PERENCANAAN AMBANG PELIMPAH BENDUNGAN KEUMIRUE (INONG) DI KABUPATEN ACEH BESAR PROVINSI NANGROE ACEH DARUSSALAM

dokumen-dokumen yang mirip
PERENCANAAN BANGUNAN PELIMPAH SAMPING (SIDE CHANNEL SPILLWAY) BENDUNGAN BUDONG-BUDONG KABUPATEN MAMUJU TENGAH PROVINSI SULAWESI BARAT

4.6 Perhitungan Debit Perhitungan hidrograf debit banjir periode ulang 100 tahun dengan metode Nakayasu, ditabelkan dalam tabel 4.

STUDI PERENCANAAN PELIMPAH EMBUNG KRUENG RAYA KELURAHAN KRUENG RAYA KECAMATAN MESJID RAYA KABUPATEN ACEH BESAR

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) ISSN: Perencanaan Embung Bulung Kabupaten Bangkalan

ABSTRAK ABSTRACT

PENELUSURAN BANJIR WADUK DENGAN HYDROGRAF SERI

I. PENDAHULUAN. Kata kunci : Air Baku, Spillway, Embung.

BAB IV ANALISIS HIDROLOGI

ABSTRAK Faris Afif.O,

Identifikasi Debit Banjir, Desain Teknis dan Kontrol Stabilitas Bendung Pengelak Banjir ABSTRAK

BAB IV HASIL DAN ANALISIS. menyimpan semua atau sebagian air yang masuk (inflow) yang berasal dari

STUDI PERENCANAAN BANGUNAN UTAMA EMBUNG GUWOREJO DALAM PEMENUHAN KEBUTUHAN AIR BAKU DI KABUPATEN KEDIRI

EVALUASI KEAMANAN PELIMPAH BENDUNGAN PRIJETAN MENGGUNAKAN APLIKASI PLAXIS 8.2.

Identifikasi Debit Banjir, Desain Teknis dan Kontrol Stabilitas Bendung Pengelak Banjir ABSTRAK

BAB VI USULAN ALTERNATIF

Perencanaan Embung Gunung Rancak 2, Kecamatan Robatal, Kabupaten Sampang

6 BAB VI EVALUASI BENDUNG JUWERO

TUGAS AKHIR ANALISIS ROUTING ALIRAN MELALUI RESERVOIR STUDI KASUS WADUK KEDUNG OMBO

PERENCANAAN TUBUH EMBUNG ROBATAL, KECAMATAN ROBATAL, KABUPATEN SAMPANG

STUDI PERENCANAAN EMBUNG LONDO DENGAN MEMANFAATKAN ALUR SUNGAI SEBAGAI TAMPUNGAN MEMANJANG DI DESA BANYUURIP KECAMATAN KALIDAWIR KABUPATEN TULUNGAGUNG

STUDI PERENCANAAN HIDROLIS PELIMPAH SAMPING DAM SAMPEAN LAMA SITUBONDO LAPORAN PROYEK AKHIR

Perencanaan Embung Juruan Laok, Kecamatan Batuputih, Kabupaten Sumenep

Mahasiswa Teknik Pengairan, 2 Dosen Teknik Pengairan -,

Perencanaan Embung Gunung Rancak 2, Kecamatan Robatal, Kabupaten Sampang

Kajian Model Hidrograf Banjir Rencana Pada Daerah Aliran Sungai (DAS)

ANALISIS PERENCANAAN TUBUH BENDUNGAN ANTARA TIPE URUGAN DENGAN ROLLER COMPACTED CONCRETE DAMS (STUDI KASUS: SUNGAI MELANGIT, KAB.

BAB II TINJAUAN PUSTAKA. homogeny (Earthfill Dam), timbunan batu dengan lapisan kedap air (Rockfill

BAB I PENDAHULUAN. Waduk Jatibarang. Peta Das Waduk Jatibarang BAB II TINJAUAN PUSTAKA

ANALISA DEBIT BANJIR SUNGAI BONAI KABUPATEN ROKAN HULU MENGGUNAKAN PENDEKATAN HIDROGRAF SATUAN NAKAYASU. S.H Hasibuan. Abstrak

BAB IV ANALISIS DAN HASIL. Sungai

ANALISIS DEBIT BANJIR RANCANGAN BANGUNAN PENAMPUNG AIR KAYANGAN UNTUK SUPLESI KEBUTUHAN AIR BANDARA KULON PROGO DIY

BAB IV METODOLOGI DAN ANALISIS HIDROLOGI

UJI STABILITAS CHECK DAM KEDUNGREJO 15 DI KALI KONTO KECAMATAN PUJON KABUPATEN MALANG

BAB IV ANALISIS DAN PEMBAHASAN

ANALISIS PERENCANAAN TUBUH BENDUNGAN ANTARA TIPE URUGAN DENGAN ROLLER COMPACTED CONCRETE DAMS (STUDI KASUS: SUNGAI MELANGIT, KAB.

BAB II TINJAUAN PUSTAKA

Gambar 6.1 Gaya-gaya yang Bekerja pada Tembok Penahan Tanah Pintu Pengambilan

STUDI PERENCANAAN ULANG DINDING PENAHAN PADA HULU BENDUNG KRAMAT KECAMATAN TUMPANG KABUPATEN MALANG

ABSTRAK. Kata kunci : bendungan, Sistem Panel Serbaguna (SPS), SPS, perbandingan.

BAB III ANALISIS HIDROLOGI

KAJIAN HIDROLIS RUNTUHNYA EMBUNG JOHO DI KECAMATAN SEMEN KABUPATEN KEDIRI

DESAIN SABO DAM DI PA-C4 KALI PABELAN MERAPI

BAB IV ANALISIS HIDROLOGI

KAJIAN DESAIN STRUKTUR BENDUNG DAN KOLAM OLAKAN DARI BAHAYA REMBESAN (SEEPAGE)

BAB VII PENELUSURAN BANJIR (FLOOD ROUTING)

PERENCANAAN EMBUNG BLORONG KABUPATEN KENDAL, JAWA TENGAH. Muhammad Erri Kurniawan, Yudha Satria, Sugiyanto *), Hari Budieny *)

BAB II TINJAUAN PUSTAKA. Berikut ini beberapa pengertian yang berkaitan dengan judul yang diangkat oleh

KAJIAN PERENCANAAN BANGUNAN PELMPAH BENDUNGAN CIBATARUA KABUPATEN GARUT ABSTRAK

BAB IV ANALISA HIDROLOGI. dalam perancangan bangunan-bangunan pengairan. Untuk maksud tersebut

PERENCANAAN EMBUNG SEMAR KABUPATEN REMBANG. Muchammad Chusni Irfany, Satriyo Pandu Wicaksono, Suripin *), Sri Eko Wahyuni *)

PERENCANAAN TUBUH EMBUNG BULUNG DI KABUPATEN BANGKALAN TUGAS AKHIR

BAB 4 ANALISIS DAN PEMBAHASAN

PERENCANAAN EMBUNG ROBATAL KABUPATEN SAMPANG

STUDI PERENCANAAN ULANG DINDING PENAHAN PADA HULU BENDUNG KRAMAT KECAMATAN TUMPANG KABUPATEN MALANG

HALAMAN PENGESAHAN...

PERENCANAAN BANGUNAN PELIMPAH UTAMA BENDUNGAN LAWE-LAWE DI KABUPATEN PENAJAM PASER UTARA TUGAS AKHIR

PERENCANAAN BENDUNGAN PAMUTIH KECAMATAN KAJEN KABUPATEN PEKALONGAN BAB III METODOLOGI

BAB VI PERENCANAAN CHECK DAM

BAB V ANALISIS HIDROLOGI DAN SEDIMENTASI

BAB II TINJAUAN PUSTAKA. Dasar-dasar teori yang telah kami rangkum untuk perencanaan ini adalah :

PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN

METODOLOGI BAB III III Tinjauan Umum

PENINGKATAN FUNGSI BENDUNG PLUMBON-SEMARANG SEBAGAI PENGENDALI BANJIR

ANALISA DESAIN BENDUNG D.I KAWASAN SAWAH LAWEH TARUSAN (3.273 HA) KABUPATEN PESISIR SELATAN PROVINSI SUMATERA BARAT

BAB III METODOLOGI. Dalam pengumpulan data untuk mengevaluasi bendungan Ketro, dilakukan wawancara dengan pihak-pihak yang terkait, antara lain :

PERENCANAAN TUBUH EMBUNG GADDING KECAMATAN MANDING, KABUPATEN SUMENEP TUGAS AKHIR

TUGAS AKHIR PERENCANAAN DIMENSI STRUKTUR BENDUNG PLTM KAREKAN DI BANJARNEGARA

DAFTAR ISI. HALAMAN JUDUL... i LEMBAR PENGESAHAN... ii KATA PENGANTAR... iii. DAFTAR TABEL... ix DAFTAR GAMBAR... xi

BAB III METODE PENELITIAN. Penelitian ini mengambil lokasi pada Proyek Detail Desain Bendung D.I.

BAB IV HASIL PERHITUNGAN DAN ANALISA. Data hidrologi adalah kumpulan keterangan atau fakta mengenai fenomena

PERENCANAAN SISTEM DRAINASE DI DAERAH ALIRAN SUNGAI (DAS) KALI DAPUR / OTIK SEHUBUNGAN DENGAN PERKEMBANGAN KOTA LAMONGAN

PERENCANAAN EMBUNG KEDUNG BUNDER KABUPATEN PROBOLINGGO AHMAD NAUFAL HIDAYAT

BAB III METODOLOGI. Gambar 3.1 Diagram Alir Penyusunan Tugas Akhir

Perencanaan Sistem Drainase Pada Sungai Buntung Kabupaten Sidoarjo ABSTRAK:

PERENCANAAN EMBUNG MANDIRADA KABUPATEN SUMENEP. Oleh : M YUNUS NRP :

STUDY OF RAINFALL AND FLOOD DISCHARGE MODEL FOR MANAGEMENT OF WATER RESOURCES (Case Studies in Bedadung Watershed Jember)


Stenly Mesak Rumetna NRP : Pembimbing : Ir.Endang Ariani,Dipl. H.E. NIK : ABSTRAK

BAB II TINJAUAN PUSTAKA

BAB V PERENCANAAN DAM PENGENDALI SEDIMEN

PERENCANAAN EMBUNG KEDUNG BUNDER KABUPATEN PROBOLINGGO

PERENCANAAN EMBUNG MAMBULU BARAT KECAMATAN TAMBELANGAN KABUPATEN SAMPANG MADURA

KARAKTERISTIK DISTRIBUSI HUJAN PADA STASIUN HUJAN DALAM DAS BATANG ANAI KABUPATEN PADANG PARIAMAN SUMATERA BARAT

PERENCANAAN BENDUNG TETAP DI DESA NGETOS KECAMATAN NGETOS KABUPATEN NGANJUK

BAB VI PERENCANAAN BANGUNAN UTAMA

I. PENDAHULUAN. Redesain Bendungan Way Apu Kabpaten Buru Provinsi Maluku

Perencanaan Sistem Drainase Perumahan Grand City Balikpapan

PENGARUH VARIASI PANJANG JARI-JARI (R) TERHADAP KOEFISIEN DEBIT (Cd) DENGAN UJI MODEL FISIK PADA PELIMPAH TIPE BUSUR

Studi Penanggulangan Banjir Kali Lamong Terhadap Genangan di Kabupaten Gresik

Hasil dan Analisis. Simulasi Banjir Akibat Dam Break

Studi Penanggulangan Banjir Kali Lamong Terhadap Genangan Di Kabupaten Gresik

TINJAUAN DEBIT BANJIR KALA ULANG TERHADAP TINGGI MUKA AIR WADUK KRISAK KABUPATEN WONOGIRI

KAJIAN LEBAR BANGUNAN PELIMPAH TIPE LENGKUNG TERHADAP ELEVASI MUKA BANJIR (STUDI KASUS WADUK TENAYAN)

4. BAB IV ANALISA DAN PENGOLAHAN DATA ANALISA DAN PENGOLAHAN DATA

PERENCANAAN STRUKTUR BENDUNGAN BANDUNGHARJO DESA BANDUNGHARJO - KECAMATAN TOROH KABUPATEN GROBOGAN

PERHITUNGAN BENDUNG SEI PARIT KABUPATEN SERDANG BEDAGAI LAPORAN

1.1 Latar Belakang Tujuan Lokasi proyek Analisis Curali Hujan Rata-rata Rerata Aljabar 12

DEBIT SUNGAI PROGO RUAS BANJARSARI KALIJOSO KABUPATEN MAGELANG

PENELUSURAN BANJIR MENGGUNAKAN METODE LEVEL POOL ROUTING PADA WADUK KOTA LHOKSEUMAWE

PRESENTASI TUGAS AKHIR PERENCANAAN BENDUNG TETAP SEMARANGAN KABUPATEN TRENGGALEK PROPINSI JAWA TIMUR KHAIRUL RAHMAN HARKO DISAMPAIKAN OLEH :

Transkripsi:

PERENCANAAN AMBANG PELIMPAH BENDUNGAN KEUMIRUE (INONG) DI KABUPATEN ACEH BESAR PROVINSI NANGROE ACEH DARUSSALAM JURNAL Diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Teknik (ST) Disusun Oleh : AVIF GALANG ARYO NUGROHO NIM. 0706007-6 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK MALANG 0

LEMBAR PERSETUJUAN PERENCANAAN AMBANG PELIMPAH BENDUNGAN KEUMIRUE (INONG) DI KABUPATEN ACEH BESAR PROVINSI NANGROE ACEH DARUSSALAM JURNAL Diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Teknik (ST) Disusun Oleh : AVIF GALANG ARYO NUGROHO NIM. 0706007-6 Telah diperiksa dan disetujui oleh : Dosen Pembimbing I Dosen Pembimbing II Dr. Ir. Aniek Masrevaniah, Dipl.HE NIP. 9706 9780 00 Ir. Mohammad Taufiq, MT. NIP. 99070 9890 00

PERENCANAAN AMBANG PELIMPAH BENDUNGAN KEUMIRUE (INONG) DI KABUPATEN ACEH BESAR PROVINSI NANGROE ACEH DARUSSALAM Avif Galang Aryo Nugroho,Aniek Masrevaniah,Mohammad Taufiq Mahasiswa Teknik Pengairan Universitas Brawijaya Malang Dosen Teknik Pengairan Universitas Brawijaya Malang e-mail: avifgalang@yahoo.co.id ABSTRAK Pelimpah merupakan bangunan pelengkap dari suatu bendungan yang berfungsi untuk membuang kelebihan air ke arah hilir. Perencanaan pelimpah dipengaruhi oleh beberapa aspek teknis yaitu: kondisi topografi, geologi/geoteknik, jenis material dasar sungai, morfologi sungai, hidrologi dan hidrolika. Dari perhitungan hidrologi didapatkan hasil debit banjir rancangan diperoleh debit inflow Q 000 th = 9,6 m /dt, dengan lebar pelimpah 86,0 m tipe overflow, tinggi pelimpah,0 m outflow Q 000 th = 99,0 m /dt dan tinggi muka air di atas ambang =,7 m. Sedangkan untuk inflow Q PMF = 6, m /det, outflow Q PMF =,8 m /det dan tinggi muka air di atas ambang =,8 m. Dari perhitungan stabilitas konstruksi sesuai dengan dimensi yang direncanakan, diperoleh hasil bahwa konstruksi ambang pelimpah yang direncanakan aman terhadap geser, guling dan daya dukung tanah. Pada konstruksi beton bertulang ambang pelimpah direncanakan kualitas beton f c = 0 MPa dan fy = 00 MPa tulangan ganda dengan tulangan pokok D0-0 dan tulangan bagi D6- serta tulangan ganda tulangan pokok D-00 dan tulangan bagi D6- pada bagian lantai pengarah. Kata kunci : pelimpah, hidrologi, hidrolika, stabilitas, beton bertulang ABSTRACT Spillway is complementary building of a dam that serves to draine excess water to downstream. Design spillway is influenced by several technical aspects, such as: condition of topography, geology/geotechnical, material of riverbed, river morphology, hydrology and hydraulics. From the calculation results of design flood inflow discharge obtained Q000 th = 9.6 m /s, with a overflow spillway width of 86.0 m,.0 m of high spillway, outflow Q000 th = 99.0 m /s and the water level above the crest of spillway =.7 m. As for the inflow QPMF = 6. m /s, the outflow QPMF =.8 m /s and the water level above the crest of spillway =.8 m. According Construction of the stability calculation to the planned dimensions, the result that the planned construction of spillway secure from shear strength, slidding, and bearing capacity of soil. On the reinforced concrete construction was designed spillway f'c = 0 MPa quality concrete and fy =00MPa with double the principal reinforcement for D6- D0-0 and double reinforcement too D-00 D6- reinforcement on the floor director. Key words: spillway, hydrology, hydraulics, stability, reinforced concrete

I. PENDAHULUAN Pelimpah merupakan bangunan pelengkap dari suatu bendungan yang berfungsi untuk membuang kelebihan air ke arah hilir. Untuk bendungan yang tinggi, konstruksi pelimpah dibuat dari beton sedangkan untuk bendungan rendah dapat menggunakan pasangan batu kali. Konstruksi tersebut hendaknya dirancang sedemikian rupa sehingga kapasitas konstuksinya cukup untuk mengalirkan debit banjir, dan memenuhi kondisi hidraulika yang baik. (Masrevaniah,0: ). Bendungan Keumirue (Inong) terletak di Krueng Inong dengan luas tangkapan hujan (catchment area), km. Secara umum kondisi daerah studi adalah pegunungan bergelombang dengan tumbuhan perdu sampai dengan tanaman keras yang merupakan hutan dengan kondisi yang cukup baik. Fungsi dari Bendungan Keumirue (Inong) adalah untuk menjaga dan menjamin tersedianya suplay air irigasi Kr. Aceh, menjamin tersedianya air baku untuk Kabupaten Aceh Besar dan Kota Banda Aceh, PLTA,konservasi air di hutan lindung Jantho dan juga untuk pengendalian banjir untuk daerah hilir Kr. Aceh yaitu Kota Banda Aceh dan Kabupaten Aceh Besar. Sehingga bendungan Keumirue (Inong) merupakan bendungan serbaguna (multipurpose) yang dapat diandalkan untuk meningkat pertumbuhan ekonomi di daerah Kabupaten Aceh Besar dan Kota Banda Aceh. Sumber air bendungan ini berasal dari Kr. Aceh Hulu yang mempunyai kualitas air yang cukup baik, bersih dan debit andalan yang cukup. II. METODOLOGI PERENCANAAN Analisa Hidrologi Analisa hidrologi dilakukan dalam perencanaan bangunan air bertujuan untuk memahami karakteristik hidrologi dan untuk mendapatkan nilai debit banjir rancangan (design flood) yang akan digunakan untuk perhitungan hidrolika struktur. Lingkup analisa hidrologi meliputi analisa curah hujan rancangan (design rainfall) dan analisa debit banjir rancangan. Analisa Curah Hujan Rerata Daerah Berdasarkan teori tersebut karena daerah studi memiliki stasiun penakar hujan dan luas DAS, km, maka dalam penelitian ini menggunakan metode rata-rata aljabar (Sosrodarsono, 006:7) : R R R R... R n n R : Curah hujan rerata daerah n : Jumlah titik-titik (pos) pengamatan R, R, R n : Curah hujan di tiap titik pengamatan,,..n Distribusi Log Pearson Tipe III Dalam studi ini dipakai Metode Log Pearson Type III dengan pertimbangan bahwa cara ini lebih fleksibel dan dapat dipakai untuk semua sebaran data, dimana besar harga parameter statistiknya (Cs dan Ck) tidak ada ketentuan. Adapun langkah-langkah dalam perhitungan curah hujan rancangan berdasarkan Log Pearson Type III adalah sebagai berikut (Soemarto, 987 : ) : Data hujan harian maksimum tahunan sebanyak n tahun diubah dalam bentuk logaritma. Menghitung harga rata-rata logaritma dengan rumus berikut ini : n Logx i Logx i n Menghitung harga standard deviasi dengan rumus berikut ini: n ( Log x i Log X ) S i n Menghitung koefisien kepencengan dengan rumus berikut ini: n Log xi Log X Cs i n n S

Menghitung logaritma debit dengan waktu balik yang dikehendaki dangan rumus berikut ini : Log Q Log X G. Si Menghitung antilog dari log Q untuk mendapatkan debit banjir dengan waktu balik yang dikehendaki Q T Log Q = Logaritma curah hujan rancangan dengan kala ulang T tahun Log X = rata-rata logaritma data N = banyaknya tahun pengamatan S = simpangan baku data Cs = koefisien kepencengan G = koefisien frekuensi Curah Hujan Maksimum Yang Mungkin Terjadi (Probable Maximum Precipitation, PMP) Untuk analisa PMP ini digunakan cara statistik dengan persamaan Hershfield (Soemarto, 99:) : X m X n K m. Sn Dengan: X m = curah hujan maksimum yang tercatat (mm/hari) X n = rata-rata series data hujan harian maksimum tahunan (mm/hari) K m = variabel statistik, yang dipengaruhi oleh distribusi frekuensi nilai-nilai ekstrim S n = standart deviasi series data hujan harian maksimum tahunan (mm/hari) Distribusi Hujan Jam-jaman Model PSA 007 Untuk mendapatkan curah jamjaman selanjutnya sesuai dengan PSA 007, distribusi hujan disusun dalam bentuk genta, dimana hujan tertinggi ditempatkan di tengah, tertinggi kedua di sebelah kiri, tertinggi ketiga di sebelah kanan dan seterusnya. Tabel. Intensitas hujan dalam % yang disarankan PSA 007 Kala Ulang Durasi Hujan (Jam) % (Tahun) 0, 0,7 6 8 9 66 78 88 00 0 0 8 7 6 76 88 00 8 6 6 7 88 00 0 7 6 7 88 00 00 6 60 7 88 00 000 9 9 7 69 88 00 PMP 0 7 6 88 00 Sumber : Anonim (999 : 8) Hidrograf Satuan Sintetik Nakayasu Hidrograf satuan sintetis Nakayasu dihitung menggunakan persamaan (Soemarto 99:00): CA.R Q o p,6 0.T T p 0, Dengan : Q p = Debit puncak hidrograf satuan (m /det) R o = Hujan satuan (mm) T p = Tenggang waktu dari permulaan hujan sampai puncak banjir (jam) T 0, = Waktu yang diperlukan oleh penurunan debit, dari puncak sampai 0% dari debit puncak CA= Luas daerah aliran sungai (km ) Untuk menentukan T p dan T 0, digunakan pendekatan rumus sebagai berikut : T p = tg + 0,8 t r T 0, = tg t r = 0, tg sampai tg tg adalah time lag yaitu waktu antara hujan sampai debit puncak banjir (jam). tg dihitung dengan ketentuan sebagai berikut : - Sungai dengan panjang alur L km : tg = 0, + 0,08 L Sungai dengan panjang alur L km : tg = 0, L 0,7 dengan : tr = Satuan Waktu hujan (jam) =Koefisien karakteristik hidrograf, untuk = ( Pada daerah pengaliran biasa) =, (Pada bagian naik hydrograf lambat, dan turun cepat = (Pada bagian naik hidrograf cepat, turun lambat) i O tr 0.8 tr tg lengkung naik t Q p lengkung turun 0. Q Tp To.. To. 0. Q p Gambar. Hidrograf Satuan Sintetik Metode Nakayasu

. Pada waktu naik : 0 < t Tp t Q( t ) TP,. QP Dengan : Q(t) = Debit pada jam ke t (m/detik) t = Waktu (jam). Pada kurva turun (decreasing limb) a. Selang nilai : TP t (TP+T0,) ( t Tp) T 0, Q( t ) Qp. 0, b.selang nilai:(tp+t0,) t (Tp+T0,+, T0,) ( t T p 0, T 0, ), T0, Q Qp 0, (t ) c. Selang nilai : t > (Tp + T0, +, T0,) ( t T p, T0, ),0 T0, Q Qp 0, (t ) Hidrograf Banjir Secara matematik tabulasi perhitungan hidrograf banjir tersebut diatas dengan ditambah aliran dasar dapat dinyatakan dalam bentuk persamaan sebagai berikut : n Qk B f U i. Pn i i Qk = Debit Banjir pada jam ke - k Ui = Ordinat hidrograf satuan (i =,,...n) Pn = Hujan netto (hujan efektif) dalam waktu yang berurutan (n =,,..n) Bf = Aliran dasar (base flow) Penelusuran Banjir (Flood Routing) Penelusuran banjir adalah sebuah cara untuk menentukan modifikasi aliran banjir. Hal ini berdasar pada konfigurasi gelombang banjir yang bergerak pada suatu tampungan (saluran atau waduk). Penelusuran banjir di waduk diperlukan untuk mengetahui debit outflow maksimum dan tinggi air maksimum di atas ambang pelimpah pada debit outflow yang bersesuaian sebagai dasar perencanaan hidrolika struktur. Prosedur penelusuran banjir pada prinsipnya berdasar pada perhitungan persamaan kontinuitas massa aliran sederhana sebagai berikut : Inflow - outflow = perubahan kapasitas ds I O= dt Bila dinyatakan dalam finite interval waktu: S t S t ( I t I t ) t (Ot Ot ) t Atau I t I t S t Ot S t Ot t t I t I t I t =Aliran masuk (inflow hidrograf) pada permulaan waktu t I t =Aliran masuk pada akhir waktu t O t =Aliran keluar (outflow hidrograf) pada permulaan waktu t O t =Aliran keluar pada akhir waktu t S t =Aliran masuk pada akhir waktu t S t =Aliran masuk pada akhir waktu t ψ,φ =Fungsi tampungan untuk penelusuran banjir Kurva Kapasitas Tampungan Waduk (Storage Curve) Untuk menghitung volume antar interval kontur dapat dihitung dengan rumus sebagai berikut (Kumar, 00 : 88): A A h S Atau dengan pendekatan : h S A A A. A Dimana A, A, A, A... menunjukkan luasan diantara garis elevasi berurutan yang mempunyai interval tingginya adalah h. Dari kapasitas tampungan berbagai tinggi permukaan air yang diplot dan dianalisis, akan diperoleh kurva kapasitas tampungan waduk. Analisa Hidrolika Analisa hidrolika dilaksanakan dengan tujuan untuk menganalisis hasil

hitungan secara empirik yang kemudian digunakan sebagai dasar pemilihan bentuk, tipe dan perlakuan yang akan direncanakan dan dilaksanakan terhadap bangunan di lapangan. Pelimpah Langsung (Overflow) Kapasitas aliran yang melalui pelimpah merupakan debit keluaran dari tampungan waduk yang telah mencapai kapasitas maksimum. Debit yang melalui mercu pelimpah dihitung dengan rumus (Sosrodarsono, 00 : 8) : Q = C. L. H / Q = debit (untuk perencanaan digunakan debit banjir-rencana, m /det) C = koefisien limpahan L = lebar efektif ambang (m) H = total tinggi tekanan air di atas ambang (termasuk tinggi tekanan kecepatan aliran pada saluran pengarah aliran) (m) Koeffisien debit Koefisien debit dapat juga ditentukan berdasarkan rumus empiris Iwasaki. Rumus ini hanya berlaku untuk tipe standar dan dinding hulu ambang tegak (Masrevaniah, 0:6): 0,99 H d Cd,00 0,06 P h a H d C,60 h a H d C = koefisien limpahan untuk semua tinggi tekan C d = koefisien limpahan untuk tinggi tekan rencana h = tinggi air di atas mercu ambang H d = tinggi tekan rencana di atas mercu ambang P = tinggi ambang a = konstanta (diperoleh pada saat h = H d, yang berarti C = C d ) Lebar efektif ambang pelimpah ( B eff ) Besarnya perbandingan antara B eff dan B dipengaruhi oleh bentuk pilar bagian hulu, tembok tepi dan kedalaman air (Sosrodarsono,00:8) : B eff B N. K p K a H Koefisien kontraksi pilar (Kp) ditentukan sebagai berikut : - pilar dengan bentuk depan persegi 0,0 - pilar dengan bentuk depan bulat 0,0 - pilar dengan bentuk depan runcing 0,0 Koefisien kontraksi tembok tepi (Ka) sebagai berikut : - tembok tepi bersudut runcing 0, - tembok tepi bersudut bulat/tumpul 0, Perencanaan Profil Ambang Pelimpah Berdasarkan metode The United State Army Corps of Engineers telah menyusun beberapa bentuk baku pelimpah di Waterways Experiment Station (WES), dinyatakan berdasar lengkung Harrold (Chow 997: 0): X n n-. = K. H d Y Dengan: X, Y = koordinat profil mercu dengan titik awal pada titik tertinggi mercu, Hd = tinggi tekan rancangan tanpa tinggi kecepatan dari aliran yang masuk, K, n = parameter yang tergantung pada kemiringan muka pelimpah bagian hulu. Dari profil lengkung Harrold, bagian hilir pelimpah dirubah profilnya menjadi garis lurus dengan kemiringan : atau : 0,8. Analisa Stabilitas Konstruksi Kokoh dan stabilnya konstruksi bangunan merupakan syarat mutlak yang harus dipenuhi, sehingga dalam perencanaan perlu diperhitungkan dimensi dari bangunan tersebut serta kondisi kekuatan tanah tempat bangunan tersebut berdiri. Adapun dalam perhitungan stabilitas pelimpah, gaya-gaya yang bekerja pada pelimpah adalah (Sosrodarsosno, 99 : ) :

Beban vertikal W = bahan. An W =berat sendiri (ton) bahan =berat jenis bahan (t/m ) An =volume tiap satuan panjang (m ) Tekanan air (hidrostatis dan hidrodinamis) Tekanan hidrostatis (Pw) : P w w Tekanan hidrodinamis (Pe) : 7 Pe. Kh. w. H P w = tekanan air statis (ton) P e = tekanan air hidrodinamis (ton) w = berat jenis air (ton/m ) Kh = koefisien gempa H = tinggi muka air (m) Tekanan tanah (aktif dan pasif) Tekanan Tanah Aktif P a =. Ka.. H c Ka. H Tekanan Tanah Pasif P p =. H. Kp c Kp. dimana : P a = tekanan tanah aktif (ton) P p = tekanan tanah pasif (ton) Ka = koefisien tekanan tanah aktif P a = tekanan tanah aktif (ton) P p = tekanan tanah pasif (ton) Ka = koefisien tekanan tanah aktif = sin = tan o sin Kp = koefisien tekanan tanah pasif sin = = tan o sin = berat jenis tanah (ton/m ) H = tinggi tanah (m) C = kohesi tanah (ton/m ) = sudut geser dalam tanah () Tekanan angkat atau gaya angkat air (uplift) lp Up h. H d lo Up = tekanan uplift (ton) h = tinggi air di hulu (m) h = tinggi air di hilir (m) l p = panjang lintasan air rembesan (m) l o = panjang total lintasan air rembesan dari titik G ke titik tertentu (m) ΔH = perbedaan muka air hulu dan hilir pelimpah (m) Kekuatan gempa yang diperhitungan secara horisontal terhadap titik tinjauan paling kritis (turning point) Berat bangunan : We = W. kh Dengan: We = gaya akibat pengaruh gempa (ton) W = berat sendiri bangunan (gaya kh vertikal) (ton) = koefisien gempa horisontal Keamanan stabilitas pelimpah ini ditinjau terhadap bahaya guling, geser dan daya dukung tanah pondasi. Kestabilan terhadap guling dihitung dengan rumus : Mv Keadaan normal, SF = >, Mh Mv Keadaan gempa, SF = >, Mh Dengan: SF = angka keamanan (safety factor) Mt = momen tahan (ton.m) Mg = momen guling (ton.m) Kestabilan konstruksi terhadap geser atau gelincir yang disebabkan oleh gaya horisontal aktif atau gaya geser dihitung dengan rumus : SF = f. V H V = jumlah gaya vertikal (ton) H = jumlah gaya horisontal jumlah gaya horisontal aktif (ton) f = koefisien geser antara tanah dasar pondasi dengan dasar pondasi Kestabilan terhdap daya dukung pondasi dihitung dengan Menurut Bowles (968) mengusulkan persamaan kapasitas dukung ijin neto yang dikaitkan dengan

nilai SPT dinaikkan kurang lebih 0% nya, dan sekaligus memberikan faktor kedalaman pondasi, sebagai berikut: Untuk lebar B <, m : = 0.N.Kd Untuk lebar B >, m :, =, Dimana: = kapasitas dukung ijin neto dalam satuan kn/m, untuk penurunan sebesar, cm ( ). (kn/m) = jumlah pukulan, = faktor kedalaman pondasi, dengan nilai maksimum Kd =, = + 0, = lebar pondasi (m) = kedalaman pondasi (m) Letak arah resultan gaya horizontal dan gaya vertikal berpengaruh terhadap kestabilan bangunan. Bangunan akan stabil apabila arak resultan gaya terletak di dalam batas /6 B ke kanan maupun ke kiri titik tengah panjang pondasi. Perhitungan eksentrisitas menggunakan persamaan sebagai berikut: = Jika e < B/6, maka: ± / = Jika B/6 < e < B/, maka:. =. < =. < Dimana: σ = besarnya reaksi daya dukung tanah (t/m) e = eksentrisitas pembebanan = daya dukung tanah ijin = jumlah gaya vertikal (ton) B = lebar pondasi (m) L = panjang pondasi = meter A = luas dasar pondasi per meter panjang (m) X = lebar efektif dari kerja reaksi pondasi (m) Desain Penulangan dan Pembetonan Konstruksi Pelimpah Berdasarkan SKSNI T--99-0 bahwa dalam perencanaan tubuh pelimpah menggunakan desain plat. Untuk pembebanan hidup dan mati dapat dihitung dengan persamaan : U =, D +,6 L Dimana: U = kekuatan yang diperlukan D = beban mati pada keadaan layan L = beban hidup pada keadaan layan Tebal efektif merupakan jarak dari serat tekan ke titik berat tulangan tekan. Untuk menghitung tebal efektif sebuah plat dapat menggunakan persamaan : d = h p /. Dimana: d = tebal efektif (mm) p = tebal penutup beton (mm) h = tinggi total pelat (mm) = rencana diamater tulangan pokok (mm) h φ tulangan utama d ½xxφ x p Gambar. Hubungan antara h, d, dan penutup beton p Dengan nilai < 0 MPa maka persamaan umum untuk hubungan momen, ukuran beton, dan mutu baja beton sebagai berikut: Mu fy.. f y 0,88.. ' b.d f c Dimana: Mu = momen lapangan (Mpa) b = panjang per satuan lebar (m) = faktor reduksi kekuatan = 0,8 d = tebal efektif plat (m) = Kuat Tekan Beton Rencana (MPa) = kuat tarik baja (MPa) ρ = rasio tulangan Perhitungan luas tulangan perlu menggunakan persamaan sebagai berikut AStotal =.b. d

Dengan melihat rasio tulangan minimum, dapat dihitung pula luas tulangan minimum menggunakan persamaan: = ρmin. b. d Asmin AStotal = luas tulangan perlu (mm) ASmin = luas tulangan minimum (mm) ρ = rasio tulangan ρmin = rasio tulangan minimum b = panjang per satuan lebar (mm) d = tebal efektif plat (mm) Tabel. Tulangan minimum (ρmin) yang disyaratkan = 00 Mpa Mutu Beton = 0 Mpa Balok dan umumnya 0,006 0,00. 0,00. 0,008 Alternatif Pelat Sumber: Vis WC, (99:) Sesuai dengan SKSNI T-99-0 Pasal.6., dalam arah tegak lurus terhadap tulangan utama harus disediakan tulangan pembagi (demi tegangan susut dan suhu). (Vis, 99:78).,.. Untuk fy = 0 MPa : As =,.. Untuk fy = 00 MPa : As = Tabel. Tulangan maksimum (ρmaks) yang disyaratkan MPa (kg/cm) 0 (00) 00 (000) MPa (kg/cm) (0) 0 (00) (0) 0 (00) (0) 0,0 0,0 0,00 0,08 0,08 0,0 0,06 0,00 0,0 0,07 Sumber: Vis WC, (99:) III. HASIL DAN PEMBAHASAN Analisa Hidrologi Dalam pelaksanaan studi ini menggunakan data hujan dari dua stasiun penakar hujan yang berpengaruh terhadap DAS Krueng Aceh yaitu stasiun Padangtiji dan stasiun Tangse dengan ketersediaan data curah hujan bulanan antara tahun 990 sampai dengan 00. Tabel. Curah hujan rerata daerah No Tahun 6 7 8 9 0 6 990 99 99 99 99 99 996 997 998 999 000 00 00 00 00 00 Curah Hujan Rerata (mm/hari) Curah Hujan Padangtiji Tangse Maksimum,0 86, 86, 6, 6,,0 0,0 0,0, 0,0 88, 88,, 8, 8,, 7,, 96, 96, 7,0 7, 7,,0,0,0,0 8, 96,0 96,0 7,0 00,0 00,0 80,0 80,0 0, 8,0 8, 09,0 09,0 76, 90, 90, 8,0 9,0 8,0 Tabel. Perhitungan curah hujan rancangan metode Log Pearson Type III No. XT (mm/hari) Kala Ulang (T) P (tahun) (%) K S log X K*(S log X) Log X rerata Log XT [],0 [] [] [] [6] [7] [8] [9] 99,0099 0 0 0, -,69,0,8,6,78,9 0, 0, 0, 0, 0, 0, 0, -0,90 0, 0,7 0,8 0,897 0,8 0,,988,988,988,988,988,988,988,697,099,6,,77,0, 9,8,6, 70, 89, 08,7 76,7 [] 6 7 0 0 00 000 Dari hasil analisa PMP (Probable Maximum Precipitation) yang dipakai untuk menganalisa banjir terbesar yang mungkin terjadi kemudian digunakan sebagai kontrol terhadap analisa perencanaan kapasitas pelimpah adalah sebesar 0,06 mm/hari. Tabel 6. Distribusi hujan netto jam jaman metode PSA 007 (dalam %) No Jam Ke 6 6, 70,0 6,7 0,0 68,0 8,0 Kala Ulang (Tahun) 0 00,,0, 67,0 6,0 6 8,7 0,0 0,7 000, 6,0,7 PMP 6,0 6,0 6,0 Tabel 7. Perhitungan hujan netto jamjaman Kala ulang Hujan rancangan Koef.Pengaliran Hujan netto/hujan efektif No. Jam ke t 6,0,0,0,0 6,0 S Hujan netto (hujan efektif) (Tahun) 0 0 00 000 PMP (mm/hari),6, 70, 89, 08,77 76,7 0,0 (mm/hari) 00, 6,9 6,6,6 66,998,70 08 Hujan netto jam-jaman (mm/jam) Th 0 Th 00 Th 000 Th,6,6,689 7,, 6,779 8,96 7,0 77,806 8,897 9,0,00 0,06,907,7,880,6,6,689 7,,6,6,689 7, Th, 9,696 9,88,70,, 0 Th,98,87 67,9 7,97,98,98 PMP,76,0 9,69,0,76,76 8,9 98,97 6,8 9,07, 88,0 9 Dari data yang diperoleh sebagai berikut : Volume tampungan efektif = 60,87 x 06 m, volume tampungan mati (sedimen) =,8 x 06 m, volume tampungan waduk bruto = 7,7 x 06 m. Sehingga didapatkan nilai elevasi ambang pelimpah + 0,00 dan luas genangan air waduk pada elevasi ambang pelimpah sebesar 7, Ha.

Gambar. Hidrograf Banjir Rancangan HSS Nakayasu DAS Bendungan Keumireu Inong Gambar. Grafik hubungan elevasi, luas genangan dan tampungan waduk Analisa Hidrolika Pelimpah didesain dengan Q 000 dan dikontrol dengan Q PMF, dengan mempertimbangkan fungsi bendungan Keumireu Inong sebagai pengendali banjir sebesar 00 m /dt maka lebar ambang pelimpah direncanakan 86 m dan tinggi,0 m. Inflow Q 000 Th = 9,6 m /dt Q 9,6 Hd= = =,7 m C. L. 86 Dalam perhitungan koefisien limpahan menggunakan rumus Iwasaki, dimana untuk menghitung nilai C pada hubungan antara kedalaman aliran dan debit yang melalui ambang pelimpah diperlukan nilai Hd, sedangkan nilai Hd diperoleh dari hasil flood routing. Tabel 8. Rekapitulasi hasil penelusuran banjir melalui pelimpah Kala Ulang Q Inflow Q Outflow H Maksimum Elevasi No T Maksimum Maksimum Di Atas Ambang Muka Air Reduksi Banjir Maksimum Pelimpah Banjir (tahun) (m /detik) (m /detik) (m) (m) (m /detik) (%) 9,8 6,,08 0, 78, 0,9 0 08, 69,, 0, 9, 9,6, 79,7,60 0,6 7,6 8, 0 8, 8,6,8 0,8 0, 7, 00 88,6 9,8,0 06,0,8 6,0 6 000 9,6 99,0,7 06,7 6,6, 8 PMF 6,,8,8 08,8 98, 7, Gambar. Hidrograf Q 000Th inflowoutflow pelimpah Bendungan Keumireu Inong Profil pelimpah direncanakan menggunakan OGEE Tipe I : R =0, Hd =0,76 m Jarak R =0,8 Hd =,0 m R =0, Hd =,86 m Jarak R =0,7 Hd =0,6 m Perhitungan lengkung Harrold: X,8 =. Hd 0,8. Y Sehingga diperoleh titik potong gradien : (x,y) = (87,,09). Analisa Stabilitas Kondisi struktur ambang pelimpah dianalisa dengan beberapa kondisi, bangunan pelimpah perlu diadakan tinjauan dengan 6 kondisi yaitu: Kondisi I : Kosong (tanpa gempa) Kondisi II : Kosong pada keadaan gempa Kondisi III : Air penuh pada keadaan normal (tanpa gempa) Kondisi IV : Air penuh pada keadaan gempa Kondisi V : Saat banjir Q pmf pada keadaan normal (tanpa gempa) Kondisi VI : Saat banjir Q pmf pada keadaan gempa Berikut data-data yang diperlukan dalam perhitungan : Berat jenis tanah kering ( t ) =,607 ton/m Berat jenis beton =, ton/m Spesific gravity (Gs) =,78 Void ratio (e) =,067 Berat jenis tanah jenuh ( sat ) =,8 ton/m Berat jenis tanah terendam ( sub ) =0,8 ton/m Berat jenis air ( w ) =,00 ton/m

Sudut geser dalam ( Ø ) = 8, Koefisien gempa (Kh) = 0, (Kv) = 0,07 Tabel 9. Rekapitulasi analisa stabilitas No. Tinjauan analisa stabilitas Angka keamanan terhadap guling Analisa Penulangan dan Pembetonan Konstruksi Pelimpah Perhitungan bending momen yang terjadi pada pelimpah dianalisa dengan potongan yaitu potongan A-A, potongan B-B. Pada potongan A-A pada kondisi penuh tanpa gempa direncanakan dengan tulangan ganda : f c = 0 MPa fy = 00 MPa h = 00 mm b = 000 mm P (tebal selimut) = 00 mm Ǿ utama = 0 mm Ǿ bagi = 6 mm = 0,8 Angka keamanan terhadap geser Koefisien geser = 0,7 Dari hasil perhitungan diperoleh hasil pada tabel 9. Eksentrisit as Tegangan maks Tegangan min Teganga n ijin (e) (ton/m) (ton/m) (ton/m) (SF Guling) (SF Geser) A Tinjauan kondisi normal ( SF >=, ) ( SF >=, ) ( SF<L/6 ) Kosong,0 aman 9,00 aman,,0,0 9, Air Penuh 8, aman, aman,8,0 9,96, 9, Banjir Q PMF,7 aman,7 aman,6,0,8 0,6 9, B Tinjauan kondisi gempa ( SF >=, ) ( SF >=, ) ( SF<L/6 ) Kosong 7, aman, aman,00,0,,6 9, Air Penuh,7 aman, aman,0,0,8 0,7 9, Banjir Q PMF,6 aman,7 aman,,0,7 0,8 9, L/6 Sehingga, didapatkan tulangan utama D0 0 dan tulangan bagi D6 -. Pada potongan B-B pada kondisi penuh tanpa gempa direncanakan dengan tulangan ganda : f c = 0 MPa fy = 00 MPa h = 00 mm b = 000 mm P (tebal selimut) = 00 mm Ǿ utama = mm Ǿ bagi = 6 mm = 0,8 Sehingga, didapatkan tulangan utama D 00 dan tulangan bagi D6. I. KESIMPULAN Berdasarkan hasil analisa perencanaan ambang pelimpah Gambar 6. Detail konstruksi penulangan Bendungan Keumireu Inong diperoleh hasil sebagai berikut :

. Hasil perhitungan debit banjir rancangan diperoleh debit banjir rancangan maksimum inflow dan outflow : Debit banjir rancangan dengan kala ulang 000 th sebagai dasar perencanaan ambang pelimpah Q 000 th = 9,6 m /det dan outflow = 99,0 m /det Debit banjir rancangan maksimum yang mungkin terjadi (PMF), Q PMF = 6.0 m /dt dan outflow =,8 m /det yang digunakan sebagai kontrol dalam perencanaan.. Dengan mempertimbangkan fungsi bendungan sebagai pengendali banjir, dari hasil perhitungan penelusuran banjir melalui pelimpah (flood routing) diperoleh dimensi pelimpah overflow dengan lebar pelimpah (B) = 86 m, tinggi pelimpah (P) =,0 m dan tipe mercu pelimpah OGEE.. Dari hasil perhitungan penelusuran banjir melalui pelimpah (flood routing) diperoleh tinggi muka air waduk maksimum : Q 000 th, Hd =,7 m (el = +06,7 m) Q PMF, Hd =,8 m (el = +08,8 m). Dari hasil analisa stabilitas ambang pelimpah aman terhadap guling, geser, eksentrisitas serta daya dukung tanah.. Pada konstruksi beton bertulang ambang pelimpah direncanakan kualitas beton f c = 0 MPa dan fy = 00 MPa tulangan ganda dengan tulangan pokok D0-0 dan tulangan bagi D6- serta tulangan ganda tulangan pokok D-00 dan tulangan bagi D6- pada bagian lantai pengarah. II. DAFTAR PUSTAKA Anonim. 986. Buku Petunjuk Perencanaan Irigasi Bagian Penunjang. Jakarta: Departemen Pekerjaan Umum Anonim. 99. Peraturan Beton Bertulang Indonesia 97 N.I-. Jakarta: Departemen Pekerjaan Umum Anonim. 99. SKSNI T--99-0 Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung. Jakarta: Departemen Pekerjaan Umum Anonim. 999. Panduan Perencanaan Bendungan Urugan. Jakarta: Departemen Pekerjaan Umum. Chow, V.T. 997. Hidrolika Saluran Terbuka. Jakarta : Erlangga Hardiyatmo, Hary Christady. 996. Teknik Pondasi I. Jakarta: Gramedia Pustaka Utama. Hardiyatmo, Hary Christady. 006. Mekanika Tanah II. Yogyakarta : UGM Press Kumar, Santosh. 00. Irrigation Engineering and Hydrulic Structures. Delhi : Khanna Publisher Masrevaniah, Aniek. Prastumi. 008. Bangunan Air. Surabaya : Srikandi Masrevaniah, Aniek. 0. Konstruksi Bendungan Urugan Pelimpah (Volume II). Malang : CV Asrori Soemarto, CD. 987. Hidrologi Teknik. Surabaya : Usaha Nasional. Soemarto, CD. 99. Hidrologi Teknik Edisi ke-. Jakarta : Erlangga Soewarno, 99. Hidrologi Jilid. Bandung : Nova Sosrodarsono, Suyono. Takeda, Kensaku. 00. Bendungan Type Urugan. Jakarta: Pradnya Paramita Sosrodarsono, Suyono. Takeda, K., 006. Hidrologi Untuk Pengairan. Jakarta: Pradnya Paramita. Vis, WC. Kusuma, Gideon, 99. Dasar- Dasar Perencanaan Beton Bertulang. Jakarta: Erlangga.