III. METODOLOGI. 3.1 Waktu dan Lokasi Penelitian. 3.2 Bahan dan Alat

dokumen-dokumen yang mirip
BAB III METODOLOGI 3.1 Lokasi dan Waktu Penelitian 3.2 Bahan dan Alat

III. BAHAN DAN METODE

METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Juli-November Penelitian ini

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN

III. METODOLOGI. Gambar 1. Peta Administrasi Kota Palembang.

5. PEMBAHASAN 5.1 Koreksi Radiometrik

III. BAHAN DAN METODE

BAB III METODOLOGI PENELITIAN

III. METODE PENELITIAN. berlokasi di kawasan Taman Nasional Way Kambas. Taman Nasional Way

BAB III METODOLOGI 3.1 Waktu dan Tempat 3.2 Alat dan Data 3.3 Tahapan Pelaksanaan

BAB III METODOLOGI PENELITIAN

BAB II METODE PENELITIAN

MODEL PENDUGA BIOMASSA MENGGUNAKAN CITRA LANDSAT DI HUTAN PENDIDIKAN GUNUNG WALAT HARLYN HARLINDA

METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Maret sampai Oktober 2009.

BAB III METODA. Gambar 3.1 Intensitas total yang diterima sensor radar (dimodifikasi dari GlobeSAR, 2002)

III. METODE PENELITIAN. Penelitian dilaksanakan di Taman Hutan Raya Wan Abdul Rachman (Tahura

BAB III METODE PENELITIAN

BAB IV HASIL DAN ANALISIS

III. METODOLOGI 3.1 Waktu Penelitian 3.2 Lokasi Penelitian

III. BAHAN DAN METODE

METODOLOGI. Gambar 4. Peta Lokasi Penelitian

BAB III PEMBAHASAN. 3.1 Data. Data yang digunakan dalam penelitian ini berupa :

RIZKY ANDIANTO NRP

BAB IV PENGOLAHAN DATA

BAB III PELAKSANAAN PENELITIAN

Aplikasi Penginderaan Jauh Untuk Monitoring Perubahan Ruang Terbuka Hijau (Studi Kasus : Wilayah Barat Kabupaten Pasuruan)

BAB III METODE PENELITIAN

3. METODE PENELITIAN. 3.1 Waktu dan Tempat Penelitian

ESTIMASI STOK KARBON MENGGUNAKAN CITRA ALOS AVNIR-2 DI HUTAN WANAGAMA KABUPATEN GUNUNGKIDUL. Agus Aryandi

BAB IV HASIL DAN ANALISIS

III. METODOLOGI PENELITIAN

METODE PENELITIAN Kerangka Pemikiran

Indeks Vegetasi Bentuk komputasi nilai-nilai indeks vegetasi matematis dapat dinyatakan sebagai berikut :

PENDUGAAN CADANGAN KARBON POHON PADA RUANG TERBUKA HIJAU (RTH) KOTA DI KODYA JAKARTA TIMUR MENGGUNAKAN CITRA LANDSAT ISDIYANTORO

BAB V HASIL DAN PEMBAHASAN

BAB III METODOLOGI PENELITIAN

III. METODOLOGI. Gambar 2. Peta Orientasi Wilayah Penelitian. Kota Yogyakarta. Kota Medan. Kota Banjarmasin

III. METODE PENELITIAN

III. METODE PENELITIAN

BAB III METODOLOGI PENELITIAN

III. METODE PENELITIAN. Tampak pada bulan Januari September Resort Pugung Tampak memiliki luas

BAB II METODE PENELITIAN

Sudaryanto dan Melania Swetika Rini*

Latar belakang. Kerusakan hutan. Perlu usaha: Perlindungan Pemantauan 22/06/2012

TINJAUAN PUSTAKA Konsep Dasar Penginderaan Jauh

IV. METODE PENELITIAN

BAB III METODOLOGI 3.1 Lokasi dan Waktu Penelitian 3.2 Bahan dan Alat Penelitian 3.3 Metode Penelitian Pengumpulan Data

BAB III METODE PENELITIAN

Lampiran 1. Peta klasifikasi penutup lahan Kodya Bogor tahun 1997

Analisa Kondisi Ekosistem Mangrove Menggunakan Data Citra Satelit Multitemporal dan Multilevel (Studi Kasus: Pesisir Utara Surabaya)

Kegiatan konversi hutan menjadi lahan pertambangan melepaskan cadangan

III. METODE PENELITIAN

DAFTAR TABEL. No. Tabel Judul Tabel No. Hal.

IV. METODOLOGI 4.1. Waktu dan Lokasi

BAB II. TINJAUAN PUSTAKA

BAB V HASIL DAN PEMBAHASAN

BAB III METODOLOGI. Peta lokasi pengambilan sampel biomassa jenis nyirih di hutan mangrove Batu Ampar, Kalimantan Barat.

METODE PENELITIAN. Data Citra, Data Pendukung dan Alat

III. METODE PENELITIAN. Waktu penelitian dilaksanakan dari bulan Mei sampai dengan Juni 2013.

4. HASIL PENELITIAN DAN PEMBAHASAN

Gambar 1. Peta Kota Dumai

A JW Hatulesila. Analisis Spasial Ruang Terbuka Hijau (RTH) untuk Penanganan Perubahan Iklim di Kota Ambon. Abstrak

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN

II. TINJAUAN PUSTAKA

Gambar 1. Peta DAS penelitian

Nilai Io diasumsikan sebagai nilai R s

METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Maret sampai Agustus 2014.

III. METODE PENELITIAN

BAB I PENDAHULUAN 1. Latar Belakang

Generated by Foxit PDF Creator Foxit Software For evaluation only. 23 LAMPIRAN

BAB II METODE PENELITIAN

PEMANFAATAN CITRA LANDSAT 8 UNTUK ESTIMASI STOK KARBON HUTAN MANGROVE DI KAWASAN SEGARA ANAKAN CILACAP JAWA TENGAH

III. HASIL DAN PEMBAHASAN

Jurnal Manajemen Hutan Tropika Vol. IX No. 1 : 1-16 (2003)

BAB V HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN. Tabel 7 Matrik korelasi antara peubah pada lokasi BKPH Dungus

BAHAN DAN MET ODE. Waktu dan Lokasi

BAB I PENDAHULUAN 1.1 Latar Belakang

3 METODE. Lokasi dan Waktu Penelitian

II. TINJAUAN PUSTAKA. permukaan lahan (Burley, 1961 dalam Lo, 1995). Konstruksi tersebut seluruhnya

Sebaran Stok Karbon Berdasarkan Karaktristik Jenis Tanah (Studi Kasus : Area Hutan Halmahera Timur, Kab Maluku Utara)

BAB III METODOLOGI 3.1 Waktu dan tempat penelitian 3.2 Alat dan bahan 3.3 Metode pengambilan data

Gambar 1. Lokasi Penelitian

menunjukkan nilai keakuratan yang cukup baik karena nilai tersebut lebih kecil dari limit maksimum kesalahan rata-rata yaitu 0,5 piksel.

BAB III PENGOLAHAN DATA. Pada bab ini akan dibahas tentang aplikasi dan pelaksanaan penelitian yang dilakukan dalam tugas akhir ini.

BAB III METODE PENELITIAN

BAB I PENDAHULUAN. 1.1 Latar Belakang

III. METODE PENELITIAN

JURNAL TEKNIK ITS Vol. 6, No. 2, (2017) ISSN: ( Print) A-572

TM / 16 Mei 2006 U.S. Geological Survey* Landsat 5 4 Mei 2000 Global Land Cover Facility** 124/64 ETM+ / Landsat-7. 2 Maret 2005

BAB II TINJAUAN PUSTAKA...

3. BAHAN DAN METODE. Penelitian yang meliputi pengolahan data citra dilakukan pada bulan Mei

BAB III METODOLOGI PENELITIAN

LAPORAN PRAKTIKUM MATA KULIAH PENGOLAHAN CITRA DIGITAL

4 HASIL DAN PEMBAHASAN

BAB III METODE PENELITIAN

APLIKASI CITRA ALOS AVNIR-2 UNTUK ESTIMASI VOLUME TEGAKAN PINUS DI WILAYAH KOPENG. Hanafiah Yusuf

Transkripsi:

III. METODOLOGI 3.1 Waktu dan Lokasi Penelitian Penelitian ini dilaksanakan pada areal Ruang Terbuka Hijau (RTH) yang difokuskan pada Taman dan Jalur Hijau di Kotamadya Jakarta Timur. Pelaksanaan kegiatan tersebut meliputi kegiatan Laboratorium dan Checking Lapangan antara bulan September 2005 sampai dengan Maret 2006. 3.2 Bahan dan Alat Bahan utama yang dipergunakan pada penelitian ini adalah Citra Landsat MSS Aquisisi 02 Juli 1986, Citra Landsat 5 TM Aquisisi 16 Juli 1992, Citra Landsat 7 ETM+ Aquisisi 10 Agustus 2001, Citra Landsat 7 ETM+ SLC Off Aquisisi 23 Juli 2005 serta Peta Vektor wilayah Kotamadya Jakarta Timur dan DKI Jakarta secara keseluruhan. Sedangkan alat-alat yang dipergunakan baik untuk pengolahan citra maupun di lapangan adalah : Global Positioning System (GPS), kompas, Dap meter (alat ukur diameter pohon setinggi dada), meteran, dan kamera. Untuk pengolahan citra dan data vektor (peta) dilakukan dengan program komputer ERDAS Imagine 8.7 dan Arc GIS 9.2 serta untuk menganalisis data dipergunakan SPSS for Windows ver. 11.5. 3.2.1 Data dan Informasi yang diperlukan Jenis data dan informasi yang diperlukan pada penelitian ini adalah: 1. Data hasil pengolahan Citra Landsat TM, yaitu: Data olahan Citra Landsat TM yang dibutuhkan ada 2 macam yaitu: (1) Nilai respon langsung spektral Citra Landsat yang diperoleh dengan proses ekstraksi langsung nilai digital (digital number) meliputi kanal 1, 2, 3, 4, 5, dan 7. (2) Nilai respon indeks vegetasi spektral Citra Landsat yang diperoleh dari transformasi perbandingan sederhana kanal inframerah (infrared) dengan kanal merah (red) serta berbagai indeks

18 turunannya. Nilai yang diekstraksi sama dengan respon langsung yaitu nilai digital (digital number). Beberapa jenis transformasi yang dicobakan antara lain: a. Ratio Vegetation Index (RVI) = NIR/Red (Rouse et.al, 1974). NIR b. Transformed RVI (TRVI) = Re d (Rouse et. al, 1974). c. Difference Vegetation Index (DVI) = 2.4 NIR - Red (Richardson and Weigand, 1977). d. Normalized DVI (NDVI) = (NIR-Red)/(NIR+Red) (Rouse et.al, 1974) e. Transformed NDVI (TNDVI 1 ) NIR - Red + 0,5 NIR + Red (Deering et.al, 1975). f. Transformed NDVI (TNDVI 2 ) NDVI + 0,5 x Abs (NDVI + 0,5 Abs (Perry dan Lautenschlagen, 1984). ( NDVI + 0,5) g. Middle Infra Red Index (MIR Index) = (MIR - Red)/(MIR + Red) (Roy dan Shirish, 1994). 2. Data Hasil pengukuran lapangan, yaitu: diameter batang setinggi dada (Dbh) dan tinggi total pohon (H). 3. Data pendukung yaitu: Peta penutupan lahan oleh vegetasi tanaman (pohon).

19 3.3 Alur Pembentukan Model Pembentukan model dimulai dari koreksi radiometrik data Landsat menggunakan LUT (Lookup table) stretch, persamaan histogram (Histogram Equalization), dan Destrip TM data. Penggunaan koreksi radiometrik di atas dilakukan karena data Landsat TM masih bersifat data yang harus dinormalkan untuk memudahkan dalam pengklasifikasian tutupan lahan untuk analisis cadangan karbon pohon. Penggunaan koreksi radiometrik ini tidak mempengaruhi data nilai digital (DN). Setelah itu dilakukan koreksi geometrik yaitu koreksi citra terhadap posisi di permukaan bumi yang sebenarnya. Dengan koreksi geometrik maka titik-titik pengamatan lapangan pada GPS dapat terdeteksi sempurna pada tampilan citra. Dalam koreksi geometrik ini dilakukan penetapan titik-titik kontrol minimal 4 buah yang menyebar di setiap sudut Citra Landsat. Pembuatan titik-titik kontrol lebih dari 4 buah akan menambah akurasi geometrik citra tersebut. Koreksi ini juga dilakukan dengan menggunakan referensi lokasi citra yang sama (misalnya wilayah Jakarta). Perlakuan koreksi geometrik pada Citra Landsat ini tidak merubah database nilai-nilai piksel citra. Pengambilan DN (Digital Number) dilakukan dengan 2 (dua) cara yaitu: pertama adalah mengambil nilai DN (DN Value) dengan nilai respon langsung spektral Citra Landsat yang diperoleh dengan proses ekstraksi langsung nilai digital tanpa melakukan transformasi indeks vegetasi; dan kedua adalah mengambil nilai DN (DN Value) dengan melakukan transformasi indeks vegetasi spektral Citra Landsat. Hasil yang diperoleh dari kedua cara tersebut kemudian dimasukkan dalam lokasi unit contoh pada citra sehingga diperoleh Nilai DN (DN Value) Setelah dimasukkan dalam lokasi plot contoh pada citra, langkah selanjutnya adalah memasukkan plot lokasi titik sampling lapangan dengan ukuran 100 m x 100 m untuk mengetahui dinamika penutupan lahan oleh vegetasi pohon, sehingga diperoleh data lapangan berupa tinggi pohon dan diameter pohon setinggi dada. Dari data inilah maka akan diperleh data Biomassa. Data yang dieksplorasi selanjutnya adalah nilai digitalnya (DN) yang kemudian disejajarkan dengan data biomassa / karbon di lapangan untuk

20 mendapatkan model terbaik. Secara jelas alur pembentukan model dapat dilihat pada Gambar 2 berikut ini. Data Landsat ETM+ Koreksi Radiometrik Peta Topografi Koreksi Geometrik Peta Landuse Peta Kawasan Peta Lokasi Klasifikasi Terbimbing Transformasi Indeks Vegetasi Evaluasi Ketelitian Klasifikasi tidak Formula Indeks Vegetasi yang Dicobakan Klasifikasi Baik? ya Penetapan Lokasi Unit Contoh Pada Citra Checking Lapangan (Land Cover) Data Citra DN dan Indeks Vegetasi Data Lapangan (Biomassa #Karbon) Pemilihan Model Model Terbaik Jumlah Cadangan Karbon Menggunakan Citra Landsat Thn. 1986,1992,2001 dan 2005 Gambar 2. Diagram Alur Pembentukan Model Pendugaan Cadangan Karbon

21 3.4 Pengolahan Data Landsat TM 3.4.1 Koreksi Citra Pengolahan awal meliputi pemeriksaan dan koreksi data asli dari distorsi radiometris dan geometris. Pemeriksaan data dari distorsi radiometris pengaruh atmosfer dilakukan dengan metode histogram adjustment, yaitu histogram nilai digital setiap kanal diperiksa untuk mengetahui nilai minimumnya selanjutnya apabila nilai tersebut tidak sama dengan nol, maka dilakukan koreksi dengan pengurangan nilai setiap piksel pada kanal tersebut sebesar nilai minimumnya. Koreksi geometris dilakukan dengan mencari sejumlah ground control point (GCP) yang dapat dikenali baik pada citra maupun peta acuan dan dicatat koordinatnya. GCP yang dicari adalah tersebar merata dan relatif permanen dalam kurun waktu pendek. Jumlah minimum GCP dirumuskan sebagai berikut: Jumlah GCP minimum = (t+1)(t+2)/2 Dalam hal ini nilai t adalah ordo persamaan transformasi. Persamaan transformasinya adalah dengan Orde 1 (Affine transformation), yaitu sebagai berikut: p' = a 0 + a 1 x + a 2 y l' = b 0 + b 1 x + b 2 y Selanjutnya dilakukan resampling dengan metode tetangga terdekat (nearest neighbourhood interpolation) karena metode ini paling efisien dan tidak mengubah nilai digital number (DN) yang asli. Kemudian dilakukan eliminasi GCP yang menyebabkan nilai Root Mean Square Error (RMSE) tinggi, sampai dicapai nilai RMSE < 0,5 pixel. Titik-titik kontrol untuk koreksi citra hasil klasifikasi dapat dilihat pada lampiran 5. RMSE dapat dinyatakan dengan rumus sebagai berikut: 2 RMSE = ( p ' - p ) + ( I' - I ) 2 original Dalam hal ini: P original, I original = koordinat asli dari GCP pada citra P', I' = koordinat estimasi original

22 3.4.2 Pemilihan Kanal Spektral Pemilihan kanal spektral untuk klasifikasi dilakukan dengan menggunakan metode Optimum Index Factor (OIF). Adapun rumus untuk menghitung OIF adalah sebagai berikut: OIF = Dalam hal ini: 3 i = 1 3 i = 1 S r i i (Jaya, 2006) S = simpangan baku r = koefisien korelasi Kombinasi tiga kanal spektral yang terpilih adalah kombinasi yang memiliki nilai OIF tertinggi. 3.4.3 Penajaman Citra (Image Enhancement) Tujuan dari penajaman citra adalah untuk memperbaiki kemampuan mendeteksi obyek pada citra sehingga obyek pada citra dapat lebih mudah diinterpretasikan. Dalam penelitian ini digunakan algoritma penajaman citra linear (percentage linear contrast enhancement) untuk penajaman spektral (spektral enhancement) dan algoritma penajaman tepi (sharp enhancement) dengan filter high pass untuk penajaman spasial (spatial enhancement). 3.4.4 Transformasi Citra Transformasi citra dilakukan dengan menggunakan formula indeks vegetasi, yaitu Indeks, Ratio Vegetation Index (RVI), Transformed RVI (TRVI), Difference Vegetation Index (DVI), Normalized DVI (NDVI), Transformed NDVI (TNDVI), Middle Infrared I Index (MIRI index). Tujuan dari transformasi citra adalah untuk mengurangi 6 kanal Landsat menjadi 1 kanal tiap piksel yang dapat memperkirakan atau menaksir karakteristik tanaman/kanopi yaitu biomassa, produktivitas, leaf area atau persen penutupan tanah oleh tanaman (Jensen, 1986).

23 3.4.5 Evaluasi Ketelitian Klasifikasi Penilaian ketelitian klasifikasi dilakukan dengan rumus Kappa Acuracy. Rumus ini digunakan karena memperhitungkan semua elemen dalam matrik kesalahan (Confussion matrix). Rumus kappa accuracy ini juga digunakan untuk menguji kesignifikasian dua matrik kesalahan yang berasal dari metode yang berbeda atau kombinasi kanal yang berbeda (Lillesand dan Kiefer, 1979; Jensen, 1986; Richards, 1993; Jaya dan Kobayashi, 1995; Howard, 1996; Jaya, 1997). Rumusnya adalah: r Kappa Accuracy = N Xi - X i+ X + i i= 1 i= 1 r x 100% 2 N - X X Dalam hal ini: N = jumlah semua piksel yang digunakan untuk pengamatan r = jumlah baris/lajur pada matrik kesalahan (jumlah kelas) X i+ = Xij (jumlah semua kolom pada baris ke-i) X +i = Xij (jumlah semua kolom pada baris ke-j) i= 1 r i+ + i Sedangkan tabel matrik kesalahan (confusion matrix) untuk menguji keakurasian klasifikasi yang sering disebut matrik kontingensi adalah sebagai berikut: Tabel 3. Tabel Matrik Kesalahan (Confussion Matrix) Diklasifikasikan ke kelas Data Acuan Total (data klasifikasi di peta) Training Area Baris X A B... D i+ A X ii............... B....................................... D......... X ii N Total Kolom X +i User s Accuracy X ii /X +i Producer s Accuracy X ii /X i+ Ukuran akurasi lain yang bisa dihitung berdasarkan tabel matrik kesalahan ini adalah overall accuracy, producer s accuracy dan user s accuracy, yakni sebagai berikut:

24 Overall Accuracy =. 100% N r k X ii X ii Producer s Accuracy =. 100% X i+ X ii User s Accuracy =. 100% X + i 3.5 Pengumpulan Data Lapangan Pengukuran data lapangan dilakukan pada plot-plot contoh yang dikumpulkan pada saat kegiatan pengecekan lapangan. Setiap plot contoh berukuran 100 m x 100 m sesuai resolusi spasial data Landsat TM, sebanyak 30 titik pengamatan. Lokasi plot contoh ditentukan koordinat geografisnya dan direkam dengan menggunakan Global Positioning System (GPS). Peletakan plot contoh bersesuaian dengan lokasi piksel pada citra. Semua pohon yang berdiameter 10 cm pada plot contoh diukur Dbh-nya atau diameter pada ketinggian 120 cm dari permukaan lahan. 100 m 100 m LANDSAT TM (a). Citra PLOT CONTOH (b). Lapangan Gambar 3. Lokasi Piksel pada Citra dan Plot Contoh di Lapangan.

25 Pada Citra, Nilai Respon Spektral Vegetasi Piksel 5 (DN 5 ) dihitung berdasarkan rata-rata DN 1, DN 2, DN 3, DN 4, DN 6, DN 7, DN 8, dan DN 9. Di Lapangan Plot Contoh berukuran 100 m x 100 m. 3.6 Pendugaan Biomassa Pendugaan biomassa dilakukan pada area contoh yang dikumpulkan dari plot-plot contoh. Pendugaan biomassa dilakukan dengan menggunakan persamaan alometrik. Persamaan alometrik yang digunakan adalah persamaan hasil penelitian Heriansyah et al. (2003) untuk jenis tanaman bercabang. 3.6.1 Perhitungan Biomassa Biomassa pohon dihitung menggunakan persamaan alometrik, yang dibuat oleh Heriansyah et.al (2003). Persamaan alometrik tersebut dapat dilihat pada tabel 4 dibawah ini. Tabel 4. Persamaan alometrik penduga biomassa bagian pohon. Biomassa Persamaan Alometrik R 2 (%) Batang W b = 0,0323 (D 2 ) 1,3758 99,21 Cabang W c = 0,0023 (D 2 ) 1,525 94,22 Daun W d = 0,0499 (D 2 ) 0,7763 73,48 Sumber : Heriansyah et. al (2003) Keterangan : W b = W c = W d D = Biomassa (kg) = Diameter setinggi dada (cm) Biomassa yang diukur dalam penelitian ini adalah biomassa pohon (W p ) di atas permukaan tanah (above-ground biomass). Tegakan yang dihitung berdasarkan penjumlahan biomassa batang (W b ), cabang (W c ) dan daun (W d ). Sedangkan biomassa per hektar dihitung dengan persamaan sebagai berikut:

26 Keterangan : W = n i= 1 Wp A i x 10.000 W = Total biomassa (ton ha -1 ) WP i = Biomassa pohon (ton) A = Luas plot (m 2 ) n = Jumlah pohon 3.6.2 Perhitungan Karbon Biomassa hutan dapat digunakan untuk menduga kandungan karbon dalam vegetasi hutan karena 50 % biomassa tersusun dari karbon (Brown & Gaston 1996). Pada penelitian ini pendugaan kandungan karbon dilakukan dengan rumus sebagai berikut: Y = W * 50 % Keterangan : Y = Kandungan karbon di atas permukaan tanah tegakan (ton ha -1 ). W = Total biomassa per hektar (ton ha -1 ) 3.7 Analisis Data Penyusunan Model Penduga Biomassa Bagian Pohon di Atas Tanah (W) dengan Nilai Respon Langsung Spektral (DN) Data Landsat TM Model regresi yang dicobakan adalah: 1. Model Linear Berganda Y = b 0 + b 1 X 1 + b 2 X 2 +... + b i X j

27 2. Model Logaritmik Y = b 0 X 1 b1 X 2 b2... X j bi 3. Model Eksponensial (b0 + b1x1 + b2x2 +... +bixj) Y = e Dalam hal ini: Y = Kandungan Karbon (C) bagian pohon di atas tanah (kg/m 2 ) x 1, x 2...xj = nilai spektral (DN); j = 6 untuk Landsat TM b 0, b 1... b i = parameter 3.8 Pengujian Hipotesis Hipotesis yang diuji adalah H0 : bi = 0 dan H1 : sekurang-kurangnya ada satu bi 1, 2, 3,... p. Secara harfiah pengujian hipotesis ini dimaksudkan untuk menunjukkan apakah hubungan antara biomassa bagian pohon di atas tanah (Y) nilai respon spektral citra Landsat TM dan nilai indeks vegetasi memiliki hubungan yang berarti. Pengujian hipotesis ini dilakukan melalui analisis sidik ragam seperti pada Tabel 5 berikut ini. Tabel 5. Sidik Ragam Sumber Keragaman Derajat bebas (db) Jumlah Kuadrat (JK) Kuadrat Tengah (KT) F hitung KTR/KTS Regresi p-1 Β X Y-ky 2 JKR/JKT Sisa k-p JKT-JKR JKS/JKT Total k-1 Y Y-ky 2 Keterangan: p = jumlah parameter k = jumlah plot contoh Kriteria uji adalah jika F hit > F tabel (dbr,dbs) maka terima H 1, sebaliknya jika F hit < F tabel maka terima H 0.

28 Ukuran yang dapat menggambarkan tingkat ketelitian model adalah koefisien determinasi (R 2 ) yang menunjukkan persentase kemampuan peubahpeubah bebas (nilai respon spektral (DN) dan indeks vegetasi) dalam menjelaskan peubah tak bebas (Y), yang dapat digunakan sebagai tolak ukur ketelitian model penduga yang diperoleh. Nilai R 2 ini berkisar antara 0 100%. 3.9 Pemilihan Model Terbaik Pemilihan model terbaik didasarkan pada pertimbangan kepakaran (professional judgement) dan analisis diagnostik lajur dan diagnostik baris yang meliputi koefisien determinasi (R 2 ), CP-Mallow, keaditifan model, kenormalan sisaan, pencilan, leverage dan pengamatan berpengaruh. Langkah pertama adalah melakukan analisis variance inflation factor (VIF), yang akan menghasilkan peubah-peubah terseleksi. Rumus VIF adalah sebagai berikut: VIF = 1 (1- r 2 j ) Dalam hal ini: rj = nilai korelasi antara peubah j dengan peubah lainnya. Berdasarkan peubah-peubah model terseleksi, selanjutnya dilakukan pemilihan subset model kandidat dengan analisis BREG (Best Regression Subset) yaitu dengan membandingkan nilai CP-Mallow yang paling mendekati banyaknya peubah bebasnya. Statistik CP-Mallow adalah sebagai berikut: dimana : JKS(p') CP Mallow = - 2 S ( n - 2p' ) JKS (p') = jumlah kuadrat sisa dari model yang memiliki peubah parameter sedangkan p' adalah banyaknya parameter di dalam model termasuk β 0.

29 S 2 = kuadrat tengah sisa dari model yang mengandung seluruh peubah bebas. Model terbaik pada kriteria CP-Mallow ini adalah yang memiliki CP-Mallow yang mendekati p'. Dari subset model kandidat selanjutnya dipilih untuk dijadikan subset model terpilih berdasarkan kriteria R 2 dan pertimbangan kepakaran (professional judgement). Model yang terpilih yaitu model yang secara R 2 mempunyai nilai yang cukup tinggi dan logika keilmuan tidak bertentangan. Setelah model terpilih maka tahap selanjutnya adalah pengujian keabsahan dengan diagnostik baris (diagnostik pengamatan), yaitu pendeteksian terhadap pencilan, leverage dan pengamatan berpengaruh. Pengamatan pencilan dilakukan dengan pengujian Tresid (Studentized Residual) dan membandingkannya dengan tabel Critical Value for Studentized Residual dan Jacknife. Laverage diuji dengan menghitung nilai H ij dan membandingkannya dengan tabel Values for Leverages. Pengamatan berpengaruh adalah apabila pengamatan tersebut tidak dimasukkan ke dalam bentuk model atau persamaan, maka akan menghasilkan koefisien regresi yang sangat berbeda. Pengujian ini dilakukan dengan menghitung nilai Cook Distance atau DFITS dan membandingkannya dengan tabel 50 Percentile of F Distribution for Cook s. Uji visual kenormalan sisaan dan uji keaditifan model digunakan untuk menguji asumsi apakah nilai sisaan dan dugaan berbentuk pola atau tidak. Jika nilai sisaan dan dugaan menyebar secara acak maka model dikatakan handal, sedangkan jika pola sisaan dan dugaan berbentuk sistematis maka model dikatakan tidak handal.