Aksi Game Arcade Berdasarkan Pikiran Menggunakan Filter Fast Fourier Transform dan Learning Vector Quantization

dokumen-dokumen yang mirip
Kata kunci Brain Computer Interface; Learning Vector Quantization; Sinyal EEG; Spektral Daya; Video Game. I. PENDAHULUAN

IDENTIFIKASI KONDISI RILEKS DARI SINYAL EEG MENGGUNAKAN WAVELET DAN LEARNING VECTOR QUANTIZATION

IDENTIFIKASI SINYAL EEG MENGGUNAKAN KOEFISIEN REGRESI DAN JARINGAN SYARAF TIRUAN

Identifikasi Tingkat Perhatian Produk Berdasarkan Sinyal EEG Sebagai Neuro Marketing

PENDAHULUAN. Latar Belakang

Identifikasi Neuropsikologis Terhadap Video Iklan Secara Real-Time Menggunakan Fast Fourier Transform dan Support Vector Machine

Brain Computer Interface Untuk Aksi Memutar Lagu Terhadap Tiga Kondisi Emosional Menggunakan Spektral Daya dan Adaptive Backpropagation

Identifikasi Tingkat Konsentrasi Dari Sinyal EEG Dengan Wavelet dan Adaptive Backpropagation

KLASIFIKASI SINYAL EEG TERHADAP RANGSANGAN SUARA MENGGUNAKAN POWER SPECTRAL DENCITY DAN MULTILAYER PERCEPTRON

BAB II LANDASAN TEORI

Deteksi Respon Konsentrasi Terhadap Rangsangan Suara Secara Real-Time Menggunakan Wavelet dan Support Vector Machine

APLIKASI SPEECH RECOGNITION BAHASA INDONESIA DENGAN METODE MEL-FREQUENCY CEPSTRAL COEFFICIENT

udara maupun benda padat. Manusia dapat berkomunikasi dengan manusia dari gagasan yang ingin disampaikan pada pendengar.

DETEKSI EPILEPSI DARI SINYAL EEG MENGGUNAKAN AUTOREGRESSIVE DAN ADAPTIVE BACKPROPAGATION

BAB I PENDAHULUAN I.1 Latar Belakang

PENGENALAN SUARA BURUNG MENGGUNAKAN MEL FREQUENCY CEPSTRUM COEFFICIENT DAN JARINGAN SYARAF TIRUAN PADA SISTEM PENGUSIR HAMA BURUNG

Identifikasi Respon Emosional Terhadap Rangsangan Suara Melalui Sinyal Elektroensephalogram Menggunakan Wavelet Dan Learning Vector Quantization

BAB I PENDAHULUAN. Proses pengenalan kata merupakan salah satu fungsi dari

Analisis Data EEG pada Beberapa Kondisi menggunakan Metode Dekomposisi dan Korelasi berbasis Wavelet (Dekorlet)

IDENTIFIKASI CAMPURAN NADA PADA SUARA PIANO MENGGUNAKAN CODEBOOK

Perintah Menggunakan Sinyal Suara dengan Mel- Frequency Cepstrum Coefficients dan Learning Vector Quantization

PENDAHULUAN. Latar Belakang

BAB 2 LANDASAN TEORI

TINJAUAN PUSTAKA. Pengenalan Suara

BAB I PENDAHULUAN. 1.1 Latar Belakang

PENGENALAN SUARA MANUSIA DENGAN MENGGUNAKAN JARINGAN SARAF TIRUAN MODEL PROPAGASI BALIK

Seminar Nasional Ilmu Komputer (SNIK 2016) - Semarang, 10 Oktober 2016 ISBN:

EKSTRASI CIRI SINYAL EPILEPSI MENGGUNAKAN FAST FOURIER TRANSFORM

KLASIFIKASI MUSIK MENGGUNAKAN POLYNOMIAL NEURAL NETWORK

Identifikasi Respon Emosional Berdasarkan Sinyal Elektroensephalogram Menggunakan Wavelet dan Support Vector Machine

Karakteristik Spesifikasi

IDENTIFIKASI KEBERADAAN TIKUS BERDASARKAN SUARANYA MENGGUNAKAN SMS GATEWAY

i. Perangkat Keras Prosesor Intel Pentium(R) Dual-Core CPU 2.20 GHz

PENGKLASIFIKASIAN TINGKAT DANGEROUS DRIVING BEHAVIOR MENGGUNAKAN DATA ELEKTROENSEFALOGRAFI (EEG) DENGAN PENDEKATAN MACHINE LEARNING

Klasifikasi Identitas Wajah Untuk Otorisasi Menggunakan Deteksi Tepi dan LVQ

BAB 2 LANDASAN TEORI

Jaringan Syaraf Tiruan pada Robot

Klasifikasi Sinyal EEG Terhadap Tiga Kondisi Pikiran Menggunakan Autoregressive dan Adaptive Backpropagation

BAB I PENDAHULUAN. 1.1 Latar Belakang

Pengenalan Pembicara dengan Ekstraksi Ciri MFCC Menggunakan Kuantisasi Vektor (VQ) Yoyo Somantri & Erik Haritman dosen tek elektro fptk UPI.

BAB IV HASIL DAN PEMBAHASAN. dicolokan ke komputer, hal ini untuk menghindari noise yang biasanya muncul

Identifikasi Otentifikasi Citra Tanda Tangan Menggunakan Wavelet dan Backpropagation

Identifikasi Pembicara dengan Menggunakan Mel Frequency Cepstral Coefficient (MFCC) dan Self Organizing Map (SOM)

Simulasi Sistem Pengacak Sinyal Dengan Metode FFT (Fast Fourier Transform)

EKSPRESI EMOSI MARAH BAHASA ACEH MENGGUNAKAN ALGORITMA PERCEPTRON

PENGENALAN NADA SULING REKORDER MENGGUNAKAN FUNGSI JARAK CHEBYSHEV

Available online at TRANSMISI Website TRANSMISI, 13 (3), 2011,

Aplikasi Teknik Speech Recognition pada Voice Dial Telephone

2.4. Vector Quantization Kebisingan BAB III METODOLOGI PENELITIAN Desain Penelitian Requirements Definition...

BAB I PENDAHULUAN. manusia satu dengan manusia lainnya berbeda-beda intonasi dan nadanya, maka

PENDAHULUAN. Latar Belakang

1. Pendahuluan Latar Belakang

Jurnal Komputer Terapan Vol. 1, No. 2, November 2015, Jurnal Politeknik Caltex Riau

BAB IV IMPLEMENTASI DAN EVALUASI. 4.1 Spesifikasi Hardware dan Software yang digunakan dalam penelitian

ANALISIS DEKOMPOSISI WAVELET PADA PENGENALAN POLA LURIK DENGAN METODE LEARNING VECTOR QUANTIZATION

Perbandingan Sistem Perhitungan Suara Tepuk Tangan dengan Metode Berbasis Frekuensi dan Metode Berbasis Amplitudo

Identifikasi Suara Pengontrol Lampu Menggunakan Mel-Frequency Cepstral Coefficients dan Hidden Markov Model

APLIKASI PENGENALAN SUARA DIGITAL NADA DASAR PIANO SKRIPSI M. ARDIANSYAH

APLIKASI PENGENALAN UCAPAN DENGAN EKSTRAKSI MEL-FREQUENCY CEPSTRUM COEFFICIENTS

BAB 2 LANDASAN TEORI

SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON

BIOMETRIK SUARA DENGAN TRANSFORMASI WAVELET BERBASIS ORTHOGONAL DAUBENCHIES

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang

Verifikasi Suara menggunakan Jaringan Syaraf Tiruan dan Ekstraksi Ciri Mel Frequency Cepstral Coefficient

Digital Signal Processing To Identify chords Singer Using Mel Frequency Cepstral Coefficients (MFCC) and Neural Network Backpropagation Methods

PENENTUAN AKOR GITAR DENGAN MENGGUNAKAN ALGORITMA SHORT TIME FOURIER TRANSFORM

PENGENALAN POLA EEG PADA KEMAMPUAN KONSENTRASI DAN MENGHITUNG

EMOSI merupakan salah satu fitur penting dan kompleks

BAB II TINJAUAN PUSTAKA

BAB I PENDAHULUAN. bahkan di Dunia. Penyakit jantung dapat dideteksi dengan alat elektrokardiograf

BAB I PENDAHULUAN SIMULASI DAN ANALISIS PEMANTAUAN KAMAR PASIEN RAWAT INAP DENGAN DETEKSI DAN KLASIFIKASI SINYAL AUDIO 1

EKSTRAKSI FITUR SINYAL ELEKTROENSEFALOGRAF (EEG) UNTUK IDENTIFIKASI UNSPOKEN-SPEECH MENGGUNAKAN EEGLAB

ANALISIS DAN PERANCANGAN PROGRAM APLIKASI. mahasiswa Binus University secara umum. Dan mampu membantu

Pengenalan Suara Burung Menggunakan Mel Frequency Cepstrum Coefficient dan Jaringan Syaraf Tiruan pada Sistem Pengusir Hama Burung

Segitiga Fuzzy-Neural Network untuk Mengenali Pola dari Model Input Data yang Berdistribusi

Penerapan Metode Mel Frequency Ceptral Coefficient dan Learning Vector Quantization untuk Text-Dependent Speaker Identification

ABSTRAK. Pemodelan Kecerdasan Buatan Untuk Pengenalan Citra Elektrokardiografi (EKG) Oleh: Imam Tazi, M.Si

AKSI NON PLAYER CHARACTER PADA GAME REAL TIME FIGHTING MENGGUNAKAN LEARNING VECTOR QUANTIZATION

Perbandingan Antara Metode Kohonen Neural Network dengan Metode Learning Vector Quantization Pada Pengenalan Pola Tandatangan

BAB 2 LANDASAN TEORI

Aktifasi Peralatan Elektronik Berbasis Suara Menggunakan Android

PENGEMBANGAN MODEL JARINGAN SYARAF TIRUAN RESILIENT BACKPROPAGATION UNTUK IDENTIFIKASI CHORD GITAR YOSI NURHAYATI

PEMBUATAN SISTEM PENDETEKSI KANTUK DENGAN MENGANALISA GELOMBANG ATTENTION DAN MEDITATION MENGGUNAKAN METODE SUPPORT VECTOR MACHINE

PENGENALAN POLA HIV DAN AIDS MENGGUNAKAN ALGORITMA KOHONEN PADA JARINGAN SYARAF TIRUAN BACKPROPAGATION

UNIVERSITAS BINA NUSANTARA. Jurusan Teknik Informatika Skripsi Sarjana Komputer Semester Ganjil tahun 2006/2007

BAB I PENDAHULUAN. 2012). Penelitian yang dilakukan oleh Bosma dkk. (1965), menemukan bahwa

UKDW BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

ABSTRAK Pada tugas akhir ini dibuat sistem pengidentifikasi sinyal EEG, yaitu komponen gelombang alpha, beta dan theta dengan menggunakan transformasi

ANALISIS DAN IMPLEMENTASI APLIKASI PENGENALAN SUARA MENJADI TEKS MENGGUNAKAN METODE JARINGAN SYARAF TIRUAN BACKPROPAGATION

SIMULASI PENGENALAN TULISAN MENGGUNAKAN LVQ (LEARNING VECTOR QUANTIZATION )

APLIKASI PENDETEKSI EMOSI MANUSIA MENGGUNAKAN METODE MFCC DAN DTW

SISTEM AKSES BUKU PERPUSTAKAAN JURUSAN TEKNIK ELEKTRO UNIVERSITAS ANDALAS MENGGUNAKAN APLIKASI PENGENALAN WICARA DENGAN METODA MFCC-VQ dan SSE

BAB 2 LANDASAN TEORI. mencakup teori speaker recognition dan program Matlab. dari masalah pattern recognition, yang pada umumnya berguna untuk

DETEKSI PLAT KENDARAAN MENGGUNAKAN HOG DAN LVQ. Muhammad Imron Rosadi 1

Team project 2017 Dony Pratidana S. Hum Bima Agus Setyawan S. IIP

IMPLEMENTASI DEEP LEARNING BERBASIS TENSORFLOW UNTUK PENGENALAN SIDIK JARI

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN. pengenalan terhadap gelombang suara. Pengenalan gelombang suara yang sudah

FAKULTAS SAINS DAN TEKNOLOGI UIN SUSKA RIAU. IIS AFRIANTY, ST., M.Sc

Transkripsi:

Aksi Game Arcade Berdasarkan Pikiran Menggunakan Filter Fast Fourier Transform dan Learning Vector Quantization Maulana Yusup Abdullah*, Esmeralda C Djamal, Faiza Renaldi Jurusan Informatika, Fakultas MIPA Universitas Jenderal Achmad Yani Jl. Terusan Sudirman, Cimahi *maulanayusupp@gmail.com Abstrak Brain Computer Interface (BCI) adalah teknologi pengendalian suatu perangkat tanpa menggunakan otot, suara dan sebagainya yang melibatkan fungsi motorik. Sistem BCI terdiri dari pengukuran sinyal otak dan salah satu penggunaan BCI adalah menggerakan karakter pada game melalui pikiran. Pengolahan sinyal otak tersebut untuk mendeteksi pola pola unik yang diterjemahkan menjadi perintah (misalnya pola otak saat rileks, melakukan perhitungan matematis, membayangkan gerakan tangan, dsb). Penelitian tentang BCI yang telah dilakukan sebelumnya yaitu seperti menggerakan kursi roda, kontrol pada game, menggerakan tangan robot dll. Elektroensephalogram (EEG) adalah perangkat yang dapat menangkap aktivitas listrik di otak dan menginformasikan kondisi pikiran seperti emosional, kelelahan, kewaspadaan, kesehatan dan tingkat konsentrasi. Beberapa penelitian terdahulu, mengidentifikasikan variabel kondisi pikiran tersebut di antaranya menggunakan Support Vector Machine (SVM) dan Jaringan Syaraf Tiruan (JST). Penelitian ini telah membuat sistem yang divisualisasikan pada game dengan dua gerakan yaitu ke atas dan ke bawah dengan kontrol karakter berdasarkan pikiran. Hasil pengujian yang didapatkan pada data uji yang belum dilatih sebelumnya dengan persentase 90% untuk kondisi rileks dan 22% untuk kondisi fokus. Kata kunci brain computer interface; sinyal EEG; fast fourier transform; learning vector quantization. I. PENDAHULUAN Brain Computer Interface adalah teknologi pengendalian suatu perangkat tanpa menggunakan otot, suara dan sebagainya yang melibatkan fungsi fungsi motorik. Oleh karena itu teknologi BCI merupakan teknik pengendalian suatu perangkat/mesin menggunakan pikiran. Sistem BCI terdiri dari pengukuran sinyal otak contohnya EEG, Near- Infrared Spectroscopy (NIRS), Functional Magnetic Resonance Imaging (FRMI) dan sebagainya. pengolahan sinyal otak tersebut digunakan untuk mendeteksi pola pola unik yang akan diterjemahkan menjadi perintah (misalnya pola otak saat rileks, melakukan perhitungan matematis, membayangkan gerakan tangan, dsb), pengontrolan perangkat lunak/mesin dengan perintah yang telah dikenali. Games adalah aplikasi hiburan dengan sejumlah aturan untuk mengatur perkembangan sesi yang memiliki nilai kuantitatif tentang kesuksesan dan kegagalan saat pemain memainkannya. Terdapat 4 elemen utama dalam permainan, yaitu representasi, interaksi, konflik dan keamanan. Dalam game terdapat interaksi antara pengguna dengan game tersebut dalam melakukan pergerakan karakter pada game. Terdapat beberapa jenis game yaitu action, arcade dll. Dalam game terdapat beberapa alat masukan yang digunakan untuk berinteraksi antara Pemain dengan karakter yang ada pada game. EEG adalah sebuah alat elektromedik yang dapat digunakan untuk mencatat dan menganalisa aktifitas gelombang otak dalam kurun waktu tertentu dengan penempatan elektrode di kepala. EEG bertugas menyusun data yang komprehensif mengenai aktifitas listrik pada otak. EEG seringkali dilakukan untuk mengetahui gambaran potensial listrik otak, apakah masih dalam batas normal atau terdapat sebuah gelombang yang abnormal. Bentuk dari sinyal EEG setiap orang berbeda beda dipengaruhi oleh berbagai variabel seperti kondisi emosional, mental, usia, aktivitas dan kesehatan. Karakteristik gelombang sinyal EEG terbagi berdasarkan daerah frekuensi yang menunjukan dominasi aktivitas yang sedang dialami dikenal sebagai gelombang Alfa (8 3 Hz) dominan muncul dalam keadaan sadar, mata tertutup dan kondisi rileks, gelombang Beta (4 30 Hz) dominan muncul pada saat seseorang berpikir, gelombang Teta (4 7 Hz) umumnya dominan muncul pada saat seorang sedang tidur ringan, mengantuk atau stress, gelombang delta (0,5 3 Hz) dominan muncul ketika seseorang sedang tidur nyenyak dan gelombang Gamma (30 00 Hz) umumnya dominan muncul pada saat seorang dalam kondisi kesadaran penuh. Penelitian terdahulu telah melakukan identifikasi dan klasifikasi sinyal EEG terhadap rangsangan suara [] [2], penelitian terdahulu juga telah melakukan klasifikasi sinyal EEG menggunakan SVM [3], mengenali perhatian seseorang terhadap sinyal EEG [4], mengetahui rileks dan tidaknya seseorang terhadap musik yang didengar [5], mengontrol suatu device [6], dan mengetahui efek dari pemakaian mobile phone terhadap seseorang [7]. Terdapat penelititan terdahulu yang telah dilakukan mengenai BCI yaitu untuk berkomunikasi dan kontrol pada alat/mesin [8], menggerakan kursor berdasarkan pikiran [9], mengontrol kursi roda secara realtime [0] [], strategi pada game catur [2], menggerakan mobile robot [3] [4] [5], kontrol sistem untuk bermain games [6], speech communication [7], kontrol alat alat rumah tangga yang telah terintegrasi dengan alat elektronik khusus [8] [9]. Yogyakarta, 6 Agustus 206 D-7

Penelitian ini telah membangun sistem untuk menggerakan karakter pada game berdasarkan sinyal EEG menggunakan FFT dan LVQ. Terlebih dahulu dilakukan transformasi sinyal dengan FFT untuk mengektraksi ciri pada gelombang menjadi domain frekuensi dan hasil dari transformasi diidentifikasi menggunakan LVQ. Luaran sistem yaitu gerak karakter dengan dua kelas, yaitu gerak ke atas dan gerak ke bawah. A. Akuisisi Data II. ELEKTROENSEPHALOGRAM Pengambilan data EEG untuk dijadikan data latih pada sistem kontrol gerak berdasarkan sinyal EEG ini dilakukan dengan menggunakan EEG Wireless dari kanal yang digunakan yaiu kanal Fp, dengan Frekuensi sampling 52 Hz. yang dipasang di kulit luar kepala untuk merekam sinyal pada otak. Pengambilan data dengan cara merekam sinyal EEG dilakukan secara langsung terhadap 0 naracoba dengan umur 20 25 tahun dan dalam kondisi sehat dengan perulangan sebanyak empat kali. Penetapan jumlah naracoba pada penelitian ini semata mata didasarkan pada ketersediaan naracoba yang tersedia, sukarela dan yang memenuhi persyaratan kesehatan, disamping mengacu pula terhadap jumlah naracoba yang digunakan pada sejumlah penelitian terdahulu [] [3] [2]. Perekaman yang dilakukan selama 30 detik dan terbagi menjadi dua sesi, perekaman sesi pertama naracoba diminta untuk berkonsentrasi atau fokus membayangkan karakter untuk bergerak ke atas, sebelumnya naracoba tersebut diberi pengarahan terlebih dahulu oleh peneliti dan pada saat perekaman naracoba diberi rangsangan berupa gambar karakter dan diberi rangsangan suara yang bernada semangat dan perekaman sesi kedua naracoba diminta untuk rileks atau diam. set-up sistem pengukuran sinyal EEG biasanya menggunakan metoda International Federation of Societes of Elctroencephalography, dimana elektroda ditempatkan pada kulit kepala pada posisi/aturan standar yaitu sistem 0 20, sebagaimana ditunjukan pada Gambar. Sementara itu berdasarkan aktifitas listrik pada otak, dibedakan atas set titik ukur:. Frontal (F), digunakan untuk pengontrolan, kemampuan bicara, perencanaan gerakan dan pengenalan. 2. Parietal (P), digunakan untuk menerima informasi rangsangan sentuhan, temperatur, posisi tubuh dan vibrasi. 3. Occipital (O), digunakan untuk menerima rangsangan visual dan arti tulisan. 4. Temporal (T), digunakan untuk menerima informasi rangsangan dari telinga dan berkaitan dengan memori. Selanjutnya untuk waktu perulangan perekaman terhadap 0 naracoba yang dilakukan dibagi menjadi empat waktu yang berbeda. Untuk pembagian waktunya antara lain sebagai berikut:. Waktu perekaman pertama dilakukan pada waktu sekitar jam 08.00 09.00. 2. Waktu perekaman kedua dilakukan pada waktu sekitar jam 2.00 3.00. 3. Waktu perekaman ketiga dilakukan pada waktu sekitar jam 7.00 8.00. 4. Waktu perekaman keempat dilakukan pada waktu sekitar jam 2.00 22.00. Sinyal EEG direkam dalam domain waktu, namun tidaklah mudah mengidentifikasi sinyal EEG terhadap suatu vaiabel apabila direpresentasikan dalam domain waktu. Beberapa penelitian terdahulu mengkonversi sinyal EEG dari domain waktu ke dalam domain frekuensi menggunakan FFT dan Power Spectral Density. Hal ini terutama apabila variabel yang ditinjau dalam identifikasi ditentukan dari domain frekuensi. Tabel gelombang sinyal EEG dapat dilihat pada TABEL. TABEL I. GELOMBANG SINYAL EEG Gelombang Bentuk Sinyal EEG Delta (0.5 3 Hz) Teta (4 7 Hz) Alfa (8 2 Hz) Beta (3 30 Hz) Gamma (3 00 Hz) B. Sistem Kontrol EEG Sistem kontrol gerak dengan menggunakan sinyal EEG yang dibangun dimulai dengan pengambilan data EEG. Data EEG diproses melalui tahap pra proses yaitu filter menggunakan FFT untuk merubah sinyal EEG dari domain waktu ke domain frekuensi, hasil filter digunakan sebagai data latih atau sebagai neuron input LVQ untuk dikenali karakteristik dari sinyal tersebut yang nantinya digunakan untuk gerakan karakter. Gambar Sistem kontrol menggunakan EEG dapat dilihat Gambar 2. Sistem Kontrol EEG Fp Fp 2 F7 F3 Fz F4 F8 Ekstr aksi Fitur FFT Pela tiha n LVQ T3 C3 Cz C4 T4 P3 Pz P4 T5 T6 O O2 Gambar Penempatan sensor EEG sistem 0 20 EEG Wir eless (Interface) Ger aka n Kar a kt er Gambar 2 Sistem Kontrol EEG Pengujian dilakukan terhadap naracoba lain yang memainkan games dengan meggunakan EEG Wireless secara Yogyakarta, 6 Agustus 206 D-8

lansug atau realtime. Gerakan karakter pada permainan bergerak setiap 2 detik, karena data yang diperoleh dan diproses langsung pada sistem yaitu setiap 2 detik. Pengujian dapat dapat dilihat pada Gambar 3. Na r a c ob a (Pla yer ) Pla yer Memakai EEG Wir ele ss untuk Ber main Ga m e s A. Frame Blocking Dod o Lipet Games 2 3 Player Bermain Games Gambar 3 Pengujian Realtime III. METODE Gerakan Karakter Frame Blocking merupakan proses pembagian sinyal menjadi beberapa bagian untuk memudahkan dalam proses perhitungan. Setiap bagian atau disebut dengan frame berisi titik sinyal. Pada penelitian ini, sinyal yang diolah pada proses ekstraksi untuk frame blocking berjumlah 024 data atau 2 detik. Data tersebut dibagi setiap detik setiap frame, sehingga didapatkan 2 frame dengan masing masing frame berjumlah 52 data. Setiap frame saling bertumpuk atau overlap dengan frame berikutnya. Data Sinyal EEG: [84, 33,..., 86]. N = 024 Data Overlapping Frame (M) = N * 0.5 = 52 Data. x(n) = y (M + n) () 500000 0-500000 B. Windowing Gambar 4 Hasil Frame Blocking Hasil dari proses frame blocking menghasilkan efek sinyal discontinue, agar tidak terjadi kesalahan data pada proses FFT maka data yang telah dibagi menjadi beberapa frame perlu dijadikan continue dengan mengunakan proses windowing. Jenis window yang digunakan pada penelitian ini yaitu hamming window dengan kesederhanaan rumus serta hasil dari windowing yang baik. Data Hasil Frame Blocking = [43008, 68229,..., 32096] w(n) = 0.54 0.46 50000 0-50000 Frame Blocking cos 2 N n Hamming Window Gambar 5 Hasil Windowing (2) C. Fast Fourier Transform Fast Fourier Transform merupakan metode yang sangat efisien untuk menghitung koefisien dari Fourier Diskrit ke suatu Finite sekuen dari data yang kompleks. Karena substansi wkatu yang tersimpan lebih dari pada metoda konvensional, FFT merupakan aplikasi temuan yang penting di dalam sejumlah bidang yang berbeda seperti analisis spectrum, speech and optical signal processing, design filter digital. Algoritma FFT berdasarkan atas prinsip pokok dekomposisi perhitungan Discrete Fourier Transform (DFT) dari suatu sekuen sepanjang N ke dalam transformasi diskrit Fourier secara berturut turut lebih kecil. Gambar 6 Transformasi Fourier Dimana: F(t) adalah fungsi dalam domain waktu. F(w) adalah fungsi dalam domain frekuensi. x N = [ k] = x( n) cos( 2 k n) j sin( 2* * k * n) N n= Hasil dari FFT ini yaitu nilai magnitude dari masing masing frekuensi dari gelombang Alfa, Beta, Teta dan Gamma yang digunakan yaitu 37, nilai tersebut yang digunakan sebagai masukan sebagai neuron ke LVQ. 5000.00 0.00 Fast Fourier Transform 3 5 7 9 35792232527293333537 Magnitudo Gambar 7 Hasil Fast Fourier Transform FFT merupakan salah satu metode untuk transformasi sinyal dalam domain waktu menjadi domain frekuensi, artinya proses perekaman sinyal disimpan dalam bentuk digital. Terdapat penelitian terdahulu mengenai pengacak sinyal dengan metode FFT untuk simulasi pengacakan sinyal suara, pada penelitian tersebut FFT dapat digunakan untuk filtering sinyal input dengan baik [2]. Penelitian terdahulu juga telah menggunakan FFT untuk pengolahan sinyal digital pada tuning gitar, pada penelitian tersebut algoritma FFT yang diimplementasikan pada sistem memberikan hasil yang optimal untuk tuning gitar non elektrik, berdasarkan pengujian tingkat akurasi tuning gitar mencapai 99.43% [22]. D. Learning Vector Quantization Frequency Learning Vector Quantization merupakan suatu metode klasifikasi pola yang masing masing unit keluaran mewakili kategori atau kelas tertentu. LVQ digunakan untuk pengelompokan dimana jumlah target atau kelas sudah ditentukan. Suatu lapisan kompetitif secara otomatis belajar untuk mengklasifikasikan vektor vektor input. Kelas yang (3) Yogyakarta, 6 Agustus 206 D-9

didapatkan sebagai hasil dari lapisan kompetitif ini hanya tergantung pada jarak antara vektor vektor input. Jika dua vektor input mendekati sama, maka lapisan kompetitif akan meletakan kedua vektor input tersebut ke dalam kelas yang sama. Prinsip kerja dari algoritma LVQ adalah pengurangan node node yang pada akhirnya hanya ada satu node output yang terpilih. Pertama kali yang dilakukan adalah melakukan inisialisasi bobot untuk tiap tiap node dengan nilai random. Setelah diberikan bobot random, maka jaringan diberi input sejumlah dimensi node/neuron input. Setelah input diterima jaringan, maka jaringan mulai melakukan perhitungan jarak vektor yang didapatkan dengan menjumlahkan selisih/jarak antara vektor input dengan vektor bobot. Arsitektur LVQ dapat dilihat pada Gambar 8. INPUT LAYER X X 2 X 3 X 4 X 5 X n OUTPUT LAYER Kelas X W Kelas n X W n Gambar 8 Arsitektur Learning Vector Quantization Arsitektur LVQ seperti pada Gambar 8 merupakan bagian dari versi algoritma Kohonen Self-Organizing Map (SOM). LVQ terdiri dari dua lapiran, yaitu input dan output, di antara lapisannya dihubungkan oleh bobot tertentu yang sering disebut sebagai vektor pewakil. Informasi yang diberikan ke jaringan pada saat pembelajaran bukan hanya vekor data saja melainkan informasi kelas dari data juga ikut dimasukan. Dengan: X = Vektor Masukan (X, X2,..., Xn) W = Vektor Bobot atau Vektor Pewakil X W = Selisih nilai jarak Euclideian antara vektor masukan dengan vektor bobot. Pada penelitian ini neuron yang masuk pada LVQ ini terdapat 37 dari hasil ekstraksi oleh FFT. Hasil dari LVQ ini yaitu bobot dari masing masing kelas yaitu bobot untuk kelas kesatu (karakter bergerak ke atas) dan bobot untuk kelas kedua (karakter bergerak ke bawah). Terdapat penelitian terdahulu yang menggunakan LVQ untuk mengoperasikan Kursor Komputer melalui Ucapan, algoritma LVQ pada penelitian tersebut digunakan untuk mengklasifikasikan masukan ke kelas target yang ditentukan dan menghasilkan rata rata persentase keberhasilan pengenalan suara pada sistem tersebut dengan menggunakan data latih adalah sebesar 88.89% dan rata rata persentase keberhasilan pengenalan suara pada sistem tersebut dengan menggunakan data uji adalah sebesar 83.99% [23]. Penelitian terdahulu lain juga yang menggunakan LVQ telah melakukan identifikasi ekspresi wajah [24], pengenalan tanda tangan [25], pengujian kualitas citra sidik jari [26] dan pengenalan wajah [27]. Dalam LVQ terdapat dua jenis proses, yaitu proses pelatihan dan proses pengujian. Proses pelatihan dilakukan melalui beberapa iterasi sampai batas iterasi maksimal atau tercapai. IV. HASIL DAN DISKUSI Sistem Identifikasi untuk kontrol gerak pada game berdasarkan sinyal EEG menggunakan ekstraksi FFT dan JST dengan algoritma LVQ. Komponen sinyal yang digunakan yaitu gelombang Teta ( 4 7 Hz), Gelombang Alfa (8 2 Hz), Gelombang Beta (3 30 Hz) dan Gelombang Gamma Low (3 40 Hz). Setiap frekuensi dari sinyal Alfa, Beta, Teta dan Gamma yang telah di filter oleh FFT dijadikan masukan ke LVQ. Sehingga terdapat 37 neuron input yang masuk pada LVQ. Proses identifikasi untuk menggerakan karakter pada game dilakukan proses ekstraksi terhadap sinyal EEG terlebih dahulu menggunakan filter FFT. Sistem identifikasi menggunakan LVQ dapat dilihat pada Gambar 9. PELATIHAN Data Latih 5360 Titik PRA PROSES Segmentasi (4 Detik 2 detik 4 Detik) Filter Fast Fourier Transform 024 Titik PENGUJIAN Data Uji 024 Titik 4 Frame Blocking Windowing Frame Blocking Windowing Filter Fast Fourier Transform PRA PROSES 37 Neuron Input 2 5 37 Neuron Input PROSES Pelatihan Learning Vector Quantization Bob ot Klasifikasi Learning Vector Quantization Konversi Nilai Menjadi Kelas 2 6 PRO SES Gambar 9 Sistem Identifikasi KELAS Karakter Bergerak Ke Atas Y Y2 Ke Bawah Pada tahap pra proses di pelatihan, data yang dilatih disegmentasi terlebih dahulu di mana data hasil perekaman sebelumnya 30 detik. Dari 30 detik tersebut hanya 2 detik yang diproses dan dijadikan untuk data latih, 4 detik awal dan 4 detik akhir tidak digunakan. Data hasil segmentasi tersebut akan diproses melalui filter FFT yaitu merubah dari domain waktu ke domain frekuensi. Hasil dari filter FFT yaitu 37 tersebut akan dijadikan neuron input pada LVQ untuk direpresentasikan dalam gerakan karakter yaitu karakter gerak ke atas dan karakter gerak ke bawah. Sedangkan pada tahap pengujian data yang masuk langsung diproses melalui tahap pra proses yaitu oleh FFT lalu hasil dari pra proses tersebut dijadikan neuron input pada LVQ untuk diuji dengan membandingkan bobot dari hasil pelatihan. Hasil klasifikasi pada proses pengujian menggunakan LVQ berupa bobot, sehingga diperlukan proses konversi nilai dari bobot klasifikasi tersebut menjadi kelas. Berikut sistem pengujian secara realtime, hasil pelatihan dan pengujian, serta Yogyakarta, 6 Agustus 206 D-20

data latih yang digunakan dapat dilihat pada Gambar 0, Gambar, Gambar 2. LVQ, sistem mampu mengenali data latih yang diujikan kembali dengan persentase sebesar 90% untuk kondisi rileks dan 40% untuk kondisi fokus. Sedangkan untuk data uji baru yang belum dilatih sebelumnya, sistem dapat mengenali dengan persentase sebesar 90% untuk kondisi rileks dan 22% untuk kondisi fokus. DAFTAR PUSTAKA Gambar 0 Pengujian Data Secara Realtime Gambar Hasil Pelatihan dan Pengujian Gambar 2 Data Latih dan Data Uji V. KESIMPULAN Penelitian ini telah membangun sistem kontrol gerak karakter pada game berdasarkan pikiran atau sinyal EEG menggunakan filter FFT dan LVQ terhadap dua kelas yaitu karakter bergerak ke atas ketika kondisi pikiran user sedang fokus dan karakter bergerak ke bawah ketika kondisi pikiran sedang rileks. Berdasarkan hasil pengujian yang didapatkan menggunakan Ekstraksi FFT dan pengujian menggunakan [] E. C. Djamal dan H. A. Tjokronegoro, Identifikasi dan Klasifikasi Sinyal EEG terhadap Rangsangan Suara dengan Ektraksi Wavelet dan Spektral Daya, PROC. ITB Sains, 2005. [2] E. C. Djamal dan Suprijanto, Recognition of Electroencephalogram Signal Pattern against Sound Stimulation using Spectral of Wavelet, TENCON, 20. [3] M. A. Karyawan, A. Z. Arifin dan A. Saikhu, Klasifikasi Sinyal EEG menggunakan Koefisien Autoregresif, E-Score, dan Least Squares Support Vector Machine, TIF, 20. [4] N.-H. Lieu, C.-Y. Chiang dan H.-C. Chu, Recognizing the Degree of Human Attention Using EEG Signals from Mobile Sensors, Sensors, 203. [5] N. I. C. Marzuki, N. H. Mahmood dan N. Safri, Type of Music Associated with Relaxation Based on EEG Signal Analysis, Jurnal Teknologi, 203. [6] G. S. J. R. W. J. G. O. D. W. M. Eric C. Leuthardt, A Brain Computer Interface using Electrocorticographic signal in Humans, Neural Engineering, pp. 63-7, 2004. [7] T. E. o. M. P. U. o. H. B. u. EEG, Gurloleen Singh, Internation Journal of Computer Application, 204. [8] N. B. D. J. M. G. P. T. M. V. Jonathan R. Wolpaw, Brain Computer Interface for Communication and Control, Clinical Neurophysiology, pp. 767-79, 2002. [9] A. A. A. T. A. M. B. A. M. Mohammad H. Alomari, EEG Mouse: A Machine Learning-Based Brain Computer Interface, International Journal of Advanced Computer Science and Applications (IJACSA), vol. 5, 204. [0] V. Khare, J. Santhosh, S. Anand dan M. Bhatia, Brain Computer Interface Based Real Time Control of Wheelchair Using Electroencephalogram, International Journal of Soft Computing and Engineering (IJSCE), vol., no. 5, 20. [] E. A. Mohamed, M. Z. B. Yusoff, N. K. Selman dan A. S. Malik, Enhancing EEG Signals in Brain Computer Interface Using Wavelet Transform, International Journal of Information and Electronics Engineering, vol. 4, 204. [2] L. Vokorokos dan N. Adam, Non-Invasive Brain Imaging Technique for Playing Chess with Brain Computer Interface, International Journal of Computer and Information Technology, vol. 3, 204. [3] S. Ramesh, M. G. Krishna dan M. Nakirekanti, Brain Computer Inteface System for Mind Controlled Robot using Bluetooth, International Journal of Computer Applications, vol. 04, 204. [4] T. Shanmugapriya dan S. Senthilkumar, Robotics and the Brain Computer Interface System Critical Review for Manufacturing Application, International Journal of Innovative Research in Computer and Communication Engineering, vol. 2, no. 2, 204. [5] G. Varghese, J. James, L. Joseph, M. K. John, S. Mathew dan S. Ramachandhran, Human Robot Cooperative System Based on Noninvasive Brain Computer Interface, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, vol. 4, no., 205. [6] P. A. Pour, T. Gulrez, O. AlZoubi, G. Gargiulo dan R. A. Calvo, Brain Computer Interface Next Generation Thought Controlled Distributed Video Game Development Platform, IEEE Symposium on Computational Intelligence and Games, 2008. [7] J. S. Brumberg, A. N. Castanon, P. R. Kennedy dan F. H. Guenther, Brain Computer Interfaces for Speech Communication, Speech Yogyakarta, 6 Agustus 206 D-2

Communication, pp. 367-379, 200. [8] A. I. N. Alshbatat, EEG-Based Brain Computer Interface for Automating Home Appliances, Journal of Computers, vol. 9, 204. [9] T. S, S. M. S, M. C, R. Saxena, T. R. Prasad dan A. Tiwari, Brain Computer Interface Systems to Assist Patients Using EEG Signals, International Journal of Innovative Research in Computer and Communication Engineering, vol. 3, no. 6, 205. [20] Kemalasari, M. H. P, R. W dan N. S, Pengolahan Sinyal Elektroensephalogram Sistem Peletakan 8 Elektrode dengan Metode Wavelet Transform, IES, 2003. [2] R. Y. Sipasulta, A. S. M. Lumenta dan S. R. U. A. Sompie, Simulasi Sistem Pengacak Sinyal dengan Metode Fast Fourier Transform, E- Journal Teknik Elektro dan Komputer, 204. [22] R. Dianputra, D. Puspitaningrum dan Ernawati, Implementasi Algoritma Fast Fourier Transform Untuk Pengolahan Sinyal Digital pada Tuning Gitar dengan Open String, Jurnal Teknologi Informasi, 204. [23] A. Setiawan, A. Hidayanto dan R. R. Isnanto, Aplikasi Pengenalan Ucapan dengan Ekstraksi Mel-Frequency Cepstrum Coefficients melalui Jaringan Syaraf TIruan Learning Vector Quantization untuk Mengoperasikan Kursor Komputer, TRANSMISI, 20. [24] Sutarno, Identifikasi Ekspresi Wajah Menggunakan Alihragam Gelombang Singkat (Wavelet) dan Jaringan Syaraf Tiruan Learning Vector Quantization, Seminar Nasional Informatika UPN "Veteran", 200. [25] D. Y. Qur'ani dan S. Rosmalinda, Jaringan Syaraf Tiruan Learning Vector Quantization untuk Aplikasi Pengenalan Tanda Tangan, Seminar Nasional Aplikasi Teknologi Informasi (SNATI), 200. [26] M. Nasir dan M. Syahroni, Pengujian Kualitas Citra Sidik Jari Kotor Menggunakan Learning Vector Quantization, Jurnal Litek, pp. 65-69, 202. [27] M. D. Wuryandari dan I. Afrianto, Perbandingan Metode Jaringan Syaraf Tiruan Backpropagation dan Learning Vector Quantization pada Pengenalan Wajah, Jurnal Komputer dan Informatika (KOMPUTA), 202. Yogyakarta, 6 Agustus 206 D-22