Efek Aditif 3Al 2 O 3.2SiO 2 dan Suhu Sintering terhadap Karakteristik Keramik α-al 2 O 3

dokumen-dokumen yang mirip
PEMBUATAN KERAMIK BETA ALUMINA (Na 2 O - Al 2 O 3 ) DENGAN ADITIF MgO DAN KARAKTERISASI SIFAT FISIS SERTA STRUKTUR KRISTALNYA.

Jurnal Einstein 4 (2) (2016): Jurnal Einstein. Available online

BAB I PENDAHULUAN 1.1.Latar Belakang

: PEMBUATAN KERAMlK BERPORI CORDIERITE (2MgO. 2Ah03' 5SiOz) SEBAGAI BAHAN FILTER GAS. Menyetujui Komisi Pembimbing :

SINTESIS KERAMIK Al 2 TiO 5 DENSITAS TINGGI DENGAN ADITIF MgO

BAB IV HASIL DAN PEMBAHASAN Hasil Pengujian Densitas Abu Vulkanik Milling 2 jam. Sampel Milling 2 Jam. Suhu C

BAB III PROSEDUR PENELITIAN

Bab IV Hasil dan Pembahasan

I. PENDAHULUAN. dan kebutuhan bahan baku juga semakin memadai. Kemajuan tersebut memberikan

PENGARUH KOMPOSISI KAOLIN TERHADAP DENSITAS DAN KEKUATAN BENDING PADA KOMPOSIT FLY ASH- KAOLIN

LOGO. STUDI EKSPANSI TERMAL KERAMIK PADAT Al 2(1-x) Mg x Ti 1+x O 5 PRESENTASI TESIS. Djunaidi Dwi Pudji Abdullah NRP

BAB IV ANALISIS & HASIL PERCOBAAN

I. PENDAHULUAN. Al yang terbentuk dari 2 (dua) komponen utama yakni silika ( SiO ) dan

BAB III METODOLOGI PENELITIAN. Metode yang digunakan dalam penelitian ini adalah dengan metode eksperimen.

I PENDAHULUAN. Cordierite adalah material zat padat dengan formula 2MgO.2Al 2 O 3.5SiO 2 yang

STUDI ANALISIS SIMULASI TENTANG KORELASI SUHU SINTERING DAN PERSENTASE ADITIF MULLIT 3Al 2 O 3.2SiO 2 DENGAN SIFAT MEKANIK KERAMIK ALUMINA Al 2 O 3

DENSITAS DAN KEKUATAN BENDING PADA MATERIAL KOMPOSIT FLY ASH-MGO

SIFAT FISIK DAN KEKUATAN BENDINGPADA KOMPOSIT FELDSPAR-KAOLINE CLAY

Gambar 10. Skema peralatan pada SEM III. METODE PENELITIAN. Untuk melaksanakan penelitian digunakan 2 jenis bahan yaitu

I. PENDAHULUAN. rumah tangga dan bahan bangunan, yang selanjutnya keramik tersebut dikenal

STUDI PENAMBAHAN MgO SAMPAI 2 % MOL TERHADAP STRUKTUR MIKRO DAN SIFAT MEKANIK KERAMIK KOMPOSIT Al 2 O 3 ZrO 2

PENGARUH PENAMBAHAN SERBUK KAYU TERHADAP KARAKTERISTIK KERAMIK CORDIERITE BERPORI SEBAGAI BAHAN FILTER GAS BUANG

PENGARUH ADITIF SiO2 TERHADAP SIFAT FISIS DAN SIFAT MAGNET PADA PEMBUATAN MAGNET BaO.6Fe2O3

BAB IV HASIL DAN PEMBAHASAN. 4.1 Pengaruh Suhu Sinter Terhadap Struktur Kristal

PENGARUH PENAMBAHAN BORON TRIOXIDE (B 2 O 3 ) TERHADAP KARAKTERISTIK DIELEKTRIK KERAMIK CALCIA STABILIZED ZIRCONIA (CSZ)

BAB III METODOLOGI PENELITIAN. Metode penelitian ini dilakukan dengan metode eksperimen.

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Februari 2013 sampai dengan Juni 2013 di

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB III METODE PENELITIAN. penelitian ini dilakukan pembuatan keramik Ni-CSZ dengan metode kompaksi

BAB III METODOLOGI PENELITIAN

Seminar Nasional Mesin dan Industri (SNMI4) 2008

BAB III METODE PENELITIAN. Metode yang digunakan pada penelitian ini adalah metode eksperimen

BAB III METODE PENELITIAN. penelitian ini dilakukan pembuatan keramik komposit CSZ-Ni dengan

Bab III Metodologi Penelitian

Identifikasi Keramik Na-β -Al 2 O 3 dengan Penambahan Variasi Komposisi (0%, 3% dan 6%) Berat MgO

BAB III METODOLOGI PENELITIAN. Untuk mendapatkan jawaban dari permasalahan penelitian ini maka dipilih

PEMBUATAN DAN KARAKTERISASI MAGNET PERMANEN BAO.(6-X)FE2O3 DARI BAHAN BAKU LIMBAH FE2O3

BAB V KERAMIK (CERAMIC)

Pengaruh Penambahan Periclase (0,10,15)% terhadap Karakteristik Struktur dan Kekerasan Kordierit

PENGARUH PENAMBAHAN Al 2 TiO 5 PADA PEMBUATAN KERAMIK Al 2 O 3 TERHADAP SIFAT FISIS DAN MIKROSTRUKTURNYA TESIS. Oleh : AHMAD FAISAL / FIS

BAB IV HASIL DAN PEMBAHASAN

PENGARUH ADITIF Bi 2 O 3 TERHADAP SIFAT FISIS DARI KERAMIK VARISTOR ZnO. Drs. M. Gade, M.Si. ABSTRAK

I. PENDAHULUAN. 1.1 Latar Belakang. Ketika mendengar kata keramik, umumnya orang menghubungkannya dengan

III. METODE PENELITIAN. Penelitian ini dilaksanakan pada September hingga Desember 2015 di

BAB III METODOLOGI PENELITIAN. Penelitian yang dilakukan di Kelompok Bidang Bahan Dasar PTNBR-

HASIL DAN PEMBAHASAN. dengan menggunakan kamera yang dihubungkan dengan komputer.

BAB I PENDAHULUAN. Salah satu pemanfaatan tenaga nuklir dalam bidang energi adalah

I. PENDAHULUAN. Seiring kemajuan teknologi dan ilmu pengetahuan. dibutuhkan suatu material yang memiliki kualitas baik seperti kekerasan yang

III. METODE PENELITIAN. Penelitian ini dilaksanakan selama tiga bulan, yaitu pada bulan Januari 2012

I. PENDAHULUAN. Alumina banyak digunakan dalam berbagai aplikasi seperti digunakan sebagai. bahan refraktori dan bahan dalam bidang otomotif.

II. TINJAUAN PUSTAKA. Secara umum, cordierite alam mempunyai bentuk kimia 2MgO.2Al 2 O 3.5SiO 2.

ANALISIS SIFAT FISIS KERAMIK BERPORI BERBAHAN DEBU VULKANIK GUNUNG SINABUNG

PENGARUH KOMPOSISI TERHADAP SIFAT MEKANIK KERAMIK BERPORI MENGGUNAKAN DEBU VULKANIK GUNUNG SINABUNG

PEMBUATAN KERAMIK PADUAN ZIRKONIA (ZrO 2 ) DENGAN ALUMINA (Al 2 O 3 ) DAN KARAKTERISASINYA TESIS. Oleh AWAN MAGHFIRAH /FIS

PASI NA R SI NO L SI IK LI A KA

BAHAN KERAMIK ALUMINIUM BORAT SEBAGAI PEMANDU BENANG MESIN TEKSTIL

Sintesis Bahan Ubahan Gradual Aluminum Titanat/Korundum dari Alumina Transisi dengan Penambahan MgO

BAB III METODOLOGI PENELITIAN. Mulai. Persiapan alat dan bahan. Meshing AAS. Kalsinasi + AAS. Pembuatan spesimen

Keramik. KERAMIKOS (bahasa Yunani) sifat yang diinginkan dari material ini secara normal dapat dicapai melalui proses perlakuan panas Firing

BAB I PENDAHULUAN. Telah disadari bahwa kemajuan ilmu pengetahuan dan teknologi harus

BAB III METODOLOGI PENELITIAN

EFEK ADITIF Bi 2 O 3 TERHADAP MIKROSTRUKTUR DAN KOEFISIEN NON LINIER VARISTOR ZnO

II. TINJAUAN PUSTAKA. Cordierite adalah material zat padat dengan formula 2MgO.2Al 2 O 3.5SiO 2 yang

DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR ISTILAH DAFTAR SINGKATAN DAN LAMBANG BAB I

III. METODE PENELITIAN. Penelitian telah dilaksanakan selama tiga bulan, yaitu pada bulan September 2012

BAB I PENDAHULUAN. Kebutuhan energi di dunia akan terus meningkat. Hal ini berarti bahwa

Sintesis Keramik Al 2 TiO 5 dengan Aditif MgO Menggunakan Metode Solid Reaction

BAB III METODOLOGI PENELITIAN. Metode penelitian yang dilakukan adalah dengan metode eksperimen murni.

Uji Kekerasan Sintesis Sintesis BCP HASIL DAN PEMBAHASAN Preparasi Bahan Dasar

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

Bab IV. Hasil dan Pembahasan

BAB III METODOLOGI PENELITIAN. Metode penelitian yang digunakan pada penelitian ini adalah

BAB II TINJAUAN PUSTAKA

EFEK ADITIF Bi 2 O 3 TERHADAP MIKROSTRUKTUR DAN KOEFISIEN NON LINEAR VARISTOR ZnO.

PEMBUATAN ALUMINIUM BUSA MELALUI PROSES SINTER DAN PELARUTAN SKRIPSI

BAB IV HASIL DAN PEMBAHASAN

BAB 1 PENDAHULUAN 1.1. LATAR BELAKANG

Analisis Struktur Mikro Baja Tulangan Karbon Sedang

Bab III Metodologi Penelitian

BAB III METODOLOGI PENELITIAN. Pada bab ini mengungkapkan metode penelitian secara keseluruhan yang

BAB IV ANALISA DATA & PEMBAHASAN

BAB I PENDAHULUAN. Slag (terak) merupakan limbah industri yang sering ditemukan pada proses

Pengaruh Lama Penggerusan terhadap Konstanta Dielektrik, Kekerasan, dan Mikrostruktur Keramik Oksida SiO 2 -MgO

TESIS. Oleh MARLON SIHOLE /FIS SEKOLAH PASCASARJANA UNIVERSITAS SUMATERA UTARA MEDAN 2008

PENGARUH PERSEN HASIL PEMBAKARAN SERBUK KAYU DAN AMPAS TEBU PADA MORTAR TERHADAP SIFAT MEKANIK DAN SIFAT FISISNYA

Pengaruh Lama Penggerusan terhadap Konstanta Dielektrik, Kekerasan, dan Mikrostruktur Keramik Oksida SiO 2 -MgO

1 BAB I PENDAHULUAN. Salah satu industri yang cukup berkembang di Indonesia saat ini adalah

III. METODE PENELITIAN. Penelitian ini dilakukan pada bulan Februari hingga Mei 2012 di Laboratorium. Fisika Material, Laboratorium Kimia Bio Massa,

BAB III METODE PENELITIAN. penelitian ini dilakukan pembuatan keramik CSZ-NiO untuk elektrolit padat

III. METODE PENELITIAN. Tempat penelitian dilakukan di beberapa tempat yang berbeda yaitu ; preparasi

Galuh Intan Permata Sari

KARAKTERISTIK SIFAT TERMAL, SIFAT LISTRIK DAN STRUKTUR KRISTAL DARI KERAMIK SIC DENGAN ADITIF CLAY

Uji Densitas dan Porositas pada Batuan dengan Menggunakan Neraca O Houss dan Neraca Pegas

BAB IV HASIL DAN PEMBAHASAN

III. METODE PENELITIAN. Penelitian ini telah dilaksanakan pada bulan Februari sampai Juni 2013 di

Oleh : Ridwan Sunarya Pembimbing : Dr. Widyastuti S.Si, M.Si Ir. Lilis Mariani, M.Eng. (LAPAN)

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN ANALISIS

III. METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Juli sampai dengan Agustus 2015 di

Bab IV Hasil dan Pembahasan

Transkripsi:

JURNAL FISIKA DAN APLIKASINYA VOLUME 3, NOMOR 2 JUNI 2007 Efek Aditif 3Al 2 O 3.2SiO 2 dan Suhu Sintering terhadap Karakteristik Keramik α-al 2 O 3 P. Sebayang, Anggito. P. Tetuko, Deni S. Khaerudini, Muljadi, dan Masno Ginting Pusat Penelitian Fisika - LIPI, Kawasan PUSPIPTEK Serpong Tangerang Intisari Telah dilbuat keramik corundum (α-al 2O 3) menggunakan serbuk Al 2O 3 dan masing-masing ditambah: 10, 15, 20 dan 25% (berat) 3Al 2O 3.2SiO 2, digiling 24 jam, lolos ayakan 200 mesh, dikeringkan 110 C, dicetak 50 Mpa, dan disintering pada suhu: 1300, 1400, 1500 dan 1600 C. Sebesar 20% aditif 3Al 2O 3.2SiO 2 dan suhu sintering 1600 C merupakan kondisi optimum, menghasilkan: densitas = 3,47 g/cm 3, porositas = 0,64%, kekerasan (Hv) = 1454 kgf/mm 2, kuat patah = 313 MPa, dan koe sien ekspansi termal = 6,3 x 10 6 C 1. Corundum (α-al 2O 3) merupakan fasa dominan, partikelnya bulat, grain size: 0,3-0,8 µm dan minornya adalah mullite (Al 2O 3.2SiO 2), berbentuk jarum, dan grain size: 0,3-3,0 µm. KATA KUNCI:? I. PENDAHULUAN Pembuatan keramik alumina (α-al 2 O 3 ) yang padat dan kuat memerlukan suhu sintering yang tinggi, yaitu sekitar 1800-1900 C [1]. Keramik α-al 2 O 3 tergolong keramik oksida, memiliki titik lebur sekitar 2050 C, bersifat isolator listrik, kuat, keras dan tahan suhu tinggi. Salah satu cara untuk menurunkan suhu sintering adalah dengan memperkecil ukuran butir hingga dalam orde nano size dan/atau penambahan aditif tertentu yang mempunyai titik lebur lebih rendah dari alumina [2]. Sifat sis Al 2 O 3 antara lain: densitas = 3,96 g/cm 3, kekerasan = 1500-1800 kgf/mm 2, kuat tekan = 230-350 MPa dan koe sien ekspansi termal = (8-9) x 10 6 C 1. Pemakaian keramik alumina cukup luas, bidang mekanik (bearing, cutting tolls, inner lining), bidang elektronik (isolator listrik, substrat elektronik), bidang medis sebagai bio material dan bahan refraktori suhu tinggi. Pemilihan bahan aditif mullite (3Al 2 O 3.2SiO 2 ), karena mempunyai keunggulan dari segi kekuatan mekaniknya [3] dan juga lebih tahan terhadap kejut suhu (thermal shock resistance) atau berkaitan dengan nilai koe sien ekspansi termal yang rendah. Perpaduan antara alumina dan mullite pada material keramik α-al 2 O 3 adalah sangat tepat, apabila dilihat dari aplikasinya: hot plate, roller kiln, crucible dan lining brick. Komponen-komponen diatas merupakan kelengkapan tungku yang dibutuhkan pada industri keramik, gelas dan pengecoran logam. Sebagai bahan pemikiran, bahwa komponen tersebut beredar di Indonesia ternyata masih diimport dari luar negeri. Tak kalah pentingnya juga adalah ketersediaan bahan baku alam di Indonesia cukup banyak, baik berupa mineral bauxit sebagai sumber Al 2 O 3 dan pasir silika sebagai sumber SiO 2. Oleh karena itu perlu dilakukan penelitian dan kajian yang berkaitan dengan alih teknologi dan penguasaan tentang pembuatan keramik alumina (α-al 2 O 3 ) dapat diterapkan khusus- E-MAIL: angg005@lipi.go.id nya di Indonesia. Pada tulisan ini dibahas tata cara pembuatan keramik α-al 2 O 3 dengan variasi penambahan aditif mullite (Al 2 O 3.2SiO 2 ) dan suhu sintering. Serbuk mullite (Al 2 O 3.2SiO 2 ) dibuat dengan perbandingan 2 mole silika (SiO 2 ) dan 3 mole alumina (Al 2 O 3 ), digiling selama 24 jam dan dibakar/kalsinasi pada suhu 1300 C dan ditahan pada suhu tersebut selama 2 jam [4]. Komposisi mullite (Al 2 O 3.2SiO 2 ) yang ditambahkan pada pembuatan keramik alumina (Al 2 O 3 ) adalah 10, 15, 20 dan 25% (berat) 3Al 2 O 3.2SiO 2, variasi suhu: 1300, 1400, 1500 dan 1600 C, merupakan lanjutan penelitian sebelumnya [5]. Karakteristik yang diamati: densitas, porositas, kekerasan (Hv), kuat patah, koe sien ekspansi termal dan analisa struktur mikro dengan menggunakan XRD dan SEM. II. DASAR TEORI Senyawa alumina bersifat polimorf dan struktur α-al 2 O 3 atau sering disebut dengan corundum [6], mempunyai struktur kristal Tumpukan Padat Heksagonal (Hexagonal Clsed Packed = HCP), bentuk struktur yang paling stabil pada suhu tinggi. Bilangan koordinasi dari struktur corundum (α- Al 2 O 3 ) adalah 6 maka tiap ion Al +3 dikelilingi 6 ion O 2 dan tiap ion O 2 dikelilingi oleh 4 ion Al +3 untuk mencapai muatan netral. Struktur γ-al 2 O 3 dengan formula spinel adalah Al 8 O 12 dan bila dibandingkan struktur dasarnya A 3 B 6 O 12 atau A 2 B 2 O 4, dimana A dan B adalah kation valensi dua dan tiga, maka kekurangan satu kation dan hal ini merupakan bentuk cacat struktur (vacancy defect) pada kristal tersebut [6]. Struktur γ-al 2 O 3 merupakan senyawa alumina yang terbentuk melalui penguraian gelatin Al(OH) 3 dan bohmit AlOOH dengan reaksi seperti ditunjukkan Gambar 1 [7]. Transformasi fasa γ ke α pada suhu di atas 1000 C menghasilkan struktur mikro dengan derajat hubungan porositas yang tinggi. Perubahan bentuknya termasuk irreversible dan bentuk a polimorfnya stabil dengan titik lebur 2050 C. c Jurusan Fisika FMIPA ITS 070210-1

Gambar 1: Reaksi penguraian gelatin Al(OH) 3 dan bohmit AlOOH Gambar 2: Diagram fasa sistem biner Preparasi serbuk sangat menentukan sifat produk keramik yang dihasilkan, termasuk kemurnian bahan baku yang digunakan, homogenitas campuran dan kehalusan serbuk. Ada beberapa cara preparasi serbuk: konvensional, kimia basah/larutan dan dalam fasa gas; pada percobaan ini dipilih cara konvensional [4], yaitu berupa campuran padat-padat (solid-solid mixing) dengan menggunakan ball mill. Waktu penggilingan berpengaruh terhadap tingkat homogenitas dan kehalusan serbuk [9]. Preparasi serbuk mullite (Al 2 O 3.2SiO 2 ) dengan perbandingan 2 mole silika (SiO 2 ) dan 3 mole alumina (Al 2 O 3 ) diperlihatkan pada diagram alir Gambar 3. Pembuatan keramik α-alumina dengan penambahan aditif mullite (10, 15, 20 dan 25% berat) dilakukan dengan tahapan sebagai berikut: campur/giling serbuk alumina dan mullite dengan ball mill, dikeringkan dalam oven, cetak tekan (die pressing) dan disinter pada suhu: 1300, 1400, 1500 dan 1600 C. Diagram alir pembuatan keramik α-al 2 O 3 dengan aditif mullite (Al 2 O 3.2SiO 2 ) diperlihatkan pada Gambar 4. Karakterisasi benda uji yang dilakukan antara lain [10]: densitas, porositas, kekerasan (Hv), kuat patah, dan koe sien ekspansi termal. Sedangkan struktur mikro di analisa dengan menggunakan XRD dan SEM. Pengukuran densitas dan porositas mengacu pada ASTM C. 373-72, kekerasan (Hv) diukur dengan Micro Hardness Tester (ASTM D-785), kuat patah dengan cara triple point bending mengacu pada ASTM C.170-90, dan koe sien ekspansi termal mengacu pada ASTM D.696-91. Untuk mengetahui fasa dan struktur keramik yang terbentuk diamati dengan XRD dengan cara membandingkan nilai jarak antar bidang, d dengan nilai d standar yang diperoleh dari Joint Committee on Powder Diffraction Standart (JCPDS) atau dengan Hanawalt File. Sedangkan bentuk dan ukuran partikel size dari keramik α-al 2 O 3 dilakukan dengan Scanning Electron Microscope (SEM). Mullite (3Al 2 O 3.2SiO 2 ) tidak dijumpai dalam alam, merupakan material sintetis sebagaimana ditunjukkan pada Gambar 2, diagram fasa sistem biner Al 2 O 3.-SiO 2 [7]. Mullite memiliki titik lebur 1840 C dan terbentuk pada komposisi sekitar 60-63% mole Al 2 O 3 dan sekitar 37-40% SiO 2. Keunggulan mullite [8] pada saat digunakan tahan sampai mendekati titik leburnya, mempunyai sifat sis yang khas adalah densitas = 3,96 g/cm 3 dan koe sien ekspansi termal = (4,5-5,6) x 10 6 C 1. III. METODOLOGI PENELITIAN IV. HASIL DAN DISKUSI Hasil pengukuran porositas dan densitas masing-masing diperlihatkan pada Gambar 5 dan Gambar 6. Dari Gambar 5 dan Gambar 6, terlihat bahwa semakin tinggi suhu sintering dan semakin banyak jumlah aditif mullite yang ditambahkan menyebabkan jumlah pori semakin kecil, atau keramik α- Al 2 O 3 yang dihasilkan cenderung bertambah padat. Fenomena ini menunjukkan bahwa energi berupa panas mengaktifkan proses difusi antara butiran sehingga terjadi pertumbuhan butir dan eliminasi pori yang ada diantara butir, akibatnya terjadi proses densi kasi yang diikuti dengan penyusutan volum tetapi tidak diikuti perubahan massa. Pada penambahan 20, 25% aditif mullite dan suhu sintering 1500, 1600 C, diperoleh nilai porositas dan densitas cenderung mengecil dan mendekati konstan. Pembuatan keramik α- Al 2 O 3 tanpa aditif dengan suhu 1650 C diperoleh nilai densitas 3,25 g/cm 3 dan porositas 13,38% [11], teoritis densitas alumina sekitar 3,9 g/cm 3 dan porositas mendekati nol. Sedangkan hasil percobaan untuk penambahan 20, 25% aditif mullite dan suhu sintering 1500, 1600 C, diperoleh nilai porositas sekitar 0,64-1,53% dan densitas sebesar 3,34-3,47 g/cm 3. Hasil pengukuran kekerasan, Hv dan kuat patah masing-masing terhadap % penambahan aditif mullite dan suhu sintering ditunjukkan pada Gambar 7 dan Gambar 8. Dari hasil pengukuran kekerasan, Hv dan kuat patah menunjukkan adanya korelasi berbanding lurus dengan penambahan aditif mullite dan suhu sintering. Berarti semakin banyak aditif mullite dan semakin tinggi suhu sintering maka material keramik α-al 2 O 3 cenderung bertambah kuat dan keras. Sampel keramik α-al 2 O 3 dengan suhu sintering 1600 C dan penambahan aditif sebesar 20% dan 25% mullite 070210-2

Gambar 3: Diagram alir preparasi serbuk mullite (Al 2O 3.2SiO 2) Gambar 4: Diagram alir pembuatan keramik α Al 2O 3 dengan aditif mullite (Al 2O 3.2SiO 2) Gambar 5: Hubungan Porositas terhadap % aditif mullite Gambar 7: Hubungan kekerasan, Hv terhadap % aditif mullite Gambar 6: Hubungan Densitas terhadap % aditif mullite menghasilkan nilai kekerasan, Hv dan kuat patah yang paling tinggi dan mendekati konstan. Nilai kekerasan, Hv pada suhu sintering 1600 C dan penambahan aditif sebesar 20% dan 25% mullite adalah berkisar 1400-1450 kgf/mm 2 dan kuat patah sekitar 313 MPa. Nilai kekerasan, Hv untuk keramik α-al 2 O 3 menurut teoritis adalah sekitar 1500-1800 kgf/mm 2 dan kuat patah sekitar 350 MPa. Berdasarkan hasil pengukuran densitas, porositas, kekerasan dan kuat patah, diperoleh kondisi optimum adalah pada suhu sintering 1600 C dan pe- Gambar 8: Hubungan Kuat patah terhadap % aditif mullite nambahan aditif sebesar 20% dan 25% mullite. Untuk selanjutnya pengukuran koe sien ekspansi termal dan analisa struktur mikro yang diamati hanya terbatas pada sampel tersebut dan sampel kontrol (tanpa aditif) yang disinter pada suhu 1600 C. Hasil pengukuran koe sien ekspansi termal dari sampel tanpa aditif, aditif 20%, 25% mullite dan menurut literatur un- 070210-3

Gambar 9: 1300 C Pola difraksi sinar X dari serbuk mullite, dikalsinasi Gambar 11: Pola difraksi sinar X keramik alumina, aditif 20% mullite yang disinter pada suhu 1600 C Gambar 10: Pola difraksi sinar X dari alumina tanpa aditif, disinter 1600 C Gambar 12: Pola difraksi sinar X keramik alumina, aditif 25% mullite yang disinter pada suhu 1600 C tuk keramik alumina murni (α-al 2 O 3 ) serta keramik mullite (Al 2 O 3.2SiO 2 ) diperlihatkan pada Tabel 1. Jadi jelas terlihat peran penambahan aditif mullite dapat menurunkan nilai koe sien ekspansi termal, akibatnya keramik α-al 2 O 3 dengan penambahan aditif sekitar 20 % mullite dan suhu sintering 1600 C dapat dikatakan merupakan kondisi optimum. Semakin rendah nilai koe sien ekspansi termal dari dari suatu bahan maka benda tersebut semakin tahan terhadap kejutan suhu (thermal shock resistance), artinya semakin baik untuk aplikasi pada suhu tinggi. Dengan demikian fungsi penambahan mullite sebesar 20% dan suhu sintering 1600 C mempunyai peran tersediri bila dibanding keramik α-al 2 O 3 yang membutuhkan suhu sintering sekitar 1800-1900 C tanpa mempengaruhi sifat sis lainnya. TABEL I: Nilai koe sien ekspansi termal: sampel tanpa aditif, aditif 20%, 25% mullite dan keramik α-al 2O 3 serta keramik mullite (Al 2O 3.2SiO 2) menurut literatur. Kondisi sampel Koe sien ekspansi termal α(10 6 C 1 ) Tanpa aditif, suhu sintering 1600 C 8,6 20% aditif mullite, suhu sintering 1600 C 6,3 25% aditif mullite, suhu sintering 1600 C 6,1 Keramik alumina murni (menurut literatur) 8-9 Keramik mullite (menurut literatur) 4,5-5,6 Hasil analisa difraksi sinar X dari serbuk mullite yang dibuat dengan perbandingan 2 mole silika (SiO 2 ) dan 3 mole alumina (Al 2 O 3 ) dan dibakar (dikalsinasi) pada suhu 1300 C, diperlihatkan pada Gambar 9. Ternyata dengan suhu 1300 C fasa mullite (3Al 2 O 3.2SiO 2 ) sudah terbentuk, yang selanjutnya sebuk tersebut dijadikan sebagai aditif dalam pembuatan keramik alumina. Pada Gambar 10, hasil pola difraksi sinar X dari sampel alumina tanpa menggunakan aditif yang disinter pada suhu 1600 C, seluruh fasa yang muncul adalah corundum (α-al 2 O 3 ). Corundum (α-al 2 O 3 ) merupakan fasa yang stabil atau stuktur kristalnya tidak berubah terhadap perubahan suhu dan titik leburnya cukup tinggi, yaitu sekitar 2050 C. Apabila dilihat dari sifat mekanik yang dihasilkan pada pembuatan keramik α-al 2 O 3 tanpa aditif yang disinter 1600 C masih jauh dari yang diharapkan atau belum tercapainya kondisi optimal. Pada Gambar 11 dan Gambar 12, masing-masing menunjukkan pola difraksi sinar X dari keramik α-al 2 O 3 dengan aditif 20% dan 25% mullite yang disinter pada suhu 1600 C. Dari kedua pola difraksi, seperti pada Gambar 11 dan Gambar 12 terlihat bahwa proses pembentukan sudah hampir sempurna dengan aditif 20% mullite dan suhu sintering 1600 C. Atau tidak ada perubahan yang signi kan dengan penambahan aditif mullite sebesar 25% dengan kodisi suhu 1600 C. Terdapat dua fasa yang terbentuk, masing-masing corundum (α-al 2 O 3 ) sebagai fasa mayor dan mullite (3Al 2 O 3.2SiO 2 ) sebagai fasa minor. Fasa mullite akan mengisi ronggarongga kosong diantara butir alumina dan sekaligus membentuk ikatan yang kuat diantara butiran alumina. Hasil pengamatan dengan SEM untuk sampel alumina 070210-4

(a) tanpa aditif yang disinter 1600 C, dengan aditif 20% dan 25% mullite masing-masing disinter pada suhu 1600 C, diperlihatkan pada gambar 12, A, B dan C. Ternyata sampel alumina tanpa aditif dengan suhu sinter 1600 C masih berongga/berpori dan sebagian sudah terjadi aglomerat/cluster, bentuk butiran bulat tidak beraturan dan berukuran sekitar 0,3-0,8 µm. Dengan struktur mikro seperti tersebut menunjukkan bahwa proses sintering belum sempurna, artinya suhu sintering yang diterapkan kurang tinggi. Akibatnya sifat mekanik yang dihasilkan masih belum optimal dan benda uji yang diperoleh umumnya cenderung rapuh. Sedangkan untuk penambahan aditif sebesar 20% dan 25% mullite yang disinter pada suhu 1600 C menunjukkan pola yang mirip. Butir seperti jarum (needle) adalah merupakan bentuk butiran mullite berukuran sekitar 0,3-3,0 µm, berbeda dengan butiran alumina yang berbentuk bulat. Umumnya butiran mullite dan corundum saling mengikat satu sama lain dan rongga atau pori hampir tidak terlihat, karena porositas keramik alumina tersebut mendekati nol, atau tepatnya sekitar 0,64%. Hal ini menunjukkan bahwa sampel dengan penambahan aditif mullite sebesar 20% dan suhu sintering 1600 C merupakan yang terbaik dari semua komposisi yang dibuat. (b) V. SIMPULAN (c) Gambar 13: Foto SEM dari keramik alumina: (a). Tanpa aditif yang disinter 1600 C, (b). Dengan aditif 20% mullite yang disinter 1600 C, (c). Dengan aditif 25% mullite yang disinter 1600 C,(masing-masing perbesarannya 20.000 x). Penambahan aditif mullite sebesar 20% cukup signi kan memberikan pengaruh terhadap kualitas keramik alumina (α- Al 2 O 3 ) dan mampu menurunkan suhu sintering sekitar 300 C dari suhu sintering alumina murni. Kondisi optimum pada pembuatan keramik alumina (α-al 2 O 3 ) dengan 20% mullite dan suhu sintering 1600 C menghasilkan karakteristik: densitas = 3,47 g/cm 3, porositas = 0,64%, kuat patah = 313 MPa, kekerasan, Hv = 1454 kgf/mm 2, dan koe sien ekspansi termal = 6,3 x 10 6 C 1. Struktur mikro yang terbentuk adalah corundum (α-al 2 O 3 ) sebagai fasa mayor dan mullite (3Al 2 O 3.2SiO 2 ) sebagai fasa minor. Bentuk dan ukuran corundum (α-al 2 O 3 ) adalah bulat, sekitar 0,3-0,8 µm dan mullite (3Al 2 O 3.2SiO 2 ) berbentuk jarum (needle) dengan ukuran sekitar 0,3-3,0 µm. [1] Kostorz Gernot, High-Tech Ceramic, Hal. 110-118, Academic Press, Zurich, (1988). [2] Montanaro, Sintering of Industrial Mullite, Journal of The European Ceramic Society, Nr. 17, p. 1715-1723, (1997). [3] Yet Ming Chiang, Dubas Birnie, W. D. Kingery, Physical Ceramic Principles for Ceramic Science and Engineering, John and Sons Inc., Canada, (1977). [4] Perdamean Sebayang, dkk., Pengaruh Penambahan Al 2O 3 terhadap Proses Sintering dan Sifat Fisis Keramik Porselin untuk Komponen Isolator Listrk, Proseding Seminar Nasional Material dan Lingkungan Dalam Pembangunan Industri, Bandung 19 Oktober 1998, halaman: 10.1-10.10, ISBN 979-8580-19-2, (1998). [5] Perdamean Sebayang, Budiarto, Sintesa Keramik Alumina- Zirkonia sebagai Bahan Refraktori Suhu Tinggi, Prosiding Pertemuan Ilmiah Sains Materi II, hal.: 339-343, Serpong 29-30 Oktober 1997, ISSN 1410-2897, (1997) [6] Worral W. E., Clay and Ceramics Raw Material, Elsevier Scienti c Publishing Company, Vol. 4, 7. 3-7, London, (1986). [7] Clifton G. Bergeron, Subhash H. Risbud, Introduction to Phase Equilibria in Ceramics, The American Ceramic Sosiety, Inc., Columbus Ohio, (2000). [8] Perdamean Sebayang, dkk., Penelitian Pengembangan Keramik Mullite (3Al 2O 3.2SiO 2) dan Cordierite (2MgO.2Al 2O 3.5SiO 2) sebagai material refraktori, Prosiding Seminar Fisika Jakarta, Museum Migas-TMII, 9 Oktober 1995,(1995) 070210-5

[9] James S. Read, Introduction to The Principles of Ceramic Processing, John Willey & Sons, Inc., Singapore, (1988). [10] Perdamean Sebayang, dkk., Pengaruh Aditif MgO terhadap Sifat Fisis Al 2O 3 untuk Substrat Elekronik, Jurnal Fisika, Himpunan Fisika Indonesia, Volume 2, No. 4, Desember 1999, halaman 48-53, ISSN 0854-3046, (1999) [11] Nikolic L. J., J. K. Baiely, M. M. Ristic, Sintering of Alumina Derived from Alumina Gel, Material Monograph Science, No. 4, p. 168-171, Elsevier, New York, (1999). 070210-6