BAB II TINJAUAN PUSTAKA

dokumen-dokumen yang mirip
Prosiding Statistika ISSN:

BAB I PENDAHULUAN. memperkecil atau meminimumkan ketidakpastian tersebut. Risiko dapat terjadi

Pemodelan Data Besar Klaim Asuransi Kendaraan Bermotor Menggunakan Distribusi Mixture Erlang

Prosiding Statistika ISSN:

Prosiding Statistika ISSN:

BAB III MODEL REGRESI BINOMIAL NEGATIF UNTUK MENGATASI OVERDISPERSI PADA MODEL REGRESI POISSON

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB III METODE PENELITIAN

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

Catatan Kuliah. MA4183 Model Risiko

BAB 1 PENDAHULUAN Latar Belakang

BAB II KAJIAN TEORI. Analisis survival atau analisis ketahanan hidup adalah metode yang

MA4183 MODEL RISIKO Control your Risk!

BAB 1 PENDAHULUAN. ii Bagaimana rata-rata atau nilai tengah dibuat oleh Stimulan eksternal.

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

MA4181 MODEL RISIKO Risk is managed, not avoided

BAB 3 METODE PENELITIAN

LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel

MA4183 MODEL RISIKO Control your Risk!

BAB III KALMAN FILTER DISKRIT. Kalman Filter adalah rangkaian teknik perhitungan matematika (algoritma)

BAB 1 PENDAHULUAN. masing-masing individu untuk terhindar dari kerusakan dan kehilangan. Asuransi

Membangkitkan Data Klaim Individu Pemegang Polis Asuransi Kendaraan Bermotor Berdasarkan Data Klaim Agregat

BAB III PERLUASAN MODEL REGRESI COX PROPORTIONAL HAZARD DENGAN VARIABEL TERIKAT OLEH WAKTU

Pemodelan Data Curah Hujan Menggunakan Proses Shot Noise Modeling Rainfall Data Using a Shot Noise Process

II. LANDASAN TEORI. sєs (S ruang sampel) dengan sebuah bilangan real. Salah satu peubah acak adalah

Distribusi Weibull Power Series

Catatan Kuliah. MA4183 Model Risiko

Masalah Overdispersi dalam Model Regresi Logistik Multinomial

M-2 PERHITUNGAN PREMI ASURANSI KENDARAAN MENGGUNAKAN PENDEKATAN DISTRIBUSI PELUANG

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

KEMENTERIAN KEUANGAN REPUBLIK INDONESIA BADAN PENGAWAS PASAR MODAL DAN LEMBAGA KEUANGAN -1-

Catatan Kuliah. MA4283 Teori Risiko dan Kredibilitas Forecasting Risk: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Pengantar Statistika Matematika II

PENGUJIAN POLA DISTRIBUSI

TINJAUAN PUSTAKA Asuransi Kelompok Penyakit Lanjut Usia (Lansia) di Indonesia

GENERALIZED LINEAR MODELS (GLM) UNTUK DATA ASURANSI DALAM MENENTUKAN HARGA PREMI

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB 2 LANDASAN TEORI

BAB I PENDAHULUAN. hubungan antara dua variabel yang terdiri dari variabel tak bebas (Y ) dengan

MA4181 MODEL RISIKO Risk is managed, not avoided

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL

TINJAUAN PUSTAKA. mengestimasi parameter regresi. Distribusi generalized. digunakan dalam bidang ekonomi dan keuangan.

Pengujian Overdispersi pada Model Regresi Poisson (Studi Kasus: Laka Lantas Mobil Penumpang di Provinsi Jawa Barat)

BAB III REGRESI TERSENSOR (TOBIT) Model regresi yang didasarkan pada variabel terikat tersensor disebut

BAB I PENDAHULUAN. mengetahui fenomena yang akan terjadi pada periode mendatang akan

BAB 2 LANDASAN TEORI

MODEL DISTRIBUSI TOTAL KERUGIAN AGGREGAT MANFAAT RAWAT JALAN BERDASARKAN SIMULASI

Misalkan X peubah acak dengan fungsi distribusi berikut: + x, 0 x < 1. , 1 x < 2. , 2 x < 3. 1, x 3

BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan

MA4181 MODEL RISIKO Risk is managed, not avoided

MA4183 MODEL RISIKO Control your Risk!

BAB 2 LANDASAN TEORI

II. LANDASAN TEORI. karakteristik dari generalized Weibull distribution dibutuhkan beberapa fungsi

BAB II LANDASAN TEORI

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam

BAB II TINJAUAN PUSTAKA. (b) Variabel independen yang biasanya dinyatakan dengan simbol

ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER

PEMODELAN DENGAN REGRESI LOGISTIK. Secara umum, kedua hasil dilambangkan dengan (sukses) dan (gagal)

PERSATUAN AKTUARIS INDONESIA

ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER

MODEL ASURANSI KENDARAAN BERMOTOR MENGGUNAKAN DISTRIBUSI MIXED POISSON ABSTRACT

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

Pengantar Statistika Matematik(a)

ESTIMASI PARAMETER MODEL REGRESI POISSON TERGENERALISASI TERBATAS DENGAN METODE MAKSIMUM LIKELIHOOD

ESTIMASI TOTAL DAYA LISTRIK YANG HILANG MELALUI PROSES POISSON TERPANCUNG MAJEMUK

LANDASAN TEORI. Generalized Lambda Distribution (GLD) awalnya diusulkan oleh Ramberg dan

Peubah acak X yang berdistribusi normal dengan rataan sebagai: 2 ) X ~ N(,

DEPARTEMEN KEUANGAN REPUBLIK INDONESIA BADAN PENGAWAS PASAR MODAL DAN LEMBAGA KEUANGAN

PEMODELAN JUMLAH KEMATIAN BAYI DI KOTA PADANG TAHUN 2013 DAN 2014 DENGAN PENDEKATAN REGRESI BINOMIAL NEGATIF

OLEH : Riana Ekawati ( ) Dosen Pembimbing : Dra. Farida Agustini W, M.S

Penerapan Model Frailty Weibull-Eksponensial pada Data Tabel Mortalitas Indonesia Tahun 1999

Bab 2 LANDASAN TEORI

Asuransi sepeda memberikan ganti rugi atas kerusakan sepeda. yang disebabkan oleh : tabrakan, benturan, jatuh, tergelincir dari

UJIAN A70 PERIODE JUNI 2014 SOLUSI UJIAN PAI A70. A70-Pemodelan dan Teori Risiko 9/14/2014

KONSEP DASAR TERKAIT METODE BAYES

FUNGSI STATISTIKA. Oleh Jarnawi Afgani Dahlan

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

Mata Kuliah Pemodelan & Simulasi. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia

II. LANDASAN TEORI. beberapa konsep dan teori yang berkaitan dengan penduga parameter distribusi GB2

BAB IV KESIMPULAN DAFTAR PUSTAKA LAMPIRAN... 64

BAB I PENDAHULUAN. Pada bab ini akan dibahas mengenai latar belakang tema yang diambil dalam

PEMODELAN REGRESI BINOMIAL NEGATIF UNTUK MENGATASI OVERDISPERSION PADA REGRESI POISSON

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan pengertian tentang distribusi Weibull, maximum

BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan

II. TINJAUAN PUSTAKA. kontinu. Bentuk kurva distribusi logistik adalah simetri dan uni-modal. Bentuk

Catatan Kuliah. MA4283 Teori Risiko dan Kredibilitas Forecasting Risk: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

ANALISIS DATA SECARA RANDOM PADA APLIKASI MINITAB DENGAN MENGGUNAKAN DISTRIBUSI PELUANG

BAB I PENDAHULUAN. Statistika adalah salah satu cabang ilmu yang mempelajari prosedur-prosedur

INFERENSI STATISTIK DISTRIBUSI BINOMIAL DENGAN METODE BAYES MENGGUNAKAN PRIOR KONJUGAT. Oleh : ADE CANDRA SISKA NIM: J2E SKRIPSI

BAB I PENDAHULUAN 1.1. Latar Belakang

PENAKSIR MAKSIMUM LIKELIHOOD DENGAN METODE ITERASI NEWTON - RAPHSON

BAB III ANALISIS FAKTOR. berfungsi untuk mereduksi dimensi data dengan cara menyatakan variabel asal

I. PENDAHULUAN. Perkembangan teori statistika telah mempengaruhi hampir semua aspek. Dalam teori statistika dan peluang, distribusi gamma (

Transkripsi:

BAB II TINJAUAN PUSTAKA 2.1 Pendahuluan Pada bab ini akan diuraikan mengenai beberapa teori dan metode yang mendukung serta mempermudah dalam melakukan perhitungan dan dapat membantu di dalam pembahasan bab-bab selanjutnya. Adapun teori dan metode tersebut yaitu asuransi kendaraan bermotor, metode penaksiran, distribusi untuk frekuensi klaim, distribusi untuk besar klaim, uji kecocokan distribusi, metode penaksiran Linear Empirical Bayesian, taksiran premi untuk asuransi kendaraan bermotor, dan transformasi Box-Cox. 2.2 Asuransi Kendaraan Bermotor Dalam setiap kegiatan yang dilakukan oleh suatu kelompok atau perorangan pasti ada risiko yang harus ditanggung. Risiko merupakan kemungkinan terjadinya suatu kerugian yang tidak diduga atau tidak diinginkan. Ketidakpastian akan terjadinya risiko menjadi hal yang perlu diperhatikan dalam melakukan suatu kegiatan, karena hidup penuh dengan ketidakpastian dan manusia selalu berusaha memperkecil atau meminimumkan ketidakpastian tersebut. Risiko dapat terjadi dimanapun dan kapanpun, dimana jika risiko terjadi maka akan mengakibatkan kerugian. Salah satu upaya untuk menghindari risiko yaitu dengan memindahkan risiko kepada pihak lain. Asuransi merupakan bentuk perlindungan yang dapat menanggung kerugian dengan mengganti kerugian tersebut dengan cara klaim. Asuransi merupakan langkah yang tepat untuk mengalihkan kerugian tersebut 7

8 dengan membuat perlindungan yang diatur dalam polis. Salah satu produk asuransi yang paling banyak diminati di Indonesia adalah asuransi kendaraan bermotor. Asuransi kendaraan bermotor adalah produk asuransi kerugian yang melindungi tertanggung dari risiko kerugian yang mungkin timbul sehubungan dengan kepemilikan dan pemakaian kendaraan bermotor. Ada dua jenis perlindungan untuk asuransi kendaraan bermotor, yaitu Total Loss Only (TLO) dan Comprehensive (Komprehensif). a. Total Loss Only (TLO) Jaminan ganti rugi atas kehilangan atau kerusakan total pada kendaraan akibat dari kejatuhan benda, kebakaran, perbuatan jahat, pencurian, perampasan, tabrakan, benturan atau kecelakaan lalu lintas lainnya. Dalam produk asuransi TLO, jenis klaim yang diajukan adalah total loss. b. Comprehensive (Komprehensif) Jaminan ganti rugi atau biaya perbaikan atas kehilangan atau kerusakan sebagian maupun keseluruhan pada kendaraan akibat kejatuhan benda, kebakaran, perbuatan jahat, pencurian, perampasan, tabrakan, benturan atau kecelakaan lalu lintas lainnya. Dalam produk asuransi Comprehensive, jenis klaim yang diajukan ada dua kemungkinan yaitu, total loss dan partial loss. Perlu diketahui bahwa klaim total loss hanya dapat diajukan sekali oleh tertanggung ke penanggung. Sedangkan klaim partial loss dapat diajukan lebih dari sekali oleh tertanggung ke penanggung. Peraturan Ketua Bapepam dan Lembaga keuangan (LK) pada tahun 2011 membagi kategori kendaraan bermotor menjadi delapan kategori jenis kendaraan seperti tertera pada Tabel 2.1.

9 Tabel 2.1 Kategori Kendaraan Bermotor Kategori Harga Pertanggungan (1) (2) Jenis Kendaraan Non Bus dan Non Truk Kategori 1 0 s.d Rp. 150.000.000 Kategori 2 Rp. 150.000.001,00 s.d. Rp. 300.000.000,00 Kategori 3 Rp. 300.000.001,00 s.d. Rp. 500.000.000,00 Kategori 4 Rp. 500.000.001,00 s.d. Rp. 800.000.000,00 Kategori 5 Lebih dari Rp.800.000.000,00 Jenis Kendaraan Bus dan Truk Kategori 6 Truk, untuk semua uang pertanggungan Kategori 7 Bus, untuk semua uang pertanggungan Jenis Kendaraan Roda 2 (dua) Kategori 8 Semua uang pertanggungan Sumber: Peraturan Ketua Bapepam dan LK 2011 Harga pertanggungan adalah harga kendaraan saat baru atau taksiran harga kendaraan apabila diteliti pada saat pertanggungan dimulai dengan kondisi yang sama. 2.3 Metode Penaksiran Metode penaksiran parameter secara umum dibagi dua yaitu metode penaksiran klasik dan metode penaksiran Bayes (Walpole dan Myers, 1995). Dalam metode klasik, pengambilan kesimpulan didasarkan sepenuhnya pada informasi yang diperoleh melalui sampel yang diambil dari populasi. Metode penaksiran klasik diantaranya metode penaksiran momen dan penaksiran kemungkinan maksimum. Salah satu dari metode penaksiran klasik yang akan dibahas dalam skripsi ini adalah penaksiran kemungkinan maksimum. Sedangkan metode Bayes menggunakan pengetahuan subjektif terdahulu mengenai distribusi peluang parameter yang tidak diketahui bersama dengan informasi yang diberikan oleh data sampel. 2.3.1 Metode Penaksiran Kemungkinan Maksimum Metode penaksiran kemungkinan maksimum merupakan salah satu metode terpenting pada penaksiran. Dalam menentukan penaksir parameter dengan

10 menggunakan metode kemungkinan maksimum harus diketahui fungsi densitas peluangnya untuk kasus kontinu atau fungsi massa peluangnya untuk kasus diskrit. Pada uraian berikutnya hanya akan digunakan istilah fungsi peluang. Jika adalah sampel acak berukuran n dari distribusi dengan fungsi peluang dan nilai dari sampel acak tersebut adalah, maka fungsi kemungkinannya adalah: Jika merupakan nilai taksiran dari parameter (jumlah parameternya mungkin saja lebih dari satu) yang memaksimumkan fungsi kemungkinan, maka merupakan penaksir kemungkinan maksimum untuk. Memaksimumkan fungsi kemungkinan pada persamaan di atas adalah sama saja dengan memaksimumkan logaritma natural dari,. Biasanya lebih mudah menggunakan daripada menggunakan untuk memperoleh penaksir kemungkinan maksimum. Salah satu cara untuk memperoleh penaksir kemungkinan maksimumnya adalah dengan menggunakan turunan (diferensial). Taksiran parameternya adalah nilai yang merupakan solusi dari turunan pertama berikut: Berdasarkan persamaan di atas akan diperoleh satu atau beberapa persamaan parameter yang ditaksir. Kemudian dari persamaan-persamaan tersebut dieliminasi dan atau disubstitusi untuk mendapatkan taksiran parameter. Turunan kedua pada saat adalah:

11 2.3.2 Metode Penaksiran Bayes Pandanglah suatu masalah mencari taksiran titik parameter θ menggunakan teori penaksiran Bayes dari populasi dengan distribusi peluang. Misalkan diambil sampel acak dari populasi tersebut berukuran n, yaitu. Dengan demikian fungsi peluang bersama peubah acak adalah:... (2.1) Misalkan θ diketahui berubah sesuai dengan distribusi peluang h(θ). Dengan kata lain dianggap bahwa θ merupakan suatu nilai peubah acak Θ dengan distribusi peluang h(θ) dan ingin ditaksir nilai θ tertentu untuk populasi yang diambil sampelnya. h(θ) didefinisikan sebagai distribusi prior untuk parameter peubah acak Θ. Teknik penaksiran Bayes menggunakan distribusi prior h(θ) dan distribusi bersama sampel, seperti pada Persamaan (2.1), untuk menghitung distribusi posterior. Distribusi bersama sampel dan peubah acak Θ adalah... (2.2) Berdasarkan pada Persamaan (2.2), dapat diperoleh distribusi marginal dari, yaitu:

12 Dengan menggunakan distribusi peluang bersyarat menurut Walpole dan Myers (1995), maka distribusi posteriornya dapat ditulis sebagai berikut: Adapun prinsip dari penaksiran parameter melalui metode Bayes adalah mencari suatu fungsi dari misalkan saja, sedemikian sehingga meminimumkan ekspektasi bersyarat dari fungsi rugi berikut: { [ ] } [ ]... (2.3) Dengan demikian penaksir parameter bergantung pada bentuk fungsi ruginya. Untuk fungsi rugi yang berbeda akan menghasilkan penaksir yang berbeda pula. Dalam penaksiran Bayes ada beberapa fungsi rugi, diantaranya adalah: 1. Fungsi rugi kuadratik, dengan bentuk fungsinya [ ] [ ] 2. Fungsi rugi absolut, dengan bentuk fungsinya [ ] 3. Fungi rugi zero-one, dengan bentuk fungsinya [ ] { Dalam bagian ini penaksiran Bayes yang akan dibahas didasarkan pada fungsi rugi kuadratik. Jika fungsi ruginya kuadratik, maka Persamaan (2.3) akan menjadi

13 { [ ] } [ ] [ ] Untuk meminimumkan ekspektasi bersyarat dari fungsi rugi di atas bisa didapat dengan mencari: { [ ] } Dengan demikian akan dihasilkan penaksir parameter θ adalah... (2.5) atau dengan kata lain untuk fungsi rugi kuadratik, taksiran titik parameter θ adalah rata-rata dari distribusi posteriornya. Sementara itu, taksiran titik parameter θ dengan fungsi rugi absolut adalah median dari distribusi posteriornya. Sedangkan

14 taksiran titik parameter θ dengan fungsi rugi zero-one adalah modus dari distribusi posteriornya. 2.4 Distribusi untuk Frekuensi Klaim Frekuensi klaim adalah banyaknya klaim yang dilakukan oleh seorang pemegang polis selama masa asuransinya. Misalkan pemegang polis A mengajukan klaim sebanyak 3 kali selama masa asuransinya. Dengan demikian frekuensi klaim pemegang polis A adalah 3. Distribusi yang sering digunakan untuk memodelkan data frekuensi klaim diantaranya adalah distribusi Poisson dan distribusi binomial negatif (Klugman dkk., 2004). 2.4.1 Distribusi Poisson Peubah acak diskrit K dikatakan berdistribusi Poisson dengan fungsi peluangnya sebagai berikut:... (2.6) Rata-rata dan varians dari distribusi Poisson adalah: Misalkan adalah suatu sampel acak berukuran n dari distribusi Poisson dengan parameter λ, dengan nilai dari sampel acak tersebut adalah Penaksir kemungkinan maksimum untuk parameter λ dari distribusi Poisson (penurunannya pada Lampiran 1) adalah rata-rata sampelnya:... (2.7)

15 Dalam uji kecocokan distribusi Poisson, selain rata-rata sampel biasanya dibutuhkan juga varians sampelnya untuk mengetahui apakah terdapat overdispersi atau tidak di dalam data. Rumus dari varians sampel tersebut adalah:... (2.8) 2.4.2 Distribusi Binomial Negatif Misalkan peubah acak berdistribusi Poisson dengan parameter, atau disingkat Poisson. Akan tetapi itu sendiri merupakan peubah acak dan diasumsikan berdistribusi gamma dengan parameter dan yaitu: dimana adalah distribusi gamma sebagai distribusi prior dengan fungsi peluang sebagai berikut:... ( 2.9) dimana adalah fungsi gamma dari adalah: Fungsi peluang marginal bagi diberikan oleh: Misalkan, maka:

16 ( ) ( ) ( ) ( )... (2.10) Jika maka: ( ) ( ) ( ) ( ) ( ) ( )... (2.11) Sedangkan jika, maka: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )... (2.12) Persamaan (2.10) adalah fungsi peluang dari distribusi binomial negatif (Lemaire, 1995). Rata-rata dan varians dari distribusi binomial negatif adalah:

17... (2.13) ( ) Misalkan adalah suatu sampel acak berukuran n dari distribusi binomial negatif dengan parameter dan, dengan nilai dari sampel acak tersebut adalah Penaksir kemungkinan maksimum untuk dan dari distribusi binomial negatif tidak dapat diselesaikan secara eksplisit, namun hanya dapat ditaksir dengan menggunakan metode numerik. Salah satu metode numerik tersebut adalah metode Newton Raphson. Taksiran parameter dan adalah solusi dari 2 persamaan (penurunannya pada Lampiran 2) berikut: ( )... (2.14)... (2.15) Perangkat lunak Matlab menyediakan fungsi untuk menghitung taksiran kemungkinan maksimum dari parameter distribusi binomial negatif di atas. 2.5 Distribusi untuk Besar Klaim Selain peubah acak frekuensi klaim, peubah acak besar klaim sering dimodelkan dalam asuransi kerugian. Besar klaim adalah besarnya pembayaran yang diberikan oleh perusahaan asuransi untuk menggantikan kerugian yang diklaim oleh pemegang polis. Misalkan pemegang polis A mengajukan klaim sebanyak 3 kali selama masa asuransinya. Dengan besar klaim masing-masing sebesar Rp. 300.000, Rp. 450.000, dan Rp. 500.000. Distribusi yang sering digunakan untuk memodelkan data besar klaim diantaranya adalah distribusi lognormal, distribusi gamma, dan distribusi

18 eksponensial (Klugman dkk., 2004). Dalam skripsi ini pembahasan akan dibatasi untuk distribusi lognormal. Misalkan X merupakan peubah acak yang berdistribusi lognormal dengan fungsi peluang sebagai berikut: * ( ) + Fungsi distribusi kumulatif dari distribusi lognormal adalah: ( )... (2.16) dimana adalah notasi untuk fungsi distribusi kumulatif normal baku. Rata-rata dan varians dari distribusi lognormal masing-masing adalah: ( ) [ ] Misalkan adalah suatu sampel acak berukuran n dari distribusi lognormal dengan parameter dan, dengan nilai dari sampel acak tersebut adalah Penaksiran kemungkinan maksimum untuk dan dari distribusi lognormal (penurunannya ada Lampiran 3) adalah:... (2.17) ( )... (2.18) 2.6 Uji Kecocokan Distribusi Uji kecocokan distribusi adalah suatu pengujian hipotesis statistik yang digunakan untuk mengetahui apakah adalah nilai dari sampel acak yang berdistribusi dengan fungsi distribusi. Uji kecocokan distribusi dapat digunakan untuk menguji hipotesis berikut:

19 : merupakan nilai dari sampel acak yang berdistribusi dengan fungsi distribusi. : merupakan nilai dari sampel acak yang berdistribusi dengan fungsi distribusi bukan. Dalam skripsi ini uji kecocokan distribusi yang akan digunakan adalah uji kecocokan chi-kuadrat untuk frekuensi klaim dan uji kecocokan Anderson-Darling untuk besar klaim. 2.6.1 Uji Kecocokan Chi-Kuadrat Salah satu uji kecocokan distribusi untuk kasus data diskrit adalah uji kecocokan chi-kuadrat. Statistik uji untuk menguji kecocokan chi-kuadrat untuk kasus data diskrit adalah:... (2.19) dimana adalah banyaknya pengamatan untuk kategori, adalah nilai harapan untuk kategori, dan adalah banyaknya kategori. Statistik uji di atas berdistribusi chi-kuadrat dengan derajat bebas, dimana r menyatakan banyaknya parameter yang ditaksir dari distribusi. Dengan demikian kriteria pengujiannya adalah tolak hipotesis nol jika statistik uji chi-kuadrat lebih besar dari nilai kuantil distribusi chi-kuadrat pada taraf nyata dan derajat bebas atau. 2.6.2 Uji Anderson-Darling Pendekatan yang awal untuk menguji kecocokan distribusi pada data adalah uji visual atau grafik. Uji visual tersebut diantaranya adalah normal PP plot, normal QQ plot, Boxplot dan Stem-and-leaf. Salah satu pengujian secara formal

20 adalah Uji Anderson-Darling yang digunakan untuk menguji kecocokan distribusi untuk suatu kumpulan data (Law dan Kelton, 1991). Misalkan adalah nilai dari sampel acak berukuran n. Misalkan juga bahwa hasil dari pengurutan data dari kecil ke besar adalah. Statistik uji Anderson-Darling adalah: ( ) * ( ( )) ( ( ))+... (2.20) dimana adalah taksiran fungsi distribusi kumulatif untuk distribusi yang dihipotesiskan. Nilai kritis untuk Anderson-Darling adalah 1,933 untuk taraf nyata α =10%, 2,492 untuk taraf nyata α =5% dan 3,857 untuk taraf nyata α =1%. (Klugman dkk., 2004). Sedangkan kriteria pengujiannya adalah tolak hipotesis nol jika nilai statistik uji lebih besar dari nilai kritis pada taraf nyata yang ditetapkan. 2.7 Metode Penaksiran Linear Empirical Bayesian Dalam bagian ini akan diberikan teori penaksiran parameter menggunakan metode Linear Empirical Bayesian (LEB). Jika adalah suatu vektor acak. Parameter akan ditaksir oleh sebagai fungsi dari X sedemikian sehingga meminimumkan ( ). Untuk kasus tersebut diperoleh penaksir. Jika distribusi bersama dari tidak diketahui, maka tidak dapat diperoleh secara eksplisit. Untuk mengatasi masalah tersebut Robbins (1985) memperkenalkan fungsi linier dari yaitu. Misalkan ( )

21 dengan: [ ] [ ] maka: [ { } ] [ { } ] [ ] [ ] [ ] [ ] * + Dari persamaan di atas akan dicari nilai a dan b yang meminimumkan fungsi. [ ] [ ] ( ) Nilai a dan b yang meminimumkan fungsi adalah solusi dari kedua persamaan di atas, yaitu Dengan mensubstitusikan nilai dan, maka nilai taksiran parameter adalah [ ]... (2.21) Jika distribusi bersyarat dari adalah distribusi normal dengan rata-rata dan varians, maka:

22 Dengan menggunakan Persamaan (2.20), taksiran parameter dengan menggunakan teori penaksiran LEB adalah: [ ]... (2.22) dengan: [ ]... (2.23) [{ }{ }] [ [{ }{ }] ] [{ } [{ } ]] [{ } [{ } ]] [{ }{ }] [{ }{ }]... (2.24) [ ] [ ] [ ] Sehingga... (2.25) Dengan mensubstitusikan Persamaan (2.23), (2.24) dan (2.25) ke Persamaan (2.22), akan diperoleh taksiran parameter, yaitu: [ ] [ ] [ ] ( )... (2.26) Misalkan merupakan data pengamatan sejarah klaim, maka rata-rata dan varians dari sampel tersebut adalah:

23 Dengan mengganti dan yang ada pada Persamaan (2.26) oleh dan, maka diperoleh: ( )... (2.27) 2.8 Taksiran Premi untuk Asuransi Kendaraan Bermotor Premi dapat dihitung berdasarkan taksiran besar klaim dan frekuensi klaim. Taksiran besar klaim dapat diperoleh dengan menggunakan teori LEB yang dibahas pada subbab sebelumnya. Asumsikan peubah acak X berdistribusi lognormal dengan parameter dan dengan diketahui dan fungsi peluangnya adalah: * ( ) + Berdasarkan fungsi peluang di atas, ekspektasi besar klaim yang optimal adalah: ( )... (2.28) Jika diperoleh taksiran optimal dari parameter, maka dapat dihitung ekspektasi dari X. Misalkan sejarah data besar klaim asuransinya adalah, dan asumsikan bahwa pengamatan baru saat ini adalah. Jika besar klaim X, berdistribusi lognormal dengan parameter dan, atau berdistribusi normal dengan parameter dan maka dan. Ketika diketahui, dapat diperoleh taksiran parameter berdasarkan Persamaan (2.27), yaitu:

24 ( ) dengan: ( )... (2.29)... (2.30)... (2.31) dimana adalah data besar klaim asuransi, dan adalah banyaknya pengamtan data besar klaim. Sedangkan nilai dihitung berdasarkan data besar klaim pada periode sebelumnya. Misalkan sejarah data besar klaim asuransi pada periode sebelumnya adalah, maka dihitung dengan menggunakan rumus berikut:... (2.32) dengan:... (2.33) dimana adalah data besar klaim periode sebelumnya, dan adalah banyaknya pengamtan data besar klaim periode sebelumnya. Dari Persamaan (2.28) dapat dihitung ekspektasi besar klaim yang optimal, yaitu:,( ) -... (2.34) Berdasarkan taksiran besar klaim di masa yang akan datang maka dapat diperoleh taksiran premi bersih di masa yang akan datang yaitu:... (2.35)

25 dimana adalah ekspektasi frekuensi klaim di masa yang akan datang bagi seorang pemegang polis, dan adalah ekspektasi besar klaim yang optimal di masa yang akan datang bagi seorang pemegang polis untuk sekali klaim. 2.9 Transformasi Box-Cox Transformasi Box-Cox atau seringkali disebut transformasi pangkat Box-Cox adalah suatu metode mentransformasi data pengamatan dari yang asalnya tidak berdistribusi normal menjadi berdistribusi normal. Misalkan, adalah nilai dari suatu sampel acak berukuran dari suatu distribusi kontinu yang tidak berdistribusi normal. Transformasi pangkat Box-Cox untuk data pengamatan adalah (Asar dkk., 2013) { dimana disebut sebagai parameter transformasi pangkat yang nilainya tidak diketahui dan perlu ditaksir. Nilai biasanya berada diantara -5 sampai 5. Tabel 2.2. menunjukkan berbagai nilai parameter dan bentuk transformasinya. Tabel 2.2. Nilai dan Transformasinya Transformasi 2 1 0,5 0 atau -0,5-1,0-2,0 Salah satu pendekatan yang dapat digunakan untuk menaksir parameter transformasi pangkat untuk data pengamatan adalah dengan menggunakan metode

26 kemungkinan maksimum (Li, 2005). Misalkan fungsi peluang untuk peubah acak adalah:, ( ) - Melalui hubungan transformasi pangkat Box-Cox, dapat ditunjukkan bahwa fungsi peluang untuk peubah acak adalah:, - Dengan demikian fungsi kemungkinannya adalah: [, - ] Logaritma natural fungsi kemungkinannya adalah: [, -... (2.36) ] Untuk nilai tertentu, taksiran parameter yang memaksimumkan fungsi kemungkinan adalah: Sedangkan taksiran parameter yang memaksimumkan fungsi kemungkinan adalah { } Dengan mensubstitusikan taksiran parameter dan ke Persamaan (2.36) akan diperoleh logaritma natural fungsi kemungkinan untuk parameter, yaitu... (2.37)

27 dimana. Nilai yang memaksimumkan logaritma natural fungsi kemungkinan pada Persamaan (2.37) adalah nilai yang akan dicari sebagai taksiran parameter transformasi pangkat. Nilai taksiran ini akan digunakan untuk mentransformasi data pengamatan menjadi data pengamatan yang berdistribusi normal. Berdasarkan pada teori yang telah dijelaskan di atas, maka dapat dibangun suatu tahapan menentukan nilai taksiran parameter transformasi pangkat yang memaksimumkan logaritma natural fungsi kemungkinan pada Persamaan (2.37) untuk data pengamatan. Tahapan tersebut disajikan dalam Gambar 2.1. Tahapan Aktifitas Tahap 1 Menentukan berbagai nilai parameter. Tahap 2 Menghitung nilai logaritma natural fungsi kemungkinan menggunakan Persamaan (2.37) untuk setiap masing-masing nilai. Tahap 3 Membuat plot antara logaritma natural fungsi kemungkinan dan kemudian memperhatikan titik kritis pada maksimum. Nilai yang membuat nilai maksimum itulah nilai taksiran parameter bagi. Tahap 4 Menentukan jenis transformasi berdasarkan nilai taksiran parameter yang diperoleh menggunakan informasi yang ada pada Tabel 2.2. Gambar 2.1. Tahapan Menentukan Nilai pada Transformasi Box-Cox ***