SINGUDA ENSIKOM VOL. 7 NO. 2/Mei 2014

dokumen-dokumen yang mirip
ek SIPIL MESIN ARSITEKTUR ELEKTRO

ANALISIS PEHITUNGAN RUGI-RUGI DAYA PADA GARDU INDUK PLTU 2 SUMUT PANGKALAN SUSU DENGAN MENGGUNAKAN PROGRAM SIMULASI ELECTRICAL TRANSIENT ANALYZER

PENENTUAN SLACK BUS PADA JARINGAN TENAGA LISTRIK SUMBAGUT 150 KV MENGGUNAKAN METODE ARTIFICIAL BEE COLONY

STUDI ALIRAN DAYA PADA SISTEM KELISTRIKAN SUMATERA BAGIAN UTARA (SUMBAGUT) 150 kv DENGAN MENGGUNAKAN SOFTWARE POWERWORLD VERSI 17

MAKALAH SEMINAR KERJA PRAKTEK

STUDI ALIRAN DAYA PADA JARINGAN DISTRIBUSI 20 KV YANG TERINTERKONEKSI DENGAN DISTRIBUTED GENERATION (STUDI KASUS: PENYULANG PM.6 GI PEMATANG SIANTAR)

SIMULASI DAN ANALISIS ALIRAN DAYA PADA SISTEM TENAGA LISTRIK MENGGUNAKAN PERANGKAT LUNAK ELECTRICAL TRANSIENT ANALYSER PROGRAM (ETAP) VERSI 4.

PENENTUAN TITIK INTERKONEKSI DISTRIBUTED GENERATION

PENGARUH PENAMBAHAN PLTU TELUK SIRIH 100 MEGAWATT PADA SISTEM SUMATERA BAGIAN TENGAH

EVALUASI LOSSES DAYA PADA SISTEM TRANSMISI 150 KV SUMATERA BARAT

Jurnal Media Elektro Vol. V No. 2 ISSN: ANALISIS RUGI-RUGI DAYA JARINGAN DISTRIBUSI 20 kv PADA SISTEM PLN KOTA KUPANG

PERBANDINGAN ANALISA ALIRAN DAYA DENGAN MENGGUNAKAN METODE GAUSS-SEIDEL DAN METODE NEWTON-RAPHSON

NASKAH PUBLIKASI ANALISIS GANGGUAN HUBUNG SINGKAT TIGA FASE LINE TO GROUND

BAB II DASAR TEORI. Universitas Sumatera Utara

ANALISIS GANGGUAN HUBUNG SINGKAT TIGA FASE PADA SISTEM DISTRIBUSI STANDAR IEEE 13 BUS

II. TINJAUAN PUSTAKA

ANALISIS SUATU SISTEM JARINGAN LISTRIK DENGAN MENGGUNAKAN METODE GAUSS SEIDEL Z BUS

SIMULASI DAN ANALISIS ALIRAN DAYA PADA SISTEM TENAGA LISTRIK MENGGUNAKAN PERANGKAT LUNAK ELECTRICAL TRANSIENT ANALYSER PROGRAM (ETAP) VERSI 4.

BAB 2 TINJAUAN PUSTAKA

STUDI PENGATURAN TEGANGAN PADA JARINGAN DISTRIBUSI 20 KV YANG TERHUBUNG DENGAN DISTRIBUTED GENERATION (STUDI KASUS: PENYULANG TR 5 GI TARUTUNG)

ANALISIS GANGGUAN HUBUNG SINGKAT TIGA FASE PADA SISTEM DISTRIBUSI STANDAR IEEE 13 BUS DENGAN MENGGUNAKAN PROGRAM ETAP POWER STATION 7.

APLIKASI METODE NEWTON-RAPHSON UNTUK MENGHITUNG ALIRAN BEBAN MENGGUNAKAN PROGRAM MATLAB 7.0.1

ANALISIS RUGI DAYA SISTEM DISTRIBUSI DENGAN PENINGKATAN INJEKSI JUMLAH PEMBANGKIT TERSEBAR. Publikasi Jurnal Skripsi

Analisis Kestabilan Sistem Daya pada Interkoneksi PT.Ajinomoto Indonesia dan PT.Ajinex Internasional Mojokerto Factory

BAB 4 PERHITUNGAN KESTABILAN PERALIHAN SISTEM TENAGA LISTRIK MESIN MAJEMUK

Abstrak. Kata kunci: kualitas daya, kapasitor bank, ETAP 1. Pendahuluan. 2. Kualitas Daya Listrik

BAB III METODE PENELITIAN

BAB 1 PENDAHULUAN. Load Flow atau studi aliran daya di dalam sistem tenaga merupakan studi

Strategi Interkoneksi Suplai Daya 2 Pembangkit di PT Ajinomoto Indonesia, Mojokerto Factory

TUGAS AKHIR ANALISIS ALIRAN DAYA SISTEM KELISTRIKAN SUMBAGUT 150 KV DENGAN MENGGUNAKAN METODE PARALLEL LOAD FLOW. Diajukan untuk memenuhi persyaratan

ANALISIS ALIRAN BEBAN SISTEM DISTRIBUSI MENGGUNAKAN ETAP POWER STATION TUGAS AKHIR. Jurusan Teknik Elektro Fakultas Teknik

Analisis Kestabilan Sistem Daya pada Interkoneksi PT.Ajinomoto Indonesia dan PT.Ajinex Internasional Mojokerto Factory

Studi Perbaikan Stabilitas Tegangan Kurva P-V pada Sistem Jawa-Bali 500kV dengan Pemasangan Kapasitor Bank Menggunakan Teori Sensitivitas

Penerapan Model Beban Zip Untuk Analisa Aliran Daya Tiga Fasa pada Penyulang Katu GI Menggala

BAB II TINJAUAN PUSTAKA

BAB III METODOLOGI PENELITIAN

STUDI KOORDINASI FUSE

ANALISIS HARMONIK DAN PERANCANGAN SINGLE TUNED FILTER PADA SISTEM DISTRIBUSI STANDAR IEEE 18 BUS DENGAN MENGGUNAKAN SOFTWARE ETAP POWER STATION 4.

BAB II TINJAUAN PUSTAKA

STUDI KESTABILAN SISTEM BERDASARKAN PREDIKSI VOLTAGE COLLAPSE PADA SISTEM STANDAR IEEE 14 BUS MENGGUNAKAN MODAL ANALYSIS

Evaluasi Kestabilan Tegangan Sistem Jawa Bali 500kV menggunakan Metode Continuation Power Flow (CPF)

Algoritma Aliran Daya untuk Sistem Distribusi Radial dengan Beban Sensitif Tegangan

BAB II TINJAUAN PUSTAKA. dibangkitkan oleh pembangkit harus dinaikkan dengan trafo step up. Hal ini

BAB II DASAR TEORI. Gardu Induk, Jaringan Distribusi, dan Beban seperti yang ditunjukkan Gambar 2.1

ANALISIS SUSUT ENERGI PADA SISTEM KELISTRIKAN BALI SESUAI RENCANA OPERASI SUTET 500 kv

Analisis Aliran Daya Pada Sistem Distribusi Radial 20KV PT. PLN (Persero) Ranting Rasau Jaya

BAB I PENDAHULUAN. berbagai peralatan listrik. Berbagai peralatan listrik tersebut dihubungkan satu

PERENCANAAN SMARTGRID JARINGAN LISTRIK SUMBAGUT 150 KV MENGGUNAKAN SIMULINK MATLAB

Penempatan Dan Penentuan Kapasitas Optimal Distributed Generator (DG) Menggunakan Artificial Bee Colony (ABC)

BAB 4 METODE PENGURANGAN RUGI-RUGI DAYA AKTIF

PERHITUNGAN DAN ANALISIS KESEIMBANGAN BEBAN PADA SISTEM DISTRIBUSI 20 KV TERHADAP RUGI-RUGI DAYA (STUDI KASUS PADA PT.

STUDI ANALISIS ALIRAN BEBAN (LOAD FLOW) SISTEM TENAGA LISTRIK IMPLEMENTASI PADA JARINGAN KELISTRIKAN DI UNNES

BAB 2 TINJAUAN PUSTAKA

2 BAB II TINJAUAN PUSTAKA

ANALISIS DAMPAK PEMASANGAN DISTIBUTED GENERATION (DG) TERHADAP PROFIL TEGANGAN DAN RUGI-RUGI DAYA SISTEM DISTRIBUSI STANDAR IEEE 18 BUS

II. TINJAUAN PUSTAKA. utama yaitu pembangkit, penghantar (saluran transmisi), dan beban. Pada sistem

Analisa Pengaruh Pemasangan Distributed Generation Terhadap Profil Tegangan Pada Penyulang Abang Karangasem

Prosiding SENTIA 2016 Politeknik Negeri Malang Volume 8 ISSN:

PENGATURAN SLACK BUS DALAM MENGOPTIMALKAN ALIRAN DAYA PADA KASUS IEEE 30 BUS MENGGUNAKAN METODE NEWTON-RAPHSON PADA APLIKASI MATLAB 7.

OLEH : TITIN DESTIARINI Tugas Akhir ini Diajukan Untuk Melengkapi Salah Satu Syarat Untuk Memperoleh. Gelar Sarjana Teknik

Studi Penempatan dan Kapasitas Pembangkit Tersebar terhadap Profil Tegangan dan Rugi Saluran pada Saluran Marapalam

ANALISIS HUBUNG SINGKAT 3 FASA PADA SISTEM DISTRIBUSI STANDAR IEEE 18 BUS DENGAN ADANYA PEMASANGAN DISTRIBUTED GENERATION (DG)

DAFTAR ISI LEMBAR PENGESAHAN PERNYATAAN...

BAB III METODE PENELITIAN

III. METODE PENELITIAN. Pengerjaan tugas akhir ini bertempat di Laboratorium Sistem Tenaga Elektrik

ALGORITMA ALIRAN DAYA UNTUK SISTEM DISTRIBUSI RADIAL DENGAN BEBAN SENSITIF TEGANGAN

SINGUDA ENSIKOM VOL. 7 NO. 3/ Juni 2014

TUGAS AKHIR. Oleh ARIF KUSUMA MANURUNG NIM : DEPARTEMEN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2016

ANALISIS RUGI DAYA AKIBAT PENAMBAHAN PENYULANG BARU GI MASARAN

STUDI RUGI DAYA SISTEM KELISTRIKAN BALI AKIBAT PERUBAHAN KAPASITAS PEMBANGKITAN DI PESANGGARAN

OPTIMASI PENEMPATAN DAN KAPASITAS SVC DENGAN METODE ARTIFICIAL BEE COLONY ALGORITHM

PEMODELAN DAN SIMULASI STATIC SYNCHRONOUS SERIES COMPENSATOR (SSSC) MENGGUNAKAN KONTROL PWM UNTUK PENGATURAN ALIRAN DAYA PADA SISTEM TRANSMISI

EVALUASI SUSUT PADA SISTEM KELISTRIKAN ENERGI MEGA PERSADA GELAM

2.1 Distributed Generation

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK. karena terdiri atas komponen peralatan atau mesin listrik seperti generator,

Kata kunci Kabel Laut; Aliran Daya; Susut Energi; Tingkat Keamanan Suplai. ISBN: Universitas Udayana

ANALISA PERHITUNGAN SUSUT TEKNIS DENGAN PENDEKATAN KURVA BEBAN PADA JARINGAN DISTRIBUSI PT. PLN (PERSERO) RAYON MEDAN KOTA

ANALISIS HARMONIK DAN PERANCANGAN HIGH PASS DAMPED FILTER

ANALISIS KETIDAKSEIMBANGAN BEBAN TRANSFORMATOR DISTRIBUSI UNTUK IDENTIFIKASI BEBAN LEBIH DAN ESTIMASI RUGI-RUGI PADA JARINGAN TEGANGAN RENDAH

Analisis Kontingensi Sistem Tenaga Listrik dengan Metode Bounding

ELECTRICIAN Jurnal Rekayasa dan Teknologi Elektro

Optimisasi Operasi Sistem Tenaga Listrik dengan Konstrain Kapabilitas Operasi Generator dan Kestabilan Steady State Global

Load Flow Analysis. You will try it with the PowerWorld simulator! Electric Power Systems L5 - Olof Samuelsson

Kata Kunci : Transformator Distribusi, Ketidakseimbangan Beban, Arus Netral, Rugi-rugi, Efisiensi

BAB III METODE PENELITIAN

NASKAH PUBLIKASI ANALISIS HUBUNG SINGKAT TIGA PHASE

BAB I PENDAHULUAN. sistem tenaga listrik terdiri dari beberapa sub sistem, yaitu pembangkitan,

ANALISIS RANGKAIAN GENERATOR IMPULS UNTUK MEMBANGKITKAN TEGANGAN IMPULS PETIR MENURUT BERBAGAI STANDAR

NASKAH PUBLIKASI PERANCANGAN HIGH PASS DAMPED FILTER PADA SISTEM DISTRIBUSI STANDAR IEEE 9 BUS DENGAN MENGGUNAKAN SOFTWARE ETAP POWER STATION 7.

Penentuan Kapasitas dan Lokasi Optimal Penempatan Kapasitor Bank Pada Penyulang Rijali Ambon Menggunakan Sistem Fuzzy

Penempatan Dan Penentuan Kapasitas Optimal Distributed Generator (DG) Menggunakan Artificial Bee Colony (ABC)

BAB 1 PENDAHULUAN. serta dalam pengembangan berbagai sektor ekonomi. Dalam kenyataan ekonomi

EVALUASI KESTABILAN TEGANGAN SISTEM JAWA BALI 500KV MENGGUNAKAN METODE CONTINUATION POWER FLOW (CPF)

Analisis Aliran Daya Tiga Fasa Tidak Seimbang Menggunakan Metode K-Matrik dan Z BR pada Sistem Distribusi 20 kv Kota Surabaya

EVALUASI EKSPANSI JARINGAN TEGANGAN MENENGAH 20 kv GI SOLO BARU

SATUAN ACARA PERKULIAHAN. Proses pembelajaran (kegiatan mahasiswa) Menyimak kuliah dari dosen, bertanya jawab, berdiskusi, mengerjakan tugas.

BAB III METODE PENELITIAN

DAFTAR ISI PUSPA LITA DESTIANI,2014

II. TINJAUAN PUSTAKA. sinkron antara tegangan, frekuensi, dan sudut fasa. Operasi ini akan menyatakan

Edu Elektrika Journal

Transkripsi:

PERBANDINGAN METODE FAST-DECOUPLE DAN METODE GAUSS-SEIDEL DALAM SOLUSI ALIRAN DAYA SISTEM DISTRIBUSI 20 KV DENGAN MENGGUNAKAN ETAP POWER STATION DAN MATLAB (Aplikasi Pada PT.PLN (Persero Cab. Medan) Ken Kevin Samosir, Masykur Sj Konsentrasi Teknik Energi Listrik, Departemen Teknik Elektro Fakultas Teknik Universitas Sumatera Utara (USU) Jl. Almamater, Kampus USU Medan 20155 INDONESIA e-mail: kenkevinzamocir4@yahoo.com Abstrak Metode penyelesaian aliran daya telah semakin banyak dikembangkan sejalan dengan semakin berkembangnya konfigurasi aliran jaringan sistem tenaga, baik dalam perencanaan, pengembangan, maupun pengoperasian. Untuk sistem interkoneksi dengan jaringan yang lebih banyak metode Fast Decouple lebih unggul dibandingkan dengan metode lain, hal ini ditunjukkan dengan tingkat Error (max error = 0.0001) yang lebih kecil untuk mencapai konvergen yang lebih cepat dengan iterasi yang lebih sedikit dibandingkan dengan metode Gauss Seidel (max error = 0.000001) pada program Etap Power Station. Untuk metode Fast Decouple total losses ( 98.8 KW, 398.6 KVAR) sedangkan metode Gauss-Seidel (97.1 KW, 397.3 KVAR). Pada simulasi dengan menggunakan program Matlab diperoleh hasil rugi-rugi daya TL23 : SL23 = 1.2334, Daya aktif : P2 = 40.616 KW, Daya reaktif : Q2 = 263.9126 KVAR. Penerapan metode pendekatan aliran daya yang terdapat pada Etap Power Station dan Matlab hasil simulasi akan membandingkan keandalan antara metode Fast-Decouple dan Gauss-Seidel dalam menyelesaikan masalah aliran daya. Kata Kunci: Fast-Decouple,Gauss-Seidel 1. Pendahuluan Studi aliran daya adalah studi yang dilakukan untuk mendapatkan informasi mengenai aliran daya atau tegangan tiap bus pada sistem dalam kondisi operasi tunak (steady state). Ada beberapa metode yang digunakan untuk menganalisis aliran daya, yaitu metode Gauss-Seidel, Fast-Decouple. Metode Gauss- Seidel, Fast-Decouple adalah dua metode penyelesaian aliran daya yang biasa digunakan pada sistem tenaga listrik. Dalam proses penyaluran energi listrik kebeban terjadi rugi-rugi ( losses ), yaitu rugi daya dan rugi energi, mulai dari pembangkit, transmisi hingga distribusi. Namun yang sangat erat berhubungan kebeban adalah bagian distribusi. Perkembangan sistem kelistrikan saat ini telah mengarah pada peningkatan efisiensi dalam penyaluran energi listrik. Salah satu cara untuk meningkatkan efisiensi yaitu dengan mengurangi rugi daya. 2. Persamaan Aliran Daya Umum Dengan diperolehnya tegangan-tegangan pada tiap bus maka dapat dihitung besaranya aliran daya antara bus-bus yang terhubung[1]. Besarnya arus yang mengalir dari bus i ke bus j adalah i = V V y + V..(1) Dengan diketahuinya arus yang mengalir dari bus i ke bus j maka dapat dihitung besarnya aliran daya yang mengalir dari bus i ke bus j [1]. Pij j Qij = Vi * I P j Q = V [ V V y + V ] P j Q = V V V y + V V (2) Sedangkan aliran daya yang mengalir dari bus j ke bus i adalah P j Q = V V V y + V V (3) Dengan menjumlahkan secara aljabar antara Persamaan (2) dan Persamaan (3) maka didapat rugi-rugi pada saluran kawat transmisi i j [1]. copyright DTE FT USU 55

Metode yang digunakan untuk menganalisis aliran daya sistem distribusi 20 KV GI GIS adalah metode Fast-Decouple dan metode Gauss-Seidel. A. Metode Fast-Decouple Pada pengoperasian sistem tenaga dalam kondisi tunak adalah ketergantungan antara daya nyata dengan sudut fasa tegangan bus dan antara daya reaktif dengan magnitude tegangan bus. Dalam kondisi ini, adanya perubahan yang kecil pada magnitude tegangan tidak akan menyebabkan perubahan yang berarti pada daya nyata [1]. Sedangkan perubahan kecil pada sudut tegangan fasa tidak akan menyebabkan perubahan berarti pada daya reaktif. Ini dapat dibuktikan pada pendekatan-pendekatan dilakukan untuk menyatakan keterkaitan antara P dan δ serta antara Q dan V. Dengan menggunakan bentuk koordinat kutub maka solusi permasalahan diperoleh yaitu dengan cara mengasumsikan elemen-elemen sub matriks J2 dan J3 dalam matriks Jacobi adalah nol [1-2]. ΔP = J1 Δδ = Untuk J2 N = 0 ; N = 0 Untuk J3 : j = 0 ; j = 0 Untuk J4 : L = = V V V sin + θ = V V sinδ δ B...(7) L = Q V = V V Y sin θ V V Y sinδ δ + θ = Q V = V V Y sin Q + Q = = V B + Q (8) B. Metode Gauss-Seidel Metode iterasi Gauss-Seidel adalah metode yang dmenggunakan proses iterasi hingga diperoleh nilai-nilai yang berubah-ubah.metode iterasi Gauss-Seidel dikembangkan dari gagasan metode iterasi pada solusi persamaan tak linier. Tipe bus pada sistem tenaga listrik dapat dilihat pada gambar 1. Δδ = J4 IVI = IVI (4) Pada Persamaan (4) diatas dapat dilihat bahwa apabila pada pembentukan daya aktif, faktor yang menentukan adalah sudut tegangan, jadi adanya perubahan pada magnitude tegangan tidak mempengaruhi daya aktif [1]. Kondisi sebaliknya digunakan pada persamaan pembentukan daya reaktif yaitu perubahan kecil pada sudut fasa tidak akan menyebabkan perubahan yang berarti pada daya reaktif [1]. Elemen-elemen matriks Jacobi : Untuk J1 : H = = V V Y sinδ δ + θ = V V sinδ δ B...(5) H = P δ = V V Y sin θ + V V Y sinδ δ + θ = V B Q..(6) Gambar1.Tipe bus pada sistem tenaga listrik [1]. Aplikasi hasil bus ini adalah [1]. I = V y y V j i...(9) Daya nyata dan reaktif pada bus i adalah [2]. P + j Q = V I (10) I =..(11) Persamaan ini dikonjugatekan menjadi : I = P jq V Mensubtitusikan persamaan (9) dengan persamaan (10) hasilnya: copyright DTE FT USU 56

= V y y V..(12) Dari hubungan diatas, hasilnya harus dipecahkan oleh teknik iterasi[1]. Persamaan (11) dipecahkan untuk Vi Persamaan aliran daya biasanya ditulis dalam istilah elemen matrik admitansi bus[2]. Sejak itu elemen diagonal-off pada matrik admitansi Y bus, ditunjukkan oleh persamaan diatas, yaitu Yij = - y, dan elemen diagonal adalah Y = y [2-3]. V ( ) = Dan () ( ) (13) ( P ) = R {V [] ( V [] Y + Y V [] )} Q ( ) = lm {V [] ( V [] Y + Y V [] )} Untuk generator bus (bus P-V) dimana P dan V adalah ditentukan, persamaan diatas ditentukan untuk Q (). Untuk mendapatkan V () ditentukan dengan menggunakan persamaan dibawah ini[1-2]. Berdasarkan persamaan (13) jika tegangan bus ke-i dan ke-j untuk iterasi yang ke-k adalah [] V dan [] V, maka tegangan pada bus yang kei bentuk Gauss-Seidel untuk Iterasi yang ke- k+1 adalah[1-2-3]. V [] = ( [] Y V ).(14) 3. Metodologi Penelitian Data yang digunakan dalam penelitian ini adalah data yang ada pada sistem distribusi 20KV. Sumber data adalah: PT.PLN (Persero)Cab.Medan, pada penyulang 20KV GI GIS LK5 USU.berikut ini adalah data-data yang dibutuhkan,yaitu: Data Power Grid GIS, data line jaringan, data beban, data impedansi trafo, data kapasitas trafo, diagram satu garis sistem distribusi 20KV GI GIS LK5 USU. Simulasi dengan menggunakan program Etap Power Station pada aliran daya sistem distribusi 20KV dapat dilihat pada Gambar 2. e () + f () = V atau e () = V f () () dimana e dan f () adalah komponen real dan imajiner tegangan V () pada iterasi berikutnya, Kecepatan konvergensi dapat ditambahkan oleh aplikasi faktor ketelitian pada iterasi berikutnya yaitu[1-3]. V () = V () + V () V () = Faktor kecepatan V = Tegangan yang dihitung e () e () f () f () Iterasi dilanjutkan sampai magnitude elemen dalam kolom P dan Q adalah lebih kecil dari nilai spesifik [1]. Tipe daya tak sebanding ketelitiannya adalah 0.001pu. Ketika solusi konvergen, daya aktif dan reaktif pada slack bus dihitung[2]. Gambar 2. Flow Chart aliran daya menggunakan Etap Power Station copyright DTE FT USU 57

Simulasi dengan menggunakan program Etap Power Station pada aliran daya sistem distribusi 20KV dapat dilihat pada Gambar 3. Hasil simulasi program Etap Power Station dengan metode Gauss-Seidel dapat dilihat pada Tabel 2. Tabel 2. Total rugi-rugi daya metode Gauss- Seidel Model Jaringan Rugi daya Rugi daya (KW) (KW) 77 BUS 97.1 397.3 Pada Etap Power Station dengan metode Gauss-Seidel dari hasil simulasi dapat dianalisis bahwa dengan metode Gauss-Seidel untuk mencapai konvergen dibutuhkan iterasi yang lebih banyak. Untuk toleransi simpangan daya maksimum pada program Etap Power Station lebih besar. Pada model jaringan 77 Bus, total rugi daya aktif adalah 97.1KW dan total rugi daya reaktif adalah 397.3KW. Pada model jaringan 77 Bus, diperoleh hasil simulasi Program Etap Power Station dengan metode Fast-Decouple pada salah satu saluran dapat dilihat pada Tabel 3. Tabel 3. Total rugi-rugi daya metode Fast- Decouple (pada saluran Jln Universitas) Gambar 3. Flow Chart aliran daya menggunakan Matlab 4. Analisis Perbandingan Hasil simulasi Etap Power station Dan Matlab Hasil simulasi program Etap Power Station dengan metode Fast-decouple dapat dilihat pada Tabel 1. Tabel 1. Total rugi-rugi daya metode Fast- Decouple. Model Rugi daya Rugi daya Jaringan (KW) (KW) 77 BUS 98.8 398.6 Pada Etap Power Station dengan metode Fast-Decouple dari hasil simulasi dapat dianalisis bahwa dengan metode Fast-Decouple lebih cepat mencapai konvergen dengan iterasi yang lebih sedikit. Untuk toleransi simpangan daya maksimum pada program Etap Power Station lebih kecil. Pada model jaringan 77 Bus, total rugi daya aktif adalah 98.8 KW dan total rugi daya reaktif adalah 398.8 KW. Pada model jaringan 77 Bus, diperoleh hasil simulasi Program Etap Power Station dengan metode Gauss-Seidel pada salah satu saluran dapat dilihat pada Tabel 4. Dari hasil simulasi dengan Metode Fast- Decouple jumlah iterasi lebih sedikit dibandingkan dengan metode Gauss Seidel, metode Fast-Decouple mempunyai kurva iterasi yang lebih baik dari pada metode Gauss-Seidel, sehingga dapat dianalisis bahwa untuk metode Gauss-Seidel lebih cocok untuk jaringan yang lebih sedikit jumlah busnya, Sedangkan untuk metode Fast-Decouple lebih stabil untuk mencapai konvergen sehingga lebih cocok untuk jaringan yang memiliki jumlah bus yang sedikit copyright DTE FT USU 58

maupun banyak pada simulasi dengan program Etap Power Station. Hasil simulasi yang diperoleh pada sistem distribusi 20 KV dengan menggunakan program Matlab dapat dilihat pada Tabel 5. Tabel 5. Rugi-rugi daya pada saluran, daya pada bus beban. No Rugi-rugi daya pada saluran,daya 1 Rugi-rugi daya TL126: SL126 2 Daya aktif pada bus beban : P1 (MW) 3 Daya reaktif : Q1(MVAR) 4 Rugi-rugi daya TL23 : SL23 5 Daya aktif pada bus beban : P2 (MW) 6 Daya reaktif : Q2 (MVAR) 7 Rugi-rugi daya TL24: SL24 8 Daya aktif pada bus beban : P2 (MW) 9 Daya reaktif : Q2 (MVAR) 10 Rugi-rugi daya TL45 : SL45 11 Daya aktif pada bus beban : P5 (MW) 12 Daya reaktif : Q5 (MVAR) 13 Rugi-rugi daya TL46 : SL46 14 Daya aktif pada bus beban :P4 (MW) 25.6686+47.6725i 148.8488 276.4457 1.2334 40.616 263.9126 136.1405+252.84 34i 40.616 263.9126 35.1963-2.77556e-015i 43.7315 61.4127 7.0661+2.9056i 43.7315 15 Daya reaktif : Q4 (MVAR) 16 Rugi-rugi daya TL414: SL414 61.4127 8089.96871+1605 3.6489i dengan metode Gauss-Seidel menggunakan program Matlab dapat dilihat pada Tabel 6. Tabel 6. Perhitungan tegangan pada Bus 2 Dari hasil simulasi yang diperoleh dengan menggunakan program Matlab dapat dianalisis bahwa untuk mencapai konvergen dibutuhkan iterasi yang lebih banyak. dengan metode Gauss-Seidel pada Pemograman Matlab dapat dilihat pada Tabel 7. Tabel 7. Perhitungan tegangan pada Bus 8 Perhitungan Tegangan pada Bus 8 Iterasi V8 (KV) 1 1.0163 + 0.1139i 2 1.0169 + 0.0981i 3 1.0170 + 0.1003i 4 1.0170 + 0.1000i 5 1.0170 + 0.1000i 6 1.0170 + 0.1000i 7 1.0170 + 0.1000i 8 1.0170 + 0.1000i 9 1.0170 + 0.1000i copyright DTE FT USU 59

Dari hasil simulasi yang diperoleh dengan menggunakan program Matlab dapat dianalisis bahwa untuk mencapai konvergen dibutuhkan iterasi yang lebih banyak. dengan metode Gauss-Seidel pada Pemograman Matlab dapat dilihat pada Tabel 8. Tabel 8. Perhitungan tegangan pada Bus 10 Perhitungan Tegangan pada Bus 10 Iterasi V10 (KV) 1 0.9634 + 0.0554i 2 0.9613 + 0.0530i 3 0.9612 + 0.0531i 4 0.9612 + 0.0531i 5 0.9612 + 0.0531i 6 0.9612 + 0.0531i 7 0.9612 + 0.0531i 8 0.9612 + 0.0531i 9 0.9612 + 0.0531i Dari hasil simulasi yang diperoleh dengan menggunakan program Matlab dapat dianalisis bahwa untuk mencapai konvergen dibutuhkan iterasi yang lebih banyak. dengan metode Gauss-Seidel pada Pemograman Matlab dapat dilihat pada Tabel 9. Tabel 9. Perhitungan tegangan pada Bus 74 Perhitungan Tegangan pada Bus 10 Iterasi V74 (KV) 1 0.9634 + 0.0554i 2 0.9613 + 0.0530i 3 0.9612 + 0.0531i 4 0.9612 + 0.0531i 5 0.9612 + 0.0531i 6 0.9612 + 0.0531i 7 0.9612 + 0.0531i 8 0.9612 + 0.0531i 9 0.9612 + 0.0531i Pada metode Gauss Seidel jumlah Iterasi lebih banyak untuk mencapai konvergen dibandingkan dengan metode Fast Decouple, baik dengan program Etap Power Station maupaun Program Matlab. Pada Program Etap Power Station Hasil dari simulasi data hanya menampilkan hasil dengan iterasi terakhir untuk mencapai konvergen. 5. Kesimpulan Dari hasil simulasi dan analisis terhadap data-data yang diperoleh dapat diambil kesimpulan, sebagai berikut : 1. Jumlah iterasi untuk mencapai konvergen metode Gauss Seidel lebih banyak dibandingkan metode Fast Decouple, baik pada sistem jaringan yang banyak maupun sistem jaringan yang kecil. Ini membuktikan bahwa metode Fast Decouple mempunyai kurva iterasi yang lebih baik daripada metode Gauss Seidel. 2. Metode Fast Decouple lebih sesuai untuk menghitung aliran beban pada sistem dengan jumlah yang besar dan kurang sesuai untuk sistem kecil, sedangkan metode Gauss Seidel lebih sesuai untuk menghitung aliran beban pada sistem yang kecil dan kurang sesuai untuk sistem yang besar. 3. Metode yang lebih baik adalah metode Fast decouple hal ini disebabkan metode ini telah banyak penyempurnaan dari metode-metode sebelumnya dan metode Fast Decouple lebih cepat mencapai konvergen. 6. Daftar Pustaka 1] Hadi saadat, Power System Analysis, McGraw-hill Series In Electrical and Computer Engineering, 1999. [2] Murthy P.S.R, Power System Analysis, Tata McGraw-hill Publishing Company Limited, New Delhi, 1984. [3] William D.Stevenson, Jr, Alih Bahasa : Ir. Kamal Idris, Analisa Sistem Tenaga Listrik, Penerbit Erlangga, Jakarta, 1994 copyright DTE FT USU 60