ANALISIS PENGARUH PERPINDAHAN PANAS TERHADAP KARAKTERISTIK LAPISAN BATAS PADA PELAT DATAR

Ukuran: px
Mulai penontonan dengan halaman:

Download "ANALISIS PENGARUH PERPINDAHAN PANAS TERHADAP KARAKTERISTIK LAPISAN BATAS PADA PELAT DATAR"

Transkripsi

1 ANALISIS PENGARUH PERPINDAHAN PANAS TERHADAP KARAKTERISTIK LAPISAN BATAS PADA PELAT DATAR Oleh: 1) Umrowati, 2) Prof. DR. Basuki Widodo, M.Sc, 3) Drs. Kamiran, M.Si Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember Surabaya 2011 Jl.Arif Rachman hakim,sukolilo-surabaya (60111) 1) Abstrak Penelitian mengenai aliran pada sebuah pelat datar sampai saat ini terus berkembang dan masih dilakukan. Penelitian dilakukan dengan berbagai tujuan antara lain untuk mengetahui lapisan batas yang terbentuk. Namun, dalam kehidupan sehari-hari seringkali ditemukan adanya pelat panas yang dialiri oleh fluida sehingga perlu adanya analisis tentang pengaruh panas tersebut terhadap karakteristik lapisan batas yang terbentuk. Dalam penelitian ini, dilakukan analisis secara numerik dengan menggunakan metode beda hingga besar pengaruh perpindahan panas terhadap karakteristik lapisan batas. Kemudian divisualisasikan dengan bantuan software Matlab 7.1 dengan menggunakan konstanta-konstanta, yaitu,,, dan ( ). Hasil simulasi tersebut menunjukkan bahwa kecepatan udara yang diukur pada saat dan temperatur rata-rata adalah mengalami peningkatan dari pada saat hingga mencapai titik maksimum di dengan kecepatan mencapai, kemudian turun secara bertahap sampai dengan pada daerah lapisan batas. Begitu pula ketebalan lapisan batas yang meningkat dengan bertambahnya dan bertambahnya temperatur. Namun,berbeda dengan temperatur udara mengalami penurunan dari hingga mencapai 10, yaitu sama dengan temperatur arus bebas di daerah lapisan batas. Kata kunci: Karakteristik Lapisan Batas, Perpindahan Panas, Metode Beda Hingga. 1. Pendahuluan Kecanggihan teknologi berkembang cukup pesat, keadaan ini semakin mendorong manusia untuk terus melakukan berbagai macam percobaan dan penelitian untuk pengembangan maupun penemuan cara-cara baru guna memberikan manfaat lebih kepada manusia dalam menjalankan aktivitasnya. Misalnya dalam bidang mekanika fluida, penelitian mengenai peningkatan optimalisasi aliran fluida sampai saat ini terus berkembang dan masih dilakukan. Salah satu di antaranya adalah optimalisasi aliran fluida pada model dan dimensi pelat datar. Penelitian ini dilakukan dengan berbagai tujuan di antaranya adalah untuk mengetahui karakteristik lapisan batas dengan berbagai model gangguan misalnya model gangguan berbentuk U, V, dan lain-lain. Fluida yang mengalir pada suatu permukaan benda, baik aliran tersebut laminar maupun turbulen, maka partikel-partikel di sekitar permukaan bergerak lambat akibat gaya viskos. Partikel-partikel fluida yang dekat ke permukaan menempel pada permukaan tersebut dan kecepatannya relatif nol terhadap batas. Sementara fluida yang lain berusaha untuk bergerak lambat di atas partikel yang relatif diam sebagai akibat interaksi antara gerakan fluida yang lebih cepat dan fluida yang lebih lambat. Hal ini merupakan fenomena yang dapat meningkatkan gaya tegangan geser. Lapisan yang kecepatannya terpengaruh oleh tegangan geser akibat viskositas disebut lapisan batas (boundary layer). Terjadinya lapisan batas seperti yang dijelaskan di atas tidak memperhatikan adanya perpindahan panas, sedangkan dalam bidang aerodinamika sering ditemukan adanya pelat panas yang dialiri oleh fluida. Oleh karena itu perlu dilakukan penelitian tentang hal tersebut. Namun, dalam penelitian ini hanya akan dilakukan analisis secara numerik besar pengaruh perpindahan panas yang terjadi terhadap karakteristik lapisan batas yang 1

2 terbentuk yaitu terhadap profil kecepatan dan distribusi panas pada lapisan batas tersebut. 2. Tinjauan Pustaka 2.1 Penelitian Terdahulu Pada tahun 2008, telah dilakukan penelitian oleh Setyo Budi Utami tentang distribusi aliran panas pada pelat besi yang kemudian dibuat persamaan matematikanya dan diselesaikan dengan metode volume hingga. Hasil penelitian ini menunjukkan bahwa perubahan konsentrasi distribusi aliran panas dipengaruhi oleh kecepatan, panjang pelat, dan lebar pelat. Sedangkan dalam penelitian ini akan dibahas tentang distribusi panas pada lapisan batas di atas pelat yang kemuadian dianalisis pengaruhnya terhadap karakteristik lapisan batas yang diketahui terbentuk akibat gesekan antara permukaan pelat dengan aliran fluida. Lapisan batas yang dibahas adalah lapisan batas dimana efek viskositas sangat berpengaruh (viscous flow). Metode yang digunakan adalah metode beda hingga. 2.2 Dasar Teori Konveksi Konveksi adalah perpindahan panas yang terjadi antara permukaan padat dengan fluida yang mengalir di sekitarnya, dengan menggunakan media penghantar berupa fluida (cairan/gas) karena perbedaan suhu di antara keduanya (benda-fluida). a. Konveksi Alami Perpindahan panas konveksi alami adalah perpindahan panas yang disebabkan oleh beda suhu dan beda rapat saja dan tidak ada tenaga dari luar yang mendorongnya. Contohnya yaitu pelat panas dibiarkan berada di udara sekitar tanpa ada sumber gerakan dari luar. b. Konveksi Paksa Konveksi paksa adalah perpindahan panas aliran gas cairan yang disebabkan adanya tenaga dari luar. Contohnya adalah pelat panas dihembus udara dengan kipas/blower Lapisan Batas(Boundary Layer) Lapisan batas merupakan bagian dari permasalahan mekanika fluida yang merupakan lapisan yang terbentuk karena adanya gesekan antara fluida yang mengalir dengan permukaan benda yang disebabkan adanya viskositas dari fluida yang melewati benda tersebut. Kedudukan lapisan batas pada ilmu mekanika fluida dapat dilihat pada diagram berikut ini yang menjelaskan tentang hubungan bagian dari cabang mekanika fluida(genick, 2010): Gambar 2.1 Diagram Hubungan Bagian dari Cabang Mekanika Fluida Konsep lapisan batas ditemukan oleh Ludwig Prandlt pada tahun 1904 yang merupakan seorang ahli aerodinamika Jerman (Schlichting,1979). Prandtl mengklasifikasikan aliran yang melewati suatu kontur permukaan menjadi dua daerah, yaitu : 1. Daerah di dalam lapisan batas (dekat permukaan kontur) dimana efek viskositas sangat berpengaruh (viscous flow) Daerah ini sering disebut sebagai lapisan batas laminer(laminar boundary layer), adalah suatu lapisan tipis yang berada di sebelah dari perbatasan benda. Pada kawasan ini kecepatan aliran adalah nol pada dinding, dan bertambah dengan cepatnya dalam perbandingan terhadap kecepatan permukaan bebas. Dalam kawasan lapisan batas, distribusi kecepatan sangat dipengaruhi oleh gaya geser. 2. Daerah di luar lapisan batas dimana efek viskositas diabaikan (inviscid flow) Pada daerah ini pengaruh viskositas sangat kecil sehingga cenderung diabaikan, gaya geseran dapat diabaikan bila dibandingkan dengan gaya inersia. Dalam hal ini fluida dapat dianggap inviscid (non viscous) dan tanpa rotasi (irotasi). Hal pertama yang diperlukan dalam menyelesaikan lapisan batas adalah menentukan jenis/tipe aliran. Tipe aliran yang ada dalam 2

3 mekanika dan dinamika fluida umumnya dibagi menjadi tiga, yaitu: 1. Aliran Laminer Aliran dengan fluida yang bergerak dalam lapisan lapisan, lamina lamina dengan satu lapisan meluncur secara lancar. Dalam aliran laminar ini viskositas berfungsi untuk meredam kecendrungan terjadinya gerakan relatif antara lapisan. 2. Aliran Turbulen Aliran turbulen memiliki streamline yang berputar dan tidak beraturan (menimbulkan olakan yang tidak teratur). 3. Aliran Transisi Aliran ini merupakan aliran peralihan dalam aliran laminar menjadi aliran turbulen. Tipe aliran yang sudah dijelaskan di atas, dapat dilihat pada Gambar 2.3 berikut ini: c. Persamaan Energi Bilangan Grashof dan Bilangan Rayleigh Pada bagian telah dijelaskan bahwa gerakan fluida pada konveksi alami terjadi karena gaya apung (bouyancy force) yang timbul apabila densitas fluida berkurang akibat proses pemanasan. Dan satuan rasio yang merupakan perbesaran gaya apung (bouyancy force) terhadap viskositas pada aliran konveksi alami adalah Bilangan Grashof. Secara matematis dituliskan sebagai: Sedangkan bilangan yang digunakan sebagai salah satu acuan untuk menentukan jenis aliran dalam konveksi alami adalah Bilangan Rayleigh yang didefinisikan sebagai satuan tak berdimensi hasil kali antara bilangan Grashof, yang dirumuskan dengan bilangan Prandtl sebagai: Gambar 2.2 Fase Aliran di atas Pelat Datar Tebal lapisan batas dibagi menjadi dua, yaitu lapisan batas kecepatan dan lapisan batas termal. Tebal lapisan batas kecepatan ( ) adalah jarak yang diukur dari permukaan benda sampai suatu titik dimana efek viskositas sudah tidak berpengaruh lagi. Tebal lapisan batas termal adalah jarak yang diukur dari permukaan benda sampai suatu titik dimana efek perpindahan panas sudah tidak berpengaruh. dengan batasan sebagai berikut: : Aliran Laminer : Aliran Transisi : Aliran Turbulen Bilangan Prandtl didefinisikan sebagai rasio difusivitas momentum (viskositas kinematik) untuk difusivitas termal. Bilangan Prandtl dirumuskan sebagai: (2.22) Dengan Persamaan Lapisan Batas Pada Pelat Datar Persamaan lapisan batas yang berlaku pada perpindahan panas konveksi alami untuk pelat datar(dua dimensi) pada kondisi tak-tunak (unsteady), mampu mampat (compressible). Persamaan-persamaan tersebut adalah: a. Persamaan Kontinuitas Sehingga didapat Metode Beda Hingga Metode beda hingga didasarkan pada ekspansi deret Taylor, yaitu metode pendekatan agar sebuah persamaan diferensial parsial dapat diubah menjadi operasi aritmatika dan operasi logika yang dapat dibaca oleh komputer (Hoffmann, 1989). b. Persamaan Momentum 3

4 Ekspansi deret Taylor untuk fungsi dua variabel menghasilkan beda maju orde pertama, beda mundur orde pertama, beda tengah orde pertama, dan beda tengah orde kedua. Untuk beda hingga terhadap waktu dapat digunakan salah satu dari diskritisasi di bawah ini: Gambar 2.4 Skema Beda Mundur 3. Beda Tengah Pusat Orde Pertama 1. Beda Maju Orde Pertama Dengan menggunakan kisi beda hingga maka biasa ditulis sebagai: Untuk beda hingga terhadap waktu dapat digunakan salah satu dari diskritisasi di bawah ini: Gambar 2.5 Skema Beda Pusat 4. Beda Tengah Pusat Orde Kedua Beda Tengah Pusat Orde Kedua didapatkan dari pengurangan dari beda maju orde pertama dengan beda mundur orde pertama, yaitu: Gambar 2.3 Skema Beda Maju 2. Beda Mundur Orde Pertama Dengan menggunakan kisi beda hingga maka biasa ditulis sebagai: 3. Metodologi Penelitian 3.1 Langkah Pengerjaan 1. Studi literatur 4

5 2. Menentukan model matematika 3. Menyelesaikan model matematika secara persamaan lapisan batas tak berdimensi sebagai berikut: a. Persamaan Kontinuitas numerik 4. Memvisualisasikan hasil b. Persamaan Momentum 3.2 Diagram Alir Penelitian Alur penelitian yang dilakukan dalam tugas akhir ini dapat dilihat pada diagram alir berikut: c. Persamaan Energi Mulai Studi Literatur Diskritisasi Persamaan Kontinuitas Diskritisasi persamaan kontinuitas dengan metode beda hingga untuk tiap suku persamaan di atas adalah sebagai berikut: Diasumsikan derivatif di titik ( ) sama dengan rata-rata dari derivatif di titik ( dan (, yaitu: Menentukan model matematika Menyelesaikan model matematika dengan metode numerik Memvisualisasikan hasil dan Pembahasan Program Benar Tidak Derivatif menggunakan pendekatan beda hingga tengah Ya Menarik kesimpulan Didapat: Menyusun Laporan Selesai Dan disederhanakan menjadi: Gambar 3.1 Diagram Alir Penelitian 4. Penyelesaian Numerik 4.1 Diskritisasi Persamaan Lapisan Batas Dalam Bentuk Tak Berdimensi (Dimensionless) Variabel referensi tak berdimensi yang digunakan untuk menyederhanakan penyelesaian derivasi persamaan lapisan batas adalah sebagai berikut: Diskritisasi Persamaan Energi Diskritisasi persamaan energi dengan metode beda hingga untuk tiap suku persamaan di atas adalah sebagai berikut: Didapat: Dengan variable-variabel di atas persamaan lapisan batas berdimensi berubah menjadi 5

6 Koefisien matriks untuk persamaan di atas adalah: Sehingga didapat persamaan: Dari persamaan tersebut dapat dibuat matriks tridiagonal arah, untuk ( dan adalah kondisi batas), Sehingga didapat persamaan: Dari persamaan tersebut dapat dibuat matriks tridiagonal arah, untuk ( dan adalah kondisi batas), Diskritisasi Persamaan Momentum Diskritisasi persamaan momentum dengan metode beda hingga untuk tiap suku persamaan di atas adalah sebagai berikut: Didapat: Koefisien matriks untuk persamaan di atas adalah: Untuk koefisien-koefisien matriks, yaitu,,, dan baik untuk persamaan energi maupun persamaan momentum harus dilakukan uji stabilitas terlebih dahulu sebelum digunakan dalam simulasi. Uji stabilitas koefisien matriks dilakukan dengan membagi dan terhadap dengan syarat dan. Hasil ini menunjukkan bahwa koefisien matriks tersebut konvergen. Jika hasil dari uji tersebut lebih dari 1 maka koefisien matriks tersebut divergen. 4.2 Syarat Awal dan Syarat Batas Untuk melakukan simulasi dan proses numerik dibutuhkan syarat awal dan syarat batas dari model. Pada penelitian ini, diasumsikan bahwa aliran gas dalam pipa mempunyai syarat awal adalah steady state, yaitu pada saat. Syarat awal dan syarat batas yang digunakan pada penelitian ini dapat dinyatakan sebagai syarat Dirichlet berikut ini: - dan - dan - dan 5. Simulasi dan Pembahasan 5.1 Algoritma Untuk menyelesaikan persamaan disusun algoritma penyelesaian seperti pada Gambar Program Algoritma pada Sub bab 5.1 tersebut diterapkan ke dalam program dengan menggunakan bantuan Matlab

7 Gambar 5.2 Profil Temperatur Udara hasil Penelitian Gambar 5.2 menunjukkan profil temperatur udara. Semakin besar maka temperatur udara semakin mengecil dari 60 pada pelat sampai mencapai temperatur konstan 10 pada daerah lapisan batas. Hal ini terjadi karena pada daerah lapisan batas sudah tidak terjadi perpindahan panas, dimana efek panas yang ditimbulkan pelat sudah tidak ada, sehingga temperatur udara sama dengan temperatur arus bebas (free stream), yaitu 10. Gambar 5.1 Flow Chart untuk simulasi 5.3 Simulasi Pada penelitian ini disimulasikan beberapa skenario yang berbeda untuk memperoleh gambaran yang lebih lengkap tentang pengaruh perpindahan panas terhadap kecepatan aliran gas di atas pelat datar. Contoh kasus yang disajikan didasarkan pada beberapa perkiraan kondisi operasi yang ada di lapangan. Berikut adalah parameter-parameter yang digunakan dalam untuk kebutuhan simulasi: Gambar 5.3 Profil Kecepatan Udara hasil Penelitian Gambar 5.3 di atas adalah gambar yang menunjukkan profil kecepatan udara hasil penelitian dengan temperatur Pelat dan temperatur fluida pada daerah arus bebas (freestream) Gambar tersebut menunjukkan bahwa kecepatan yang diukur pada saat dan temperatur rata-rata adalah mengalami peningkatan dari pada saat hingga mencapai titik maksimum di dengan kecepatan mencapai dan kemudian turun secara bertahap sampai dengan pada daerah lapisan batas. Selain profil temperatur dan profil kecepatan, simulasi ini juga menghasilkan profil, dan diperoleh Dengan distribusi panas dan kecepatan ditunjukkan oleh Gambar 5.2 berikut ini. 7

8 ketebalan lapisan batas yang ditunjukkan oleh Gambar 5.4 berikut ini. Gambar 5.4 Profil Tebal Lapisan Batas Udara hasil Penelitian Gambar 5.4 di atas menunjukkan bahwa ketebalan monoton naik mulai dari nol pada saat dan terus meningkat hingga menghasilkan ketebalan maksimal yaitu pada saat. Dari hasil simulasi juga diperoleh hubungan antara temperatur dengan kecepatan. Konstanta dan masukan(input) yang digunakan untuk memvisualisasikan hubungan tersebut sama dengan Konstanta dan masukan(input) yang digunakan untuk simulasi kecepatan pada Gambar 5.3 yaitu dan dengan partisi sebanyak 21 partisi. Hubungan antara temperatur dengan kecepatan ditunjukkan pada Gambar 5.5. berikut ini. Kecepatan Hubungan Antara Temperatur Dan Kecepatan 0, , , Temperatur 10, , , ,7108 Kec Gambar 5.5 Hubungan antara temperatur dan kecepatan Dari Gambar 5.5 di atas dapat dilihat bahwa kecepatan yang berawal di titik nol akan mengalami peningkatan seiring meningkatnya temperatur hingga mencapai titik maksimum dan turun secara bertahap hingga kecepatan kembali ke titik nol saat temperatur berada pada titik maksimum. Namun, keadaan berbeda bila temperatur dihubungkan dengan ketebalan lapisan batas. Ketebalan lapisan batas akan terus naik seiring naiknya temperatur. Akan tetapi, kenaikan yang terjadi pada ketebalan lapisan batas ini bukan monoton naik tegas melainkan hanya monoton naik saja. Artinya, ada beberapa tinggi ketebalan yang sama pada saat tingkat temperatur berbeda tapi tetap mengalami kenaikan. Dalam memvisualisasikan hubungan ini, konstanta dan masukan(input) yang digunakan sama dengan konstanta dan masukan(input) yang digunakan untuk memvisualisasikan hubungan antara temperatur dan kecepatan. Hubungan antara temperatur dan ketebalan lapisan batas ditunjukkan pada Gambar 5.6 di bawah ini. Ketebalan Temperatur Gambar 5.5 Hubungan antara temperatur dan ketebalan 6. Kesimpulan dan Saran 6.1 Kesimpulan Dari analisis dan pembahasan yang telah dilakukan pada bab sebelumnya, dapat disimpulkan sebagai berikut: 1. Model matematika untuk lapisan batas adalah sebagai berikut: a. b. c. Hubungan Antara Temperatur Dan Ketebalan 0,0015 0,001 0, , , , ,7108 Ket 2. Dari penyelesaian numerik yang dilakukan didapat penyelesaian berupa persamaan yang dapat dibuat matriks, yaitu: 8

9 dengan: dengan: 3. Kecepatan udara yang diukur pada saat dan temperatur rata-rata adalah mengalami peningkatan dari pada saat hingga mencapai titik maksimum di dengan kecepatan mencapai dan kemudian turun secara bertahap sampai dengan pada daerah lapisan batas. 4. Temperatur udara mengalami penurunan dari 60 yang bersinggungan dengan pelat, hingga mencapai 10, yaitu sama dengan temperatur arus bebas di daerah lapisan batas. 5. ketebalan lapisan batas meningkat dengan bertambahnya dan bertambahnya temperatur. 6.2 Saran Untuk pengembangan penelitian lebih lanjut, disarankan: 1. Pada tugas akhir ini menggunakan asumsi bahwa temperatur konstan sepanjang pelat. Selanjutnya dapat dikembangkan penelitian untuk temperature yang tidak konstan di sepanjang pelat agar lebih mendekati kondisi di lapangan. 2. Dilakukan penelitian untuk aliran laminer benda yang lain misalnya pipa, di antara dua pelat sejajar, juga dapat dilakukan penelitian untuk aliran turbulen 3. Untuk semua saran penelitian tersebut dapat diselesaikan dengan metode numerik yang berbeda. 7. Daftar Pustaka Bar Meir, Genick Basics of Fluid Mechanics. Chicago Budi Utami, Setyo Analisa Distribusi Aliran Panas pada Sebuah Pelat Besi dengan Menggunakan Metode Volume Hingga. Institut Teknologi Sepuluh Nopember. Tugas Akhir S1 Jurusan Matematika. Holman, J.P Perpindahan Kalor. Edisi Ke Enam. Diterjemahkan oleh Ir. E. Jasjfi, M.Sc. Jakarta: Erlangga. Munson, Bruce R., Young, Donald F., Okiishi, Theodore H Fundamentals of Fluid Mechanic. New York: John Wiley and Sons. Kaprawi Pengaruh Angka Prandtl dalam Perpindahan Panas Pada Suatu Benda Bulat. Jurnal Rekayasa Sriwijaya, no. 3 Vol. 17 Meyrawati, Zusnita Pemodelan dan Simulasi Numerik Gas Dalam Saluran Pipa Menggunakan Metode Crank- Nicolson. Institut Teknologi Sepuluh Nopember. Tugas Akhir S1 Jurusan Matematika. Ozgen, Serkan Effect of Heat Transfer on Stability and Transition Characteristics of Boundary-layers 47, Schlichting, H Boundary-Layer Theory. New York: McGraw-Hill. White, Frank M Viscous Fluid Flow. Second edition. Singapore: McGraw-Hill. f. Diakses pada tanggal 14 Maret 2011 pukul WIB 1kuliahDasar RefrigerasiB2_Termodinamikadan_Perpin dahan_panas1109.pdf. Diakses pada tanggal 14 Maret 2011 pukul WIB 9

Simulasi Numerik Aliran Fluida pada Permukaan Peregangan dengan Kondisi Batas Konveksi di Titik-Stagnasi

Simulasi Numerik Aliran Fluida pada Permukaan Peregangan dengan Kondisi Batas Konveksi di Titik-Stagnasi JURNAL SAINS DAN SENI ITS Vol. 5 No. 2 (2016) 2337-3520 (2301-928X Print) A-83 Simulasi Numerik Aliran Fluida pada Permukaan Peregangan dengan Kondisi Batas Konveksi di Titik-Stagnasi Ahlan Hamami, Chairul

Lebih terperinci

Sidang Tugas Akhir - Juli 2013

Sidang Tugas Akhir - Juli 2013 Sidang Tugas Akhir - Juli 2013 STUDI PERBANDINGAN PERPINDAHAN PANAS MENGGUNAKAN METODE BEDA HINGGA DAN CRANK-NICHOLSON COMPARATIVE STUDY OF HEAT TRANSFER USING FINITE DIFFERENCE AND CRANK-NICHOLSON METHOD

Lebih terperinci

Kata Kunci :konveksi alir bebas; viskos-elastis; bola berpori 1. PENDAHULUAN

Kata Kunci :konveksi alir bebas; viskos-elastis; bola berpori 1. PENDAHULUAN PEMODELAN PENGARUH PANAS TERHADAP ALIRAN FLUIDA KONVEKSI BEBAS YANG MELALUI BOLA BERPORI Mohamad Tafrikan, Basuki Widodo, Choirul Imron. Institut Teknologi Sepuluh Nopember Surabaya, Institut Teknologi

Lebih terperinci

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga JURNAL SAINS DAN SENI ITS Vol. 4, No.2, (2015) 2337-3520 (2301-928X Print) A-13 Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga Vimala Rachmawati dan Kamiran Jurusan

Lebih terperinci

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS 2.1 Konsep Dasar Perpindahan Panas Perpindahan panas dapat terjadi karena adanya beda temperatur antara dua bagian benda. Panas akan mengalir dari

Lebih terperinci

REYNOLDS NUMBER K E L O M P O K 4

REYNOLDS NUMBER K E L O M P O K 4 REYNOLDS NUMBER K E L O M P O K 4 P A R A M I T A V E G A A. T R I S N A W A T I Y U L I N D R A E K A D E F I A N A M U F T I R I Z K A F A D I L L A H S I T I R U K A Y A H FAKULTAS PERIKANAN DAN ILMU

Lebih terperinci

BAB IV PRINSIP-PRINSIP KONVEKSI

BAB IV PRINSIP-PRINSIP KONVEKSI BAB IV PRINSIP-PRINSIP KONVEKSI Aliran Viscous Berdasarkan gambar 1 dan, aitu aliran fluida pada pelat rata, gaa viscous dijelaskan dengan tegangan geser τ diantara lapisan fluida dengan rumus: du τ µ

Lebih terperinci

MODEL ALIRAN KONVEKSI CAMPURAN YANG MELEWATI PERMUKAAN SEBUAH BOLA

MODEL ALIRAN KONVEKSI CAMPURAN YANG MELEWATI PERMUKAAN SEBUAH BOLA MODEL ALIRAN KONVEKSI CAMPURAN YANG MELEWATI PERMUKAAN SEBUAH BOLA Mohammad Ghani a, Basuki Widodo b, Chairul Imron c a Jurusan Matematika, Fakultas MIPA, Institut Teknologi Sepuluh Nopember (ITS) Jl.

Lebih terperinci

STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA

STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA Oleh : Farda Nur Pristiana 1208 100 059 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. BAB I PENDAHULUAN I.1. Latar Belakang Penggunaan energi surya dalam berbagai bidang telah lama dikembangkan di dunia. Berbagai teknologi terkait pemanfaatan energi surya mulai diterapkan pada berbagai

Lebih terperinci

MODEL MATEMATIKA DENGAN SYARAT BATAS DAN ANALISA ALIRAN FLUIDA KONVEKSI BEBAS PADA PELAT HORIZONTAL. Leli Deswita 1)

MODEL MATEMATIKA DENGAN SYARAT BATAS DAN ANALISA ALIRAN FLUIDA KONVEKSI BEBAS PADA PELAT HORIZONTAL. Leli Deswita 1) MODEL MATEMATIKA DENGAN SYARAT BATAS DAN ANALISA ALIRAN FLUIDA KONVEKSI BEBAS PADA PELAT HORIZONTAL Leli Deswita ) ) Jurusan Matematika FMIPA Universitas Riau Email: deswital@yahoo.com ABSTRACT In this

Lebih terperinci

UJI EKSPERIMENTAL PENGARUH PERUBAHAN TEMPERATUR LORONG UDARA TERHADAP KOEFISIEN PERPINDAHAN PANAS KONVEKSI PELAT DATAR

UJI EKSPERIMENTAL PENGARUH PERUBAHAN TEMPERATUR LORONG UDARA TERHADAP KOEFISIEN PERPINDAHAN PANAS KONVEKSI PELAT DATAR UJI EKSPERIMENTAL PENGARUH PERUBAHAN TEMPERATUR LORONG UDARA TERHADAP KOEFISIEN PERPINDAHAN PANAS KONVEKSI PELAT DATAR Jotho *) ABSTRAK Perpindahan panas dapat berlangsung melalui salah satu dari tiga

Lebih terperinci

2 yang mempunyai posisi vertikal sama akan mempunyai tekanan yang sama. Laju Aliran Volume Laju aliran volume disebut juga debit aliran (Q) yaitu juml

2 yang mempunyai posisi vertikal sama akan mempunyai tekanan yang sama. Laju Aliran Volume Laju aliran volume disebut juga debit aliran (Q) yaitu juml KERUGIAN JATUH TEKAN (PRESSURE DROP) PIPA MULUS ACRYLIC Ø 10MM Muhammmad Haikal Jurusan Teknik Mesin Universitas Gunadarma ABSTRAK Kerugian jatuh tekanan (pressure drop) memiliki kaitan dengan koefisien

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Definisi Fluida Aliran fluida atau zat cair (termasuk uap air dan gas) dibedakan dari benda padat karena kemampuannya untuk mengalir. Fluida lebih mudah mengalir karena ikatan molekul

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Dasar Perpindahan Kalor Perpindahan kalor terjadi karena adanya perbedaan suhu, kalor akan mengalir dari tempat yang suhunya tinggi ke tempat suhu rendah. Perpindahan

Lebih terperinci

Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit

Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit Vol. 11, No. 2, 105-114, Januari 2015 Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit Rezki Setiawan Bachrun *,Khaeruddin **,Andi Galsan Mahie *** Abstrak

Lebih terperinci

Perpindahan Panas Konveksi. Perpindahan panas konveksi bebas pada plat tegak, datar, dimiringkan,silinder dan bola

Perpindahan Panas Konveksi. Perpindahan panas konveksi bebas pada plat tegak, datar, dimiringkan,silinder dan bola Perpindahan Panas Konveksi Perpindahan panas konveksi bebas pada plat tegak, datar, dimiringkan,silinder dan bola Pengantar KONDUKSI PERPINDAHAN PANAS KONVEKSI RADIASI Perpindahan Panas Konveksi Konveksi

Lebih terperinci

III PEMBAHASAN. (3.3) disubstitusikan ke dalam sistem koordinat silinder yang ditinjau pada persamaan (2.4), maka diperoleh

III PEMBAHASAN. (3.3) disubstitusikan ke dalam sistem koordinat silinder yang ditinjau pada persamaan (2.4), maka diperoleh III PEMBAHASAN Pada bagian ini akan dibahas penggunaan metode perturbasi homotopi untuk menyelesaikan suatu masalah taklinear. Metode ini digunakan untuk menyelesaikan model Sisko dalam masalah aliran

Lebih terperinci

MAKALAH KOMPUTASI NUMERIK

MAKALAH KOMPUTASI NUMERIK MAKALAH KOMPUTASI NUMERIK ANALISA ALIRAN FLUIDA DALAM PIPA SIRKULAR DAN PIPA SPIRAL UNTUK INSTALASI SALURAN AIR DI RUMAH DENGAN SOFTWARE CFD Oleh : MARIO RADITYO PRARTONO 1306481972 DEPARTEMEN TEKNIK MESIN

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. 2.1 Proses Perpindahan Panas Konveksi Alamiah dalam Peralatan Pengeringan

BAB 2 TINJAUAN PUSTAKA. 2.1 Proses Perpindahan Panas Konveksi Alamiah dalam Peralatan Pengeringan 134 BAB 2 TINJAUAN PUSTAKA 2.1 Proses Perpindahan Panas Konveksi Alamiah dalam Peralatan Pengeringan Prinsip dasar proses pengeringan adalah terjadinya pengurangan kadar air atau penguapan kadar air oleh

Lebih terperinci

Simulasi Numerik Karakteristik Aliran Fluida Melewati Silinder Teriris Satu Sisi (Tipe D) dengan Variasi Sudut Iris dan Sudut Serang

Simulasi Numerik Karakteristik Aliran Fluida Melewati Silinder Teriris Satu Sisi (Tipe D) dengan Variasi Sudut Iris dan Sudut Serang Simulasi Numerik Karakteristik Aliran Fluida Melewati Silinder Teriris Satu Sisi (Tipe D) dengan Variasi Sudut Iris dan Sudut Serang Astu Pudjanarsa Laborotorium Mekanika Fluida Jurusan Teknik Mesin FTI-ITS

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi Fluida

BAB II DASAR TEORI. 2.1 Definisi Fluida BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antarmolekul

Lebih terperinci

II LANDASAN TEORI. Misalkan adalah suatu fungsi skalar, maka turunan vektor kecepatan dapat dituliskan sebagai berikut :

II LANDASAN TEORI. Misalkan adalah suatu fungsi skalar, maka turunan vektor kecepatan dapat dituliskan sebagai berikut : 2 II LANDASAN TEORI Pada bagian ini akan dibahas teori-teori yang digunakan dalam menyusun karya ilmiah ini. Teori-teori tersebut meliputi sistem koordinat silinder, aliran fluida pada pipa lurus, persamaan

Lebih terperinci

ANALISIS PERFORMANSI PADA HEAT EXCHANGER JENIS SHEEL AND TUBE TIPE BEM DENGAN MENGGUNAKAN PERUBAHAN LAJU ALIRAN MASSA FLUIDA PANAS (Mh)

ANALISIS PERFORMANSI PADA HEAT EXCHANGER JENIS SHEEL AND TUBE TIPE BEM DENGAN MENGGUNAKAN PERUBAHAN LAJU ALIRAN MASSA FLUIDA PANAS (Mh) ANALISIS PERFORMANSI PADA HEAT EXCHANGER JENIS SHEEL AND TUBE TIPE BEM DENGAN MENGGUNAKAN PERUBAHAN LAJU ALIRAN MASSA FLUIDA PANAS (Mh) Aznam Barun, Eko Rukmana Universitas Muhammadiyah Jakarta, Jurusan

Lebih terperinci

ANALISIS ALIRAN DAN PERPINDAHAN PANAS FLUIDA SISKO DALAM KEADAAN STEDI NURI ANGGI NIRMALASARI

ANALISIS ALIRAN DAN PERPINDAHAN PANAS FLUIDA SISKO DALAM KEADAAN STEDI NURI ANGGI NIRMALASARI ANALISIS ALIRAN DAN PERPINDAHAN PANAS FLUIDA SISKO DALAM KEADAAN STEDI NURI ANGGI NIRMALASARI 127 1 17 BAB I PENDAHULUAN LATAR BELAKANG RUMUSAN MASALAH BATASAN MASALAH TUJUAN MANFAAT LATAR BELAKANG Fluida

Lebih terperinci

ANALISIS ALIRAN DAN PERPINDAHAN PANAS FLUIDA SISKO DALAM KEADAAN STEDI

ANALISIS ALIRAN DAN PERPINDAHAN PANAS FLUIDA SISKO DALAM KEADAAN STEDI ANALISIS ALIRAN DAN PERPINDAHAN PANAS FLUIDA SISKO DALAM KEADAAN STEDI Abstrak Nama Mahasiswa : Nuri Anggi Nirmalasari NRP : 1207 100 017 Jurusan : Matematika FMIPA-ITS Dosen Pembimbing : Prof. DR. Basuki

Lebih terperinci

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3 BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN

GARIS-GARIS BESAR PROGRAM PENGAJARAN GARIS-GARIS BESAR PROGRAM PENGAJARAN Mata Kuliah : Fisika Dasar 1 Kode/SKS : FIS 1 / 3 (2-3) Deskrisi : Mata Kuliah Fisika Dasar ini diberikan untuk mayor yang memerlukan dasar fisika yang kuat, sehingga

Lebih terperinci

Rumus bilangan Reynolds umumnya diberikan sebagai berikut:

Rumus bilangan Reynolds umumnya diberikan sebagai berikut: Dalam mekanika fluida, bilangan Reynolds adalah rasio antara gaya inersia (vsρ) terhadap gaya viskos (μ/l) yang mengkuantifikasikan hubungan kedua gaya tersebut dengan suatu kondisi aliran tertentu. Bilangan

Lebih terperinci

ALIRAN FLUIDA. Kode Mata Kuliah : Oleh MARYUDI, S.T., M.T., Ph.D Irma Atika Sari, S.T., M.Eng

ALIRAN FLUIDA. Kode Mata Kuliah : Oleh MARYUDI, S.T., M.T., Ph.D Irma Atika Sari, S.T., M.Eng ALIRAN FLUIDA Kode Mata Kuliah : 2035530 Bobot : 3 SKS Oleh MARYUDI, S.T., M.T., Ph.D Irma Atika Sari, S.T., M.Eng Apa yang kalian lihat?? Definisi Fluida Definisi yang lebih tepat untuk membedakan zat

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Dinamika fluida adalah salah satu disiplin ilmu yang mengkaji perilaku dari zat cair dan gas dalam keadaan diam ataupun bergerak dan interaksinya dengan benda padat.

Lebih terperinci

1.1 Latar Belakang dan Identifikasi Masalah

1.1 Latar Belakang dan Identifikasi Masalah BAB I PENDAHULUAN Seiring dengan pertumbuhan kebutuhan dan intensifikasi penggunaan air, masalah kualitas air menjadi faktor yang penting dalam pengembangan sumberdaya air di berbagai belahan bumi. Walaupun

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi fluida

BAB II DASAR TEORI. 2.1 Definisi fluida BAB II DASAR TEORI 2.1 Definisi fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

MODEL MATEMATIKA ALIRAN KONVEKSI BEBAS FLUIDA VISKOELASTIK YANG MELEWATI PERMUKAAN SEBUAH BOLA

MODEL MATEMATIKA ALIRAN KONVEKSI BEBAS FLUIDA VISKOELASTIK YANG MELEWATI PERMUKAAN SEBUAH BOLA MODEL MATEMATIKA ALIRAN KONVEKSI BEBAS FLUIDA VISKOELASTIK YANG MELEWATI PERMUKAAN SEBUAH BOLA Wayan Rumite a, Prof. Dr. Basuki Widodo, M.Sc. b, Dr. Chairul Imron, MI.Komp. c a Jurusan Matematika, Fakultas

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1 Proses Perpindahan Panas Konveksi Alamiah dan Peralatan Pengering

BAB II TINJAUAN PUSTAKA. 2.1 Proses Perpindahan Panas Konveksi Alamiah dan Peralatan Pengering BAB II TINJAUAN PUSTAKA 2.1 Proses Perpindahan Panas Konveksi Alamiah dan Peralatan Pengering Prinsip dasar proses pengeringan adalah terjadinya pengurangan kadar air atau penguapan kadar air oleh udara

Lebih terperinci

FENOMENA PERPINDAHAN. LUQMAN BUCHORI, ST, MT JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNDIP

FENOMENA PERPINDAHAN. LUQMAN BUCHORI, ST, MT JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNDIP FENOMENA PERPINDAHAN LUQMAN BUCHORI, ST, MT luqman_buchori@yahoo.com JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNDIP Peristiwa Perpindahan : Perpindahan Momentum Neraca momentum Perpindahan Energy (Panas) Neraca

Lebih terperinci

Analisa Pengaruh Penambahan Rambut dan Serat Pisang Terhadap Nilai Minor Losses pada Pipa Spiral Lengkung

Analisa Pengaruh Penambahan Rambut dan Serat Pisang Terhadap Nilai Minor Losses pada Pipa Spiral Lengkung Analisa Pengaruh Penambahan Rambut dan Serat Pisang Terhadap Nilai Minor Losses pada Pipa Spiral Lengkung Frans Enriko Siregar dan Andhika Bramida H. Departemen Teknik Mesin, FT UI, Kampus UI Depok 16424

Lebih terperinci

ANALISA LAJU ALIRAN FLUIDA PADA MESIN PENGERING KONVEYOR PNEUMATIK DENGAN MENGGUNAKAN SIMULASI CFD

ANALISA LAJU ALIRAN FLUIDA PADA MESIN PENGERING KONVEYOR PNEUMATIK DENGAN MENGGUNAKAN SIMULASI CFD FLYWHEEL: JURNAL TEKNIK MESIN UNTIRTA Homepagejurnal: http://jurnal.untirta.ac.id/index.php/jwl ANALISA LAJU ALIRAN FLUIDA PADA MESIN PENGERING KONVEYOR PNEUMATIK DENGAN MENGGUNAKAN SIMULASI CFD Imron

Lebih terperinci

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat BAB II DASAR TEORI 2.. Perpindahan Panas Perpindahan panas adalah proses berpindahnya energi dari suatu tempat ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat tersebut. Perpindahan

Lebih terperinci

Gambar 2.1 Sebuah modul termoelektrik yang dialiri arus DC. ( https://ferotec.com. (2016). www. ferotec.com/technology/thermoelectric)

Gambar 2.1 Sebuah modul termoelektrik yang dialiri arus DC. ( https://ferotec.com. (2016). www. ferotec.com/technology/thermoelectric) BAB II. TINJAUAN PUSTAKA Modul termoelektrik adalah sebuah pendingin termoelektrik atau sebagai sebuah pompa panas tanpa menggunakan komponen bergerak (Ge dkk, 2015, Kaushik dkk, 2016). Sistem pendingin

Lebih terperinci

Analisa Pengaruh Penambahan Serat Bambu dan Serat Kelapa Terhadap Nilai Minor Losses pada Pipa Spiral Lengkung

Analisa Pengaruh Penambahan Serat Bambu dan Serat Kelapa Terhadap Nilai Minor Losses pada Pipa Spiral Lengkung Analisa Pengaruh Penambahan Serat Bambu dan Serat Kelapa Terhadap Nilai Minor Losses pada Pipa Spiral Lengkung Andhika Bramida H. Departemen Teknik Mesin, FT UI, Kampus UI Depok 16424 Indonesia andhika.bramida@ui.ac.id

Lebih terperinci

Klasifikasi Aliran Fluida (Fluids Flow Classification)

Klasifikasi Aliran Fluida (Fluids Flow Classification) Klasifikasi Aliran Fluida (Fluids Flow Classification) Didasarkan pada tinjauan tertentu, aliran fluida dapat diklasifikasikan dalam beberapa golongan. Dalam ulasan ini, fluida yang lebih banyak dibahas

Lebih terperinci

Pengantar Oseanografi V

Pengantar Oseanografi V Pengantar Oseanografi V Hidro : cairan Dinamik : gerakan Hidrodinamika : studi tentang mekanika fluida yang secara teoritis berdasarkan konsep massa elemen fluida or ilmu yg berhubungan dengan gerak liquid

Lebih terperinci

Aliran Fluida. Konsep Dasar

Aliran Fluida. Konsep Dasar Aliran Fluida Aliran fluida dapat diaktegorikan:. Aliran laminar Aliran dengan fluida yang bergerak dalam lapisan lapisan, atau lamina lamina dengan satu lapisan meluncur secara lancar. Dalam aliran laminar

Lebih terperinci

BAB II Dasar Teori BAB II DASAR TEORI

BAB II Dasar Teori BAB II DASAR TEORI II DSR TEORI 2. Termoelektrik Fenomena termoelektrik pertama kali ditemukan tahun 82 oleh ilmuwan Jerman, Thomas Johann Seebeck. Ia menghubungkan tembaga dan besi dalam sebuah rangkaian. Di antara kedua

Lebih terperinci

Panduan Praktikum 2012

Panduan Praktikum 2012 Percobaan 4 HEAD LOSS (KEHILANGAN ENERGI PADA PIPA LURUS) A. Tujuan Percobaan: 1. Mengukur kerugian tekanan (Pv). Mengukur Head Loss (hv) B. Alat-alat yang digunakan 1. Fluid Friction Demonstrator. Stopwatch

Lebih terperinci

MODUL KULIAH : MEKANIKA FLUIDA DAN HIROLIKA

MODUL KULIAH : MEKANIKA FLUIDA DAN HIROLIKA MODUL KULIAH : MEKANIKA FLUIDA DAN SKS : 3 HIROLIKA Oleh : Acep Hidayat,ST,MT. Jurusan Teknik Perencanaan Fakultas Teknik Perencanaan dan Desain Universitas Mercu Buana Jakarta 2011 MODUL 12 HUKUM KONTINUITAS

Lebih terperinci

KEHILANGAN HEAD ALIRAN AKIBAT PERUBAHAN PENAMPANG PIPA PVC DIAMETER 12,7 MM (0,5 INCHI) DAN 19,05 MM (0,75 INCHI).

KEHILANGAN HEAD ALIRAN AKIBAT PERUBAHAN PENAMPANG PIPA PVC DIAMETER 12,7 MM (0,5 INCHI) DAN 19,05 MM (0,75 INCHI). KEHILANGAN HEAD ALIRAN AKIBAT PERUBAHAN PENAMPANG PIPA PVC DIAMETER 12,7 MM (0,5 INCHI) DAN 19,05 MM (0,75 INCHI). Tugas Akhir, Jurusan Teknik Mesin, Fakultas Teknologi Industri Universitas Gunadarma,,2013

Lebih terperinci

Aplikasi Bilangan Kompleks pada Dinamika Fluida

Aplikasi Bilangan Kompleks pada Dinamika Fluida Aplikasi Bilangan Kompleks pada Dinamika Fluida Evita Chandra (13514034) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,

Lebih terperinci

Klasisifikasi Aliran:

Klasisifikasi Aliran: Klasisifikasi Aliran: 1) Aliran Invisid dan Viskos 2) Aliran kompresibel dan tak kompresible 3) Aliran laminer dan turbulen 4) Aliran steady dan unsteady 5) Aliran seragam dan tak seragam 6) Aliran satu,

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN

BAB IV ANALISA DAN PERHITUNGAN BAB IV ANALISA DAN PERHITUNGAN 4.1. Hot Water Heater Pemanasan bahan bakar dibagi menjadi dua cara, pemanasan yang di ambil dari Sistem pendinginan mesin yaitu radiator, panasnya di ambil dari saluran

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Panas merupakan suatu bentuk energi yang ada di alam. Panas juga merupakan suatu energi yang sangat mudah berpindah (transfer). Transfer panas disebabkan oleh adanya

Lebih terperinci

Distribusi Air Bersih Pada Sistem Perpipaan Di Suatu Kawasan Perumahan

Distribusi Air Bersih Pada Sistem Perpipaan Di Suatu Kawasan Perumahan JURNAL SAINS POMITS Vol. 1, No. 1, 2013 1-6 1 Distribusi Air Bersih Pada Sistem Perpipaan Di Suatu Kawasan Perumahan Annisa Dwi Sulistyaningtyas, Prof. Dr. Basuki Widodo, M.Sc. Jurusan Matematika, Fakultas

Lebih terperinci

SIMULASI PROSES EVAPORASI BLACK LIQUOR DALAM FALLING FILM EVAPORATOR DENGAN ADANYA ALIRAN UDARA

SIMULASI PROSES EVAPORASI BLACK LIQUOR DALAM FALLING FILM EVAPORATOR DENGAN ADANYA ALIRAN UDARA Jurusan Teknik Kimia Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2011 SIMULASI PROSES EVAPORASI BLACK LIQUOR DALAM FALLIN FILM EVAPORATOR DENAN ADANYA ALIRAN UDARA Dosen Pembimbing

Lebih terperinci

SOLUSI NUMERIK DARI PERSAMAAN NAVIER-STOKES

SOLUSI NUMERIK DARI PERSAMAAN NAVIER-STOKES J. Math. and Its Appl. ISSN: 1829-605X Vol. 8, No. 2, November 2011, 9 15 SOLUSI NUMERIK DARI PERSAMAAN NAVIER-STOKES Chairul Imron, Suhariningsih, B. Widodo and T. Yuwono Post Graduate Student of Universitas

Lebih terperinci

BAB II KAJIAN PUSTAKA DAN DASAR TEORI

BAB II KAJIAN PUSTAKA DAN DASAR TEORI BAB II KAJIAN PUSTAKA DAN DASAR TEORI 2.1 Kajian Pustaka Ristiyanto (2003) menyelidiki tentang visualisasi aliran dan penurunan tekanan setiap pola aliran dalam perbedaan variasi kecepatan cairan dan kecepatan

Lebih terperinci

Analisis Aliran Fluida Terhadap Fitting Serta Satuan Panjang Pipa. Nisa Aina Fauziah, Novita Elvianti, dan Verananda Kusuma Ariyanto

Analisis Aliran Fluida Terhadap Fitting Serta Satuan Panjang Pipa. Nisa Aina Fauziah, Novita Elvianti, dan Verananda Kusuma Ariyanto Analisis Aliran Fluida Terhadap Fitting Serta Satuan Panjang Pipa Nisa Aina Fauziah, Novita Elvianti, dan Verananda Kusuma Ariyanto Jurusan teknik kimia fakultas teknik universitas Sultan Ageng Tirtayasa

Lebih terperinci

MEKANIKA FLUIDA. Ferianto Raharjo - Fisika Dasar - Mekanika Fluida

MEKANIKA FLUIDA. Ferianto Raharjo - Fisika Dasar - Mekanika Fluida MEKANIKA FLUIDA Zat dibedakan dalam 3 keadaan dasar (fase), yaitu:. Fase padat, zat mempertahankan suatu bentuk dan ukuran yang tetap, sekalipun suatu gaya yang besar dikerjakan pada benda padat. 2. Fase

Lebih terperinci

JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010

JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010 Latar Belakang Pemasangan Struktur di Pantai Kerusakan Pantai pengangkutan Sedimen Model

Lebih terperinci

LAPORAN HASIL PENELITIAN FUNDAMENTAL JUDUL PENELITIAN

LAPORAN HASIL PENELITIAN FUNDAMENTAL JUDUL PENELITIAN LAPORAN HASIL PENELITIAN FUNDAMENTAL JUDUL PENELITIAN KAJIAN KARAKTERISTIK ALIRAN DAN PERPINDAHAN PANAS KONVEKSI ALAMIAH PADA SALURAN PERSEGI EMPAT BERBELOKAN TAJAM OLEH Prof. DR. Ir. Ahmad Syuhada, M.

Lebih terperinci

2 a) Viskositas dinamik Viskositas dinamik adalah perbandingan tegangan geser dengan laju perubahannya, besar nilai viskositas dinamik tergantung dari

2 a) Viskositas dinamik Viskositas dinamik adalah perbandingan tegangan geser dengan laju perubahannya, besar nilai viskositas dinamik tergantung dari VARIASI JARAK NOZEL TERHADAP PERUAHAN PUTARAN TURIN PELTON Rizki Hario Wicaksono, ST Jurusan Teknik Mesin Universitas Gunadarma ASTRAK Efek jarak nozel terhadap sudu turbin dapat menghasilkan energi terbaik.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Dalam bab ini dibahas tentang dasar-dasar teori yang digunakan untuk mengetahui kecepatan perambatan panas pada proses pasteurisasi pengalengan susu. Dasar-dasar teori tersebut meliputi

Lebih terperinci

TUGAS AKHIR. OLEH : Mochamad Sholikin ( ) DOSEN PEMBIMBING Prof.DR.Basuki Widodo, M.Sc.

TUGAS AKHIR. OLEH : Mochamad Sholikin ( ) DOSEN PEMBIMBING Prof.DR.Basuki Widodo, M.Sc. TUGAS AKHIR KAJIAN KARAKTERISTIK SEDIMENTASI DI PERTEMUAN DUA SUNGAI MENGGUNAKAN METODE MESHLESS LOCAL PETROV- GALERKIN DAN SIMULASI FLUENT OLEH : Mochamad Sholikin (1207 100 056) DOSEN PEMBIMBING Prof.DR.Basuki

Lebih terperinci

RENCANA PEMBELAJARAN (RP) / GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP) E-LEARNING MATA KULIAH FENOMENA TRANSPORT

RENCANA PEMBELAJARAN (RP) / GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP) E-LEARNING MATA KULIAH FENOMENA TRANSPORT RENCANA PEMBELAJARAN (RP) / GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP) E-LEARNING MATA KULIAH FENOMENA TRANSPORT JURUSAN TEKNIK MATERIAL DAN METALURGI FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH

Lebih terperinci

ANALISA ALIRAN DAN TEKANAN PADA BULBOUS BOW DENGAN DIMPLE (CEKUNGAN) MENGGUNAKAN PENDEKATAN CFD

ANALISA ALIRAN DAN TEKANAN PADA BULBOUS BOW DENGAN DIMPLE (CEKUNGAN) MENGGUNAKAN PENDEKATAN CFD ANALISA ALIRAN DAN TEKANAN PADA BULBOUS BOW DENGAN DIMPLE (CEKUNGAN) MENGGUNAKAN PENDEKATAN CFD Oleh Achmad Irfan Santoso 1), Irfan Syarif Arief ST, MT 2), Ir. Toni Bambang Musriyadi, PGD. 2) 1) Mahasiswa

Lebih terperinci

1. BAB I PENDAHULUAN Latar Belakang

1. BAB I PENDAHULUAN Latar Belakang 1. BAB I PENDAHULUAN 1.1. Latar Belakang Sistem merupakan sekumpulan obyek yang saling berinteraksi dan memiliki keterkaitan antara satu obyek dengan obyek lainnya. Dalam proses perkembangan ilmu pengetahuan,

Lebih terperinci

I. PENDAHULUAN. II. DASAR TEORI Materi yang digunakan dalam penelitian ini adalah sebagai berikut:

I. PENDAHULUAN. II. DASAR TEORI Materi yang digunakan dalam penelitian ini adalah sebagai berikut: 1 Pengaruh Laju Aliran Sungai Utama Dan Anak Sungai Terhadap Profil Sedimentasi Di Pertemuan Dua Sungai Model Sinusoidal Yuyun Indah Trisnawati dan Basuki Widodo Matematika, Fakultas Matematika dan Ilmu

Lebih terperinci

FENOMENA PERPINDAHAN LANJUT

FENOMENA PERPINDAHAN LANJUT FENOMENA PERPINDAHAN LANJUT LUQMAN BUCHORI, ST, MT luqman_buchori@yahoo.com DR. M. DJAENI, ST, MEng JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNDIP Peristiwa Perpindahan : Perpindahan Momentum Neraca momentum

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Fluida Fluida diartikan sebagai suatu zat yang dapat mengalir. Istilah fluida mencakup zat cair dan gas karena zat cair seperti air atau zat gas seperti udara dapat mengalir.

Lebih terperinci

Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving

Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving PERPINDAHAN PANAS Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving force/resistensi Proses bisa steady

Lebih terperinci

8. FLUIDA. Materi Kuliah. Staf Pengajar Fisika Fakultas Teknologi Pertanian Universitas Brawijaya

8. FLUIDA. Materi Kuliah. Staf Pengajar Fisika Fakultas Teknologi Pertanian Universitas Brawijaya 8. FLUIDA Staf Pengajar Fisika Fakultas Teknologi Pertanian Universitas Brawijaya Tegangan Permukaan Viskositas Fluida Mengalir Kontinuitas Persamaan Bernouli Materi Kuliah 1 Tegangan Permukaan Gaya tarik

Lebih terperinci

MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA

MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA 13321070 4 Konsep Dasar Mekanika Fluida Fluida adalah zat yang berdeformasi terus menerus selama dipengaruhi oleh suatutegangan geser.mekanika fluida disiplin ilmu

Lebih terperinci

JURNAL TEKNIK ITS Vol. 5, No. 1, (2016) ISSN: ( Print) B13

JURNAL TEKNIK ITS Vol. 5, No. 1, (2016) ISSN: ( Print) B13 B13 Studi Numerik Karakteristik Perpindahan Panas pada Membrane Wall Tube Boiler Dengan Variasi Jenis Material dan Ketebalan Insulasi di PLTU Unit 4 PT.PJB UP Gresik I Nyoman Ari Susastrawan D dan Prabowo.

Lebih terperinci

Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: 2337-3539 (2301-9271 Print) B-204 Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan

BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan BAB I PENDAHULUAN Pada Bab I akan dibahas latar belakang dan permasalahan penulisan tesis. Berdasarkan latar belakang, akan disusun tujuan dan manfaat dari penulisan tesis. Selain itu, literatur-literatur

Lebih terperinci

BAB I PENDAHULUAN. Tabel 1.1 Besaran dan peningkatan rata-rata konsumsi bahan bakar dunia (IEA, 2014)

BAB I PENDAHULUAN. Tabel 1.1 Besaran dan peningkatan rata-rata konsumsi bahan bakar dunia (IEA, 2014) BAB I PENDAHULUAN 1.1 Latar Belakang Di era modern, teknologi mengalami perkembangan yang sangat pesat. Hal ini akan mempengaruhi pada jumlah konsumsi bahan bakar. Permintaan konsumsi bahan bakar ini akan

Lebih terperinci

BUKU RANCANGAN PENGAJARAN

BUKU RANCANGAN PENGAJARAN BUKU RANCANGAN PENGAJARAN Mata Ajaran Termo Disusun oleh : Agus Sunjarianto Pamitran Program Studi Teknik Perkapalan Departemen Teknik Mesin Fakultas Teknik Universitas Indonesia 2016 PENGANTAR Buku Rancangan

Lebih terperinci

Dosen Pembimbing: Dr. Ir. Totok Soehartanto, DEA NIP

Dosen Pembimbing: Dr. Ir. Totok Soehartanto, DEA NIP Pengaruh Getaran Terhadap Pengukuran Kecepatan Aliran Gas Dengan Menggunakan Orifice Plate Oleh: Rizky Primachristi Ryantira Pongdatu 2410100080 Dosen Pembimbing: Dr. Ir. Totok Soehartanto, DEA NIP. 19650309

Lebih terperinci

FENOMENA PERPINDAHAN. LUQMAN BUCHORI, ST, MT JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNDIP

FENOMENA PERPINDAHAN. LUQMAN BUCHORI, ST, MT  JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNDIP FENOMENA PERPINDAHAN LUQMAN BUCHORI, ST, MT luqman_buchori@yahoo.com luqmanbuchori@undip.ac.id JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNDIP Peristiwa Perpindahan : Perpindahan Momentum Neraca momentum Perpindahan

Lebih terperinci

METODE BEDA HINGGA DALAM PENENTUAN DISTRIBUSI TEKANAN, ENTALPI DAN TEMPERATUR RESERVOIR PANAS BUMI FASA TUNGGAL

METODE BEDA HINGGA DALAM PENENTUAN DISTRIBUSI TEKANAN, ENTALPI DAN TEMPERATUR RESERVOIR PANAS BUMI FASA TUNGGAL METODE BEDA HINGGA DALAM PENENTUAN DISTRIBUSI TEKANAN, ENTALPI DAN TEMPERATUR RESERVOIR PANAS BUMI FASA TUNGGAL TUGAS AKHIR Diajukan untuk melengkapi persyaratan dalam menyelesaikan tahap sarjana pada

Lebih terperinci

SILABUS MATAKULIAH. Revisi : 2 Tanggal Berlaku : September Indikator Pokok Bahasan/Materi Strategi Pembelajaran

SILABUS MATAKULIAH. Revisi : 2 Tanggal Berlaku : September Indikator Pokok Bahasan/Materi Strategi Pembelajaran SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : September 2014 A. Identitas 1. Nama Matakuliah : A11.54102/ Fisika I 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer 4. Bobot sks :

Lebih terperinci

Ciri dari fluida adalah 1. Mengalir dari tempat tinggi ke tempat yang lebih rendah

Ciri dari fluida adalah 1. Mengalir dari tempat tinggi ke tempat yang lebih rendah Fluida adalah zat aliar, atau dengan kata lain zat yang dapat mengalir. Ilmu yang mempelajari tentang fluida adalah mekanika fluida. Fluida ada 2 macam : cairan dan gas. Ciri dari fluida adalah 1. Mengalir

Lebih terperinci

4.2 Laminer dan Turbulent Boundary Layer pada Pelat Datar. pada aliran di leading edge karena perubahan kecepatan aliran yang tadinya uniform

4.2 Laminer dan Turbulent Boundary Layer pada Pelat Datar. pada aliran di leading edge karena perubahan kecepatan aliran yang tadinya uniform 4.2 Laminer dan Turbulent Boundary Layer pada Pelat Datar Aliran laminer dan turbulen melintasi pelat datar dapat disimulasikan dengan mengalirkan uniform flow sepanjang pelat (Gambar 4.15). Boundary Layer

Lebih terperinci

Analisis Perbandingan Velocity Dan Shear Stress Perkembangan Boundary Layer Flat Plate Menggunakan Turbulent Model k ε (Standard, Realizable, RNG)

Analisis Perbandingan Velocity Dan Shear Stress Perkembangan Boundary Layer Flat Plate Menggunakan Turbulent Model k ε (Standard, Realizable, RNG) Analisis Perbandingan Velocity Dan Shear Stress Perkembangan Boundary Layer Flat Plate Menggunakan Turbulent Model k ε (Standard, Realizable, RNG) Setyo Hariyadi S.P. 1,2 1 Laboratorium Mekanika dan Mesin

Lebih terperinci

Aliran Turbulen (Turbulent Flow)

Aliran Turbulen (Turbulent Flow) Aliran Turbulen (Turbulent Flow) A. Laminer dan Turbulen Laminer adalah aliran fluida yang ditunjukkan dengan gerak partikelpartikel fluidanya sejajar dan garis-garis arusnya halus. Dalam aliran laminer,

Lebih terperinci

BAB I PENDAHULUAN. kebutuhan utama dalam sektor industri, energi, transportasi, serta dibidang

BAB I PENDAHULUAN. kebutuhan utama dalam sektor industri, energi, transportasi, serta dibidang BAB I PENDAHULUAN 1.1. Latar Belakang Proses pemanasan atau pendinginan fluida sering digunakan dan merupakan kebutuhan utama dalam sektor industri, energi, transportasi, serta dibidang elektronika. Sifat

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Umum Perpindahan panas adalah perpindahan energi yang terjadi pada benda atau material yang bersuhu tinggi ke benda atau material yang bersuhu rendah, hingga tercapainya kesetimbangan

Lebih terperinci

SIMULASI PROSES EVAPORASI BLACK LIQUOR DALAM FALLING FILM EVAPORATOR (FFE) DENGAN ADANYA ALIRAN UDARA DITINJAU DARI PENGARUH ARAH ALIRAN UDARA

SIMULASI PROSES EVAPORASI BLACK LIQUOR DALAM FALLING FILM EVAPORATOR (FFE) DENGAN ADANYA ALIRAN UDARA DITINJAU DARI PENGARUH ARAH ALIRAN UDARA Jurusan Teknik Kimia Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2012 SIMULASI PROSES EVAPORASI BLACK LIQUOR DALAM FALLING FILM EVAPORATOR (FFE) DENGAN ADANYA ALIRAN UDARA

Lebih terperinci

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian 1.1 Tujuan Pengujian WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN a) Mempelajari formulasi dasar dari heat exchanger sederhana. b) Perhitungan keseimbangan panas pada heat exchanger. c) Pengukuran

Lebih terperinci

ANALISIS LAPISAN BATAS ALIRAN DALAM NOSEL STUDI KASUS: NOSEL RX 122

ANALISIS LAPISAN BATAS ALIRAN DALAM NOSEL STUDI KASUS: NOSEL RX 122 ANALISIS LAPISAN BATAS ALIRAN DALAM NOSEL STUDI KASUS: NOSEL RX 122 Ahmad Jamaludin Fitroh, Saeri Peneliti Pustekwagan, LAPAN Email : ahmad_fitroh@yahoo.com ABSTRACT The simulation and calculation of boundary

Lebih terperinci

Muchammad 1) Abstrak. Kata kunci: Pressure drop, heat sink, impingement air cooled, saluran rectangular, flow rate.

Muchammad 1) Abstrak. Kata kunci: Pressure drop, heat sink, impingement air cooled, saluran rectangular, flow rate. ANALISA PRESSURE DROP PADA HEAT-SINK JENIS LARGE EXTRUDE DENGAN VARIASI KECEPATAN UDARA DAN LEBAR SALURAN IMPINGEMENT MENGGUNAKAN CFD (COMPUTATIONAL FLUID DYNAMIC) Muchammad 1) Abstrak Pressure drop merupakan

Lebih terperinci

PENGARUH JARAK SUMBER JET TERHADAP TEMPERATUR DINDING SELINDER

PENGARUH JARAK SUMBER JET TERHADAP TEMPERATUR DINDING SELINDER PENGARUH JARAK SUMBER JET TERHADAP TEMPERATUR DINDING SELINDER Kaprawi (1) (1) Jurusan Teknik Mesin Fakultas Teknik Unsri Jl. Raya Palembang-Prabumulih Km.3 Inderalaya 366 E-mail : kaprawis@yahoo.com Ringkasan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Hukum Kekekalan Massa Hukum kekekalan massa atau dikenal juga sebagai hukum Lomonosov- Lavoiser adalah suatu hukum yang menyatakan massa dari suatu sistem tertutup akan konstan

Lebih terperinci

BAB II LANDASAN TEORI. bisa mengalami perubahan bentuk secara kontinyu atau terus-menerus bila terkena

BAB II LANDASAN TEORI. bisa mengalami perubahan bentuk secara kontinyu atau terus-menerus bila terkena BAB II LANDASAN TEORI 2.1 Mekanika Fluida Mekanika fluida adalah subdisiplin dari mekanika kontinyu yang mempelajari tentang fluida (dapat berupa cairan dan gas). Fluida sendiri merupakan zat yang bisa

Lebih terperinci

Analisis variasi jarak pembuluh terhadap unjuk kerja kondensor

Analisis variasi jarak pembuluh terhadap unjuk kerja kondensor Jurnal Ilmiah eknik Mesin CAKRAM Vol. 1 No. 1, Desember 007 (36 41) Analisis variasi jarak pembuluh terhadap unjuk kerja kondensor AAIAS Komala Dewi (1) & IGK Sukadana () (1),() Jurusan eknik Mesin,. Fakutas

Lebih terperinci

Studi Numerik Karakteristik Separasi dan Reattachment Aliran Di Belakang Gundukan (BUMP) Setengah Lingkaran. Setyo Hariyadi S.P. 1

Studi Numerik Karakteristik Separasi dan Reattachment Aliran Di Belakang Gundukan (BUMP) Setengah Lingkaran. Setyo Hariyadi S.P. 1 Studi Numerik Karakteristik Separasi dan Reattachment Aliran Di Belakang Gundukan (BUMP) Setengah Lingkaran Setyo Hariyadi S.P. 1 1) Program Studi Teknik Pesawat Udara, Politeknik Penerbangan Surabaya

Lebih terperinci

SIMULASI PROSES EVAPORASI NIRA DALAM FALLING FILM EVAPORATOR DENGAN ADANYA ALIRAN UDARA

SIMULASI PROSES EVAPORASI NIRA DALAM FALLING FILM EVAPORATOR DENGAN ADANYA ALIRAN UDARA SIMUASI PROSES EVAPORASI NIRA DAAM FAING FIM EVAPORATOR DENGAN ADANYA AIRAN UDARA Oleh : Ratih Triwulandari 2308 100 509 Riswanti Zawawi 2308 100 538 Pembimbing : Prof. Dr. Ir. Kusno Budhikarjono, MT Dr.

Lebih terperinci

BAB I PENDAHULUAN. 1 Universitas Indonesia. Analisa aliran berkembang..., Iwan Yudi Karyono, FT UI, 2008

BAB I PENDAHULUAN. 1 Universitas Indonesia. Analisa aliran berkembang..., Iwan Yudi Karyono, FT UI, 2008 BAB I PENDAHULUAN 1.1 LATAR BELAKANG Suatu sistem transfer fluida dari suatu tempat ke tempat lain biasanya terdiri dari pipa,valve,sambungan (elbow,tee,shock dll ) dan pompa. Jadi pipa memiliki peranan

Lebih terperinci

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian METODOLOGI PENELITIAN Waktu dan Tempat Penelitian Penelitian ini telah dilaksanakan dari bulan Januari hingga November 2011, yang bertempat di Laboratorium Sumber Daya Air, Departemen Teknik Sipil dan

Lebih terperinci

BAB IV PENGOLAHAN DATA

BAB IV PENGOLAHAN DATA BAB IV PENGOLAHAN DATA 4.1 Penentuan Data Uncertainty Dalam setiap penelitian, pengambilan data merupakan hal yang penting. Namun yang namanya kesalahan pengambilan data selalu ada. Kesalahan tersebut

Lebih terperinci