OPTIMASI KONSENTRASI CRUDE OIL DAN SUMBER NITROGEN PADA PRODUKSI BIOSURFAKTAN OLEH BAKTERI HIDROKARBONOKLASTIK DARI SUMUR BANGKO

dokumen-dokumen yang mirip
BAB 2 TINJAUAN PUSTAKA

BAB I PENDAHULUAN. atas komponen hidrofilik dan hidrofobik serta memiliki kemampuan menurunkan

Produksi Biosurfaktan oleh Bakteri Pengguna Hidrokarbon dengan Penambahan Variasi Sumber Karbon

ISOLASI BERTAHAP BAKTERI PENDEGRADASI MINYAK BUMI DARI SUMUR BANGKO

BAB I PENDAHULUAN. Oil sludge merupakan sedimen atau endapan pada dasar tangki

BAB IV HASIL DAN PEMBAHASAN A. AKTIVITAS KUALITATIF ENZIM KITINOLITIK (INDEKS KITINOLITIK)

BAB I PENDAHULUAN 1.1 Latar Belakang

Gambar 3.1. Diagram Alir Penelitian

BAB II TINJAUAN PUSTAKA. 2.1 Minyak Bumi dan dampaknya bagi Lingkungan. Minyak bumi adalah hasil proses alami berupa hidrokarbon yang dalam

BAB I PENDAHULUAN. Pencemaran lingkungan yang disebabkan oleh tumpahan minyak bumi akibat. kecerobohan manusia telah mengalami peningkatan dan

2.1. Minyak Burnt dan Hidrokarbon. Putri (1994) mengatakan minyak mentah (Crude Oil) merupakan suatu

Jurnal Penelitian Sains Volume 17 Nomor 1 Januari 2014

BAB I PENDAHULUAN 1.1.Latar Belakang

IV. HASIL DAN PEMBAHASAN. Enzim α-amilase dari Bacillus Subtilis ITBCCB148 diperoleh dengan

HASIL DAN PEMBAHASAN. pertumbuhan dan kurva produksi yang menunjukkan waktu optimum produksi xilitol.

BAB IV HASIL DAN PEMBAHASAN. Data-data yang dihasilkan selama penelitian adalah sebagai berikut :

BAB 2 TINJAUAN PUSTAKA

HASIL DAN PEMBAHASAN. dicatat volume pemakaian larutan baku feroamonium sulfat. Pembuatan reagen dan perhitungan dapat dilihat pada lampiran 17.

IV. HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN

Isolasi dan Perbaikan. Kultur. Rancang Media. Rancang Media 3/3/2016. Nur Hidayat Materi Kuliah Mikrobiologi Industri

PEMANFAATAN TETES TEBU (MOLASES) DAN UREA SEBAGAI SUMBER KARBON DAN NITROGEN DALAM PRODUKSI ALGINAT YANG DIHASILKAN OLEH BAKTERI

BAB I PENGANTAR. dapat menghemat energi dan aman untuk lingkungan. Enzim merupakan produk. maupun non pangan (Darwis dan Sukara, 1990).

g/l dan 1,922 dl dengan waktu kultivasi masing-masing 30 jam

BAB I PENDAHULUAN. buangan sebagai limbah yang dapat mencemari lingkungan (Fahruddin, 2010). Berdasarkan Peraturan Pemerintah nomor 85 tahun 1999

Effect of ammonium concentration on alcoholic fermentation kinetics by wine yeasts for high sugar content

PRODUKSI BIOMASSA PROBIOTIK KHAMIR DALAM MEDIA EKSTRAK UBI JALAR DALAM SKALA FERMENTOR 18L

HASIL. Tekstur dan komposisi tanah Hasil analisis tekstur dan komposisi bahan organik pada tabel 1 menunjukkan bahwa

IV. HASIL DAN PEMBAHASAN

Pengambilan sampel tanah yang terkontaminasi minyak burni diambil dari

BAB III RANCANGAN PENELITIAN

EVALUASI KEMAMPUAN ISOLAT JAMUR DARI SALAH SATU SUMUR MINYAK DI MINAS DALAM MENDEGRADASI MINYAK BUMI

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN Waktu dan Tempat. Laboratorium Mikrobiologi Jurusan Biologi, FMIPA. Jika dalam

II. Pertumbuhan dan aktivitas makhluk hidup

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan pada bulan Juli 2012 sampai bulan Desember 2012 di

BAB I PENDAHULUAN A. Latar Belakang Masalah

4. HASIL DAN PEMBAHASAN. Kelimpahan Nannochloropsis sp. pada penelitian pendahuluan pada kultivasi

BAB IV Pemilihan Jamur untuk Produksi Lakase

ADLN Perpustakaan Universitas Airlangga BAB I PENDAHULUAN. merupakan limbah yang berbahaya, salah satunya adalah limbah oil sludge yang

3 METODE. Bahan dan Alat Penelitian

Screening of biosurfactant producing hydrocarbonoclastic bacteria as a bioremediation agent of petroleum contaminated environment

I. PENDAHULUAN. A. Latar Belakang. Batik merupakan suatu seni dan cara menghias kain dengan penutup

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

SEMINAR TUGAS AKHIR KAJIAN PEMAKAIAN SAMPAH ORGANIK RUMAH TANGGA UNTUK MASYARAKAT BERPENGHASILAN RENDAH SEBAGAI BAHAN BAKU PEMBUATAN BIOGAS

HASIL DAN PEMBAHASAN. Gambar 4 Isolat-isolat yang diisolasi dari lumpur aktif.

Bab IV Data dan Hasil Pembahasan

IV. HASIL DAN PEMBAHASAN

Pembuatan biosurfaktan secara biotransformasi menggunakan molasses sebagai media oleh Pseudomonas fluorescens Disusun Oleh : Astri Wulandari M.

I. PENDAHULUAN Latar Belakang

Gambar 1. Pengambilan Contoh untuk Pemeriksaan Biologi Pada Permukaan Secara Langsung

Bioremediasi Limbah Cair Tercemar Kromium (Cr) Menggunakan Mixed Culture Bakteri Bacillus subtilis dan Bacillus megaterium.

39 Universitas Indonesia

Perancangan bioproses. By: KUSNADI,MSI.

III METODE PENELITIAN

HASIL DAN PEMBAHASAN. ppm. Tanah yang sudah terkontaminasi tersebut didiamkan selama 24 jam untuk penstabilan (Dahuru 2003).

Pertumbuhan Total Bakteri Anaerob

HASIL DAN PEMBAHASAN Kondisi Umum Penelitian

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

TINJAUAN PUSTAKA. memiliki empat buah flagella. Flagella ini bergerak secara aktif seperti hewan. Inti

HASIL DAN PEMBAHASAN

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan dari bulan Maret sampai bulan Agustus 2013 di

MATERI DAN METODE. Pekanbaru. Penelitian ini telah dilaksanakan pada bulan Mei sampai September

III. METODOLOGI A. BAHAN DAN ALAT C. METODE PENELITIAN

HASIL DAN PEMBAHASAN. Kondisi Umum Penelitian. Tabel 3. Pertumbuhan Aspergillus niger pada substrat wheat bran selama fermentasi Hari Fermentasi

HASIL DAN PEMBAHASAN

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB III METODOLOGI PENELITIAN. Penelitian dilaksanakan mulai bulan Juli sampai bulan November 2009

Metode Pengukuran Spektrofotometri (Bergmeyer et al. 1974) Pembuatan Media Heterotrof Media Heterotrof Padat. Pengaruh ph, Suhu, Konsentrasi dan

METODOLOGI PENELITIAN. Penelitian ini dilakukan pada bulan April 2012 sampai dengan bulan Juni 2012 di

TINJAUAN PUSTAKA. dalam meningkatkan ketersediaan bahan baku penyusun ransum. Limbah

4 Hasil dan Pembahasan

Haris Dianto Darwindra BAB VI PEMBAHASAN

SINTESIS METIL ESTER DARI LIPID Bacillus stearothermophilus DENGAN METODE TRANSESTERIFIKASI MENGGUNAKAN BF 3. Dessy Dian Carolina NRP

BAB IV HASIL DAN PEMBAHASAN. 1. Hasil pengukuran Nilai OD pada Media NB. Tabel 1. Pengukuran Nilai OD pada Media NB. Waktu OD (Optical Density)

BAB III METODE PENELITIAN. A. Waktu dan Tempat Penelitian. Penelitian dilaksanakan pada bulan Maret-November 2012 di

BAB I PENDAHULUAN. permintaan pasar akan kebutuhan pangan yang semakin besar. Kegiatan

PEMANFAATAN TEKNIK RADIOISOTOP P-32 UNTUK PENENTUAN VIABILITAS ISOLAT BAKTERI ASAM LAKTAT A1 SEBAGAI PROBIOTIK PADA IKAN PATIN (Pangasius pangasius)

TEKNIK FERMENTASI (FER)

Analisis Nitrit Analisis Chemical Oxygen Demand (COD) HASIL DAN PEMBAHASAN Isolasi dan Identifikasi Bakteri

PENGARUH KADAR NITROGEN DALAM MEDIA PADA PEMBUATAN PROTEASE MENGGUNAKAN Bacillus megaterium DSM 319

BAB I PENDAHULUAN. menyebabkan bahan persediaan bahan bakar fosil berkurang. Seiring menipisnya

I. PENDAHULUAN. Limbah berbahaya adalah limbah yang mempunyai sifat-sifat antara lain

Penyerapan Logam Berat Timbal (PB) Dengan Enzim Protease Dari Bakteri Bacillus Subtilis

ADLN - Perpustakaan Universitas Airlangga DAFTAR ISI

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB III METODOLOGI PENELITIAN. 3. Bahan baku dengan mutu pro analisis yang berasal dari Merck (kloroform,

Pengukuran TPH padat (EPA 1998) Analisis Kekeruhan (29 Palm Laboratory 2003) Pengukuran TPH cair (EPA 1999) HASIL DAN PEMBAHASAN Tingkat Keasaman

BAB III METODE PENELITIAN. Penelitian ini telah dilaksanakan di Laboratorium Mikrobiologi, Departemen

III. METODOLOGI PENELITIAN. Penelitianini dilaksanakandaribulanagustus - Desember 2015 di

BIODEGRADASI MINYAK OLEH Rhodotorula dan Candida HASIL ISOLASI DARI PELABUHAN TANJUNG PERAK SURABAYA

I. PENDAHULUAN. kimia yang diproduksi oleh mikroorganisme yang dapat membunuh atau

Biodegradasi Fenol oleh Isolat Bacillus spp asal Sumur Minyak Kawengan, Cepu

HASIL DAN PEMBAHASAN

PRODUKSI GAS HASIL BIODEGRADASI MINYAK BUMI: KAJIAN AWAL APLIKASINYA DALAM MICROBIAL ENHANCED OIL RECOVERY (MEOR)

HASIL DAN PEMBAHASAN

BIOREMEDIASI HIDROKARBON MINYAK BUMI MENGGUNAKAN ISOLAT INDIGENOUS

Bioremediasi Lahan Terkontaminasi Minyak Bumi Dengan Menggunakan Bakteri Bacillus cereus Pada Slurry Bioreaktor

METODE PENELITIAN. Penelitian ini telah dilakukan pada bulan Januari-Mei 2015 di Laboratorium

dari reaksi kimia. d. Sumber Aseptor Elektron

Transkripsi:

PROCEEDING SIMPOSIUM NASIONAL IATMI Yogyakarta, -5 Oktober OPTIMASI KONSENTRASI CRUDE OIL DAN SUMBER NITROGEN PADA PRODUKSI BIOSURFAKTAN OLEH BAKTERI HIDROKARBONOKLASTIK DARI SUMUR BANGKO Dea Indriani Astuti, Pingkan Aditiawati dan Retni S Budiarti Laboratorium Mikrobiologi, Departemen Biologi ITB Alumni S Biologi Institut Teknologi Bandung Kata kunci : bakteri hidrokarbonoklastik, biodegradasi, biosurfaktan, crude oil. ABSTRAK Biosurfaktan memegang peranan penting dalam meningkatkan biodegradasi minyak bumi oleh mikroba. Penelitian dilakukan untuk mengetahui pengaruh konsentrasi crude oil dan penambahan N organik dan anorganik dalam beberapa konsentrasi terhadap produksi biosurfaktan oleh dua isolat bakteri hidrokarbonoklastik dari sumur Bangko. Variasi konsentrasi crude oil yang digunakan adalah,, dan g/5ml sedangkan jenis sumber nitrogen yang ditambahkan adalah urea dan ekstrak ragi dengan konsentrasi masing-masing,;,;,;,;,;,;,5 g/5 ml. Penelitian dilakukan dalam kultur kocok yang berisi medium basal SMSS (Stone Mineral Salt Solution) pada ph,5, jumlah inokulum % ( ) sel/ml), suhu inkubasi 5 o C dengan agitasi rpm. Hasil optimasi menunjukkan bahwa biosurfaktan diproduksi selama pertumbuhan baik oleh isolat B maupun B5. Produksi biosurfaktan oleh isolat B tertinggi diperoleh pada konsentrasi crude oil g/5 ml, yaitu sebanyak, g/l. Penambahan urea sebanyak, g/5 ml meningkatkan produksi biosurfaktan menjadi,5 g/l dan, g/5 ml ekstrak ragi meningkatkan produksi biosurfaktan sampai,5 g/l. Produksi biosurfaktan oleh isolat B5 tertinggi diperoleh pada konsentrasi crude oil g/5 ml (,99 g/l) dan penambahan g/5 ml urea meningkatkan produksi biosurfaktan sampai, g/l, bahkan penambahan g/5 ml ekstrak ragi mampu meningkatkan konsentrasi biosurfaktan menjadi,9 g/l. Berdasarkan analisis kromatografi gas dengan kolom HP 5, biosurfaktan yang dihasilkan oleh isolat B merupakan turunan lipid sedangkan isolat B5 menghasilkan biosurfaktan lipoprotein dan turunan lipid.. PENDAHULUAN Pencemaran minyak bumi yang terjadi pada ekosistem perairan selain dapat merusak lingkungan biota air di bawahnya, dapat juga mengganggu kesehatan manusia. Bahan pencemar tersebut sangat sulit untuk diatasi, apabila sudah menempel pada partikel padat seperti tanah, pasir, sedimen dan tumbuh-tumbuhan. Beberapa cara telah dilakukan untuk menanggulangi pencemaran ini, diantaranya dengan fotooksidasi, penguapan, dan penggunaan surfaktan kimia (Van Dyke et al., 99). Tetapi timbul masalah lain dari penanggulangan tersebut, diantaranya biaya yang mahal. Pemakaian beberapa surfaktan kimia juga dapat menyebabkan masalah bagi lingkungan, karena sifatnya yang resisten untuk dapat dipecah secara biologi dan sangat toksik saat terakumulasi dalam suatu ekosistem alam (Fiechter, 99). Salah satu cara penanggulangan pencemaran minyak bumi yang aman adalah dengan menggunakan biosurfaktan yang dihasilkan oleh mikroba pendegradasi minyak bumi. Selain dapat membantu peningkatan degradasi minyak bumi juga tidak toksik terhadap lingkungan, sehingga keberadaan biosurfaktan dapat menjadi alternatif pengganti senyawasenyawa surfaktan kimia pengaktif permukaan (Van Dyke et al., 99). Biosurfaktan dapat dipergunakan untuk mempercepat remediasi lingkungan yang tercemar oleh tumpahan minyak bumi, yaitu dengan meningkatkan daya kelarutan minyak bumi. Selanjutnya minyak bumi dedegradasi oleh sel-sel mikroorganisme, melalui pembentukkan butiran-butiran minyak bumi (misel) yang terdispersi dalam air (Dunvnjak et al., 9). Selain untuk remediasi, biosurfaktan juga dapat dimanfaatkan dalam teknologi MEOR untuk meningkatkan perolehan minyak bumi.beberapa surfaktan kimia sintetik yang sering digunakan seperti sulfonat atau lignosulfonat memiliki beberapa kelemahan seperti harganya mahal dan tidak mempunyai kemampuan degradasi (Fiechter, 99) Peningkatan produksi biosurfaktan memerlukan nutrisi yang optimum. Salah satu diantaranya dikemukakan oleh Kosaric et al. (9) dan Cooper (9), bahwa substrat hidrokarbon sangat diperlukan untuk meningkatkan produksi biosurfaktan ekstraseluler, dibandingkan dengan substrat yang lainnya seperti glukosa. Selain itu jumlah biosurfaktan yang dibentuk dipengaruhi pula oleh jenis sumber karbon, temperatur, ph dan aerasi (Kosaric, 9). Menurut Rahman (99), sumber karbon dan nitrogen merupakan komponen yang utama salam suatu media kultur, karena sel-sel mikroba dan berbagai produk fermentasi sebagian besar terdiri dari unsur karbon dan nitrogen. Berdasarkan permasalahan di atas, maka penelitian ini dititik beratkan pada optimasi konsentrasi unsur karbon dan nitrogen untuk produksi biosurfaktan oleh beberapa mikroba hidrokarbonoklastik. Selain itu juga dianalisis jenis biosurfaktan yang dihasilkan oleh mikroba tersebut.. METODOLOGI Penelitian dilakukan dengan menggunakan isolat bakteri yang telah diuji mampu memproduksi biosurfaktan. Ke- isolat tersebut diberi kode B dan B5 yang diisolasi dari salah satu sumur minyak Bangko, Sumatera. Medium pertumbuhan dan produksi biosurfaktan adalah medium SMSS (Stone Mineral Sal Sollution) dengan komposisi per L medium : 5 g CaCO ;,5 g NH NO ; g Na HPO.7H O;,5 g KH PO ;,5 g MgSO.7H O dan, g MnCl.7H O. Medium ini diatur pada ph,5. Optimasi sumber karbon dilakukan pada erlenmeyer 5 ml berisi 5 ml medium SMSS cair. Pada setiap erlenmeyer IATMI -

ditambahkan crude oil dengan beberapa variasi konsentrasi, yaitu,, dan g/5 ml. Ke dalam tiap erlenmeyer diinokulasikan % inokulum bakteri ( sel/ml). Kultur selanjutnya diinkubasi pada rotary shaker incubator rpm pada suhu 5 o C. Analisis yang dilakukan meliputi penghitungan jumlah sel dengan metode cawan hitung, serta produksi biosurfaktan dengan metode yang dikembangkan oleh Zajic et al. (977). Optimasi sumber nitrogen meliputi optimasi jenis dan konsentrasi sumber N. Jenis sumber N yang digunakan adalah ekstrak ragi dan urea, sedangakan konsentrasi yang digunakan adalah ;,;,;,;,;,;, dan,5 g/5 ml medium. Parameter yang diamati adalah jumlah sel dan produksi biosurfaktan. Biosurfaktan yang dihasilkan selanjutnya dianalisis jenisnya dengan kormatografi gas Hewlett Packard Gas Chromatography Mass Selection Detector, kolom HP 5, suhu awal 5 C selama menit, dinaikan setiap menit sampai 5 o C, dan dibiarkan pada suhu 5 o C selama 5 menit. Suhu detektor o C, suhu injektor 5 o C, dan gas pembawa He dengan laju ml/menit.. HASIL DAN PEMBAHASAN Hasil pengamatan dari variasi penambahan konsentrasi crude oil yang ditambahkan pada medium SMSS terhadap pola pertumbuhan isolat bakteri B dapat dilihat pada Gambar-. Pada konsentrasi crude oil g/ 5 ml, terjadi pertumbuhan diauksik pada jam ke sampai dengan jam ke sebelum mencapai pertumbuhan maksimum pada jam ke 7. Hal ini disebabkan terjadinya degradasi rantai karbon tertentu pada crude oil. Selanjutnya bakteri akan mensintesis enzim baru untuk memanfaatkan rantai karbon selanjutnya. Bakteri B pada konsentrasi crude oil g/5 ml SMSS mencapai jumlah sel maksimum dalam waktu yang lebih singkat ( jam) tetapi dengan jumlah sel maksimum yang lebih kecil (,5 x 7 ) dibandingkan pertumbuhan pada konsentrasi g dan g crude oil. Hal ini disebabkan konsentrasi g crude oil terlalu tinggi untuk menyokong pertumbuhan bakteri tersebut. Konsentrasi crude oil yang berlebihan untuk golongan mikroba dapat menyebabkan penghambatan pertumbuhan (Udiharto, 99). Kemungkinan lain, untuk konsentrasi crude oil sebesar g/5 ml diperlukan jumlah inokulum yang lebih besar agar dapat diperoleh pertumbuhan yang lebih baik. Laju pertumbuhan untuk konsentrasi,, g/5 ml SMSS secara berturutturut adalah,7,,9, dan,9. Berdasarkan jumlah sel maksimum yang diperoleh serta laju pertumbuhannya, konsentrasi g crude oil merupakan konsentrasi yang paling optimum untuk pertumbuhan isolat B. Gambar- memperlihatkan kurva pertumbuhan bakteri B5 pada beberpa variasi konsentrasi crude oil. Kurva pertumbuhan tersebut menunjukkan adanya pertumbuhan diauksik, yang memperlihatkan bahwa bakteri B5 dapat mendegradasi dua macam kelompok senyawa hidrokarbon. Diperkirakan bakteri mula-mula tumbuh dengan menggunakan salah satu substrat, selama menggunakan substrat pertama enzim untuk mendegradasi substrat ke- tidak disintesis karena menjadi sasaran represi katabolik. Represi tersebut terhenti setelah substrat pertama habis dan enzim kedua dapat disintesis, selanjutnya digunakan untuk mendegradasi substrat kedua (Brock et al., 99). Laju pertumbuhan tertinggi isolat B5 pada medium dengan konsentrasi crude oil g/5 ml adalah,. Pertumbuhan bakteri B5 pada medium SMSS yang ditambahkan "crude oil g dan g hanya menunjukkan satu fase eksponensial dengan laju pertumbuhan masing-masing,9 untuk konsentrasi g dan, untuk konsentrasi g. Pada seluruh percobaan, bakteri B5 tidak menunjukkan adanya fase stasioner, fase ini mungkin berlangsung beberapa jam dari fase eksponensial akhir. Kemungkinan lain bakteri B5 tidak memiliki kemampuan lagi untuk menguraikan sisa senyawa hidrokarbon yang ada pada medium, sehingga setelah hidrokarbon dengan rantai karbon tertentu habis terurai, bakteri tersebut langsung menuju pada kematian. Berdasarkan jumlah sel tertinggi dan laju pertumbuhan tercepat maka konsentrasi crude oil g/5 ml SMSS merupakan konsentrasi yang paling optimum untuk pertumbuhan bakteri B5. Gambar-& memperlihatkan pola produksi biosurfaktan oleh bakteri B dan B5 pada beberapa variasi konsentrasi crude oil. Biosurfaktan sudah mulai diproduksi oleh kedua isolat pada jam pertama masa inkubasi. Bakteri B dapat menghasilkan biosurfaktan terbanyak, yaitu sebesar, g/5 ml pada konsentrasi crude oil g/5 ml, sedangkan biosurfaktan terbanyak dihasilkan oleh bakteri B5 pada medium dengan konsentrasi crude oil g/5 ml, yaitu sebesar,99 g/5 ml. Kurva berat surfaktan pada Gambar- memperlihatkan suatu pola pembentukkan metabolit yang telah diproduksi pada awal masa inkubasi dan jumlahnya semakin meningkat seiring dengan pertumbuhan sel (Rehm dan Reed, 97). Produksi biosurfaktan oleh kedua isolat menunjukkan adanya hubungan dengan pertumbuhan. Komposisi sumber C yang baik untuk pertumbuhan juga baik untuk produksi biosurfaktan. Dengan demikian g dan g crude oil /5 ml SMSS digunakan untuk optimasi sumber N secara berturut-turut untuk isolat B dan B5. Gambar-5 menunjukkan kurva pertumbuhan bakteri B pada beberapa variasi penambahan sumber nitrogen urea. Pertumbuhan terbaik diperoleh pada penambahan urea sebesar, g/5 ml, yaitu dengan jumlah sel maksimum sebanyak,5 x sel /ml yang diperoleh dalam waktu jam dan laju pertumbuhan,. Konsentrasi nitrogen diatas, g/5 ml tidak dapat mendukung pertumbuhan dengan baik. Konsentrasi N yang terlalu tinggi dalam suatu medium pertumbuhan dengan hidrokarbon sebagai satu-satunya sumber C dapat menyebabkan keracunan pada bakteri hidrokarbonoklastik. Selain itu, ph medium juga kemungkinan telah berubah melebihi kisaran pertumbuhan bakteri B. Kurva pertumbuhan bakteri B5 pada medium dengan variasi penambahan sumber nitrogen urea dapat dilihat pada Gambar-. Pertumbuhan yang terbaik diperoleh pada penambahan urea sebanyak, g/5 ml. Pada kondisi ini sel akan meningkat menjadi,55 x sel/ ml dalam waktu jam dan dengan laju pertumbuhan spesifik,5. Gambar-7 memperlihatkan pertumbuhan bakteri B dengan sumber nitrogen ekstrak ragi. Pertumbuhan pada medium SMSS yang ditambah ekstrak ragi memperlihatkan adanya fase adaptasi yang berlangsung selama jam. Hal ini terjadi IATMI -

karena inokulum yang digunakan belum teradaptasi pada sumber nitrogen ekstrak ragi. Pada kurva pertumbuhan juga terlihat bahwa secara umum isolat B mengalami pertumbuhan diauksik, yang mengindikasikan adanya pemanfaatan dua macam sumber C. Konsentrasi ekstrak ragi yang dapat menghasilkan jumlah sel maksimum tertinggi adalah, g/5 ml. Jumlah sel maksimum sebesar 5 x sel/ml ini dicapai pada jam ke dengan laju pertumbuhan spesifik sebesar,5. Laju pertumbuhan spesifik tertinggi terjadi pada konsentrasi ekstrak ragi sebesar, g/5 ml dan terus menurun pada konsentrasi, dan,5 g/5 ml. Hal ini menunjukkan bahwa konsentrasi ekstrak ragi yang lebih dari, g/5 ml sudah tidak dapat mendukung pertumbuhan bakteri B. Gambar- menunjukkan kurva pertumbuhan bakteri B5 pada medium SMSS yang diberi variasi penambahan ekstrak ragi. Pertumbuhan diauksik juga terjadi pada isolat B5 yang ditumbuhkan pada medium yang diberi ekstrak ragi. Penambahan ekstrak ragi sebanyak, g memberikan hasil pertumbuhan yang terbaik, yaitu, x sel/ ml dalam waktu jam dengan laju pertumbuhan spesifik,5. Pola produksi biosurfaktan oleh bakteri B dan B5 dalam variasi penambahan urea dapat dilihat pada Gambar-9&. Biosurfaktan terbanyak (,5 g/5 ml) diperoleh isolat B pada perlakuan penambahan, g urea. Bakteri B5 mampu memproduksi biosurfaktan sebanyak, g/5 ml pada konsentrasi urea sebesar, g/ 5 ml. Secara umum biosurfaktan dihasilkan mulai awal inkubasi sampai akhir inkubasi jam ke yang merupakan fase penurunan pertumbuhan. Hasil ini sesuai dengan penelitian yang dilakukan oleh Wagner (95 dalam Zajic, 95) bahwa Rhodococcus erythropolis DSM 5 yang ditumbuhkan pada n-alkana akan mensintesis lipid-lipid trehalosa bersamaan dengan pertumbuhan, kemudian terjadi degradasi lipid tersebut selama stasioner. Menurut Rivierre (95, dalam Zajic, 95) biosurfaktan maksimumnya terbentuk pada akhir fase eksponensial, yaitu pada saat sumber nitrogen telah berkurang. Kenaikan perolehan biosurfaktan pada akhir fase stasioner mungkin disebabkan oleh penambahan biosurfaktan intraseluler akibat lisisnya dinding sel bakteri. Terlepasnya biosurfaktan yang terikat pada dinding sel bakteri juga diakibatkan oleh kondisi fisik seperti kecepatan putaran saat agitasi, suhu, dan sebagainya (Kosaric, 9). Pola pembentukan biosurfaktan yang sama dengan pola pada perlakuan urea terjadi pada variasi penambahan ekstrak ragi. Penambahan ekstrak ragi dapat meningkatkan produksi biosurfaktan. Hal ini disebabkan ekstrak ragi selain berperan sebagai sumber nitrogen juga dapat digunakan sebagai sumber karbon sehingga dapat memacu pertumbuhan sel. Gambar- dan menunjukkan bahwa bakteri B5 pada konsentrasi ekstrak ragi sebesar, g/5 ml mampu menghasilkan biosurfaktan sebesar,9 g L lebih tinggi dibandingkan dengan bakteri B, sebesar,9 g/l. Penambahan ekstrak ragi diatas, g/5 ml SMSS tidak dapat meningkatkan perolehan biosurfaktan. Kal ini terjadi karena bakteri sudah tidak memiliki kemampuan untuk menguraikan senyawa karbon yang ada dalam medium. Sementara senyawa yang ada dalam ekstrak ragi sudah habis dan N yang ada dalam ekstrak ragi sebagian besar dalam bentuk nitrogen ammonium yang tidak digunakan untuk membentuk biosurfaktan (Duvnjak, 9). Berdasarkan hasil kromatografi gas, bakteri B dengan penambahan urea mampu menghasilkan biosurfaktan turunan lipid, diantaranya asam lemak trans fenesol. Bakteri B5 dengan penambahan ekstrak ragi mampu menghasilkan biosurfaktan campuran lipid berupa lipoprotein diantaranya valine, N-(N(-adamantylkarbonil-L).. KESIMPULAN Bakteri B dan B5 mampu menghasilkan biosurfaktan selama pertumbuhan di dalam medim SMSS dengan penambahan crude oil dan sumber N (urea dan ekstrak ragi). Berdasarkan analisis kromatografi gas, biosurfaktan yang dihasilkan merupakan turunan lipid, sedangkan bakteri B5 menghasilkan biosurfaktan turunan lipid dan liporotein yang merupakan golongan lipid campuran. UCAPAN TERIMA KASIH Penulis mengucapkan terima kasih kepada Direktorat Pendidikan Tinggi Departemen Pendidikan Nasional, melalui proyek PGSM 997/99 atas bantuan biaya penelitian. DAFTAR PUSTAKA. Brock, T.D., Madigan, M.T., Martinko, J.M. and Parker, J. (99) Biology of microorganism, Prentice Hall, New Jersey, -.. Cooper, D.D.G and Paddock, D.A. (9) Production of a biosurfactans from Torulopsis bombicola, Appl. Env. Microbiol. 7, 7-7.. Duvnjak, Z., Cooper, Cooper, D.G, dan Kosaric, N. (9) Effect of nitrogen sources on surfactans production by Arthobacter paraffineus ATCC 955 dalam Microbial Enhanced Oil Recovery. Zajic, J. E. Penn Well Books Tulsa, Oklahoma, -7.. Fiechter, A (99) Biosurfactans : moving towards industrial aplication. Tibtech,, -. 5. Kosaric, N., Neil, C.C. Gray and Cairns, W.L. (9) Microbial emulsifiers and de-emulsifiers dalam H.J. Rehm and G. Reed, Biotechnology, vol Verlag Chemie.. Rachman, A. (99) Pengantar Teknologi Fermentasi, Pusat Antar Universitas Pangan dan Gizi, IPB, Bogor. 7. Rehm, H.J. and Reed, G. (97) Secondary metabolism, Biotecnol., 5-7.. Udiharto (99) Pengaruh aktivitas Bacillus stearothermophilus terhadap tegangan permukaan crude oil, Lembaran Publikasi LEMIGAS, Jakarta. 9. Van Dyke et al., (99) Application of microbial surfactans, Biotech. Adv., 9, -5.. Zajic, J.E., Guignard, H., and Gerson, F.D. (977) Emulsifying and surface active agents from Corynebacterium hydrocarbonclatus. Biotech. and Bioeng. 9, 5-. IATMI -

7 9,5,5 7 9 g g g g g g Gambar- Kurva pertumbuhan isolat bakteri B dalam berbagai konsentrasi crude oil (g/5 ml SMSS) Gambar- dalam berbagai konsentrasi crude oil (g/5 ml SMSS) 7 9 7 9 g g g basal, g, g, g Gambar- konsentrasi crude oil (g/5 ml SMSS) Gambar-5 Kurva pertumbuhan isolat bakteri B dalam berbagai konsentrasi urea (g/5 ml SMSS),5,5 7 9 7 9 g g g basal, g, g, g Gambar Kurva berat biosurfaktan yang dihasilkan oleh bakteri B dalam berbagai konsentrasi crude oil (g/5 ml SMSS) Gambar- konsentrasi urea (g/5 ml SMSS) IATMI -

7 9 basal, g, g, g 7 9 basal, g, g, g Gambar -7 Kurva pertumbuhan isolat bakteri B dalam berbagai konsentrasi ekstrak ragi (g/5 ml SMSS) Gambar- dalam berbagai konsentrasi urea (g/5 ml SMSS) 7 9 berat biosurfaktan (g/l) 7 9 basal, g, g, g basal, g, g, g Gambar - konsentrasi ekstrak ragi (g/5 ml SMSS) Gambar- Kurva berat biosurfaktan yang dihasilkan oleh bakteri B dalam berbagai konsentrasi ekstrak ragi (g/5 ml SMSS) berat biosurfaktan (g/l) 7 9 7 9 basal, g, g, g Gambar -9 Kurva berat biosurfaktan yang dihasilkan oleh bakteri B dalam berbagai konsentrasi urea (g/5 ml SMSS) basal, g, g, g Gambar- dalam berbagai konsentrasi ekstrak ragi (g/5 ml SMSS) IATMI -