JOBSHEET SENSOR CAHAYA (PHOTOTRANSISTOR, PHOTODIODA, LDR)

dokumen-dokumen yang mirip
BAB III KARAKTERISTIK SENSOR LDR

BAB I PENDAHULUAN Latar Belakang

LAPORAN PRAKTIKUM ELEKTRONIKA DASAR 1 Sensor Cahaya dan Transistor NPN Serta Aplikasinya dalam Teknologi Otomatisasi

BAB II TINJAUAN PUSTAKA. 2.1PHOTODIODA Dioda foto adalah jenis dioda yang berfungsi mendeteksi cahaya. Berbeda dengan

ROBOT LINE FOLLOWER ANALOG

JOBSHEET 2 PENGUAT INVERTING

MOTOR DRIVER. Gambar 1 Bagian-bagian Robot

INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 2 (PENGUAT INVERTING)

BAB III PERANCANGAN ALAT. Dalam perancangan dan realisasi alat pengontrol lampu ini diharapkan

TK 2092 ELEKTRONIKA DASAR

BAB IV HASIL KERJA PRAKTEK. perlu lagi menekan saklar untuk menyalakan lampu, sensor cahaya akan bernilai 1

LAPORAN ALAT MIKROKONTROLER SENSOR CAHAYA DENGAN LIGHT DEPENDENT RESISTOR (LDR) DAN ARDUINO

1. Perpotongan antara garis beban dan karakteristik dioda menggambarkan: A. Titik operasi dari sistem B. Karakteristik dioda dibias forward

BAB IV HASIL KERJA PRAKTEK

BAB II LANDASAN TEORI

Workshop Instrumentasi Industri Page 1

JOBSHEET SENSOR PIR (PPASSIVE INFRARED RECEIVER)

ROBOT LABA-LABA PENJEJAK GARIS (HEXAPOD LINE FOLLOWER)

LAPORAN PRAKTIKUM ELEKTRONIKA DASAR 1 Transistor Sebagai Saklar 2 (Lampu taman otomatis)

DASAR PENGUKURAN LISTRIK

Y Y A B. Gambar 1.1 Analogi dan simbol Gerbang NOR Tabel 1.1 tabel kebenaran Gerbang NOR A B YOR YNOR

BAB IV PENGUJIAN DAN ANALISA

1. PUTRI RAGIL N ( ) 2. ADITH PRIYO P ( ) 3. DISTYAN PUTRA A S ( )

Gambar 1 Tegangan bias pada transistor BJT jenis PNP

MIKROKONTROLER ARDUINO

KOMPONEN AKTIF. Resume Praktikum Rangkaian Elektronika

JOBSHEET SENSOR CAHAYA (SOLAR CELL)

AN-0011 LINE TRACKER ROBOT DENGAN MENGGUNAKAN UNIVERSAL DELTA ROBO KITS

BAB III PERANCANGAN. Microcontroller Arduino Uno. Power Supply. Gambar 3.1 Blok Rangkaian Lampu LED Otomatis

Gambar 1.1 Analogi dan simbol Gerbang AND. Tabel 1.1 kebenaran Gerbang AND 2 masukan : Masukan Keluaran A B YAND

BAB IV PENGUJIAN ALAT DAN ANALISA

BAB III LANDASAN TEORI. elektronika yaitu LDR. LDR sendiri adalah jenis resistor yang nilainya berubah seiring

IV. HASIL DAN PEMBAHASAN. perangkat yang dibangun. Pengujian dilakukan pada masing-masing subsistem

SISTEM ROBOT PENGIKUT GARIS DAN PEMADAM API BERBASIS MIKROKONTROLER AT89C51. Budi Rahmani, Djoko Dwijo Riyadi ABSTRAK

BAB IV PENGUJIAN DAN ANALISIS

JOBSHEET SENSOR SUHU (PTC, NTC, LM35)

DELTA LOW COST LINE FOLLOWER

BAB IV PENGUJIAN ALAT DAN ANALISA HASIL PENGUJIAN

Penguat Kelas B Komplementer Tanpa Trafo Keluaran

BAB III RANCANGAN ALAT DAN PROGRAM

BAB 4 HASIL UJI DAN ANALISA

BAB II LANDASAN TEORI

LAPORAN PRAKTIKUM ELEKTRONIKA DASAR

BAB IV PENGUJIAN DAN ANALISA. monitoring daya listrik terlihat pada Gambar 4.1 di bawah ini : Gambar 4.1 Rangkaian Iot Untuk Monitoring Daya Listrik

Input ADC Output ADC IN

Gambar 1.1 Analogi dan simbol Gerbang NAND Tabel 1.1 tabel kebenaran Gerbang NAND: A B YAND YNAND

APLIKASI PLC PADA PENGENDALIAN MESIN BOR OTOMATIS DENGAN SISTEM MONITORING BERBASIS VISUAL BASIC 6.0

JOBSHEET 6 PENGUAT INSTRUMENTASI

Mekatronika Modul 1 Transistor sebagai saklar (Saklar Elektronik)

BAB IV ANALISIS DATA DAN PEMBAHASAN

PRAKTIKUM INSTRUMENTASI SENSOR CAHAYA (ALARM CAHAYA) Oleh :

5 HASIL DAN PEMBAHASAN

Multimeter. NAMA : Mulki Anaz Aliza NIM : Kelas : C2=2014. Dari Wikipedia bahasa Indonesia, ensiklopedia bebas. Lompat ke: navigasi, cari

OPERATIONAL AMPLIFIERS (OP-AMP)

MODUL PRAKTIKUM RANGKAIAN ELEKTRONIKA DASAR

Modul 03: Catu Daya. Dioda, Penyearah Gelombang, dan Pembebanan. 1 Alat dan Komponen. 2 Teori Singkat. Reza Rendian Septiawan February 11, 2015

I. Tujuan Praktikum. Mampu mengenali bentuk dan karakteristik LDR. Mampu membuat rangkaian pembagi tegangan

BAB IV PENERAPAN DAN ANALISA

BAB 4 HASIL DAN PEMBAHASAN

USER MANUAL LEGO LINE FOLLOWING MATA DIKLAT : SISTEM OTOMASI DAN PENGENDALIAN ELEKTRONIKA

Y = A + B. (a) (b) Gambar 1.1 Analogi dan simbol Gerbang OR Tabel 1.1 kebenaran Gerbang OR: Masukan Keluaran A B YOR

BAB III METODE PENELITIAN

BAB III PERANCANGAN DAN CARA KERJA RANGKAIAN

PENGATUR INTENSITAS LAMPU PHILIPS MASTER LED SECARA NIRKABEL

LIGHT DEPENDENT RESISTANT (LDR) SEBAGAI PENDETEKSI WARNA

USER MANUAL LAMPU TAMAN OTOMATIS MATA DIKLAT : SISTEM PENGENDALI ELEKTRONIKA

INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 14 (DAC 0808)

I. Tujuan Praktikum. Mampu menganalisa rangkaian sederhana transistor bipolar.

Pendahuluan. 1. Timer (IC NE 555)

MODUL I SENSOR SUHU. 3. Alat Alat Praktikum Alat praktikum meliputi : Sensor suhu Exacon D-OS3; Modul Pengolah Sinyal Multimeter Pemanas

Elektronika Lanjut. Penguat Instrumen. Elektronika Lanjut Missa Lamsani Hal 1

INSTRUMENTASI INDUSTRI (NEKA421)

Pembahasan. Representasi Numeris Definisi Sistem Digital Rangkaian Elektronika Definisi Rangkaian Digital Kelebihan Sistem digital

RANGKAIAN INVERTER DC KE AC

BAB III PERANCANGAN DAN PEMBUATAN SISTEM

BAB 4 ANALISIS DAN BAHASAN

Gambar 11 Sistem kalibrasi dengan satu sensor.

BAB III PERANCANGAN SISTEM

PENULISAN ILMIAH LAMPU KEDIP

Dioda-dioda jenis lain

2 - anakuntukmengetahuidanmelihats ecaralangsungbinatangbinatangbukanhanyabinatang masihbanyakterdapat di alam liar tetapijugabinatang hampirpunah. Te

BAB IV PENGUJIAN ALAT DAN ANALISA

BAB III PERANCANGAN DAN REALISASI. Philips Master LED. Sistem ini dapat mengatur intensitas cahaya lampu baik secara

BAB 4 IMPLEMENTASI DAN EVALUASI

Jenis-jenis Komponen Elektronika, Fungsi dan Simbolnya

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT

MODUL 05 TRANSISTOR SEBAGAI PENGUAT

VOLTAGE PROTECTOR. SUTONO, MOCHAMAD FAJAR WICAKSONO Program Studi Teknik Komputer, Fakultas Teknik dan Ilmu Komputer Universitas Komputer Indonesia

BAB III ANALISA DAN PERANCANGAN RANGKAIAN

BAB I SEMIKONDUKTOR DAYA

RANCANG BANGUN ROBOT PENGANTAR SURAT MENGGUNAKAN MIKROKONTROLER AT89S51

PENGERTIAN THYRISTOR

PERTEMUAN 12 ALAT UKUR MULTIMETER

Gambar 1 Tampilan alat

BAB III PERANCANGAN. Gambar 3.1. Blok sistem secara keseluruhan. Sensor tegangan dan sensor arus RTC. Antena Antena. Sensor suhu.

BAB III ANALISA DAN CARA KERJA RANGKAIAN

BAB II DASAR TEORI. AVR(Alf and Vegard s Risc processor) ATMega32 merupakan 8 bit mikrokontroler berteknologi RISC (Reduce Instruction Set Computer).

Gambar 1.1 Rangkaian Dasar Komparator

Elektronika Daya ALMTDRS 2014

Transkripsi:

JOBSHEET SENSOR CAHAYA (PHOTOTRANSISTOR, PHOTODIODA, LDR) A. TUJUAN. Merancang sensor cahaya, LDR, phototransistor, dan photodioda terhadap besaran fisis. 2. Menguji sensor cahaya LDR, phototransistor, dan photodioda terhadap besaran fisis. 3. Menganalisis karakteristik sensor LDR, phototransistor dan photodioda. B. DASAR TEORI Sensor adalah komponen yang dapat digunakan untuk mengkonversi suatu besaran tertentu menjadi satuan analog sehingga dapat dibaca oleh suatu rangkaian elektronik atau sensor merupakan system yang melengkapi agar sensor tersebut mempunyai keluaran sesuai yang kita inginkan dan dapat langsung dibaca pada keluaranya. Salah satu jenis resistor yang peka terhadap perubahan cahaya adalah LDR. Resistansi LDR akan berubah seiring dengan intensitas cahaya yang mengenainya. LDR digunakan untuk mengubah energi cahaya menjadi energi saklar cahaya otomatis. Sensor Cahaya adalah alat yang digunakan untuk mengubah besaran cahaya menjadi besaran listrik. Sensor cahaya berfungsi untuk mendeteksi cahaya yang ada disekitar kita, maka LDR dapat digunakan sebagai sensor cahaya. Prinsip inilah yang akan digunakan untuk mengaktifkan transistor untuk menghidupkan LED pada lampu taman otomatis, menggerakkan motor DC pada hand dryer, Sensor pada alarm branks, Sensor pada tracker cahaya matahari, Sensor pada control arah solar cell, Sensor pada robot line follower dan menghidupkan buzzer pada alarm otomatis. Macam-macam sensor cahaya adalah sebagai berikut:. LDR Gambar. simbol LDR LDR atau yang biasa disebut photosinresistor paa prinsipnya yaitu sebuah resistor yang nilai resistansinya bergantung pada seberapa banyak cahaya yang jauh pada permukaan sensor LDR. LDR berfungsi untuk mengubah intensitas cahaya menjadi hambatan listrik semakin besar.

2 Prinsip kerja LDR ini adalah nilai resistansinya akan bertambah besar apabila tidak terkena cahaya dan akan berkurang apabila terkena cahaya. Karakteristik LDR terdiri dari dua macam yaitu: Laju Recovery Respon Spektral Laju Recovery Bila sebuah LDR dibawa dari suatu ruangan dengan level kekuatan cahaya tertentu kedalam suatu ruangan yang gelap sekali, maka bisa kita amati bahwa nilai resistansi dari LDR tidak akan segera berubah resistansinya pada keadaan ruangan gelap tersebut. Namun LDR tersebut hanya akan bisa mencapai harga dikegelapan setelah mengalami selang waktu tertentu. Laju recovery merupakan suatu ukuaran praktis dan suatu kenaikan nilai resistansi dalam waktu tertentu. Harga ini ditulis dalam K /detik. untuk LDR type arus harganya lebih besar dari 200 K /detik (selama 20 menit pertama mulai dari level cahaya 00 lux), kecepatan tersebut akan lebih tinggi pada arah sebaliknya, yaitu pindah dari tempat gelap ke tempat terang yang memerlukan waktu kurang dari 0 ms untuk mencapai resistansi yang sesuai dengan level cahaya 400 lux. Respon Spektral LDR tidak mempunyai sensitivitas yang sama untuk setiap panjang gelombang cahaya yang jatuh padanya (yaitu warna). Bahan yang biasa digun akan sebagai penghantar arus listrik yaitu tembaga, alumunium, baja, emas, dan perak. Dari kelima bahan tersebut tembaga merupakan penghantar yang paling banyak digunakan karena mempunyai daya hantar yang baik. Sensor ini sebagai pengindera yang merupakan eleman yang pertama tama menerima energi dari media untuk memberi keluaran berupa perubahan energi. Sensor terdiri berbagai macam jenis serta media yang digunakan untuk melakukan perubahan. Media yang digunakan misalnya: panas, cahaya, air, angin, tekanan, dan lain sebagainya. Sedangkan pada rangkaian ini menggunakan sensor LDR yang menggunakan intensitas cahaya, selain LDR dioda foto juga menggunakan intensitas cahaya atau yang peka terhadap cahaya (photo conductivecell). Pada rangkaian elektronika, sens or harus dapat mengubah bentuk bentuk energi cahaya ke energi listrik, sinyal listrik ini harus sebanding dengan besar energi sumbernya. Dibawah ini merupakan karakteristik dari sensor LDR.

3 Resistansi 00 K 0 K K 0, K LUX 0 L 00 L 000 L Illuminasi Gambar.2 Karakteristik sensor LDR Pada karakteristik diatas dapat dilihat bila cahaya mengenai sensor itu maka harga tahanan akan berkurang. Perubahan yang dihasilkan ini tergantung dari bahan yang digunakan serta kekuatan cahaya yang mengenainya. 2. Photodioda Sensor photo dioda merupakan dioda yang peka terhadap cahaya, sensor photodioda akan mengalami perubahan resistansi pada saat menerima intensitas cahaya dan akan mengalirkan arus listrik secara forward sebagaimana dioda pada umumnya. Sensor photodioda adalah salah satu jenis sensor peka cahaya (photodetector). Jenis sensor peka cahaya lain yang sering digunakan adalah phototransistor. Photodioda akan mengalirkan arus yang membentuk fungsi linear terhadap intensitas cahaya yang diterima. Arus ini umumnya teratur terhadap power density (Dp). Gambar.3 Simbol Photodioda Perbandingan antara arus keluaran dengan power density disebut sebagai current responsitivity. Arus yang dimaksud adalah arus bocor ketika photodioda tersebut disinari dan dalam keadaan dipanjar mundur. Tanggapan frekuensi sensor photodioda tidak luas. Dari rentang tanggapan itu, sensor photodioda memiliki tanggapan paling baik terhadap cahaya infra merah, tepatnya pada cahaya dengan panjang gelombang sekitar 0,9 µm. Kurva tanggapan sensor photodioda ditunjukkan pada gambar berikut.

4 Gambar.4 Kurva Tanggapan Frekuensi Sensor Photodioda Hubungan antara keluaran sensor fotodioda dengan intensitas cahaya yang diterimanya ketika dipanjar mundur adalah membentuk suatu fungsi yang linier. Hubungan antara keluaran sensor photodioda dengan intensitas cahaya ditunjukkan pada gambar berikut. Gambar.5 Hubungan Keluaran Photodioda dengan Intensitas Cahaya Sebagai contoh aplikasi phot dioda dapat digunakan sebagai sensor api. Penggunaan sensor photodioda sebagai pendeteksi keberadaan api didasarkan pada fakta bahwa pada nyala api juga terpancar cahaya infra merah. Hal ini tidak dapat dibuktikan dengan mata telanjang karena cahaya infra merah merupakan cahaya tidak tampak, namun keberadaan cahaya infra merah dapat dirasakan yaitu ketika ada rasa hangat atau panas dari nyala api yang sampai ke tubuh kita. 3. Phototransistor Photo transistor merupakan jenis transistor yang bias basisnya berupa cahaya infra merah. Besarnya arus yang mengalir di antara kolektor dan emitor sebanding dengan

5 intensitas cahaya yang diterima photo transistor tersebut. Simbol dari photo transistor ditunjukan pada gambar berikut. Gambar.6 Bentuk dan Simbol Photransistor Photo transistor sering digunakan sebagai saklar terkendali cahaya infra merah, yaitu memanfaatkan keadaan jenuh (saturasi) dan mati (cut off) dari photo transistor tersebut. Prisip kerja photo transistor untuk menjadi saklar yaitu saat pada basis menerima cahaya infra merah maka photo transistor akan berada pada keadaan jenuh (saturasi dan saat tidak menerima cahaya infra merah photo transistor berada dalam kondisi mati (cut off) Stuktur phototransistor mirip dengan transistor bipolar (bipolar junctoin transistor). Pada daerah basis dapat dimasuki sinar dari luar melalui suatu celah transparan dari luar kamasan taransistor. Celah ini biasanya dilindungi oleh suatu lensa kecil yang memusatkan sinar di tepi sambungangan basis emitor. Prinsip Kerja Sensor Photo Transistor Sambungan antara basis dan kolektor, dioperasikan dalam catu balik dan berfungsi sebagai fotodioda yang merespon masuknya sinar dari luar. Bila tak ada sinar yang masuk, arus yang melalui sambungan catu balik sama dengan nol. Jika sinar dari energi photon cukup dan mengenai sambungan catu balik, penambahan pasangan hole dan elektron akan terjadi dalam depletion region, menyebabkan sambungan menghantar. Jumlah pasangan hole dan elektron yang dibangkitkan dalam sambungan akan sebanding dengan intensitas sinar yang mengenainya. Sambungan antara basis emitor dapat dicatu maju, menyebabkan piranti ini dapat difungsikan sebagai transistor bipolar konvensional. Arus kolektor dari phototransistor diberikan oleh : Terminal basis dari photo transistor tidak membutuhkan sambungan (no

6 connect) untuk bekerja. Jika basis tidak disambung dan VCE adalah positif, sambungan basis kolektor akan berlaku sebagai fotodioda yang dicatu balik. Arus kolektor dapat mengalir sebagai tanggapan dari salah satu masukan, dengan arus basis atau masukan intensitas sinar L. Gambar.7 Simbol Phototransistor Aplikasi komponen ini sebagai sensor peraba adalah digunakan bersama dengan LED Infrared yang dipancarkan ke permukaan tanah. Apabila permukaan tanah atau lantai berwarna terang, maka sinyal infrared akan dikembalikan ke sensor dan diterima oleh ST8-LR2. Namun bila permukaan tanah atau lantai berwarna gelap, maka sinyal infrared akan diserap dan hanya sedikit atau bahkan tidak ada yang kembali. C. ALAT DAN BAHAN. Modul trainer Sensor Cahaya 2. Jobsheet praktikum sensor cahaya 3. Avometer 4. Power Supply 5. Jack Banana D. GAMBAR RANGKAIAN Gambar.8 Rangkaian Sensor LDR

7 VCC 5V VEE 2.0V R kω 3 2 4 7 5 U4 6 LM74CH Rin kω Rin2 kω 4 7 3 2 Rg 2.2kΩ Rf 2.2kΩ 5 U3 6 LM74CH Gambar.9 Rangkaian Sensor Phototransistor VCC 5V VEE 2.0V R kω U2 PHOTO_DIODE_RATED 3 2 4 7 5 U4 6 LM74CH Rin kω Rin2 kω 4 7 3 2 Rg 2.2kΩ Rf 2.2kΩ 5 U3 6 LM74CH Gambar.0 rangkaian sensor Photodioda Gambar. Rangkaian Trainer Sensor Cahaya

8 E. LANGKAH PERCOBAAN. Siapkan alat dan bahan yang telah ditentukan pada bagian Alat dan Bahan. 2. Siapkan catu daya DC dengan AVO meter dan atur menjadi +2V. 3. Pasang VCC sebesar +2VDC ke port banana VCC (Merah) pada trainer dan pasang Ground pada port banana ground (Hitam) yang terletak di sebelah VCC. 4. Pasang male jack banana pada output sensor Photodioda dan masukan salah satu sisi male jack banana tersebut ke input buffer. 5. Pasang male jack banana pada output buffer dan salah satu kabel male jack banana pada input positif diferensial (Merah). 6. Atur dimmer sehingga lampu menjadi gelap (mati), redup, dan terang. 7. Tiap stage (gelap -redup-terang) hitung output pada buffer dan differensialnya dengan cara menaruh probe positif (merah) AVO meter pada output yang akan diukur dan probe negatif (hitam) pada ground. 8. Catat hasil pengukuran pada tabel hasil percobaan. 9. Lakukan langkah-langkah tersebut pada sensor phototransistor dan LDR. F. HASIL PERCOBAAN Percobaan Pertama Cahaya Gelap Redup Terang Tegangan Tegangan Tegangan LDR(V) Photodiode(V) Phototransistor (V) Sensor Diff Sensor Diff Sensor Diff Percobaan Kedua Cahaya Gelap Redup Terang Tegangan Tegangan Tegangan LDR(V) Photodiode(V) Phototransistor (V) Sensor Diff Sensor Diff Sensor Diff

9 Percobaan Ketiga Cahaya Gelap Redup Terang Tegangan Tegangan Tegangan LDR(V) Photodiode(V) Phototransistor (V) Sensor Diff Sensor Diff Sensor Diff Tabel Pengukuran Resistansi Resistansi (Ω) Cahaya LDR Photodioda Phototransistor Gelap Redup Terang G. ANALISA DATA Lakukan analisa terhadap data yang telah Anda peroleh dari pengukuran tegangan dan resistansi dari sensor cahaya. Kemudian, jawab pertanyaan berikut ini.. Berapa kali penguatan pada penguat (Op-Amp) diferensial? 2. Hitung dan bandingkan penguatan yang seharusnya terjadi (menggunakan rumus penguatan diferensial) dengan data yang Anda peroleh dari tegangan output penguat diferensial! H. KESIMPULAN

0 I. DAFTAR RUJUKAN 202. Sensor Photodioda. (Online), (elektronika-dasar.web.id/sensor-photodioda/) diakses pada tanggal 22 November 205. 202. Rangkaian Dasar Phototransistor. (Online), (elektronika-dasar.web.id/rangkaiandasar-photo-transistor/) diakses pada tanggal 22 November 205. 202. Sensor Photodioda. (Online), (elektronika-dasar.web.id/sensor-photodioda/) diakses pada tanggal 22 November 205