MAKALAH PERPINDAHAN PANAS SECARA KONVEKSI

Ukuran: px
Mulai penontonan dengan halaman:

Download "MAKALAH PERPINDAHAN PANAS SECARA KONVEKSI"

Transkripsi

1 MAKALAH PERPINDAHAN PANAS SECARA KONVEKSI Disusun oleh : Eka Febri Wulandari Arif Sudaryanto Ervina Rosanita Rohmah Bagas Darmawan Dosen : Prof. Dr. Ir. Soeprijanto, M.Sc DEPARTEMEN TEKNIK KIMIA INDUSTRI FAKULTAS VOKASI INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA

2 2017 KATA PENGANTAR Puji syukur kami panjatkan kehadirat Allah Swt yang telah memberikan rahmat serta hidayah kepada kita semua, sehingga berkat karunia-nya kami dapat menyelesaikan makalah dengan judul Makalah Perpindahan Panas Secara Konveksi. Makalah ini merupakan salah satu tugas pada mata kuliah perpindahan panas dan massa. Penyusun mengucapkan terima kasih kepada semua pihak yang telah membantu dalam menyelesaikan tugas makalah ini. Penyusun menyadari bahwa makalah ini masih banyak kekurangan dan jauh dari kesempurnaan. Untuk itu penyusun masih mengharapkan kritik dan saran yang bersifat membangun guna penyempurnaan makalah di masa datang. Kami berharap semoga makalah ini dapat bermanfaat bagi penulis sendiri maupun kepada pembaca pada umumnya. Kami menyadari bahwa makalah ini jauh dari kesempurnaan. Oleh karena itu, kami berharap kritik dan saran dari pembaca yang bersifat membangun untuk makalah ini. Surabaya, 20 Maret 2017 Penyusun

3 BAB I PENDAHULUAN I.1 Latar Belakang Perpindahan kalor dari suatu zat ke zat lain seringkali terjadi dalam industri proses. Pada kebanyakan pengerjaan, diperlukan pemasukan atau pengeluaran kalor, untuk mencapai dan mempertahankan keadaan yang dibutuhkan sewaktu proses berlangsung. Kondisi pertama yaitu mencapai keadaan yang dibutuhkan untuk pengerjaan, terjadi umpamanya bila pengerjaan harus berlangsung pada suhu tertentu dan suhu ini harus dicapai dengan jalan pemasukan atau pengeluaran kalor. Kondisi kedua yaitu mempertahankan keadaan yang dibutuhkan untuk operasi proses, terdapat pada pengerjaan eksoterm dan endoterm. Disamping perubahan secara kimia, keadaan ini dapat juga merupakan pengerjaan secara alami. Dengan demikian, Pada pengembunan dan penghabluran (kristalisasi) kalor harus dikeluarkan. Pada penguapan dan pada umumnya juga pada pelarutan, kalor harus dimasukkan. Hukum alam menyatakan bahwa kalor adalah suatu bentuk energi. Bila dalam suatu sistem terdapat gradien suhu, atau bila dua sistem yang suhunya berbeda disinggungkan,maka akan terjadi perpindahan energi. Proses ini disebut sebagai perpindahan panas (Heat Transfer). Dari titik pandang teknik (engineering), Analisa perpindahan panas dapat digunakan untuk menaksir biaya, kelayakan, dan besarnya peralatan yang diperlukan untuk memindahkan sejumlah panas tertentu dalam waktu yang ditentukan. Dalam perpindahan panas, sebagaimana dalam cabang-cabang keteknikan lainnya, penyelesaian yang baik terhadap suatu soal memerlukan asumsi (pengandaian) dan idealisasi. Hampir tidak mungkin menguraikan gejala fisik secara tepat, dan untuk merumuskan suatu soal dalam bentuk persamaan yang dapat diselesaikan kita perlu mengadakan beberapa pengira-iraan (approximation). Bila panas berpindah dari suatu fluida ke dinding, seperti misalnya didalam ketel, maka kerak terbentuk pada pengoperasian yang terus menerus dan akan mengurangi laju aliran panas. Untuk menjamin pengoprasian yang memuaskan dalam jangka waktu yang lama, maka harus ditrapkan faktor keamanan untuk mengatasi kemungkinan ini. Dalam perpindahan panas ada tiga jenis perpindahan panas yaitu perpindahan panas dengan cara konduksi, konveksi, dan radiasi. I.2 Rumusan Masalah 1. Apakah pengertian dari perpindahan panas secara konveksi? 2. Bagaimana proses perpindahan panas secara konveksi? I.3 Tujuan 1. Untuk mengetahui pengertian dari perpindahan panas secara konveksi. 2. Untuk mengetahui proses perpindahan panas secara konveksi.

4 BAB II PEMBAHASAN II.1 Pengertian Perpindahan Panas Perpindahan panas antara suatu permukaan padat dan suatu fluida berlangsung secara konveksi. Konveksi panas dapat dihitung dengan persamaan pendinginan Newton: dimana : q = Kalor yang dipindahkan h = Koefisien perpindahan kalor secara konveksi A = Luas bidang permukaan perpindahan panas T= Temperatur Tanda minus (-) digunakan untuk memenuhi hukum II thermodinamika, sedangkan panas yang dipindahkan selalu mempunyai tanda positif (+). Persamaan diatas mendefinisikan tahanan panas terhadap konveksi. Koefisien pindah panas permukaan h, bukanlah suatu sifat zat, akan tetapi menyatakan besarnya laju pindah panas di daerah dekat pada permukaan itu. Fluks Kalor: Adalah laju perpindahan panas persatuan luas (q/a). Fluks kalor boleh didasarkan atas luas permukaan luar atau dalam pipa. Suhu arus rata-rata: Adalah suhu yang dicapai apabila keseluruhan fluida yang mengalir melalui penampang itu dikeluarkan lalu dicampur secara adiabatic Koefisien perpindahan kalor menyeluruh: Jika terjadi konduksi dan konveksi secara berturutan, maka berbagai tahanan panas yang tersangkut dapat dijumlahkan untuk memperoleh koefisien pindah panas keseluruhan U. Persamaan perpindahan panas menjadi T h = suhu fluida panas T c Th Tc A U A =suhu fluida dingin = gaya dorong atau beda suhu lokal menyeluruh = luas permukaan dalam/luar pipa = koefisien pindah panas keseluruhan berdasarkan A = faktor proporsionalitas antara q/a dan T

5 Jika A = Ao, luas permukaan luar tabung, maka U = Uo, koefisien yang didasarkan atas luas permukaan luar II.2 Perpindahan Panas Secara Konveksi Perpindahan kalor dengan jalan aliran dalam industri kimia merupakan cara pengangkutan kalor yang paling banyak dipakai. Oleh karena konveksi hanya dapat terjadi melalui zat yang mengalir, maka bentuk pengangkutan ka1or ini hanya terdapat pada zat cair dan gas. Pada pemanasan zat ini terjadi aliran, karena masa yang akan dipanaskan tidak sekaligus di bawa kesuhu yang sama tinggi. Oleh karena itu bagian yang paling banyak atau yang pertama dipanaskan memperoleh masa jenis yang lebih kecil daripada bagian masa yang lebih dingin. Sebagai akibatnya terjadi sirkulasi, sehingga kalor akhimya tersebar pada seluruh zat. Konveksi adalah proses perpindahan kalor dari satu bagian fluida ke bagian lain fluida oleh pergerakan fluida itu sendiri. Konveksi dibedakan menjadi dua jenis, yaitu konveksi alamiah dan konveksi paksa. Konveksi alamiah merupakan pergerakan fluida yang terjadi akibat perbedaan massa jenis. Bagian fluida yang menerima kalor/dipanasi memuai dan massa jenisnya menjadi lebihkecil, sehingga bergerak ke atas. Kemudian tempatnya akan digantikan oleh bagian fluida dingin yang jatuh ke bawah karenamassanya jenisnya lebih besar. Sedangkan pada konveksi paksa, fluida yang telah dipanasi akan langsung diarahkan tujuannya oleh sebuah blower atau pompa. Gambar 1.3. Perpindahan panas konveksi. (a) konveksi paksa, (b) konveksi alamiah, (c) pendidihan, (d) kondensasi Pada perpindahan kalor secara konveksi, energi kalor ini akan dipindahkan ke sekelilingnya dengan perantaraan aliran fluida. Oleh karena pengaliran fluida

6 melibatkan pengangkutan masa, maka selama pengaliran fluida bersentuhan dengan permukaan bahan yang panas, suhu fluida akan naik. Gerakan fluida melibatkan kecepatan yang seterusnya akan menghasilkan aliran momentum. Jadi masa fluida yang mempunyai energi terma yang lebih tinggi akan mempunyai momentum yang juga tinggi. Peningkatan momentum ini bukan disebabkan masanya akan bertambah. Malahan masa fluida menjadi berkurang karena kini fluida menerima energi kalor. Fluida yang panas karena menerima kalor dari permukaan bahan akan naik ke atas. Kekosongan tempat masa bendalir yang telah naik itu diisi pula oleh masa fluida yang bersuhu rendah. Setelah masa ini juga menerima energi kalor dari permukan bahan yang kalor dasi, masa ini juga akan naik ke atas permukaan meninggalkan tempat asalnya. Kekosongan ini diisi pula oleh masa fluida bersuhu renah yang lain. Proses ini akan berlangsung berulang-ulang. Dalam kedua proses konduksi dan konveksi, faktor yang paling penting yang menjadi penyebab dan pendorong proses tersebut adalah perbedaan suhu. Apabila perbedaan suhu.terjadi maka keadaan tidak stabil terma akan terjadi. Keadaan tidak stabil ini perlu diselesaikan melalui proses perpindahan kalor. Dalam pengamatan proses perpindahan kalor konveksi, masalah yang utama terletak pada cara mencari metode penentuan nilai h dengan tepat. Nilai koefisien ini tergantung kepada banyak faktor. Jumlah kalor yang dipindahkan, bergantung pada nilai h. Jika cepatan medan tetap, artinya tidak ada pengaruh luar yang mendoromg fluida bergerak, maka proses perpindahan ka1or berlaku. Sedangkan bila kecepatan medan dipengaruhi oleh unsur luar seperti kipas atau peniup, maka proses konveksi yang akan terjadi merupakan proses perpindahan kalor konveksi paksa. Yang membedakan kedua proses ini adalah dari nilai koefisien h-nya. Besarnya konveksi dipengaruhi oleh : 1. Luas permukaan benda yang bersinggungan dengan fluida (A). 2. Perbedaan suhu antara permukaan benda dengan fluida ((T). 3. Koefisien konveksi (h), yang tergantung pada : a. viscositas fluida b. kecepatan fluida c. perbedaan temperatur antara permukaan dan fluida d. kapasitas panas fluida e. rapat massa fluida f. bentuk permukaan kontak Berdasarkan gaya penyebab terjadinya arus aliran fluida, konveksi dapat diklasifikasikan menjadi konveksi bebas/alamiah dan konveksi paksa.

7 Gambar 2.4 Ilustrasi aliran fiuda pada konveksi alamiah dan paksa Konveksi alamiah terjadi karena ada arus yang mengalir akibat gaya apung, sedangkan gaya apung terjadi karena ada perbedaan densitas fluida tanpa dipengaruhi gaya dari luar sistem. Perbedaan densitas fluida terjadi karena adanya gradien suhu pada fluida. Contoh konveksi alamiah antara lain aliran udara yang melintasi radiator panas [McCabe,1993]. Pada perbatasan suatu permukaan dan suatu fluida akan terjadi perpindahan panas secara konduksi dan konveksi. Biasanya temperatur permukaan itu cukup tinggi untuk menimbulkan pula radiasi. Tanpa adanya aliran yang dipaksakan terhadap fluida, maka sekitar permukaan akan terjadi konveksi secara alamiah. Perbedaan temperatur antara bagian-bagian fluida menyebabkan perbedaan densiti dan karena itu timbul gerakan dan aliran dalam fluida. Aliran alamiah ini memperbesar perpindahan panas yang semula sampai tercapai keadaan yang tecap. Cara perpindahan panas semacam ini disebut konveksi alamiah atau konveksi bebas. Besarnya koefisien perpindahan panas harus didapat dari hasil percobaan. Banyak penyelidikan telah dilakukan untuk menentukan koefisien pindah panas itu. Jika berbagai hasil penyelidikan itu dikumpulkan, ternyata dapat diperoleh persamaan empiris dalam bilangan-bilangan tanpa dimensi, salah satu di antaranya adalah bilangan Grashof, yang dibuat untuk menunjukkan sifat- sifat konveksi bebas. Hasil percobaan itu sering juga dinyatakan sebagai nomogram (alignment chart) atau grafik.

8 Persamaan empiris dan nomogram itu dapat dipakai guna memperkirakan koefisien perpindahan panas untuk konveksi bebas. Karena terdapat berbagai persamaan dan nomogram, maka haruslah dicari yang keadaan sistemnya sama dengan sistem yang sedang ditinjau. II.3 Aliran Viskositas Gaya gaya viskos biasanya diterangkan dengan tegangan geer (shear stress) antara lapisan lapisan fluida. Jika tegangan ini dianggap berbanding dengan gradient kecepatan (velocity gradient) normal, maka kita dapatkan persamaan dasar untuk viskositas, Pada permulaan, pembentukan lapisan batas itu laminar, tetapi pada suatu jarak kritis ditepi depan, bergantung dari medan aliran dan sifat sifat fluida, gangguan gangguan kecil pada aliran itu membesar dan mulailah terjadi proses transisi hingga aliran menjadi turbulen. Dengan aliran turbulen dapat digambarkan sebagai kecocokan rambang dimana gumpalan fluida bergerak ke sana ke mari disegala arah. Transisi dari aliran laminar menjadi turbulen terjadi apabila Dimana : X = kecepatan aliran bebas = jarak dari tepi depan V = = viskositas kinematik Pengelompokkan khas diatas disebut angka Reynolds dan angka ini tak berdimensi apabila untuk semua sifat sifat diatas digunakan perangkat satuan yang konsisten; Angka Reynolds digunakan sebagai criteria untuk menunjukkan apakah aliran dalam tabung atau pipa itu laminar atau turbulen. Untuk Aliran itu biasa turbulen. Pada daerah transisi terdapat suatu jangkau angka Reynolds, yang bergantung dari kekasaran pia dan kehalusan aliran. Jangkau transis yang biasa digunakan ialah Walaupun dalam kondisi yang dikendalikan ketat dalam laboratorium aliran laminar masih bias didapatkan pada angka Reynolds Hubungan kontinuitas untuk aliran satu dimensi dalam tabung ialah

9 Dimana : m = laju aliran massa A = kecepatan rata rata = luas penampang II.4 Lapisan Batas Laminar pada Plat Rata Kita terapkan hokum kedua Newton tentang gerak, Dimana ΣFx = tambahan fluks momentum pada arah x Fluks momentum pada arah x ialah hasil perkalian aliran massa melalui satu sis tertentu dari volume kendali dan komponen x kecepatan pada titik itu. Massa yang masuk dari muka kiri unsure itu persatuan waktu ialah Jika kita andaikan satu satuan kedalaman pada arah z. jadi momentum, masuk pada muka kiri per satuan waktu ialah Dan momentum yang keluar dari muka kanan ialah Aliran massa yang masuk dari muka adalah Aliran massa keluar darim muka atas ialah Neraca massa pada unsure itu memberikan Atau Persamaan diatas ialah persamaan kontiunuitas, untuk lapisan batas. Momentum pada arah x yang masuk melalui muka bawah adalah Ρvu dx Dan momentum pada arah x yang keluar dari muka atas ialah Bagi kita hanya momentum pada arah x yang penting, karena gaya yang menjadi perhatian kiata dalah analisa ini adalah gaya pada arah x. gaya ini adalah gaya gaya yang disebabkan oleh geser viskos dan gaya tekanan pada unsure. Gaya tekanan pada

10 muka kiri adalah ρ dy, dan pada muka kanan adalah gaya tekanan netto pada arah gerakan adalah, sehingga Gaya geser viskos pada muka bawah adalah Dan gaya geser pada muka atas Gaya geser viskos netto pada arah gerakan ialah jumlah kedua gaya di atas: Gaya geser-viskos neto = µ Dengan menyamakan jumlah gaya geser-viskos dan gaya tekanan dengan perpindahan momentum pada arah x, kita dapatkan µ = ρ 2 dy ρu 2 dy + disederhanakan, dengan menggunakan persamaan kontinuitas dan mengabaikan diffrensial orde kedua, kita dapat Persamaan diatas ialah persamaan momentum untuk lapisan batas laminar dengan sifat sifat tetap. Persamaan ini dapat diselsaikan secara eksak untuk berbagai kondisi batas, dan para pembaca. Penyelesaian eksak persamaan laju lapisan batas menghasilkan II.5 Proses Perpindahan Panas Konveksi Alamiah dan Peralatan Pengering Prinsip dasar proses pengeringan adalah terjadinya pengurangan kadar air atau penguapan kadar air oleh udara karena perbedaan kandungan uap air antara udara sekeliling dan bahan yang dikeringkan. Penguapan ini terjadi karena kandungan air diudara mempunyai kelembapan yang cukup rendah. Pada saat proses pengeringan, akan berlangsung beberapa proses yaitu: 1. Proses perpindahan massa, proses perpindahan massa uap air atau pengalihan kelembapan dari permukaan bahan kesekeliling udara.

11 2. Proses perpindahan panas, akibat penambahan (perpindahan) energi panas terjadilah proses penguapan air dari dalam bahan ke permukaan bahan atau proses perubahan fasa cair menjadi fasa uap. Kedua proses tersebut diatas dilakukan dengan cara menurunkan Kelembapan relatif udara dengan mengalirkan udara panas disekeliling bahan sehingga tekanan uap air bahan lebih besar dari tekanan uap air di udara sekeliling bahan yang di keringkan.perbedaan tekanan ini meneyebabkan terjadinya aliran uap air dari bahan keudara luar. Untuk meningkatkan perbedaantekanan udara antara permukaan bahan dengan udara sekelilingnya dapat dilakukan dengan memanaskan udara yang dihembuskan ke bahan. Makin panas udara yang dihembuskan mengelilingi bahan, maka banyak pula uap air yang dapat di ttarik oleh udara panas pengering. Energi panas yang berasal dari hasil pembakaran menyebabkan naiknya temperature ruang pembakaran. Karena adanya perbedaan temperatur antara ruang pembakaran dengan lemari pengering, maka terjadi perpindahan panas konveksi alamiah didalam alat pengering. Udara panas didalam lemari pengeriingg mempunyai densitas yang lebih kecil dari udara panas diruang pembakaran sehingga terjadi aliran udara. Cara perpindahan panas konveksi erat kaitannya dengan gerakan atau aliran fluida. Salah satu segi analisa yang paling penting adalah mengetahui apakah aliran fluida tersebut laminar atau turbulen. Dalam aliran laminar, aliran dari garis aliran (streamline) bergerak dalam lapisan-lapisan, dengan masing- masing partikel fluida mengikuti lintasan yang lancar serta malar (kontiniu). Partikel fluida tersebut tetap pada urutan yang teratur tanpa saling mendahului. Sebagai kebalikan dari gerakan laminar, gerakan partikel fluida dalam aliran turbulen berbentuk zig-zag dan tidak teratur. Kedua jenis aliran ini memberikan pengaruh yang besar terhadap perpindahan panas konveksi. Bila suatu fluida mengalir secrara laminar sepanjang suatu permukaan yang mempunyai suhu berbeda dengan suhu fluida, maka perpindahan panas terjadi dengan konduksi molekulardalam fluida maupun bidang antara (interface) fluida dan permukaan. Sebaliknya dalam aliran turbulen mekanisme konduksi diubah dan dibantu oleh banyak sekali pusaran-pusaran (eddies) yang membawa gumpalan fluida melintasi garis aliran. Partikel-partikel iniberperan sebagai pembawa energy dan memindahkan energi dengan cara bercampur dengan partikel fluida tersebut. Karena itu, kenaikan laju pencampuran (atau turbulensi) akan juga menaikkan laju perpindahan panas dengan cara konveksi Untuk menganalisa distribusi temperatur dan laju perpindahan panas pada peralatan pngeringan, diperlukan neraca energi disamping analisis dinamika fluida dan analisi lapisan batas yang terjadi. Setelah kiat melakukan neraca energi terhadap sistem aliran itu, dan kita tentukan pengaruh aliran itu tehadap beda temperatur dalam fluida maka distribusi temperature dan laju perpindahan panas dari permukaan yang dipanaskan ke fluida yang ada diatasnya dapat diketahui. Keseimbangan energi panas dapat dilihat dalam rumusan berikut:

12 Qudout = mudcpdt = Qin = mairlhair Perpindahan panas konveksi dinyatakan dalam bentuk: Qkonveksi = hc.a.dt Pada sistem konveksi bebas dikenal suatu variable tak berdimensi baru yang sangat penting dalam penyelesaian semua persoalan konveksi alami, yaitu angka Grashof Gr yang peranannya sama dengan peranan angka Reynolds dalam sistem konveksi paksa, didefinisikan sebagai perbandingan antara gaya apung dengan gaya viskositas di dalam sistem aliran konveksi alami. Grƒ = Dimana koefisien muai volume β untuk gas ideal, β = 1/T Koefisien perpindahan panas konveksi bebas rata-rata untuk berbagai situasi dapat dinyatakan dalam bentuk fungsi: ƒ = = C (GrƒPrƒ) m dimana subscrip f menunjukkan bahwa semua sifat-sifat fisik harus di evaluasi pada suhu film, Tƒ = Produk perkalian antara angka grashof dan angka prandtl disebut angka Rayleigh: Ra = Gr. Pr II.6 Konveksi Bebas dan Aliran Fluida Pada Plat Miring Orientasi kemiringan pelat apakh permukaannya menghadap atas atau ke bawah merupakan salah satu factor yang mempengaruhi bilangan nusselt.untuk membuat perbedaan ini Fuji dan Imura memberikan tanda sudut seperti yang ditunjukkan pada gambar 2.1 sebagai berikut : 1. Sudut adalah negatif jika permukaan panas menghadap ke atas. 2. Sudut adalah positif jika permukaan panas menghadap ke bawah. Menurut Fuji dan Imura untuk plat miring dengan permukaan panas menghadap ke bawah pada jangkauan + < 80 C ;10 5 < Gr.Pr < bentuk korelasinya adalah : Nu=0.56 (GrL.Pr cos) 1/4

13 Gambar 2.1 Konsep Positif dan Negative pada Plat Miring Untuk plat dengan kemiringan kecil (88 < < 90 ) dan permukaan panas menghadap ke bawah maka persamaannya : Nu=0,58 (GrL.Pr) 1/5 Untuk plat miring dengan permukaan panas menghadap ke atas dalam jangkauan GrL.Pr <10 11 ;GrL > Grc ; dan -15 < < -75 bentuk korelasinya adalah Nu=0.145 [(GrL.Pr) 1/3 -(Grc.Pr) 1/3 ]+0,56 (Grc.Pr cos ) 1/4 Untuk plat miring,panas (atau dingin ) relative terhadap temperatur fluida, plat sejajar dengan vector gravitasi,dan gaya apung yang terjadi menyebabkan garakan fluida ke atas atau ke bawah. Bagaimanapun, jika platnya membentuk sudut terhadap gravitasi,gaya apung mempunyai komponen normal terhadap permukaan plat. Dengan adanya pengurangan gaya apung yang paralel terhadap plat,dan juga terjadi penurunan kecepatan fluida sepanjang plat,dan bisa diperkirakan bahwa juga terjadi penurunan pada perpindahan panas konveksi. Tetapi penurunan itu terjadi apakah perpindahan panasnya berasal dari atas ataau bawah permukaan dari plat. II.7 Konveksi Bebas dan Aliran Fluida Pada Plat Vertikal Ketika suatu plat rata vertical dipanaskan maka akan akan terbentuklah suatu lapisan batas konveksi bebas, Profil kecepatan pada lapisan batas ini tidak seperti profil kecepatan pada lapisan batas konveksi paksa.pada gambar 2.2 dapat dilihat profil kecepatan pada lapisan batas ini,dimana pada dinding,kecepataan adalah nol,karena terdapat kondisi tanpa gelincir (no-slip); kecepatan itu bertambah terus sampaai mencapai nilai maksimum,dan kemudian menurun lagi hingga nol pada tepi lapisan batas.perkembangan awal lapisan batas adalah laminar,tetapi suatu jarak tertentu dari tepi depan,bergantung pada sifat-sifat fluida dan beda suhu antara dinding dan lingkungan,terbentuklah pusaran-pusaran ke lapisan batas turbulen pun mulailah terjadi.selanjutnya,pada jarak lebih jauh pada plat itu lapisan batas menjadi turbulen sepenuhnya.

14 Mc.Adams mengkorelasikan nilai Nusselt rata-rata dengan bentuk : = =C(GrL.Pr) n Konstanta C ditentukan pada tabel 2.1 Sifat-sifat fisik Dievaluasi pada suhu film Tƒ.Untuk perkalian antara bilangan Grashof dengan bilangan Prandtl disebut dengan bilangan Rayleigh (Ra) yaitu : RaL = GrL.Pr =

POLITEKNIK NEGERI SRIWIJAYA

POLITEKNIK NEGERI SRIWIJAYA Makalah Perpindahan Panas Konveksi Alamiah OLEH: Kelompok 1 1. Almira Fadhillah 2. Fahmi Lidin 3. Devita Septiani Putri Kelas: 4 KA Dosen Pembimbing: Ir. Aida Syarief, M.T POLITEKNIK NEGERI SRIWIJAYA KATA

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1 Proses Perpindahan Panas Konveksi Alamiah dan Peralatan Pengering

BAB II TINJAUAN PUSTAKA. 2.1 Proses Perpindahan Panas Konveksi Alamiah dan Peralatan Pengering BAB II TINJAUAN PUSTAKA 2.1 Proses Perpindahan Panas Konveksi Alamiah dan Peralatan Pengering Prinsip dasar proses pengeringan adalah terjadinya pengurangan kadar air atau penguapan kadar air oleh udara

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. 2.1 Proses Perpindahan Panas Konveksi Alamiah dalam Peralatan Pengeringan

BAB 2 TINJAUAN PUSTAKA. 2.1 Proses Perpindahan Panas Konveksi Alamiah dalam Peralatan Pengeringan 134 BAB 2 TINJAUAN PUSTAKA 2.1 Proses Perpindahan Panas Konveksi Alamiah dalam Peralatan Pengeringan Prinsip dasar proses pengeringan adalah terjadinya pengurangan kadar air atau penguapan kadar air oleh

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Gambar 2.1 Bagian-bagian model alat pengering Keterangan : 1. Cerobong 2. Dinding 3. Ruang pengering 4. Ruang pembakaran 5. Rak pengering 6. Jendela pengarah 7. Saluran awal 8.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Dasar Perpindahan Kalor Perpindahan kalor terjadi karena adanya perbedaan suhu, kalor akan mengalir dari tempat yang suhunya tinggi ke tempat suhu rendah. Perpindahan

Lebih terperinci

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS 2.1 Konsep Dasar Perpindahan Panas Perpindahan panas dapat terjadi karena adanya beda temperatur antara dua bagian benda. Panas akan mengalir dari

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN

BAB IV ANALISA DAN PERHITUNGAN BAB IV ANALISA DAN PERHITUNGAN 4.1. Hot Water Heater Pemanasan bahan bakar dibagi menjadi dua cara, pemanasan yang di ambil dari Sistem pendinginan mesin yaitu radiator, panasnya di ambil dari saluran

Lebih terperinci

BAB IV PRINSIP-PRINSIP KONVEKSI

BAB IV PRINSIP-PRINSIP KONVEKSI BAB IV PRINSIP-PRINSIP KONVEKSI Aliran Viscous Berdasarkan gambar 1 dan, aitu aliran fluida pada pelat rata, gaa viscous dijelaskan dengan tegangan geser τ diantara lapisan fluida dengan rumus: du τ µ

Lebih terperinci

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat BAB II DASAR TEORI 2.. Perpindahan Panas Perpindahan panas adalah proses berpindahnya energi dari suatu tempat ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat tersebut. Perpindahan

Lebih terperinci

Perpindahan Panas Konveksi. Perpindahan panas konveksi bebas pada plat tegak, datar, dimiringkan,silinder dan bola

Perpindahan Panas Konveksi. Perpindahan panas konveksi bebas pada plat tegak, datar, dimiringkan,silinder dan bola Perpindahan Panas Konveksi Perpindahan panas konveksi bebas pada plat tegak, datar, dimiringkan,silinder dan bola Pengantar KONDUKSI PERPINDAHAN PANAS KONVEKSI RADIASI Perpindahan Panas Konveksi Konveksi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar

BAB II TINJAUAN PUSTAKA. Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar BAB NJAUAN PUSAKA Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar 150.000.000 km, sangatlah alami jika hanya pancaran energi matahari yang mempengaruhi dinamika atmosfer

Lebih terperinci

ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK

ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK Diajukan untuk memenuhi salah satu persyaratan menyelesaikan Program Strata Satu (S1) pada program Studi Teknik Mesin Oleh N a m a : CHOLID

Lebih terperinci

LAPORAN HASIL PENELITIAN FUNDAMENTAL JUDUL PENELITIAN

LAPORAN HASIL PENELITIAN FUNDAMENTAL JUDUL PENELITIAN LAPORAN HASIL PENELITIAN FUNDAMENTAL JUDUL PENELITIAN KAJIAN KARAKTERISTIK ALIRAN DAN PERPINDAHAN PANAS KONVEKSI ALAMIAH PADA SALURAN PERSEGI EMPAT BERBELOKAN TAJAM OLEH Prof. DR. Ir. Ahmad Syuhada, M.

Lebih terperinci

PENGARUH SUDUT ATAP CEROBONG TERHADAP DISTRIBUSI TEMPERATUR PADA RUANG PENGERING BERTINGKAT DAN KARAKTERISTIK PERPINDAHAN PANAS

PENGARUH SUDUT ATAP CEROBONG TERHADAP DISTRIBUSI TEMPERATUR PADA RUANG PENGERING BERTINGKAT DAN KARAKTERISTIK PERPINDAHAN PANAS PENGARUH SUDUT ATAP CEROBONG TERHADAP DISTRIBUSI TEMPERATUR PADA RUANG PENGERING BERTINGKAT DAN KARAKTERISTIK PERPINDAHAN PANAS Nawawi Juhan 1 1 Jurusan Teknik Mesin, Politeknik Negeri Lhokseumawe *Email:

Lebih terperinci

Gambar 2.1 Sebuah modul termoelektrik yang dialiri arus DC. ( https://ferotec.com. (2016). www. ferotec.com/technology/thermoelectric)

Gambar 2.1 Sebuah modul termoelektrik yang dialiri arus DC. ( https://ferotec.com. (2016). www. ferotec.com/technology/thermoelectric) BAB II. TINJAUAN PUSTAKA Modul termoelektrik adalah sebuah pendingin termoelektrik atau sebagai sebuah pompa panas tanpa menggunakan komponen bergerak (Ge dkk, 2015, Kaushik dkk, 2016). Sistem pendingin

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Umum Mesin pendingin atau kondensor adalah suatu alat yang digunakan untuk memindahkan panas dari dalam ruangan ke luar ruangan. Adapun sistem mesin pendingin yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Logam adalah unsur kimia yang mempunyai sifat-sifat kuat, liat, keras,

BAB II TINJAUAN PUSTAKA. Logam adalah unsur kimia yang mempunyai sifat-sifat kuat, liat, keras, BAB II TINJAUAN PUSTAKA 2.1 Material Logam adalah unsur kimia yang mempunyai sifat-sifat kuat, liat, keras, penghantar listrik dan panas, serta mempunyai titik cair tinggi. Bijih logam ditemukan dengan

Lebih terperinci

KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa

KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa ALIRAN STEDY MELALUI SISTEM PIPA Persamaan kontinuitas Persamaan Bernoulli

Lebih terperinci

I. Pendahuluan. A. Latar Belakang. B. Rumusan Masalah. C. Tujuan

I. Pendahuluan. A. Latar Belakang. B. Rumusan Masalah. C. Tujuan I. Pendahuluan A. Latar Belakang Dalam dunia industri terdapat bermacam-macam alat ataupun proses kimiawi yang terjadi. Dan begitu pula pada hasil produk yang keluar yang berada di sela-sela kebutuhan

Lebih terperinci

REYNOLDS NUMBER K E L O M P O K 4

REYNOLDS NUMBER K E L O M P O K 4 REYNOLDS NUMBER K E L O M P O K 4 P A R A M I T A V E G A A. T R I S N A W A T I Y U L I N D R A E K A D E F I A N A M U F T I R I Z K A F A D I L L A H S I T I R U K A Y A H FAKULTAS PERIKANAN DAN ILMU

Lebih terperinci

BAB II KAJIAN PUSTAKA DAN DASAR TEORI

BAB II KAJIAN PUSTAKA DAN DASAR TEORI BAB II KAJIAN PUSTAKA DAN DASAR TEORI 2.1 Kajian Pustaka Ristiyanto (2003) menyelidiki tentang visualisasi aliran dan penurunan tekanan setiap pola aliran dalam perbedaan variasi kecepatan cairan dan kecepatan

Lebih terperinci

BAB II Dasar Teori BAB II DASAR TEORI

BAB II Dasar Teori BAB II DASAR TEORI II DSR TEORI 2. Termoelektrik Fenomena termoelektrik pertama kali ditemukan tahun 82 oleh ilmuwan Jerman, Thomas Johann Seebeck. Ia menghubungkan tembaga dan besi dalam sebuah rangkaian. Di antara kedua

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. BAB I PENDAHULUAN I.1. Latar Belakang Penggunaan energi surya dalam berbagai bidang telah lama dikembangkan di dunia. Berbagai teknologi terkait pemanfaatan energi surya mulai diterapkan pada berbagai

Lebih terperinci

I PENDAHULUAN. Pemikiran, dan (6) Tempat dan Waktu Penelitian. bakery oven. Perangkat khusus yang digunakan untuk memanggang produk pastry

I PENDAHULUAN. Pemikiran, dan (6) Tempat dan Waktu Penelitian. bakery oven. Perangkat khusus yang digunakan untuk memanggang produk pastry I PENDAHULUAN Bab ini akan menguraikan mengenai : (1) Latar Belakang Penelitian, (2) Tujuan Penelitian, (3) Identifikasi Masalah, (4) Manfaat Penelitian, (5) Kerangka Pemikiran, dan (6) Tempat dan Waktu

Lebih terperinci

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor BAB II DASAR TEORI 2.1 Pasteurisasi Pasteurisasi ialah proses pemanasan bahan makanan, biasanya berbentuk cairan dengan temperatur dan waktu tertentu dan kemudian langsung didinginkan secepatnya. Proses

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Thermosiphon Reboiler adalah reboiler, dimana terjadi sirkulasi fluida

BAB II TINJAUAN PUSTAKA. Thermosiphon Reboiler adalah reboiler, dimana terjadi sirkulasi fluida BAB II TINJAUAN PUSTAKA 2.1. Thermosiphon Reboiler Thermosiphon Reboiler adalah reboiler, dimana terjadi sirkulasi fluida yang akan didihkan dan diuapkan dengan proses sirkulasi almiah (Natural Circulation),

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Proses Perpindahan Kalor Perpindahan panas adalah ilmu untuk memprediksi perpindahan energi yang terjadi karena adanya perbedaan suhu diantara benda atau material. Perpindahan

Lebih terperinci

Rumus bilangan Reynolds umumnya diberikan sebagai berikut:

Rumus bilangan Reynolds umumnya diberikan sebagai berikut: Dalam mekanika fluida, bilangan Reynolds adalah rasio antara gaya inersia (vsρ) terhadap gaya viskos (μ/l) yang mengkuantifikasikan hubungan kedua gaya tersebut dengan suatu kondisi aliran tertentu. Bilangan

Lebih terperinci

Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving

Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving PERPINDAHAN PANAS Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving force/resistensi Proses bisa steady

Lebih terperinci

LAPORAN TUGAS AKHIR MODIFIKASI KONDENSOR SISTEM DISTILASI ETANOL DENGAN MENAMBAHKAN SISTEM SIRKULASI AIR PENDINGIN

LAPORAN TUGAS AKHIR MODIFIKASI KONDENSOR SISTEM DISTILASI ETANOL DENGAN MENAMBAHKAN SISTEM SIRKULASI AIR PENDINGIN LAPORAN TUGAS AKHIR MODIFIKASI KONDENSOR SISTEM DISTILASI ETANOL DENGAN MENAMBAHKAN SISTEM SIRKULASI AIR PENDINGIN Disusun oleh: BENNY ADAM DEKA HERMI AGUSTINA DONSIUS GINANJAR ADY GUNAWAN I8311007 I8311009

Lebih terperinci

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian METODOLOGI PENELITIAN Waktu dan Tempat Penelitian Penelitian ini telah dilaksanakan dari bulan Januari hingga November 2011, yang bertempat di Laboratorium Sumber Daya Air, Departemen Teknik Sipil dan

Lebih terperinci

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3 BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi fluida

BAB II DASAR TEORI. 2.1 Definisi fluida BAB II DASAR TEORI 2.1 Definisi fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 10 BAB II LANDASAN TEORI 2.1 PSIKROMETRI Psikrometri adalah ilmu yang mengkaji mengenai sifat-sifat campuran udara dan uap air yang memiliki peranan penting dalam menentukan sistem pengkondisian udara.

Lebih terperinci

KARYA AKHIR PERANCANGAN MODEL ALAT PENGERING KUNYIT

KARYA AKHIR PERANCANGAN MODEL ALAT PENGERING KUNYIT KARYA AKHIR PERANCANGAN MODEL ALAT PENGERING KUNYIT UNTUK MEMENUHI PERSYARATAN MEMPEROLEH GELAR SARJANA SAINS TERAPAN Disusun Oleh: MARULI TUA SITOMPUL NIM : 005202022 PROGRAM STUDI TEKNOLOGI MEKANIK INDUSTRI

Lebih terperinci

PERPINDAHAN PANAS DAN MASSA

PERPINDAHAN PANAS DAN MASSA DIKTAT KULIAH PERPINDAHAN PANAS DAN MASSA JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS DARMA PERSADA 009 DIKTAT KULIAH PERPINDAHAN PANAS DAN MASSA Disusun : ASYARI DARAMI YUNUS Jurusan Teknik Mesin,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Hukum Kekekalan Massa Hukum kekekalan massa atau dikenal juga sebagai hukum Lomonosov- Lavoiser adalah suatu hukum yang menyatakan massa dari suatu sistem tertutup akan konstan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi Fluida

BAB II DASAR TEORI. 2.1 Definisi Fluida BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antarmolekul

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1 Pengaruh Elemen Meteorologi Untuk Irigasi. tanah dalam rangkaian proses siklus hidrologi.

BAB II TINJAUAN PUSTAKA. 2.1 Pengaruh Elemen Meteorologi Untuk Irigasi. tanah dalam rangkaian proses siklus hidrologi. BAB II TINJAUAN PUSTAKA 2.1 Pengaruh Elemen Meteorologi Untuk Irigasi Sosrodarsono, (1978) dalam perencanaan saluran irigasi harus memperhatikan beberapa aspek yang mempengaruhi proses irigasi diantaranya

Lebih terperinci

PERPINDAHAN PANAS Hukum kekekalan energi menyatakan bahwa energi tidak musnah yaitu seperti hukum asas yang lain, contohnya hukum kekekalan masa dan

PERPINDAHAN PANAS Hukum kekekalan energi menyatakan bahwa energi tidak musnah yaitu seperti hukum asas yang lain, contohnya hukum kekekalan masa dan PERPINDAHAN PANAS Hukum kekekalan energi menyatakan bahwa energi tidak musnah yaitu seperti hukum asas yang lain, contohnya hukum kekekalan masa dan momentum, ini artinya kalor tidak hilang. Energi hanya

Lebih terperinci

PENGARUH KONSENTRASI LARUTAN, KECEPATAN ALIRAN DAN TEMPERATUR ALIRAN TERHADAP LAJU PENGUAPAN TETESAN (DROPLET) LARUTAN AGAR AGAR SKRIPSI

PENGARUH KONSENTRASI LARUTAN, KECEPATAN ALIRAN DAN TEMPERATUR ALIRAN TERHADAP LAJU PENGUAPAN TETESAN (DROPLET) LARUTAN AGAR AGAR SKRIPSI PENGARUH KONSENTRASI LARUTAN, KECEPATAN ALIRAN DAN TEMPERATUR ALIRAN TERHADAP LAJU PENGUAPAN TETESAN (DROPLET) LARUTAN AGAR AGAR SKRIPSI Oleh IRFAN DJUNAEDI 04 04 02 040 1 PROGRAM STUDI TEKNIK MESIN DEPARTEMEN

Lebih terperinci

/ Teknik Kimia TUGAS 1. MENJAWAB SOAL 19.6 DAN 19.8

/ Teknik Kimia TUGAS 1. MENJAWAB SOAL 19.6 DAN 19.8 Faris Razanah Zharfan 1106005225 / Teknik Kimia TUGAS 1. MENJAWAB SOAL 19.6 DAN 19.8 19.6 Air at 27 o C (80.6 o F) and 60 percent relative humidity is circulated past 1.5 cm-od tubes through which water

Lebih terperinci

/ Teknik Kimia TUGAS 1. MENJAWAB SOAL 19.6 DAN 19.8

/ Teknik Kimia TUGAS 1. MENJAWAB SOAL 19.6 DAN 19.8 Faris Razanah Zharfan 06005225 / Teknik Kimia TUGAS. MENJAWAB SOAL 9.6 DAN 9.8 9.6 Air at 27 o C (80.6 o F) and 60 percent relative humidity is circulated past.5 cm-od tubes through which water is flowing

Lebih terperinci

SIMULASI PROSES EVAPORASI BLACK LIQUOR DALAM FALLING FILM EVAPORATOR DENGAN ADANYA ALIRAN UDARA

SIMULASI PROSES EVAPORASI BLACK LIQUOR DALAM FALLING FILM EVAPORATOR DENGAN ADANYA ALIRAN UDARA Jurusan Teknik Kimia Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2011 SIMULASI PROSES EVAPORASI BLACK LIQUOR DALAM FALLIN FILM EVAPORATOR DENAN ADANYA ALIRAN UDARA Dosen Pembimbing

Lebih terperinci

MEKANISME PENGERINGAN By : Dewi Maya Maharani. Prinsip Dasar Pengeringan. Mekanisme Pengeringan : 12/17/2012. Pengeringan

MEKANISME PENGERINGAN By : Dewi Maya Maharani. Prinsip Dasar Pengeringan. Mekanisme Pengeringan : 12/17/2012. Pengeringan MEKANISME By : Dewi Maya Maharani Pengeringan Prinsip Dasar Pengeringan Proses pemakaian panas dan pemindahan air dari bahan yang dikeringkan yang berlangsung secara serentak bersamaan Konduksi media Steam

Lebih terperinci

ALIRAN FLUIDA. Kode Mata Kuliah : Oleh MARYUDI, S.T., M.T., Ph.D Irma Atika Sari, S.T., M.Eng

ALIRAN FLUIDA. Kode Mata Kuliah : Oleh MARYUDI, S.T., M.T., Ph.D Irma Atika Sari, S.T., M.Eng ALIRAN FLUIDA Kode Mata Kuliah : 2035530 Bobot : 3 SKS Oleh MARYUDI, S.T., M.T., Ph.D Irma Atika Sari, S.T., M.Eng Apa yang kalian lihat?? Definisi Fluida Definisi yang lebih tepat untuk membedakan zat

Lebih terperinci

Laporan Praktikum Operasi Teknik Kimia I Efflux Time BAB I PENDAHULUAN

Laporan Praktikum Operasi Teknik Kimia I Efflux Time BAB I PENDAHULUAN Page 1 BAB I PENDAHULUAN I.1. Latar Belakang Penggunaan efflux time dalam dunia industri banyak dijumpai pada pemindahan fluida dari suatu tempat ke tempat yang lain dengan pipa tertutup serta tangki sebagai

Lebih terperinci

Gambar 1 Open Kettle or Pan

Gambar 1 Open Kettle or Pan JENIS-JENIS EVAPORATOR 1. Open kettle or pan Prinsip kerja: Bentuk evaporator yang paling sederhana adalah bejana/ketel terbuka dimana larutan didihkan. Sebagai pemanas biasanya steam yang mengembun dalam

Lebih terperinci

ANALISIS PENGARUH PERPINDAHAN PANAS TERHADAP KARAKTERISTIK LAPISAN BATAS PADA PELAT DATAR

ANALISIS PENGARUH PERPINDAHAN PANAS TERHADAP KARAKTERISTIK LAPISAN BATAS PADA PELAT DATAR ANALISIS PENGARUH PERPINDAHAN PANAS TERHADAP KARAKTERISTIK LAPISAN BATAS PADA PELAT DATAR Oleh: 1) Umrowati, 2) Prof. DR. Basuki Widodo, M.Sc, 3) Drs. Kamiran, M.Si Jurusan Matematika Fakultas Matematika

Lebih terperinci

TRANSFER MOMENTUM FLUIDA DINAMIK

TRANSFER MOMENTUM FLUIDA DINAMIK TRANSFER MOMENTUM FLUIDA DINAMIK Fluida dinamik adalah fluida dalam keadaan bergerak atau mengalir. Syarat bagi fluida untuk mengalir adalah adanya perbedaan besar gaya antara dua titik yang dijalani oleh

Lebih terperinci

FENOMENA PERPINDAHAN. LUQMAN BUCHORI, ST, MT JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNDIP

FENOMENA PERPINDAHAN. LUQMAN BUCHORI, ST, MT JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNDIP FENOMENA PERPINDAHAN LUQMAN BUCHORI, ST, MT luqman_buchori@yahoo.com JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNDIP Peristiwa Perpindahan : Perpindahan Momentum Neraca momentum Perpindahan Energy (Panas) Neraca

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan perpindahan energi yang terjadi karena adanya perbedaan suhu di antara benda atau material.

Lebih terperinci

Aliran Fluida. Konsep Dasar

Aliran Fluida. Konsep Dasar Aliran Fluida Aliran fluida dapat diaktegorikan:. Aliran laminar Aliran dengan fluida yang bergerak dalam lapisan lapisan, atau lamina lamina dengan satu lapisan meluncur secara lancar. Dalam aliran laminar

Lebih terperinci

LAPORAN PRAKTIKUM KONVEKSI PADA ZAT CAIR

LAPORAN PRAKTIKUM KONVEKSI PADA ZAT CAIR LAPORAN PRAKTIKUM KONVEKSI PADA ZAT CAIR I. TUJUAN PERCOBAAN Menyelidiki peristiwa konveksi di dalam zat cair. II. ALAT DAN BAHAN Pembakar Spritus Statif 4 buah Korek api Tabung konveksi Serbuk teh Air

Lebih terperinci

SUHU DAN KALOR DEPARTEMEN FISIKA IPB

SUHU DAN KALOR DEPARTEMEN FISIKA IPB SUHU DAN KALOR DEPARTEMEN FISIKA IPB Pendahuluan Dalam kehidupan sehari-hari sangat banyak didapati penggunaan energi dalambentukkalor: Memasak makanan Ruang pemanas/pendingin Dll. TUJUAN INSTRUKSIONAL

Lebih terperinci

Pengaruh Variasi Putaran Dan Debit Air Terhadap Efektifitas Radiator

Pengaruh Variasi Putaran Dan Debit Air Terhadap Efektifitas Radiator Pengaruh Variasi Putaran Dan Debit Air Terhadap Efektifitas Radiator Nur Robbi Program Studi Teknik Mesin Fakultas Teknik Universitas Islam Malang Jl. MT Haryono 193 Malang 65145 E-mail: nurrobbift@gmail.com

Lebih terperinci

MEKANIKA FLUIDA BAB I

MEKANIKA FLUIDA BAB I BAB I I.1 Pendahuluan Hidraulika berasal dari kata hydor dalam bahasa Yunani yang berarti air. Dengan demikian ilmu hidraulika dapat didefinisikan sebagai cabang dari ilmu teknik yang mempelajari prilaku

Lebih terperinci

PENDINGIN TERMOELEKTRIK

PENDINGIN TERMOELEKTRIK BAB II DASAR TEORI 2.1 PENDINGIN TERMOELEKTRIK Dua logam yang berbeda disambungkan dan kedua ujung logam tersebut dijaga pada temperatur yang berbeda, maka akan ada lima fenomena yang terjadi, yaitu fenomena

Lebih terperinci

PENGARUH VARIASI FLOW DAN TEMPERATUR TERHADAP LAJU PENGUAPAN TETESAN PADA LARUTAN AGAR-AGAR SKRIPSI

PENGARUH VARIASI FLOW DAN TEMPERATUR TERHADAP LAJU PENGUAPAN TETESAN PADA LARUTAN AGAR-AGAR SKRIPSI PENGARUH VARIASI FLOW DAN TEMPERATUR TERHADAP LAJU PENGUAPAN TETESAN PADA LARUTAN AGAR-AGAR SKRIPSI Oleh ILHAM AL FIKRI M 04 04 02 037 1 PROGRAM STUDI TEKNIK MESIN DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Pendinginan Mesin Motor bakar dalam operasionalnya menghasilkan panas yang berasal dari pembakaran bahan bakar dalm silinder. Panas yang di hasilkan tidak di buang akibatnya

Lebih terperinci

UJI EKSPERIMENTAL PENGARUH PERUBAHAN TEMPERATUR LORONG UDARA TERHADAP KOEFISIEN PERPINDAHAN PANAS KONVEKSI PELAT DATAR

UJI EKSPERIMENTAL PENGARUH PERUBAHAN TEMPERATUR LORONG UDARA TERHADAP KOEFISIEN PERPINDAHAN PANAS KONVEKSI PELAT DATAR UJI EKSPERIMENTAL PENGARUH PERUBAHAN TEMPERATUR LORONG UDARA TERHADAP KOEFISIEN PERPINDAHAN PANAS KONVEKSI PELAT DATAR Jotho *) ABSTRAK Perpindahan panas dapat berlangsung melalui salah satu dari tiga

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Radiator Radiator memegang peranan penting dalam mesin otomotif (misal mobil). Radiator berfungsi untuk mendinginkan mesin. Pembakaran bahan bakar dalam silinder mesin menyalurkan

Lebih terperinci

FENOMENA PERPINDAHAN LANJUT

FENOMENA PERPINDAHAN LANJUT FENOMENA PERPINDAHAN LANJUT LUQMAN BUCHORI, ST, MT luqman_buchori@yahoo.com DR. M. DJAENI, ST, MEng JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNDIP Peristiwa Perpindahan : Perpindahan Momentum Neraca momentum

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA 2.1 PENDAHULUAN Pengeringan (drying) adalah pemisahan sejumlah air dari suatu benda atau objek yang didalamnya terdapat kandungan air, sehingga benda atau objek tersebut kandungan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Proses evaporasi telah dikenal sejak dahulu, yaitu untuk membuat garam dengan cara menguapkan air dengan bantuan energi matahari dan angin. Evaporasi adalah salah satu

Lebih terperinci

Aliran Turbulen (Turbulent Flow)

Aliran Turbulen (Turbulent Flow) Aliran Turbulen (Turbulent Flow) A. Laminer dan Turbulen Laminer adalah aliran fluida yang ditunjukkan dengan gerak partikelpartikel fluidanya sejajar dan garis-garis arusnya halus. Dalam aliran laminer,

Lebih terperinci

BAB II TINJAUAN PUSTAKA Tinjauan tentang aplikasi sistem pengabutan air di iklim kering

BAB II TINJAUAN PUSTAKA Tinjauan tentang aplikasi sistem pengabutan air di iklim kering 15 BAB II TINJAUAN PUSTAKA 2.1. Tinjauan Pustaka 2.1.1. Tinjauan tentang aplikasi sistem pengabutan air di iklim kering Sebuah penelitian dilakukan oleh Pearlmutter dkk (1996) untuk mengembangkan model

Lebih terperinci

PENDEKATAN TEORI ... (2) k x ... (3) 3... (1)

PENDEKATAN TEORI ... (2) k x ... (3) 3... (1) PENDEKATAN TEORI A. Perpindahan Panas Perpindahan panas didefinisikan seagai ilmu umtuk meramalkan perpindahan energi yang terjadi karena adanya peredaan suhu diantara enda atau material (Holman,1986).

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Hasil Dalam penelitian pengeringan kerupuk dengan menggunakan alat pengering tipe tray dengan media udara panas. Udara panas berasal dari air keluaran ketel uap yang sudah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas Perpindahan kalor adalah ilmu yang mempelajari berpindahnya suatu energi (berupa kalor) dari suatu sistem ke sistem lain karena adanya perbedaan temperatur.

Lebih terperinci

FENOMENA PERPINDAHAN. LUQMAN BUCHORI, ST, MT JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNDIP

FENOMENA PERPINDAHAN. LUQMAN BUCHORI, ST, MT  JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNDIP FENOMENA PERPINDAHAN LUQMAN BUCHORI, ST, MT luqman_buchori@yahoo.com luqmanbuchori@undip.ac.id JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNDIP Peristiwa Perpindahan : Perpindahan Momentum Neraca momentum Perpindahan

Lebih terperinci

BAB II LANDASAN TEORI. panas. Karena panas yang diperlukan untuk membuat uap air ini didapat dari hasil

BAB II LANDASAN TEORI. panas. Karena panas yang diperlukan untuk membuat uap air ini didapat dari hasil BAB II LANDASAN TEORI II.1 Teori Dasar Ketel Uap Ketel uap adalah pesawat atau bejana yang disusun untuk mengubah air menjadi uap dengan jalan pemanasan, dimana energi kimia diubah menjadi energi panas.

Lebih terperinci

MEKANIKA FLUIDA. Ferianto Raharjo - Fisika Dasar - Mekanika Fluida

MEKANIKA FLUIDA. Ferianto Raharjo - Fisika Dasar - Mekanika Fluida MEKANIKA FLUIDA Zat dibedakan dalam 3 keadaan dasar (fase), yaitu:. Fase padat, zat mempertahankan suatu bentuk dan ukuran yang tetap, sekalipun suatu gaya yang besar dikerjakan pada benda padat. 2. Fase

Lebih terperinci

MENGAMATI ARUS KONVEKSI, MEMBANDINGKAN ENERGI PANAS BENDA, PENYEBAB KENAIKAN SUHU BENDA DAN PENGUAPAN

MENGAMATI ARUS KONVEKSI, MEMBANDINGKAN ENERGI PANAS BENDA, PENYEBAB KENAIKAN SUHU BENDA DAN PENGUAPAN MENGAMATI ARUS KONVEKSI, MEMBANDINGKAN ENERGI PANAS BENDA, PENYEBAB KENAIKAN SUHU BENDA DAN PENGUAPAN A. Pendahuluan 1. Latar Belakang Dalam kehidupan sehari-hari kita sering tidak menyadari mengapa es

Lebih terperinci

VI. DASAR PERANCANGAN BIOREAKTOR. Kompetensi: Setelah mengikuti kuliah mahasiswa dapat membuat dasar rancangan bioproses skala laboratorium

VI. DASAR PERANCANGAN BIOREAKTOR. Kompetensi: Setelah mengikuti kuliah mahasiswa dapat membuat dasar rancangan bioproses skala laboratorium VI. DASAR PERANCANGAN BIOREAKTOR Kompetensi: Setelah mengikuti kuliah mahasiswa dapat membuat dasar rancangan bioproses skala laboratorium A. Strategi perancangan bioreaktor Kinerja bioreaktor ditentukan

Lebih terperinci

TUGAS AKHIR PERCOBAAN KUALITAS ETHYLENE DAN AIR PADA ALAT PERPINDAHAN PANAS DENGAN SIMULASI ALIRAN FLUIDA

TUGAS AKHIR PERCOBAAN KUALITAS ETHYLENE DAN AIR PADA ALAT PERPINDAHAN PANAS DENGAN SIMULASI ALIRAN FLUIDA PERCOBAAN KUALITAS ETHYLENE DAN AIR PADA ALAT PERPINDAHAN PANAS DENGAN SIMULASI ALIRAN FLUIDA Diajukan Guna Melengkapi Sebagian Syarat Dalam Mencapai Gelar Sarjana Strata Satu (S1) Disusun Oleh : Nama

Lebih terperinci

Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik TAMBA GURNING NIM SKRIPSI

Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik TAMBA GURNING NIM SKRIPSI KAJIAN EKSPERIMENTAL PENGARUH INTENSITAS CAHAYA DAN LAJU ALIRAN TERHADAP EFISIENSI TERMAL DENGAN MENGGUNAKAN SOLAR ENERGY DEMONSTRATION TYPE LS-17055-2 DOUBLE SPOT LIGHT SKRIPSI Skripsi Yang Diajukan Untuk

Lebih terperinci

BAB II DASAR TEORI. gesekan antara moekul-molekul cairan satu dengan yang lain. Suatu cairan yang

BAB II DASAR TEORI. gesekan antara moekul-molekul cairan satu dengan yang lain. Suatu cairan yang BAB II DASAR TEORI 2.1. Definisi Viskositas Viskositas dapat dinyatakan sebagai tahanan aliran fluida yang merupakan gesekan antara moekul-molekul cairan satu dengan yang lain. Suatu cairan yang mudah

Lebih terperinci

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi. Syarat Memperoleh Gelar Sarjana Teknik BINSAR T. PARDEDE NIM DEPARTEMEN TEKNIK MESIN

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi. Syarat Memperoleh Gelar Sarjana Teknik BINSAR T. PARDEDE NIM DEPARTEMEN TEKNIK MESIN UJI EKSPERIMENTAL OPTIMASI LAJU PERPINDAHAN KALOR DAN PENURUNAN TEKANAN AKIBAT PENGARUH LAJU ALIRAN UDARA PADA ALAT PENUKAR KALOR JENIS RADIATOR FLAT TUBE SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: ( Print) B-192

JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: ( Print) B-192 JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: 2337-3539 (2301-9271 Print) B-192 Studi Numerik Pengaruh Baffle Inclination pada Alat Penukar Kalor Tipe Shell and Tube terhadap Aliran Fluida dan Perpindahan

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Definisi Fluida Aliran fluida atau zat cair (termasuk uap air dan gas) dibedakan dari benda padat karena kemampuannya untuk mengalir. Fluida lebih mudah mengalir karena ikatan molekul

Lebih terperinci

Masalah aliran fluida dalam PIPA : Sistem Terbuka (Open channel) Sistem Tertutup Sistem Seri Sistem Parlel

Masalah aliran fluida dalam PIPA : Sistem Terbuka (Open channel) Sistem Tertutup Sistem Seri Sistem Parlel Konsep Aliran Fluida Masalah aliran fluida dalam PIPA : Sistem Terbuka (Open channel) Sistem Tertutup Sistem Seri Sistem Parlel Hal-hal yang diperhatikan : Sifat Fisis Fluida : Tekanan, Temperatur, Masa

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan Pengeringan adalah proses mengurangi kadar air dari suatu bahan [1]. Dasar dari proses pengeringan adalah terjadinya penguapan air ke udara karena perbedaan kandungan

Lebih terperinci

PENGARUH KOEFISIEN PERPINDAHANKALOR KONVEKSI DAN BAHAN TERHADAP LAJU ALIRAN KALOR, EFEKTIVITAS DAN EFISIENSI SIRIP DUA DIMENSI KEADAAN TAK TUNAK

PENGARUH KOEFISIEN PERPINDAHANKALOR KONVEKSI DAN BAHAN TERHADAP LAJU ALIRAN KALOR, EFEKTIVITAS DAN EFISIENSI SIRIP DUA DIMENSI KEADAAN TAK TUNAK i PENGARUH KOEFISIEN PERPINDAHANKALOR KONVEKSI DAN BAHAN TERHADAP LAJU ALIRAN KALOR, EFEKTIVITAS DAN EFISIENSI SIRIP DUA DIMENSI KEADAAN TAK TUNAK TUGAS AKHIR Untuk memenuhi sebagian persyaratan Memperoleh

Lebih terperinci

BAB IV KONVEKSI PAKSA ALIRAN UDARA PIPA HORIZONTAL

BAB IV KONVEKSI PAKSA ALIRAN UDARA PIPA HORIZONTAL BAB IV KONVEKSI PAKSA ALIRAN UDARA PIPA HORIZONTAL 4.1 PENDAHULUAN Cara perpindahan panas konveksi erat kaitannya dengan gerakan atau aliran fluida. Salah satu segi analisa yang paling penting adalah mengetahui

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 ALAT PENGKONDISIAN UDARA Alat pengkondisian udara merupakan sebuah mesin yang secara termodinamika dapat memindahkan energi dari area bertemperatur rendah (media yang akan

Lebih terperinci

Soal Suhu dan Kalor. Jawablah pertanyaan-pertanyaan di bawah ini dengan benar!

Soal Suhu dan Kalor. Jawablah pertanyaan-pertanyaan di bawah ini dengan benar! Soal Suhu dan Kalor Jawablah pertanyaan-pertanyaan di bawah ini dengan benar! 1.1 termometer air panas Sebuah gelas yang berisi air panas kemudian dimasukkan ke dalam bejana yang berisi air dingin. Pada

Lebih terperinci

MODUL PRAKTIKUM SATUAN OPERASI II

MODUL PRAKTIKUM SATUAN OPERASI II MODUL PRAKTIKUM SATUAN OPERASI II PROGRAM STUDI TEKNOLOGI HASIL PERTANIAN JURUSAN TEKNOLOGI PERTANIAN FAKULTAS PERTANIAN UNIVERSITAS SRIWIJAYA I. PENGERINGAN A. PENDAHULUAN Pengeringan adalah proses pengeluaran

Lebih terperinci

Ciri dari fluida adalah 1. Mengalir dari tempat tinggi ke tempat yang lebih rendah

Ciri dari fluida adalah 1. Mengalir dari tempat tinggi ke tempat yang lebih rendah Fluida adalah zat aliar, atau dengan kata lain zat yang dapat mengalir. Ilmu yang mempelajari tentang fluida adalah mekanika fluida. Fluida ada 2 macam : cairan dan gas. Ciri dari fluida adalah 1. Mengalir

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN

BAB IV ANALISA DAN PERHITUNGAN 56 BAB IV ANALISA DAN PERHITUNGAN 4.1 Analisa Varian Prinsip Solusi Pada Varian Pertama dari cover diikatkan dengan tabung pirolisis menggunakan 3 buah toggle clamp, sehingga mudah dan sederhana dalam

Lebih terperinci

BAB II TEORI DASAR 2.1 Perancangan Sistem Penyediaan Air Panas Kualitas Air Panas Satuan Kalor

BAB II TEORI DASAR 2.1 Perancangan Sistem Penyediaan Air Panas Kualitas Air Panas Satuan Kalor 4 BAB II TEORI DASAR.1 Perancangan Sistem Penyediaan Air Panas.1.1 Kualitas Air Panas Air akan memiliki sifat anomali, yaitu volumenya akan mencapai minimum pada temperatur 4 C dan akan bertambah pada

Lebih terperinci

Konsep Dasar Pendinginan

Konsep Dasar Pendinginan PENDAHULUAN Perkembangan siklus refrigerasi dan perkembangan mesin refrigerasi (pendingin) merintis jalan bagi pertumbuhan dan penggunaan mesin penyegaran udara (air conditioning). Teknologi ini dimulai

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA 2.1 Mesin Pendingin Mesin pendingin adalah suatu peralatan yang digunakan untuk mendinginkan air, atau peralatan yang berfungsi untuk memindahkan panas ke suatu tempat yang temperaturnya

Lebih terperinci

KATA PENGANTAR. Tangerang, 24 September Penulis

KATA PENGANTAR. Tangerang, 24 September Penulis KATA PENGANTAR Puji serta syukur kami panjatkan atas kehadirat Allah SWT, karena dengan rahmat dan ridhonya kami bisa menyelesaikan makalah yang kami beri judul suhu dan kalor ini tepat pada waktu yang

Lebih terperinci

steady/tunak ( 0 ) tidak dipengaruhi waktu unsteady/tidak tunak ( 0) dipengaruhi waktu

steady/tunak ( 0 ) tidak dipengaruhi waktu unsteady/tidak tunak ( 0) dipengaruhi waktu Konduksi Tunak-Tak Tunak, Persamaan Fourier, Konduktivitas Termal, Sistem Konduksi-Konveksi dan Koefisien Perpindahan Kalor Menyeluruh Marina, 006773263, Kelompok Kalor dapat berpindah dari satu tempat

Lebih terperinci

2 yang mempunyai posisi vertikal sama akan mempunyai tekanan yang sama. Laju Aliran Volume Laju aliran volume disebut juga debit aliran (Q) yaitu juml

2 yang mempunyai posisi vertikal sama akan mempunyai tekanan yang sama. Laju Aliran Volume Laju aliran volume disebut juga debit aliran (Q) yaitu juml KERUGIAN JATUH TEKAN (PRESSURE DROP) PIPA MULUS ACRYLIC Ø 10MM Muhammmad Haikal Jurusan Teknik Mesin Universitas Gunadarma ABSTRAK Kerugian jatuh tekanan (pressure drop) memiliki kaitan dengan koefisien

Lebih terperinci

SIMULASI PROSES EVAPORASI BLACK LIQUOR DALAM FALLING FILM EVAPORATOR (FFE) DENGAN ADANYA ALIRAN UDARA DITINJAU DARI PENGARUH ARAH ALIRAN UDARA

SIMULASI PROSES EVAPORASI BLACK LIQUOR DALAM FALLING FILM EVAPORATOR (FFE) DENGAN ADANYA ALIRAN UDARA DITINJAU DARI PENGARUH ARAH ALIRAN UDARA Jurusan Teknik Kimia Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2012 SIMULASI PROSES EVAPORASI BLACK LIQUOR DALAM FALLING FILM EVAPORATOR (FFE) DENGAN ADANYA ALIRAN UDARA

Lebih terperinci

PENGANTAR PINDAH PANAS

PENGANTAR PINDAH PANAS 1 PENGANTAR PINDAH PANAS Oleh : Prof. Dr. Ir. Santosa, MP Guru Besar pada Program Studi Teknik Pertanian, Fakultas Teknologi Pertanian Universitas Andalas Padang, September 2009 Pindah Panas Konduksi (Hantaran)

Lebih terperinci

Studi Eksperimental Sistem Pengering Tenaga Surya Menggunakan Tipe Greenhouse dengan Kotak Kaca

Studi Eksperimental Sistem Pengering Tenaga Surya Menggunakan Tipe Greenhouse dengan Kotak Kaca JURNAL TEKNIK POMITS Vol.,, (03) ISSN: 337-3539 (30-97 Print) B-30 Studi Eksperimental Sistem Pengering Tenaga Surya Menggunakan Tipe Greenhouse dengan Kotak Kaca Indriyati Fanani Putri, Ridho Hantoro,

Lebih terperinci

Perpindahan Panas. Perpindahan Panas Secara Konduksi MODUL PERKULIAHAN. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh 02

Perpindahan Panas. Perpindahan Panas Secara Konduksi MODUL PERKULIAHAN. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh 02 MODUL PERKULIAHAN Perpindahan Panas Secara Konduksi Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh Teknik Teknik Mesin 02 13029 Abstract Salah satu mekanisme perpindahan panas adalah perpindahan

Lebih terperinci