi diterapkan ke spinneret tersebut, tetesan kecil (droplet) larutan di lubang ujung (orifice) tersebut menjadi bermuatan listrik sangat tinggi dan mengalami perubahan bentuk menjadi bentuk kerucut karena gaya tolak elektrostatik antara dua muatan permukaan dan gaya tarik elektrostatik dari kolektor. Sekali tegangan tersebut telah melampaui sebuah nilai ambang, gaya-gaya elektrostatik tersebut dapat mengatasi tegangan permukaan tersebut dan mendorong pelepasan sebuah jet larutan dari lubang ujung tersebut. Jet yang diberi muatan tersebut kemudian mengalami sebuah proses pendorongan dan pembengkokan di mana jet larutan tersebut secara terus menerus ditarik menjadi panjang (elongated) dan mulur (stretched) oleh gaya-gaya tolak elektrostatik, yang mengarah ke pembentukan benang (thread) panjang, tipis, dan seragam. Tidak seperti proses-proses pemintalan konvensional, proses penarikan dan penipisan serat di dalam pemintalan elektrik dicapai melalui tolakan-tolakan elektrostatik muatan-muatan pada jet larutan itu sendiri. Karena pelarut tersebut cepat menguap selama proses pemintalan tersebut, jejari benang tersebut berkurang terus menerus, yang mengarah ke pembentukan serat sangat tipis. Akhirnya, serat yang dimuati tersebut dideposisi pada kolektor yang ditanahkan tersebut karena gaya tarik elektrostatik. Bergantung pada sifat-sifat reologis larutan tersebut dan parameter-parameter pemintalan lain, jejari serat hasil dapat diubah dari beberapa puluh nanometer hingga beberapa mikrometer. Tiga parameter yang mempengaruhi morfologi serat hasil, yaitu: kekentalan, tegangan permukaan, dan rapat muatan dari larutan tersebut [8,35]. Gaya tegangan permukaan tersebut selalu cenderung mengubah jet larutan tersebut menjadi satu atau lebih tetesan kecil (droplet) untuk meminimumkan energi permukaannya. Sebaliknya, gaya tolak elektrostatik antara dua muatan permukaan pada jet tersebut cenderung menaikkan luas permukaannya dan karena itu mengarah pembentukan jet tipis bukan bulir-bulir (bead. Gaya viskoelastik juga menahan perubahan bentuk yang cepat. Adalah interaksi ketiga gaya utama ini yang menentukan morfologi akhir dari serat hasil. Intensitas relatif gaya-gaya ini bisa berubah selama proses pemintalan karena pemanjangan jet dan penguapan larutan tersebut. Secara khusus, karena jet tersebut melemah, tegangan permukaan bisa menjadi sangat dominan dari dua gaya lainnya dan mengarah ke pembentukan bulir-bulir. Obyek yang dimodelkan dalam proses pemintalan elektrik adalah jet larutan yang berada setelah kerucut jet seperti ditunjukkan oleh Gambar 4.. Secara fisis jet tersebut dibagi menjadi sejumlah besar segmen jet. Setiap segmen jet direpresentasikan oleh sebuah simpul (node) diskret dengan muatan listrik Q dan massa M, sebuah pegas untuk menyatakan sifat elastik larutan, dan (c) sebuah peredam (dashpot) yang menyatakan kekentalan larutan, seperti diilustrasikan pada Gbr. 5. Kedudukan dari setiap simpul dipengaruhi oleh gaya resultan yang bekerja pada simpul tersebut. Beberapa asumsi yang digunakan dalam memodelkan dinamika gerakan jet: a) medan listrik yang digunakan adalah medan listrik searah (DC), b) serat adalah insulator sempurna dengan kerapatan muatan listrik konstan dan terdistribusi di permukaan karena jejari serat sangat kecil, c) jet larutan bersifat viskoelastik dengan modulus elastik, tegangan permukaan, dan viskositas konstan, dan d) penguapan tidak terjadi selama proses perjalanan dari ujung lubang menuju kolektor.

4 J. Nano Saintek. Edisi Khusus, Agust Tegangan permukaan antara simpul i+1 dan i Tegangan permukaan antara simpul i dan i-1 Pegas menggambarkan sifat elastisitas larutan Simpul i Peredam menggambarkan sifat kekentalan larutan Gambar 5. Jet dimodelkan sebagai rangkaian segmen jet. Setiap segmen jet terdiri dari sebuah simpul bermassa M dan bermuatan listrik Q serta sebuah pegas beserta peredamnya. Dengan asumsi-asumsi tersebut, maka dinamika segmen jet tersebut dinyatakan oleh seperangkat tiga persamaan yang merepresentasikan model Maxwellian, yaitu peregangan viskoelastik, kekekalan massa dan momentum [36]. Kekekalan viskoelastik σ( 1 λ( G = G σ( t λ( t µ dengan σ adalah tegangan longitudinal (longitudinal stres, G adalah modulus Young, µ adalah kekentalan, λ parameter peregangan (dalam koordinat kurvilinear ξ diberikan oleh λ = dξ/dt, dan s parameter Lagrangian. Kekekalan massa D 2 [ λ( s ) πa ( ] = 0 Dt dengan D Dt = t + V. adalah turunan konvektif, V dalah vektor kecepatan, dan a adalah jejari serat. Kekekalan Momentum ρλ ( πa 2 DV ( ( Dt 2 2 = λ ( πa ( q λ( s ) πa s 0 ( s ) a( s, s ) r( r( s ) C ds 3 r( r( s ) r( r( s ) λ( πa ( q Φ + πa ( σ ( u( s 2 [ ] (1) (2) + [ πa ( αu( ] (3) s dengan ρ adalah massa jenis (massa per satuan volum) fluida, r adalah vektor koordinat, q adalah muatan per satuan volum, C adalah fungsi cut off daerah yang sangat dekat untuk interaksi Coulomb, a adalah jejari rata-rata, Φ adalah potensial listrik yang diberikan, u adalah vektor satuan sepanjang segmen serat dan α adalah tegangan permukaan (surface tension). Empat suku gaya di sebelah kanan tanda sama dengan dalam Persamaan (3) berasal dari gaya Coulomb, gaya medan listrik, gaya viskoelastik, dan gaya tegangan permukaan, secara berurut. Tabel 1. Parameter-parameter yang digunakan dalam simulasi. Parameter Nilai Tegangan permukaan (α) N/m Tegangan (V) 5 kv Viskositas (µ) 10 Ns/m 2 Modulus elastik Young (G) 10 5 N/m 2 Jejari ujung (a o ) 1, m Rapat massa (ρ) kg/m 3 Jarak ujung -kolektor m Laju aliran 10-8 m 3 /s Amplitudo gangguan (ε) Panjang simpul awal (l o ) 10-4 m Seperangkat tiga persamaan di atas diselesaikan dengan menggunakan metoda beda hingga. Pembahasan lebih lengkap penyelesaian tersebut diberikan di tempat lain [37]. Dengan menggunakan parameter-parameter yang diberikan dalam Tabel 1, gerakan jet menuju kolektor untuk berbagai waktu ditunjukkan dalam Gambar 6. Terlihat bahwa jumlah simpul (N) bertambah sejalan dengan waktu dan ketidakstabilan jet berkembang lambat. Dalam waktu t = 0, detik jet mencapai kolektor. Gambar 7 melukiskan gerakan jet untuk ujung hampir 0,1 kali lebih kecil dari yang diberikan dalam Tabel 1 tetapi parameter-parameter lain tetap. Terlihat bahwa ketidakstabilan jet juga meningkat sejalan waktu dan jejari rata-rata nanoserat yang dihasilkan adalah 213 nm dapat dihasilkan. 4. Eksperimen Dengan menggunakan teknik pemintalan elektrik, beragam nanoserat seperti nanoserat polimer, keramik, dan komposit dapat dibuat. Di sini, kami akan membahas eksperimen pembuatan nanoserat polimer, poly(vinyl pyrrolidone) (PVP) khususnya, dan nanoserat keramik seperti oksida transparan dan konduktif (transparent conductive oxide/tco).

5 J. Nano Saintek. Edisi Khusus, Agust stabil yang mempengaruhi kualitas serat yang dihasilkan. c. Polimer yang digunakan harus mempunyai berat molekul yang sesuai. Pada prinsipnya, semakin besar berat molekul polimer yang digunakan kemungkinan hasil pemintalan elektrik menjadi serat yang sempurna semakin besar. Semakin kecil berat molekul yang digunakan, semakin besar konsentrasi yang diperlukan untuk membuat larutan dengan kekentalan yang sesuai. (c) (d) Gambar 6. Simulasi gerakan jet pada berbagai waktu. t = 0, detik, t = 0, detik, (c) t = 0, detik, dan (d) t = 0, detik [37]. 4.1 Pembuatan nanoserat PVP Prekursor yang digunakan untuk membuat nanoserat poly(vinyl pyrrolidone) (PVP) adalah polimer poly(vinyl pyrrolidone) (PVP K90), DMF dan etanol. Larutan PVP diperoleh dengan mencampurkan serbuk PVP ke dalam campuran DMF dan etanol dengan perbandingan berat PVP/DMF/etanol = 1,8/4,1/4,1 (18%). Campuran tersebut kemudian diaduk dengan pengaduk magnet sampai larutan tersebut bening dan kental. Beberapa hal yang harus diperhatikan dalam menyiapkan larutan adalah sebagai berikut: a. Larutan yang digunakan harus cukup kental karena jika kurang kental hasil pemintalan elektrik belum tentu menghasilkan serat yang sempurna dan seragam, namun dapat menghasilkan bulir-bulir atau campuran antara bulir-bulir dengan serat. b. Larutan yang digunakan juga tidak boleh terlalu kental karena jika terlalu kental pada saat proses pemintalan elektrik larutan tersebut akan cepat kering dan mengahalangi aliran larutan di dalam ujung lubang sehingga ujung lubang tersebut tersumbat dan membuat kerucut jet tidak Gambar 7. Hasil simulasi dengan ukuran ujung 10-5 m dan parameter-parameter lain sama dengan yang diberikan dalam Tabel 1. lintasan jet, histogram dan distribusi LogNormal jejari nanoserat yang dihasilkan. Larutan tersebut kemudian dimasukan ke dalam syringe yang ditempatkan secara mendatar di atas pompa syringe. Dalam pembuatan nanoserat PVP ini, laju aliran larutan yang digunakan sebesar 16 µl/min, sedangkan arus antara ujung dengan kolektor dibuat tetap dan stabil. Besar jejari nanoserat dikontrol dengan mengatur arus yang tetap pada kisaran na. Jarak antara ujung dan kolektor dalam eksperimen ini dibuat tetap 14 cm. Salah satu hal yang sangat mempengaruhi hasil nanoserat dengan teknik pemintalan elektrik adalah jarak antara spinneret dengan kolektor. Jika terlalu dekat maka waktu penguapan untuk pembentukan serat padat terlalu singkat sehingga bentuk serat yang dihasilkan tidak sempurna dan tidak seragam. Sebaliknya jika terlalu jauh maka diperlukan sumber tegangan tinggi yang lebih besar. Oleh karena itu perlu dicari jarak optimum antara spinneret dengan kolektor.

6 J. Nano Saintek. Edisi Khusus, Agust Hal lain yang mempengaruhi pembentukan serat adalah kondisi lingkungan (temperatur dan kelembaban). Perbedaan kondisi lingkungan akan menghasilkan bentuk dan ukuran serat yang berbeda. Oleh karena itu untuk menghasilkan nanoserat yang sempurna, seragam dan reproducible, kontrol keadaan lingkungan selama proses pemintalan elektrik sangat penting dilakukan. Dalam pembuatan nanoserat PVP, keadaan lingkungan selama eksperimen dibuat tetap pada temperatur (22±2) ºC dan kelembaban (55±5) %. Karakterisasi dengan SEM bertujuan untuk melihat bentuk dan ukuran serat nano yang dihasilkan. Karakterisasi dilakukan menggunakan field emission SEM (FE-SEM) (misalnya, Hitachi S-5000 FE-SEM) untuk memperoleh citra yang sangat baik. Dalam ketiadaan FE-SEM, SEM biasa bisa juga dicoba untuk menghasilkan citra SEM meskipun kualitasnya kurang begitu baik. Pengubahan arus listrik yang diberikan selama proses pemintalan elektrik akan mengubah panjang kerucut jet seperti diperlihatkan dalam Gambar 8. Dari gambar tersebut didapatkan bahwa panjang kerucut jet berkurang sejalan dengan kenaikan arus. Kerucut jet menghilang bila arus yang diberikan di atas 75 na. mengecil dengan kenaikan arus. Hasil eksperimen ini bersesuaian dengan teori yang dikembangkan Fridrikh, dkk. [31]. dn/dlog(d f ) D f = 810 σ f = Fiber Diameter d f (nm) Gambar 9. Citra SEM nanoserat PVP dan distribusi ukurannya yang dibuat dari larutan PVP dengan konsentrasi 18%, laju aliran 16 µl/min, dan arus listrik 75 na L jet Jet L jet kerucut jet L jet L jet (c) Jejari Serat (nm) Teori Eksperimen Arus Listrik (na) (d) Gambar 8. Panjang kerucut jet Ljet dari larutan PVP dengan konsentrasi 18% dan laju aliran 16 µl/min pada berbagai arus listrik: 45, 55, (c) 65, (d) 75 (e) 85, dan (f) 95 na. L jet makin menurun sejalan dengan kenaikan arus listrik dan jet kerucut menghilang untuk arus listrik di atas 75 na. Citra SEM yang ditampilkan dalam Gambar 9 adalah nanoserat PVP yang dihasilkan dari larutan PVP dengan konsentrasi 18%, laju aliran 16 µl/min, dan arus listrik 75 na. Distribusi ukurannya pun sangat sempit sehingga dapat dikatakan ukuran nanoserat PVP tersebut dengan keseragaman yang tinggi dan jejari rata-ratanya sekitar 820 nm. Gambar 10 menunjukkan ukuran jejari rata-rata nanoserat PVP yang dihasilkan untuk berbagai nilai arus yang diberikan selama proses pemintalan elektrik. Ari gambar tersebut terlihat bahwa jejari rata-rata nanoserat (e) (f) Gambar 10. Jejari nanoserat PVP sebagai fungsi arus listrik yang dibuat dari larutan PVP dengan konsentrasi 18% dan laju aliran 16 µl/min. 4.2 Pembuatan nanoserat keramik ITO Salah satu serat keramik adalah oksida yang transparan dan konduktif (transparent conductive oxide/tco) untuk aplikasi sel surya, sensor, papan tampilan, LCD, dan lain-lain. Di antara beragam TCO yang ada, material indium tin oxide (ITO) adalah yang terkenal. Prekursor yang digunakan untuk membuat nanoserat ITO adalah indium chloride tetrahydrate [InCl3 4H2O, kemurnian > 99.95%], tin chloride pentahydrate [SnCl4 5H2O, kemurnian > 98.0%], poly(vinyl pyrrolidone) (PVP K90), DMF, dan etanol. Larutan A diperoleh dengan mencampurkan indium chloride tetrahydrate dan tin chloride pentahydrate di dalam etanol, dilanjutkan dengan pengadukan menggunakan pengaduk magnetik sampai diperoleh larutan yang bening. Konsentrasi total larutan A dibuat 3 mol/l, dengan perbandingan molar Sn:In sebesar 1:9.

7 J. Nano Saintek. Edisi Khusus, Agust Larutan B diperoleh dengan mencampurkan serbuk PVP ke dalam campuran DMF dan etanol. Perbandingan berat komponen larutan B adalah PVP/DMF/etanol = 1:4:4. Kemudian larutan A dan B dicampur dan diaduk pada temperatur 40 o C sehingga diperoleh larutan yang bening dan kental. Perbandingan berat larutan A dan B adalah 1/6. Dalam pembuatan serat keramik/komposit, biasanya menggunakan prekursor-prekursor garam. Garam-garam tersebut ketika dilarutkan dengan pelarut akan menghasilkan ion-ion dan berinteraksi dengan polimer dan zat-zat larut lainnya. Untuk mendapatkan larutan keramik yang siap dibuat nanoserat menggunakan pemintalan elektrik, komposisi dan jenis dari garam, polimer dan pelarut yang digunakan perlu diperhatikan. Jika hasil larutannya terlalu konduktif dan tegangan permukaannya terlalu besar, sering kali larutan tersebut tidak memungkinkan untuk dipintal elektrik. Hal lain yang harus diindahkan adalah kecepatan penguapan dari larutan ketika dipintal elektrik. Seringkali karena larutannya cepat menguap, ketika dipintal elektrik spinneret kering dan tersumbat. Setelah larutan untuk membuat nanoserat ITO disiapkan, larutan tersebut dimasukan ke dalam syringe dan pompa syringe diatur sehingga menghasilkan laju aliran tetap sebesar 8µL/min. Jarak antara ujung dengan kolektor (ram kawat) dibuat tetap pada jarak 8 cm. Arus diatur sehingga kerucut jet stabil. Setelah nanoserat terkumpul di atas kolektor ram kawat, nanoserat dipindahkan ke atas substrat gelas. Nanoserat dan substrat kemudian dipanaskan pada temperatur antara o C untuk menghilangkan komponen organik dan mendapatkan nanoserat ITO yang murni. Diagram cara pembuatan nanoserat keramik ditunjukkan oleh Gambar 11. Selama proses pemintalan elektrik nanoserat keramik, hal yang harus diperhatikan adalah keadaan lingkungan (temperatur dan kelembaban). Karena nanoserat dari prekursor keramik ini sangat peka terhadap uap air, maka kelembaban harus diatur serendah mungkin. Jika tidak, maka morfologi nanoserat akan rusak karena bereaksi dengan uap air. Gambar 11. Cara pembuatan nanoserat keramik. Nanoserat ITO yang dihasilkan kemudian dikarakaterisasi. Untuk melihat dan mengukur bentuk nanoserat ITO digunakan SEM. Karakterisasi transmission electron microscope (TEM) dan X-ray diffractometer (XRD) digunakan untuk menguji komposisi dan kekristalan keramik yang didapat, secara berurutan. Untuk menguji kualitas nanoserat ITO, pengukuran konduktivitas dan transmitansi dilakukan dengan teknik four-point probe dan spektrofotometer UV- Vis, secara berurutan. Gambar 12 memperlihatkan bentuk nanoserat ITO sebelum dan sesudah dipanaskan. Dari gambar tersebut ditunjukkan bahwa nanoserat yang dihasilkan sangat seragam dan sempurna. Setelah dipanaskan, ukuran nanoserat mengecil karena dekomposisi komponen organik. Dari pengujian XRD dan TEM diperoleh bahwa nanoserat ITO terdiri dari kristalin tunggal dan komposisi kimianya murni. Pengujian optik dan elektrik menunjukkan nanoserat ITO yang diperoleh adalah konduktor dan transparan pada cahaya tampak dan sangat berpotensi untuk diterapkan pada sel surya, sensor dan penyaring gelombang elektromagnetik. 50 nm 1 µm 50 nm 1 µm Gambar 12. Citra SEM nanoserat keramik ITO sebelum dan sesudah dipanaskan. 5. Kesimpulan Kami telah menyajikan secara singkat kemajuan mutakhir dalam bidang pemintalan elektrik dengan fokus pada riset yang telah dilakukan oleh kelompok kami. Prinsip dasar pemintalan elektrik telah diperkenalkan. Pemodelan dan simulasi proses pemintalan elektrik telah dijelaskan. Prosedur eksperimental umum untuk menghasilkan nanoserat polimer khususnya nanoserat PVP dan keramik/komposit seperti ITO serta sejumlah masalah teknis yang sering ditemui dalam pemintalan elektrik juga telah didiskusikan Ucapan Terima Kasih Riset ini secara parsial didanai oleh Direktorat Jenderal Pendidikan Tinggi, Departemen Pendidikan Nasional melalui Hibah Fundamental tahun Dua dari para penulis (Khairurrijal dan M.Abdullah) mengucapkan terima kasih kepada Prof. K. Okuyama yang telah mengundang sebagai Profesor Tamu di Departemen Teknik Kimia, Universitas Hiroshima, Jepang pada tahun 2007 dan a b

8 J. Nano Saintek. Edisi Khusus, Agust Sedang menempuh program doktor di Departemen Teknik Kimia, Universitas Hiroshima, Jepang. 2 Alamat tetap: Jurusan Pendidikan Fisika, FKIP, Universitas Tadulako, Palu. Referensi [1] M. Law, J. Goldberger, and P. Yang, Annu. Rev. Mater. Res. 34, 83 (2004). [2] Z. L. Wang, Annu. Rev. Phys. Chem. 55, 159 (2004). [3] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, Adv. Mater. 15, 353 (2003). [4] Y. Yin, B. Gates, and Y. Xia, Adv. Mater. 12, 1426 (2000). [5] W. E. Teo and S. Ramakrishna, Nanotechnology 17, R89 (2006). [6] Y. Sun, D. Y. Khang, F. Hua, K. Hurley, R. G. Nuzzo, and J. A. Rogers, Adv. Funct. Mater. 15, 30 (2005). [7] T. Subbiah, G. S. Bhat, R. W. Tock, S. Pararneswaran, and S. S. Ramkumar, J. Appl. Polym. Sci. 96, 557 (2005). [8] D. Li and Y. Xia, Adv. Mater. 16, 1151 (2004). [9] A. Frenot and I. S. Chronakis, Curr. Opin. Colloid Interf. Sci. 8, 64 (2003). [10] Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol. 63, 2223 (2003). [11] A. Formhals, US Patent (1934). [12] D. H. Reneker dan I. Chun, Nanotechnology 7, 216 (1996). [13] J. Doshi dan D. H. Reneker, J. Electrostat. 35, 151 (1995). [14] A. Greiner and J. H. Wendorff, Angew. Chem. Int. Ed. 46, 5670 (2007). [15] D. Li, J. T. McCann, Y. Xia, and M. Marquez, J. Am. Ceram. Soc. 89, 1861 (2006). [16] J. Kameoka, D. Czaplewski, H. Liu, and HG Craighead, J. Mater. Chem. 14, 1503 (2004). [17] K. Jayaraman, M. Kotaki, Y. Zhang, X. Mo, and S. Ramakrishna, J. Nanosci. Nanotech. 4, 52 (2004). [18] M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner, and J. H. Wendorff, Adv. Mater. 13, 70 (2001). [19] A. B. Suryamas, M. M. Munir, F. Iskandar, and K. Okuyama, J. Appl. Phys. 105, (2009) [20] H. Widiyandari, M. M. Munir, Ferry Iskandar, and Kikuo Okuyama, Mater. Chem. Phys. 116, 169 (2009). [21] M. M. Munir, F. Iskandar, K. M. Yun, K. Okuyama, and M. Abdullah, Nanotechnology 19, (2008). [22] M. M. Munir, H. Widiyandari, F. Iskandar, and K. Okuyama, Nanotechnology 19, (2008). [23] R. S. Barhate and S. Ramakrishna, J. Membrane Sci. 296, 1 (2007). [24] P. Gibson, H. Schreuder-Gibson, and C. Pentheny, J. Coated Fabrics 28, 63 (1998). [25] U. Boudriot, R. Dersch, A. Greiner, and J. H. Wendorff, Artif. Organs 30, 785 (2006). [26] D. Liang, B. S. Hsiao, and B. Chu, Adv. Drug Deliver. Rev. 59, 1392 (2007). [27] C. P. Barnes, S. A. Sell, E. D. Boland, D. G. Simpson, and G. L. Bowlin, Adv. Drug Deliver. Rev. 59, 1413 (2007). [28] S. Sell, C. Barnes, M. Smith, M. McClure, P. Madurantakam, J. Grant, M. McManus, and G. Bowlin, Polym. Int. 56, 1349 (2007). [29] J. Lannutti, D. Reneker, T. Ma, D. Tomasko, and D. Farson, Mater. Sci. Eng. C 27, 504 (2007). [30] S. Liao, B. Li, Z. Ma, H. Wei, C. Chan, and S. Ramakrishna, Biomed. Mater. 1, R45 (2006). [31] S.V. Fridrikh, J. H. Yu, M. P. Brenner, and G. C. Rutledge, Phys. Rev. Lett. 90, (2003). [32] R. Samatham and K. J. Kim, Polym. Eng. Sci. 46, 954 (2006). [33] M. M. Munir, F. Iskandar, Khairurrijal, and K. Okuyama, Rev. Sci. Instrum. 79, (2008). [34] M. M. Munir, F. Iskandar, Khairurrijal, and K. Okuyama, Rev. Sci. Instrum. 80, (2009). [35] H. Fong, I. Chun, and D. H. Reneker, Polymer 40, 4585 (1999). [36] T. A. Kowalewsky, S. Blonski, and S. Barral, Bul. Pol. Tech. 53, 385 (2005). [37] S. Saehana, M. Abdullah, dan Khairurrijal, J. Nano Saintek. 2, 74 (2009).

Bab IV Hasil dan Pembahasan

Bab IV Hasil dan Pembahasan 33 Bab IV Hasil dan Pembahasan Pada bab ini dilaporkan hasil sintesis dan karakterisasi dari senyawa yang disintesis. Senyawa disintesis menggunakan metoda deposisi dalam larutan pada temperatur rendah

Lebih terperinci

Copyright all right reserved

Copyright  all right reserved Latihan Soal UN Paket C 2011 Program IP Mata Ujian : Fisika Jumlah Soal : 20 1. Pembacaan jangka sorong berikut ini (bukan dalam skala sesungguhnya) serta banyaknya angka penting adalah. 10 cm 11 () 10,22

Lebih terperinci

BAB I PENDAHULUAN. energi cahaya (foton) menjadi energi listrik tanpa proses yang menyebabkan

BAB I PENDAHULUAN. energi cahaya (foton) menjadi energi listrik tanpa proses yang menyebabkan BAB I PENDAHULUAN 1.1 Latar Belakang Sel surya merupakan suatu piranti elektronik yang mampu mengkonversi energi cahaya (foton) menjadi energi listrik tanpa proses yang menyebabkan dampak buruk terhadap

Lebih terperinci

BAB I PENDAHULUAN 1.1 LatarBelakang

BAB I PENDAHULUAN 1.1 LatarBelakang 1 BAB I PENDAHULUAN 1.1 LatarBelakang Proses pembangunan disegala bidang selain membawa kemajuan terhadap kehidupan manusia, tetapi juga akan membawa dampak negative bagi lingkungan hidup. Industrialisasi

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah 1 BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Nanoteknologi adalah ilmu yang mempelajari, menciptakan dan merekayasa material berskala nanometer dimana terjadi sifat baru. Kata nanoteknologi berasal dari

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Metode yang digunakan dalam penelitian ini adalah dengan eksperimental yang dilakukan di laboratorium Fisika Material, Jurusan pendidikan fisika. Fakultas Matematika dan Ilmu

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Penelitian yang dilakukan di Kelompok Bidang Bahan Dasar PTNBR-

BAB III METODOLOGI PENELITIAN. Penelitian yang dilakukan di Kelompok Bidang Bahan Dasar PTNBR- BAB III METODOLOGI PENELITIAN Penelitian yang dilakukan di Kelompok Bidang Bahan Dasar PTNBR- BATAN Bandung meliputi beberapa tahap yaitu tahap preparasi serbuk, tahap sintesis dan tahap analisis. Meakanisme

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Ilmu rekayasa material menjadi suatu kajian yang sangat diminati akhir - akhir ini. Pemanfaatan material yang lebih dikembangkan saat ini adalah polimer. Polimer

Lebih terperinci

KOMPETENSI INTI DAN KOMPETENSI DASAR MATA PELAJARAN FISIKA SMA NEGERI 78 JAKARTA

KOMPETENSI INTI DAN KOMPETENSI DASAR MATA PELAJARAN FISIKA SMA NEGERI 78 JAKARTA DAN MATA PELAJARAN FISIKA SMA NEGERI 78 JAKARTA FISIKA 1 (3 sks) responsif dan proaktif) dan menunjukan sikap sebagai bangsa dalam berinteraksi secara efektif dengan lingkungan sosial dan alam serta dalam

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Lokasi penelitian dilakukan di Laboratorium Fisika Material, Jurusan

BAB III METODOLOGI PENELITIAN. Lokasi penelitian dilakukan di Laboratorium Fisika Material, Jurusan BAB III METODOLOGI PENELITIAN A. Lokasi dan Waktu Penelitian Lokasi penelitian dilakukan di Laboratorium Fisika Material, Jurusan Pendidikan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas

Lebih terperinci

BAB III TEGANGAN GAGAL DAN PENGARUH KELEMBABAN UDARA

BAB III TEGANGAN GAGAL DAN PENGARUH KELEMBABAN UDARA BAB III TEGANGAN GAGAL DAN PENGARUH KELEMBABAN UDARA 3.1. Pendahuluan Setiap bahan isolasi mempunyai kemampuan menahan tegangan yang terbatas. Keterbatasan kemampuan tegangan ini karena bahan isolasi bukanlah

Lebih terperinci

Kisi kisi Pedagogi dan Profesional Mapel Fisika SMA

Kisi kisi Pedagogi dan Profesional Mapel Fisika SMA Kisi kisi Pedagogi dan Fisika SMA Pedagogik 1. 1. Menguasai peserta didik dari aspek fisik,moral, spiritual, sosial, kultural,emosional, dan intelektual. 1.2 Mengidentifikasi potensi peserta didik dalam

Lebih terperinci

Fisika Modern (Teori Atom)

Fisika Modern (Teori Atom) Fisika Modern (Teori Atom) 13:05:05 Sifat-Sifat Atom Atom stabil adalah atom yang memiliki muatan listrik netral. Atom memiliki sifat kimia yang memungkinkan terjadinya ikatan antar atom. Atom memancarkan

Lebih terperinci

1. Persamaan keadaan gas ideal ditulis dalam bentuk = yang tergantung kepada : A. jenis gas B. suhu gas C. tekanan gas

1. Persamaan keadaan gas ideal ditulis dalam bentuk = yang tergantung kepada : A. jenis gas B. suhu gas C. tekanan gas 1. Persamaan keadaan gas ideal ditulis dalam bentuk = yang tergantung kepada : jenis gas suhu gas tekanan gas D. volume gas E. banyak partikel 2. Seorang anak duduk di atas kursi pada roda yang berputar

Lebih terperinci

Jika massa jenis benda yang tercelup tersebut kg/m³, maka massanya adalah... A. 237 gram B. 395 gram C. 632 gram D.

Jika massa jenis benda yang tercelup tersebut kg/m³, maka massanya adalah... A. 237 gram B. 395 gram C. 632 gram D. 1. Perhatikan gambar. Jika pengukuran dimulai pada saat kedua jarum menunjuk nol, maka hasil pengukuran waktu adalah. A. 38,40 menit B. 40,38 menit C. 38 menit 40 detik D. 40 menit 38 detik 2. Perhatikan

Lebih terperinci

Gambar 2.1. Proses pengelasan Plug weld (Martin, 2007)

Gambar 2.1. Proses pengelasan Plug weld (Martin, 2007) BAB II DASAR TEORI 2.1 TINJAUAN PUSTAKA Proses pengelasan semakin berkembang seiring pertumbuhan industri, khususnya di bidang konstruksi. Banyak metode pengelasan yang dikembangkan untuk mengatasi permasalahan

Lebih terperinci

KISI KISI SOAL UJIAN AKHIR MADRASAH TAHUN PELAJARAN 2013/2014

KISI KISI SOAL UJIAN AKHIR MADRASAH TAHUN PELAJARAN 2013/2014 KISI KISI SOAL UJIAN AKHIR MADRASAH TAHUN PELAJARAN 2013/2014 Mata Pelajaran : Fisika Kurikulum : KTSP Alokasi waktu : 120 menit Jenis Sekolah : Madrasah Aliyah Jumlah soal : 40 butir Penyusun : FARLIN

Lebih terperinci

I. PENDAHULUAN. Nanoteknologi merupakan teknologi masa depan, tanpa kita sadari dengan

I. PENDAHULUAN. Nanoteknologi merupakan teknologi masa depan, tanpa kita sadari dengan 1 I. PENDAHULUAN A. Latar Belakang Nanoteknologi merupakan teknologi masa depan, tanpa kita sadari dengan nanoteknologi tersebut berbagai aspek persoalan dapat kita selesaikan (Anonim A, 2012). Pengembangan

Lebih terperinci

Fisika Ujian Akhir Nasional Tahun 2003

Fisika Ujian Akhir Nasional Tahun 2003 Fisika Ujian Akhir Nasional Tahun 2003 UAN-03-01 Perhatikan tabel berikut ini! No. Besaran Satuan Dimensi 1 Momentum kg. ms 1 [M] [L] [T] 1 2 Gaya kg. ms 2 [M] [L] [T] 2 3 Daya kg. ms 3 [M] [L] [T] 3 Dari

Lebih terperinci

BAB I PENDAHULUAN. Krisis energi yang dialami hampir oleh seluruh negara di dunia

BAB I PENDAHULUAN. Krisis energi yang dialami hampir oleh seluruh negara di dunia BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Krisis energi yang dialami hampir oleh seluruh negara di dunia menyebabkan beberapa perubahan yang signifikan pada berbagai aspek kehidupan masyarakat. Energi

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN

GARIS-GARIS BESAR PROGRAM PENGAJARAN GARIS-GARIS BESAR PROGRAM PENGAJARAN Mata Kuliah : Fisika Kode/SKS : FIS 100 / 3 (2-3) Deskrisi : Mata Kuliah Fisika A ini diberikan untuk mayor yang berbasis IPA tetapi tidak memerlukan dasar fisika yang

Lebih terperinci

Gambar 3.1 Diagram alir penelitian

Gambar 3.1 Diagram alir penelitian BAB 3 METODE PENELITIAN 3.1 Bahan dan Peralatan Penelitian Bahan-bahan utama yang digunakan dalam penelitian ini antara lain bubuk magnesium oksida dari Merck, bubuk hidromagnesit hasil sintesis penelitian

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN

GARIS-GARIS BESAR PROGRAM PENGAJARAN GARIS-GARIS BESAR PROGRAM PENGAJARAN JUDUL MATA KULIAH : FISIKA DASAR NOMOR KODE / SKS : FIS 101 / 3(2-3) DESKRIPSI SINGKAT : Mata kuliah Fisika Dasar ini diberikan di TPB untuk membekali seluruh mahasiswa

Lebih terperinci

02 03 : CACAT KRISTAL LOGAM

02 03 : CACAT KRISTAL LOGAM 02 03 : CACAT KRISTAL LOGAM 2.1. Cacat Kristal Diperlukan berjuta-juta atom untuk membentuk satu kristal. Oleh karena itu, tidak mengherankan bila terdapat cacat atau ketidakteraturan dalam tubuh kristal.

Lebih terperinci

PENGARUH KONSENTRASI SUMBER KARBON TERHADAP SIFAT PL FOSFOR BORON CARBON OXYNITRIDE (BCNO)

PENGARUH KONSENTRASI SUMBER KARBON TERHADAP SIFAT PL FOSFOR BORON CARBON OXYNITRIDE (BCNO) PENGARUH KONSENTRASI SUMBER KARBON TERHADAP SIFAT PL FOSFOR BORON CARBON OXYNITRIDE (BCNO) Nina Yunia Hasanah* 1, Bebeh Wahid Nuryadin 1,2, dan Ferry Iskandar 2 1) Jurusan Fisika, Fakultas Sains dan Teknologi

Lebih terperinci

Penulis : Fajar Mukharom Darozat. Copyright 2013 pelatihan-osn.com. Cetakan I : Oktober Diterbitkan oleh : Pelatihan-osn.com

Penulis : Fajar Mukharom Darozat. Copyright 2013 pelatihan-osn.com. Cetakan I : Oktober Diterbitkan oleh : Pelatihan-osn.com Penulis : Fajar Mukharom Darozat Copyright 2013 pelatihan-osn.com Cetakan I : Oktober 2012 Diterbitkan oleh : Pelatihan-osn.com Kompleks Sawangan Permai Blok A5 No.12 A Sawangan, Depok, Jawa Barat 16511

Lebih terperinci

HANDOUT MATA KULIAH KONSEP DASAR FISIKA DI SD. Disusun Oleh: Hana Yunansah, S.Si., M.Pd.

HANDOUT MATA KULIAH KONSEP DASAR FISIKA DI SD. Disusun Oleh: Hana Yunansah, S.Si., M.Pd. HANDOUT MATA KULIAH KONSEP DASAR FISIKA DI SD Disusun Oleh: Hana Yunansah, S.Si., M.Pd. UNIVERSITAS PENDIDIKAN INDONESIA KAMPUS CIBIRU 2013 HandOut Mata Kuliah Konsep Dasar Fisika Prodi. PGSD Semester

Lebih terperinci

DESKRIPSI PEMELAJARAN - FISIKA

DESKRIPSI PEMELAJARAN - FISIKA DESKRIPSI PEMELAJARAN MATA DIKLAT : FISIKA TUJUAN : 1. Mengembangkan pengetahuan, pemahaman, dan kemampuan analisis terhadap lingkungan alam dan sekitarnya 2. Mmengembangkan pengetahuan, pemahaman, dan

Lebih terperinci

BINOVATIF LISTRIK DAN MAGNET. Hani Nurbiantoro Santosa, PhD.

BINOVATIF LISTRIK DAN MAGNET. Hani Nurbiantoro Santosa, PhD. BINOVATIF LISTRIK DAN MAGNET Hani Nurbiantoro Santosa, PhD hanisantosa@gmail.com 2 BAB 1 PENDAHULUAN Atom, Interaksi Fundamental, Syarat Matematika, Syarat Fisika, Muatan Listrik, Gaya Listrik, Pengertian

Lebih terperinci

BAB III METODE PENELITIAN. Metode penelitian yang dilakukan adalah metode eksperimen yang dilakukan di

BAB III METODE PENELITIAN. Metode penelitian yang dilakukan adalah metode eksperimen yang dilakukan di BAB III METODE PENELITIAN Metode penelitian yang dilakukan adalah metode eksperimen yang dilakukan di lab. Fisika Material, Jurusan Pendidikan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas

Lebih terperinci

Arus Listrik dan Resistansi

Arus Listrik dan Resistansi TOPIK 5 Arus Listrik dan Resistansi Kuliah Fisika Dasar II TIP,TP, UGM 2009 Ikhsan Setiawan, M.Si. Jurusan Fisika FMIPA UGM ikhsan_s@ugm.ac.id Arus Listrik (Electric Current) Lambang : i atau I. Yaitu:

Lebih terperinci

LATIHAN FISIKA DASAR 2012 LISTRIK STATIS

LATIHAN FISIKA DASAR 2012 LISTRIK STATIS Muatan Diskrit LATIHAN FISIKA DASAR 2012 LISTRIK STATIS 1. Ada empat buah muatan titik yaitu Q 1, Q 2, Q 3 dan Q 4. Jika Q 1 menarik Q 2, Q 1 menolak Q 3 dan Q 3 menarik Q 4 sedangkan Q 4 bermuatan negatif,

Lebih terperinci

SANGAT RAHASIA. 30 o. DOKUMEN ASaFN 2. h = R

SANGAT RAHASIA. 30 o. DOKUMEN ASaFN 2. h = R DOKUMEN ASaFN. Sebuah uang logam diukur ketebalannya dengan menggunakan jangka sorong dan hasilnya terlihat seperti pada gambar dibawah. Ketebalan uang tersebut adalah... A. 0,0 cm B. 0, cm C. 0, cm D.

Lebih terperinci

04 05 : DEFORMASI DAN REKRISTALISASI

04 05 : DEFORMASI DAN REKRISTALISASI 04 05 : DEFORMASI DAN REKRISTALISASI 4.1. Deformasi 4.1.1 Pengertian Deformasi Elastis dan Deformasi Plastis Deformasi atau perubahan bentuk dapat dipisahkan menjadi dua, yaitu deformasi elastis dan deformasi

Lebih terperinci

BAB I PENDAH ULUAN 1.1.Latar Belakang

BAB I PENDAH ULUAN 1.1.Latar Belakang 1 BAB I PENDAHULUAN 1.1.Latar Belakang Polimer secara umum merupakan bahan dengan kemampuan menghantarkan listrik yang rendah dan tidak memiliki respon terhadap adanya medan magnet dari luar. Tetapi melalui

Lebih terperinci

Pembuatan Nanopartikel CeO 2 dengan Metode Simple Heating : Efek Penambahan Massa Polyethyleneglycol (PEG) Terhadap Ukuran Kristal yang Terbentuk

Pembuatan Nanopartikel CeO 2 dengan Metode Simple Heating : Efek Penambahan Massa Polyethyleneglycol (PEG) Terhadap Ukuran Kristal yang Terbentuk Pembuatan Nanopartikel CeO 2 dengan Metode Simple Heating : Efek Penambahan Massa Polyethyleneglycol (PEG) Terhadap Ukuran Kristal yang Terbentuk Ida Sriyanti Program Studi Pendidikan Fisika FKIP Unsri

Lebih terperinci

BAB II TINJAUAN PUSTAKA. sampai 10 atom karbon yang diperoleh dari minyak bumi. Sebagian diperoleh

BAB II TINJAUAN PUSTAKA. sampai 10 atom karbon yang diperoleh dari minyak bumi. Sebagian diperoleh BAB II TINJAUAN PUSTAKA 2.1 Premium Premium terutama terdiri atas senyawa-senyawa hidrokarbon dengan 5 sampai 10 atom karbon yang diperoleh dari minyak bumi. Sebagian diperoleh langsung dari hasil penyulingan

Lebih terperinci

PERKEMBANGAN SEL SURYA

PERKEMBANGAN SEL SURYA PERKEMBANGAN SEL SURYA Generasi Pertama Teknologi pertama yang berhasil dikembangkan oleh para peneliti adalah teknologi yang menggunakan bahan silikon kristal tunggal. Teknologi ini dalam mampu menghasilkan

Lebih terperinci

UN SMA IPA 2008 Fisika

UN SMA IPA 2008 Fisika UN SMA IPA 2008 Fisika Kode Soal P67 Doc. Name: UNSMAIPA2008FISP67 Doc. Version : 2011-06 halaman 1 01. Tebal pelat logam diukur dengan mikrometer skrup seperti gambar Tebal pelat logam adalah... (A) 4,85

Lebih terperinci

TEMA: ENERGI TERBARUKAN. FABRIKASI SEL SURYA BERBASIS SILIKON DENGAN LAPISAN ANTI REFLEKSI ZnO MENGGUNAKAN TEKNOLOGI THICK FILM

TEMA: ENERGI TERBARUKAN. FABRIKASI SEL SURYA BERBASIS SILIKON DENGAN LAPISAN ANTI REFLEKSI ZnO MENGGUNAKAN TEKNOLOGI THICK FILM Bidang Ilmu Teknologi RINGKASAN LAPORAN TAHAP I HIBAH KOMPETITIF PENELITIAN SESUAI PRIORITAS NASIONAL TEMA: ENERGI TERBARUKAN FABRIKASI SEL SURYA BERBASIS SILIKON DENGAN LAPISAN ANTI REFLEKSI ZnO MENGGUNAKAN

Lebih terperinci

Sifat Sifat Material

Sifat Sifat Material Sifat Sifat Material Secara garis besar material mempunyai sifat-sifat yang mencirikannya, pada bidang teknik mesin umumnya sifat tersebut dibagi menjadi tiga sifat. Sifat sifat itu akan mendasari dalam

Lebih terperinci

BAB III METODE PENELITIAN. penelitian ini dilakukan pembuatan material keramik komposit LSM-YSZ-GDC

BAB III METODE PENELITIAN. penelitian ini dilakukan pembuatan material keramik komposit LSM-YSZ-GDC 37 BAB III METODE PENELITIAN 3.1 Metode Penelitian Metode yang digunakan pada penelitian ini adalah eksperimen. Pada penelitian ini dilakukan pembuatan material keramik komposit LSM-YSZ-GDC dengan menggunakan

Lebih terperinci

Sumber-Sumber Medan Magnetik

Sumber-Sumber Medan Magnetik TOPIK 9 Sumber-Sumber Medan Magnetik Fisika Dasar II TIP, TP, UGM 2009 Ikhsan Setiawan, M.Si. ikhsan_s@ugm.ac.id Hukum Biot-Savart Pada 1819, Oersted menemukan bahwa arah arum kompas menyimpang ketika

Lebih terperinci

3 Percobaan. 3.1 Bahan Penelitian. 3.2 Peralatan

3 Percobaan. 3.1 Bahan Penelitian. 3.2 Peralatan 3 Percobaan 3.1 Bahan Penelitian Bahan-bahan yang digunakan dalam penelitian ini adalah air kelapa, gula pasir yang diperoleh dari salah satu pasar di Bandung. Zat kimia yang digunakan adalah (NH 4 ) 2

Lebih terperinci

SILABUS PEMBELAJARAN

SILABUS PEMBELAJARAN SILABUS PEMBELAJARAN Sekolah : SMA... Kelas / Semester : XII / I Mata Pelajaran : FISIKA Standar : 1. Menerapkan konsep dan prinsip gejala dalam menyelesaikan masalah 1.1 gejala dan ciriciri secara umum.

Lebih terperinci

8. KOMPETENSI INTI DAN KOMPTENSI DASAR FISIKA SMA/MA KELAS: X

8. KOMPETENSI INTI DAN KOMPTENSI DASAR FISIKA SMA/MA KELAS: X 8. KOMPETENSI INTI DAN KOMPTENSI DASAR FISIKA SMA/MA KELAS: X Tujuan kurikulum mencakup empat kompetensi, yaitu (1) kompetensi sikap spiritual, (2) sikap sosial, (3) pengetahuan, dan (4) keterampilan.

Lebih terperinci

RANCANG BANGUN VOLTMETER ELEKTROSTATIK UNTUK PENGUKURAN NILAI EFEKTIF TEGANGAN TINGGI AC 100 KV

RANCANG BANGUN VOLTMETER ELEKTROSTATIK UNTUK PENGUKURAN NILAI EFEKTIF TEGANGAN TINGGI AC 100 KV RANCANG BANGUN VOLTMETER ELEKTROSTATIK UNTUK PENGUKURAN NILAI EFEKTIF TEGANGAN TINGGI AC 100 KV Bobby Hertanto, Pembimbing 1: Moch. Dhofir. Drs., Ir., MT., Pembimbing 2: Hery Purnomo. Ir., MT. Abstrak

Lebih terperinci

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS 2.1 Konsep Dasar Perpindahan Panas Perpindahan panas dapat terjadi karena adanya beda temperatur antara dua bagian benda. Panas akan mengalir dari

Lebih terperinci

DESKRIPSI PEMELAJARAN - FISIKA

DESKRIPSI PEMELAJARAN - FISIKA MATA DIKLAT : FISIKA TUJUAN : 1. Mengembangkan pengetahuan, pemahaman, dan kemampuan analisis terhadap lingkungan alam dan sekitarnya 2. Mmengembangkan pengetahuan, pemahaman, dan kemampuan analisis terhadap

Lebih terperinci

Theory Indonesian (Indonesia) Sebelum kalian mengerjakan soal ini, bacalah terlebih dahulu Instruksi Umum yang ada pada amplop terpisah.

Theory Indonesian (Indonesia) Sebelum kalian mengerjakan soal ini, bacalah terlebih dahulu Instruksi Umum yang ada pada amplop terpisah. Q3-1 Large Hadron Collider (10 poin) Sebelum kalian mengerjakan soal ini, bacalah terlebih dahulu Instruksi Umum yang ada pada amplop terpisah. Pada soal ini, kita akan mendiskusikan mengenai fisika dari

Lebih terperinci

Simposium Nasional Teknologi Terapan (SNTT) ISSN X STUDI LITERATUR PENGEMBANGAN NANOFLUIDA UNTUK APLIKASI PADA BIDANG TEKNIK DI INDONESIA

Simposium Nasional Teknologi Terapan (SNTT) ISSN X STUDI LITERATUR PENGEMBANGAN NANOFLUIDA UNTUK APLIKASI PADA BIDANG TEKNIK DI INDONESIA Simposium Nasional Teknologi Terapan (SNTT) ISSN 2339-028X STUDI LITERATUR PENGEMBANGAN NANOFLUIDA UNTUK APLIKASI PADA BIDANG TEKNIK DI INDONESIA Anwar Ilmar Ramadhan 1*, Ery Diniardi 1, Cahyo Sutowo 1

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah digilib.uns.ac.id BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Sistem transportasi merupakan kebutuhan penting yang mana berfungsi untuk menunjang kemajuan ekonomi karena akan memudahkan mobilitas penduduk

Lebih terperinci

Bab III Metodologi Penelitian

Bab III Metodologi Penelitian Bab III Metodologi Penelitian Penelitian yang dilakukan ini menggunakan metode eksperimen. Eksperimen dilakukan di beberapa tempat yaitu Laboratorium Kemagnetan Bahan, Jurusan Fisika, FMIPA Universitas

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 37 BAB III METODE PENELITIAN Metode yang digunakan dalam pembuatan lapisan film tebal CuFe O 4 yaitu dengan menggunakan screen printing (penyablonan). Teknik screen printing merupakan salah satu metode

Lebih terperinci

Rudi Susanto

Rudi Susanto Pendahuluan Listrik Statis Rudi Susanto http://rudist.wordpress.com 1 Sifat-sifat Muatan Listrik Observasi Makroskopik Berdasarkan pengamatan : Penggaris plastik yang digosokkan ke rambut/kain akan menarik

Lebih terperinci

SEBARAN DAN KISI SOAL UJIAN SEKOLAH MATA PELAJARAN FISIKA. Kls/ Smt. X/1 Mengukur besaran fisika (massa, panjang, dan waktu)

SEBARAN DAN KISI SOAL UJIAN SEKOLAH MATA PELAJARAN FISIKA. Kls/ Smt. X/1 Mengukur besaran fisika (massa, panjang, dan waktu) SEBARAN DAN KISI SOAL UJIAN SEKOLAH MATA PELAJARAN FISIKA NO. 1 Memahami prinsipprinsip pengukuran dan melakukan pengukuran besaran fisika secara langsung dan tidak langsung secara cermat, teliti dan obyektif.

Lebih terperinci

ILMU FISIKA. Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT.

ILMU FISIKA. Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT. ILMU FISIKA Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT. DEFINISI ILMU FISIKA? Ilmu Fisika dalam Bahasa Yunani: (physikos), yang artinya alamiah, atau (physis), Alam

Lebih terperinci

8. FLUIDA. Materi Kuliah. Staf Pengajar Fisika Fakultas Teknologi Pertanian Universitas Brawijaya

8. FLUIDA. Materi Kuliah. Staf Pengajar Fisika Fakultas Teknologi Pertanian Universitas Brawijaya 8. FLUIDA Staf Pengajar Fisika Fakultas Teknologi Pertanian Universitas Brawijaya Tegangan Permukaan Viskositas Fluida Mengalir Kontinuitas Persamaan Bernouli Materi Kuliah 1 Tegangan Permukaan Gaya tarik

Lebih terperinci

Fisika EBTANAS Tahun 1996

Fisika EBTANAS Tahun 1996 Fisika EBTANAS Tahun 1996 EBTANAS-96-01 Di bawah ini yang merupakan kelompok besaran turunan A. momentum, waktu, kuat arus B. kecepatan, usaha, massa C. energi, usaha, waktu putar D. waktu putar, panjang,

Lebih terperinci

K13 Revisi Antiremed Kelas 12 Fisika

K13 Revisi Antiremed Kelas 12 Fisika K13 Revisi Antiremed Kelas 12 Fisika Medan Magnet - Latihan Soal Doc. Name: RK13AR12FIS0301 Version: 2016-10 halaman 1 01. Medan magnet dapat ditimbulkan oleh: (1) muatan listrik yang bergerak (2) konduktor

Lebih terperinci

Tegangan Permukaan. Fenomena Permukaan FLUIDA 2 TEP-FTP UB. Beberapa topik tegangan permukaan

Tegangan Permukaan. Fenomena Permukaan FLUIDA 2 TEP-FTP UB. Beberapa topik tegangan permukaan Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas Beberapa topik tegangan permukaan Fenomena permukaan sangat mempengaruhi : Penetrasi melalui membran

Lebih terperinci

Faktor-faktor yang Mempengaruhi Laju Reaksi

Faktor-faktor yang Mempengaruhi Laju Reaksi Faktor-faktor yang Mempengaruhi Laju Reaksi Faktor yang mempengaruhi laju reaksi adalah sebagai berikut. Konsentrasi Jika konsentrasi suatu larutan makin besar, larutan akan mengandung jumlah partikel

Lebih terperinci

PERCOBAAN e/m ELEKTRON

PERCOBAAN e/m ELEKTRON PERCOBAAN e/m ELEKTRON A. TUJUAN 1. Mempelajari sifat medan magnet yang ditimbulkan oleh kumparan Helmholtz.. Menetukan nilai e/m dengan medan magnet. B. PERALATAN 1. Seperangkat peralatan e/m. Sumber

Lebih terperinci

Mekanika (interpretasi grafik GLB dan GLBB) 1. Diberikan grafik posisi sebuah mobil terhadap waktu yang melakukan gerak lurus sebagai berikut: X

Mekanika (interpretasi grafik GLB dan GLBB) 1. Diberikan grafik posisi sebuah mobil terhadap waktu yang melakukan gerak lurus sebagai berikut: X Pengukuran, Besaran dan Satuan: 1. Besi mempunyai massa jenis 7,86 kg/m 3. Tentukan volume sepotong besi yang massanya 3,93 g. A. 0,5 cm 3 B. 0,5 m 3 C. 2,0 cm 3 D. 2,0 m 3 (hubungan besaran pokok dan

Lebih terperinci

HASIL DAN PEMBAHASAN. standar, dilanjutkan pengukuran kadar Pb dalam contoh sebelum dan setelah koagulasi (SNI ).

HASIL DAN PEMBAHASAN. standar, dilanjutkan pengukuran kadar Pb dalam contoh sebelum dan setelah koagulasi (SNI ). 0.45 µm, ph meter HM-20S, spektrofotometer serapan atom (AAS) Analytic Jena Nova 300, spektrofotometer DR 2000 Hach, SEM-EDS EVO 50, oven, neraca analitik, corong, pompa vakum, dan peralatan kaca yang

Lebih terperinci

BAB III RANCANG BANGUN REAKTOR SPRAY DRYING DAN SPRAY PYROLYSIS

BAB III RANCANG BANGUN REAKTOR SPRAY DRYING DAN SPRAY PYROLYSIS BAB III RANCANG BANGUN REAKTOR SPRAY DRYING DAN SPRAY PYROLYSIS 3.1 Pemilihan Sistem Pada umumnya sistem Spray Drying/Spray Pyrolysis untuk memproduksi partikel ukuran mikro mengunakan sistem atomizer

Lebih terperinci

SILABUS DAN SAP MATA KULIAH KONSEP DASAR FISIKA DI SD

SILABUS DAN SAP MATA KULIAH KONSEP DASAR FISIKA DI SD SILABUS DAN SAP MATA KULIAH KONSEP DASAR FISIKA DI SD Disusun Oleh: Hana Yunansah, S.Si., M.Pd. CM.PRD-01-04 UNIVERSITAS PENDIDIKAN INDONESIA KAMPUS CIBIRU 2013 UNIVERSITAS PENDIDIKAN INDONESIA KAMPUS

Lebih terperinci

DESKRIPSI PEMELAJARAN FISIKA

DESKRIPSI PEMELAJARAN FISIKA MATA DIKLAT : FISIKA TUJUAN : 1. Menggunakan pengetahuan fisika dalam kehidupan sehari-hari 2. Memiliki kemampuan dasar fisika untuk mengembangkan kemampuan dibidang teknologi bangunan gedung KOMPETENSI

Lebih terperinci

RANCANG-BANGUN PIRANTI IDENTIFIKASI RADIASI ELEKTROMAGNETIK (KASUS DI SEKITAR BERKAS SINAR KATODA)

RANCANG-BANGUN PIRANTI IDENTIFIKASI RADIASI ELEKTROMAGNETIK (KASUS DI SEKITAR BERKAS SINAR KATODA) LAPORAN PENELITIAN HIBAH PENELITIAN PROGRAM SP4 Tahun anggaran 004 RANCANG-BANGUN PIRANTI IDENTIFIKASI RADIASI ELEKTROMAGNETIK (KASUS DI SEKITAR BERKAS SINAR KATODA) Oleh: Agus Purwanto Slamet MT Sumarna

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Spray Drying dan Spray Pyrolysis adalah metoda yang sangat umum digunakan dibanyak industri. Metoda ini diinisiasi oleh atomizer/penyemprotan larutan dalam bentuk droplet kedalam

Lebih terperinci

Pemodelan Matematika dan Metode Numerik

Pemodelan Matematika dan Metode Numerik Bab 3 Pemodelan Matematika dan Metode Numerik 3.1 Model Keadaan Tunak Model keadaan tunak hanya tergantung pada jarak saja. Oleh karena itu, distribusi temperatur gas sepanjang pipa sebagai fungsi dari

Lebih terperinci

UN SMA IPA 2008 Fisika

UN SMA IPA 2008 Fisika UN SMA IPA 008 Fisika Kode Soal P44 Doc. Name: UNSMAIPA008FISP44 Doc. Version : 011-06 halaman 1 01. Berikut ini disajikan diagram vektor F 1 dan F! Persamaan yang tepat untuk resultan R = adalah... (A)

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN Intensitas (arb.unit) Intensitas (arb.unit) Intensitas (arb. unit) Intensitas 7 konstan menggunakan buret. Selama proses presipitasi berlangsung, suhu larutan tetap dikontrol pada 7 o C dengan kecepatan

Lebih terperinci

III. METODELOGI PENELITIAN. Penelitian ini telah dilaksanakan pada bulan Desember 2009 sampai Februari

III. METODELOGI PENELITIAN. Penelitian ini telah dilaksanakan pada bulan Desember 2009 sampai Februari 28 III. METODELOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini telah dilaksanakan pada bulan Desember 2009 sampai Februari 2010 yang bertempat di Laboratorium Rekayasa Bioproses dan Pasca

Lebih terperinci

4. Sebuah sistem benda terdiri atas balok A dan B seperti gambar. Pilihlah jawaban yang benar!

4. Sebuah sistem benda terdiri atas balok A dan B seperti gambar. Pilihlah jawaban yang benar! Pilihlah Jawaban yang Paling Tepat! Pilihlah jawaban yang benar!. Sebuah pelat logam diukur menggunakan mikrometer sekrup. Hasilnya ditampilkan pada gambar berikut. Tebal pelat logam... mm. 0,08 0.,0 C.,8

Lebih terperinci

Dibuat oleh invir.com, dibikin pdf oleh

Dibuat oleh invir.com, dibikin pdf oleh 1. Energi getaran selaras : A. berbanding terbalik dengan kuadrat amplitudonya B. berbanding terbalik dengan periodanya C. berbanding lurus dengan kuadrat amplitudonya. D. berbanding lurus dengan kuadrat

Lebih terperinci

KALORIMETER PF. 8 A. Tujuan Percobaan 1. Mempelajari cara kerja kalorimeter 2. Menentukan kalor lebur es 3. Menentukan panas jenis berbagai logam B.

KALORIMETER PF. 8 A. Tujuan Percobaan 1. Mempelajari cara kerja kalorimeter 2. Menentukan kalor lebur es 3. Menentukan panas jenis berbagai logam B. KALORIMETER PF. 8 A. Tujuan Percobaan 1. Mempelajari cara kerja kalorimeter 2. Menentukan kalor lebur es 3. Menentukan panas jenis berbagai logam B. Alat dan Bahan 1. Kalorimeter 2. Termometer 3. Gelas

Lebih terperinci

SINTESIS LAPISAN TIPIS SEMIKONDUKTOR DENGAN BAHAN DASAR TEMBAGA (Cu) MENGGUNAKAN CHEMICAL BATH DEPOSITION

SINTESIS LAPISAN TIPIS SEMIKONDUKTOR DENGAN BAHAN DASAR TEMBAGA (Cu) MENGGUNAKAN CHEMICAL BATH DEPOSITION SINTESIS LAPISAN TIPIS SEMIKONDUKTOR DENGAN BAHAN DASAR TEMBAGA (Cu) MENGGUNAKAN CHEMICAL BATH DEPOSITION Yolanda Oktaviani, Astuti Jurusan Fisika FMIPA Universitas Andalas e-mail: vianyolanda@yahoo.co.id

Lebih terperinci

D. 6,25 x 10 5 J E. 4,00 x 10 6 J

D. 6,25 x 10 5 J E. 4,00 x 10 6 J 1. Besarnya usaha untuk menggerakkan mobil (massa mobil dan isinya adalah 1000 kg) dari keadaan diam hingga mencapai kecepatan 72 km/jam adalah... (gesekan diabaikan) A. 1,25 x 10 4 J B. 2,50 x 10 4 J

Lebih terperinci

D. 80,28 cm² E. 80,80cm²

D. 80,28 cm² E. 80,80cm² 1. Seorang siswa melakukan percobaan di laboratorium, melakukan pengukuran pelat tipis dengan menggunakan jangka sorong. Dari hasil pengukuran diperoleh panjang 2,23 cm dan lebar 36 cm, maka luas pelat

Lebih terperinci

BAB II PENGUKURAN ALIRAN. Pengukuran adalah proses menetapkan standar untuk setiap besaran yang

BAB II PENGUKURAN ALIRAN. Pengukuran adalah proses menetapkan standar untuk setiap besaran yang BAB II PENGUKURAN ALIRAN II.1. PENGERTIAN PENGUKURAN Pengukuran adalah proses menetapkan standar untuk setiap besaran yang tidak terdefinisi. Standar tersebut dapat berupa barang yang nyata, dengan syarat

Lebih terperinci

Pertemuan 1 PENDAHULUAN Konsep Mekanika Fluida dan Hidrolika

Pertemuan 1 PENDAHULUAN Konsep Mekanika Fluida dan Hidrolika Pertemuan 1 PENDAHULUAN Konsep Mekanika Fluida dan Hidrolika OLEH : ENUNG, ST.,M.Eng JURUSAN TEKNIK SIPIL POLITEKNIK NEGERI BANDUNG 2011 1 SILABUS PERTEMUAN MATERI METODE I -PENDAHULUAN -DEFINISI FLUIDA

Lebih terperinci

52. Mata Pelajaran Fisika untuk Sekolah Menengah Atas (SMA)/Madrasah Aliyah (MA) A. Latar Belakang B. Tujuan

52. Mata Pelajaran Fisika untuk Sekolah Menengah Atas (SMA)/Madrasah Aliyah (MA) A. Latar Belakang B. Tujuan 52. Mata Pelajaran Fisika untuk Sekolah Menengah Atas (SMA)/Madrasah Aliyah (MA) A. Latar Belakang Ilmu Pengetahuan Alam (IPA) berkaitan dengan cara mencari tahu tentang fenomena alam secara sistematis,

Lebih terperinci

TOPIK 8. Medan Magnetik. Fisika Dasar II TIP, TP, UGM 2009 Ikhsan Setiawan, M.Si.

TOPIK 8. Medan Magnetik. Fisika Dasar II TIP, TP, UGM 2009 Ikhsan Setiawan, M.Si. TOPIK 8 Medan Magnetik Fisika Dasar II TIP, TP, UGM 2009 Ikhsan Setiawan, M.Si. ikhsan_s@ugm.ac.id Pencetak sidik jari magnetik. Medan Magnetik Medan dan Gaya Megnetik Gaya Magnetik pada Konduktor Berarus

Lebih terperinci

MODUL I SIFAT KOLIGATIF LARUTAN Penurunan Titik Beku Larutan

MODUL I SIFAT KOLIGATIF LARUTAN Penurunan Titik Beku Larutan MODUL I SIFAT KOLIGATIF LARUTAN Penurunan Titik Beku Larutan - Siswa mampu membuktikan penurunan titik beku larutan akibat penambahan zat terlarut. - Siswa mampu membedakan titik beku larutan elektrolit

Lebih terperinci

NME D3 Sperisa Distantina BAB II NERACA MASSA

NME D3 Sperisa Distantina BAB II NERACA MASSA 1 NME D3 Sperisa Distantina BAB II NERACA MASSA PENYUSUNAN DAN PENYELESAIAN NERACA MASSA KONSEP NERACA MASSA = persamaan yang disusun berdasarkan hukum kekekalan massa (law conservation of mass), yaitu

Lebih terperinci

C13 1 FISIKA SMA/MA IPA

C13 1 FISIKA SMA/MA IPA 1 1. Seorang siswa mengukur ketebalan suatu bahan menggunakan mikrometer sekrup. Ketebalan bahan adalah. A. (5,83±0,005) mm B. (5,83±0,01) mm C. (5,53±0,005) mm D. (5,53±0,01) mm E. (5,33±0,005) mm 2.

Lebih terperinci

Pelatihan Ulangan Semester Gasal

Pelatihan Ulangan Semester Gasal Pelatihan Ulangan Semester Gasal A. Pilihlah jawaban yang benar dengan menuliskan huruf a, b, c, d, atau e di dalam buku tugas Anda!. Perhatikan gambar di samping! Jarak yang ditempuh benda setelah bergerak

Lebih terperinci

IV. Arus Listrik. Sebelum tahun 1800: listrik buatan hanya berasal dari friksi (muatan statis) == tidak ada kegunaan praktis

IV. Arus Listrik. Sebelum tahun 1800: listrik buatan hanya berasal dari friksi (muatan statis) == tidak ada kegunaan praktis IV. Arus Listrik Sebelum tahun 1800: listrik buatan hanya berasal dari friksi (muatan statis) == tidak ada kegunaan praktis listrik alam kilat Pada tahun 1800: Alessandro Volta menemukan baterai listrik

Lebih terperinci

INSTRUKSI TEKNIS PERALATAN FILTRASI EKSTRAKSI PANAS UNTUK SISTEM GELOMBANG MIKRO

INSTRUKSI TEKNIS PERALATAN FILTRASI EKSTRAKSI PANAS UNTUK SISTEM GELOMBANG MIKRO INSTRUKSI TEKNIS PERALATAN FILTRASI EKSTRAKSI PANAS UNTUK SISTEM GELOMBANG MIKRO Kondisi eksperimen pada percobaan gelombang mikro tergantung pada data teknik yang digunakan pada peralatan gelombang mikro.

Lebih terperinci

TEST KEMAMPUAN DASAR FISIKA

TEST KEMAMPUAN DASAR FISIKA TEST KEMAMPUAN DASAR FISIKA Jawablah pertanyaan-pertanyaan di bawah ini dengan pernyataan BENAR atau SALAH. Jika jawaban anda BENAR, pilihlah alasannya yang cocok dengan jawaban anda. Begitu pula jika

Lebih terperinci

11/25/2013. Teori Kinetika Gas. Teori Kinetika Gas. Teori Kinetika Gas. Tekanan. Tekanan. KINETIKA KIMIA Teori Kinetika Gas

11/25/2013. Teori Kinetika Gas. Teori Kinetika Gas. Teori Kinetika Gas. Tekanan. Tekanan. KINETIKA KIMIA Teori Kinetika Gas Jurusan Kimia - FMIPA Universitas Gadjah Mada (UGM) KINETIKA KIMIA Drs. Iqmal Tahir, M.Si. Laboratorium Kimia Fisika,, Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Gadjah Mada,

Lebih terperinci

PREDIKSI UN FISIKA V (m.s -1 ) 20

PREDIKSI UN FISIKA V (m.s -1 ) 20 PREDIKSI UN FISIKA 2013 1. Perhatikan gambar berikut Hasil pengukuran yang bernar adalah. a. 1,23 cm b. 1,23 mm c. 1,52mm d. 1,73 cm e. 1,73 mm* 2. Panjang dan lebar lempeng logam diukur dengan jangka

Lebih terperinci

Bab III. Gelombang Bunyi Pengantar Akustik by: Iwan Yahya Grup Riset Akustik & Fisika Terapan (iarg) Jurusan Fisika FMIPA UNS

Bab III. Gelombang Bunyi Pengantar Akustik by: Iwan Yahya Grup Riset Akustik & Fisika Terapan (iarg) Jurusan Fisika FMIPA UNS 49 Bab III. Gelombang Bunyi Pengantar Akustik by: Iwan Yahya Grup Riset Akustik & Fisika Terapan (iarg) Jurusan Fisika FMIPA UNS iwanyy@yahoo.com Pada bab sebelum ini kita telah mempelajari bagaimana persamaan

Lebih terperinci

Tabel 1. Peta ELO dan bahan kajian

Tabel 1. Peta ELO dan bahan kajian Peta Bahan Kajian Bahan kajian adalah topik yang ditentukan dalam pembelajaran mahasiswa program Sarjana Teknik Mesin. Dari daftar bahan kajian ini dipetakan hasil pembelajaran sebagaimana dicantumkan

Lebih terperinci

Xpedia Fisika DP SNMPTN 02

Xpedia Fisika DP SNMPTN 02 Xpedia Fisika DP SNMPTN 02 Doc. Name: XPFIS9907 Version: 2012-06 halaman 1 25. Sebatang magnet digerakkan melalui kawat. Jika magnet itu tiba-tiba berhenti di tengahtengah kawat, apa yang terjadi? (A)

Lebih terperinci

PAKET I SOAL PENGAYAAN UJIAN NASIONAL SMP/MTs MATA PELAJARAN IPA - FISIKA TAHUN 2014/2015

PAKET I SOAL PENGAYAAN UJIAN NASIONAL SMP/MTs MATA PELAJARAN IPA - FISIKA TAHUN 2014/2015 PAKET I SOAL PENGAYAAN UJIAN NASIONAL SMP/MTs MATA PELAJARAN IPA - FISIKA TAHUN 2014/2015 Indikator 1 Menentukan besaran pokok, besaran turunan dan satuannya atau penggunaan alat ukur dalam kehidupan sehari-hari.

Lebih terperinci

12/27/2013. Latihan Materi UAS FISIKA FTP FISIKA FLUIDA. Latihan Soal

12/27/2013. Latihan Materi UAS FISIKA FTP FISIKA FLUIDA. Latihan Soal Latihan Materi UAS FISIKA FTP FISIKA FLUIDA Latihan Soal 1 Kohesi dan Adhesi Manakah yang termasuk gaya tarik kohesi? Manakah yang termasuk gaya tarik adhesi C A B D Tegangan Permukaan Jika gaya tarik

Lebih terperinci

01 : STRUKTUR MIKRO. perilaku gugus-gugus atom tersebut (mungkin mempunyai struktur kristalin yang teratur);

01 : STRUKTUR MIKRO. perilaku gugus-gugus atom tersebut (mungkin mempunyai struktur kristalin yang teratur); 01 : STRUKTUR MIKRO Data mengenai berbagai sifat logam yang mesti dipertimbangkan selama proses akan ditampilkan dalam berbagai sifat mekanik, fisik, dan kimiawi bahan pada kondisi tertentu. Untuk memanfaatkan

Lebih terperinci