SISTEM PENGONTROLAN TEKANAN UDARA PADA RUANG TERTUTUP

dokumen-dokumen yang mirip
Makalah Seminar Tugas Akhir

Aplikasi Kendali PID Menggunakan Skema Gain Scheduling Untuk Pengendalian Suhu Cairan pada Plant Electric Water Heater

BAB III DINAMIKA PROSES

Rancang Bangun Sistem Kontrol Level dan Pressure Steam Generator pada Simulator Mixing Process di Workshop Instrumentasi

Tabel 1. Parameter yang digunakan pada proses Heat Exchanger [1]

Makalah Seminar Tugas Akhir. PENGENDALIAN ph AIR DENGAN METODE PID PADA MODEL TAMBAK UDANG

APLIKASIMETODE INTERNAL MODEL CONTROL (IMC) ONE DEGREE OF FREEDOM (1 DOF) UNTUK PENGENDALIAN SUHU CAIRAN PADA HEATER

UJI PERFORMANSI PADA SISTEM KONTROL LEVEL AIR DENGAN VARIASI BEBAN MENGGUNAKAN KONTROLER PID

PENGENDALIAN PROSES EVAPORASI PADA PABRIK UREA MENGGUNAKAN KENDALI JARINGAN SARAF TIRUAN

RANCANG BANGUN SIMULATOR PENGENDALIAN POSISI CANNON PADA MODEL TANK MILITER DENGAN PENGENDALI PD (PROPOSIONAL DERIVATIVE)

PENGENDALIAN ph AIR DENGAN METODE PID PADA MODEL TAMBAK UDANG

BAB II TINJAUAN PUSTAKA. Penelitian sebelumnya berjudul Feedforward Feedback Kontrol Sebagai

APLIKASI KONTROL PID UNTUK PENGENDALIAN KETINGGIAN LEVEL CAIRAN DENGAN MENGGUNAKAN TCP/IP Aldea Steffi Maharani 1, Sumardi 2, Budi Setiyono 2

APLIKASI KONTROL PROPORSIONAL INTEGRAL BERBASIS MIKROKONTROLER ATMEGA8535 UNTUK PENGATURAN SUHU PADA ALAT PENGERING KERTAS

PERANCANGAN SISTEM PENGENDALIAN LEVEL DAN INTERLOCK STEAM DRUM DENGAN DUA ELEMEN KONTROL DI PT. INDONESIA POWER UBP SUB UNIT PERAK.

BAB 2 LANDASAN TEORI

Makalah Seminar Kerja Praktek KONTROL TEMPERATUR PADA RICH SOLUTION HEATER (101-E) DI CO 2 REMOVAL PLANT SUBANG

PENGENDALIAN TEMPERATURE PADA PLANT SEDERHANA ELECTRIC FURNACE BERBASIS SENSOR THERMOCOUPLE DENGAN METODE KONTROL PID

PERANCANGAN SISTEM PENGENDALIAN PEMBAKARAN PADA DUCTBURNER WASTE HEAT BOILER (WHB) BERBASIS LOGIC SOLVER

Makalah Seminar Tugas Akhir

II. PERANCANGAN SISTEM

RESPON SISTEM DITINJAU DARI PARAMETER KONTROLER PID PADA KONTROL POSISI MOTOR DC

FUZZY LOGIC UNTUK KONTROL MODUL PROSES KONTROL DAN TRANSDUSER TIPE DL2314 BERBASIS PLC

BAB IV PENGUJIAN DAN ANALISA HASIL SIMULASI

IV. PERANCANGAN SISTEM

III. METODE PENELITIAN. dari bulan November 2014 s/d Desember Alat dan bahan yang digunakan dalam perancangan Catu Daya DC ini yaitu :

Desain Kendali pada Sistem Steam Drum Boiler dengan Memperhitungkan Control Valve

Pengaturan Kecepatan Motor DC Menggunakan Kendali Hybrid PID-Fuzzy

Implementasi Modul Kontrol Temperatur Nano-Material ThSrO Menggunakan Mikrokontroler Digital PIC18F452

PERANCANGAN SISTEM CONTROL LEVEL DAN PRESSURE PADA BOILER DI WORKSHOP INSTRUMENTASI BERBASIS DCS CENTUM CS3000 YOKOGAWA

YONI WIDHI PRIHANA DOSEN PEMBIMBING Dr.Muhammad Rivai, ST, MT. Ir. Siti Halimah Baki, MT.

PENGENDALIAN KECEPATAN MOTOR DC MENGGUNAKAN SENSOR ENCODER DENGAN KENDALI PI

TUGAS AKHIR RESUME PID. Oleh: Nanda Perdana Putra MN / 2010 Teknik Elektro Industri Teknik Elektro. Fakultas Teknik. Universitas Negeri Padang

e (t) = sinyal kesalahan

IMPLEMENTASI MICROKONTROLLER UNTUK SISTEM KENDALI KECEPATAN BRUSHLESS DC MOTOR MENGGUNAKAN ALGORITMA HYBRID PID FUZZY

IMPLEMENTASI SENSOR KAPASITIF DALAM SISTEM KONTROL KADAR ETANOL

pengendali Konvensional Time invariant P Proportional Kp

SISTEM PENGENDALIAN SUHU PADA TUNGKU BAKAR MENGGUNAKAN KONTROLER PID

CLOSED LOOP CONTROL MENGGUNAKAN ALGORITMA PID PADA LENGAN ROBOT DUA DERAJAT KEBEBASAN BERBASIS MIKROKONTROLER ATMEGA16

SISTEM PENGATURAN MOTOR DC MENGGUNAKAN PROPOTIONAL IINTEGRAL DEREVATIVE (PID) KONTROLER

BAB III PERANCANGAN DAN PEMBUATAN SIMULASI

PENGENDALIAN KETINGGIAN AIR PADA DISTILASI AIR LAUT MENGGUNAKAN KONTROLER ON-OFF PROPOSAL SKRIPSI

Perancangan Sistem Pengendalian Level Pada Steam drum dengan Menggunakan Kontroller PID di PT Indonesia Power Ubp Sub Unit Perak-Grati

BAB II LANDASAN TEORI. berefisiensi tinggi agar menghasilkan produk dengan kualitas baik dalam jumlah

APLIKASI TEKNIK KENDALI GAIN SCHEDULING

MINIATUR PENGENDALI TEKANAN LIQUID

ANALISIS PID PADA MESIN PENCAMPUR ZAT CAIR PID ANALYSIS ON LIQUID MIXING MACHINE

SISTEM PENGATURAN POSISI SUDUT PUTAR MOTOR DC PADA MODEL ROTARY PARKING MENGGUNAKAN KONTROLER PID BERBASIS ARDUINO MEGA 2560

APLIKASI KONTROLER PID DALAM PENGENDALIAN POSISI STAMPING ROD BERBASIS PNEUMATIC MENGGUNAKAN ARDUINO UNO

PERANCANGAN PENGENDALI POSISI LINIER UNTUK MOTOR DC DENGAN MENGGUNAKAN PID

IDENTIFIKASI DAN DESAIN CONTROLLER PADA TRAINER FEEDBACK PRESSURE PROCESS RIG Satryo Budi Utomo, Universitas Jember

IX Strategi Kendali Proses

Kontrol PID Pada Miniatur Plant Crane

RANCANG BANGUN SISTEM KONTROL LEVEL DAN TEMPERATUR BOILER DENGAN METODE PID DAN KONTROL DUA POSISI

PERANCANGAN TRAINER PID ANALOG UNTUK MENGATUR KECEPATAN PUTARAN MOTOR DC

BAB II LANDASAN TEORI

LAPORAN TUGAS AKHIR. Untuk Memenuhi Persyaratan Mencapai Pendidikan Diploma III (DIII) Disusun Oleh : Choiruzzad Fahri NIM.

Sistem Pengaturan Kecepatan Motor DC pada Alat Ektraktor Madu Menggunakan Kontroler PID

Makalah Seminar Kerja Praktek ANALISA SISTEM FLOW CONTROL amdea DI CO 2 REMOVAL PLANT SUBANG

DAFTAR ISI. Halaman Judul. Lembar Pengesahan Pembimbing. Lembar Pengesahan Penguji. Halaman Persembahan. Halaman Motto. Kata Pengantar.

MINIATUR ALAT PENGENDALI SUHU RUANG PENGOVENAN BODY MOBIL MENGGUNAKAN KONTROLER PID BERBASIS PLC DENGAN SISTEM CASCADE

PERANCANGAN DAN IMPLEMENTASI SISTEM KENDALI PID SEBAGAI PENGONTROL KECEPATAN ROBOT MOBIL PADA LINTASAN DATAR, TANJAKAN, DAN TURUNAN TUGAS AKHIR

KONTROL PID UNTUK PROSES INDUSTRI Beragam Struktur dan Metode Tuning PID praktis

BAB IV PENGUJIAN DAN ANALISA HASIL SIMULASI. III, aspek keseluruhan dimulai dari Bab I hingga Bab III, maka dapat ditarik

BAB 1 KONSEP KENDALI DAN TERMINOLOGI

Makalah Seminar Kerja Praktek Analisis Pressure Control Pada Absorber (101-C1) di CO 2 Removal Field Subang

Perancangan Alat Fermentasi Kakao Otomatis Berbasis Mikrokontroler Arduino Uno

BAB III METODE PENELITIAN

RANCANG BANGUN SELF TUNING PID KONTROL PH DENGAN METODE PENCARIAN AKAR PERSAMAAN KARAKTERISTIK

BAB 2 LANDASAN TEORI

TUNING KONTROL PID LINE FOLLOWER. Dari blok diagram diatas dapat q jelasin sebagai berikut

PERANCANGAN SISTEM KESEIMBANGAN BALL AND BEAM DENGAN MENGGUNAKAN PENGENDALI PID BERBASIS ARDUINO UNO. Else Orlanda Merti Wijaya.

TKC306 - Robotika. Eko Didik Widianto. Sistem Komputer - Universitas Diponegoro

Syahrir Abdussamad, Simulasi Kendalian Flow Control Unit G.U.N.T Tipe 020 dengan Pengendali PID

Oleh : Dia Putranto Harmay Dosen Pembimbing : Ir. Witantyo, M.Eng. Sc

PENERAPAN ALGORITMA KENDALI PROPORTIONAL INTEGRAL DERIVATIVE PADA SISTEM REAL TIME UNTUK MEMPELAJARI TANGGAPAN TRANSIEN

Rancang Bangun Sistem Pengendalian Level pada Knock Out Gas Drum Menggunakan Pengendali PID di Plant LNG

IMPLEMENTASI KONTROL PID PADA PERGERAKAN LARAS MORTIR 81MM SESUAI DENGAN HASIL PERHITUNGAN KOREKSI TEMBAKAN

BAB I PENDAHULUAN. menggerakan belt conveyor, pengangkat beban, ataupun sebagai mesin

POLITEKNIK NEGERI SRIWIJAYA PALEMBANG

PERANCANGAN KONTROLER PI ANTI-WINDUP BERBASIS MIKROKONTROLER ATMEGA 32 PADA KONTROL KECEPATAN MOTOR DC

KEMENTRIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO

PENGESAHAN PUBLIKASI HASIL PENELITIAN SKRIPSI JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA

APLIKASI TEKNIK KENDALI GAIN SCHEDULING

PERBAIKAN KARAKTERISTIK KONTROLLER TEMPERATUR PADA MODEL BOILER

Ir.Muchammad Ilyas Hs DONY PRASETYA ( ) DOSEN PEMBIMBING :

BAB 5. Pengujian Sistem Kontrol dan Analisis

Sedangkan untuk hasil perhitungan dengan parameter tuning PID diperoleh :

BAB 3 PERANCANGAN KONTROL DENGAN PID TUNING

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO

PERANCANGAN SISTEM CONTROL LEVEL

MAKALAH SEMINAR TUGAS AKHIR PENGENDALIAN TINGGI MUKA CAIRAN PADA PLANT NONLINEAR MENGGUNAKAN METODE KONTROL FUZZY

BAB III METODE PENELITIAN. Penelitian tugas akhir dilaksanakan pada bulan Februari 2014 hingga Januari

PEMODELAN SISTEM PENGENDALI PID DENGAN METODE CIANCONE BERBASIS MATLAB SIMULINK PADA SISTEM PRESSURE PROCESS RIG

Rancang Bangun Self Tuning PID Kontrol ph Dengan Metode Pencarian Akar Persamaan Karakteristik

Sistem Pengaturan Kecepatan Motor DC Pada Alat Penyiram Tanaman Menggunakan Kontoler PID

SISTEM KENDALI POSISI MOTOR DC Oleh: Ahmad Riyad Firdaus Politeknik Batam

Makalah Seminar Tugas Akhir. PENGENDALIAN ph DALAM BEJANA DEFECATOR PADA PROSES PEMURNIAN NIRA (GULA) DENGAN KONTROL PROPORSIONAL INTEGRAL

III. METODELOGI PENELITIAN. Tempat dan waktu penelitian yang telah dilakukan pada penelitian ini adalah

Alat Penentu Parameter PID dengan Metode Ziegler-Nichols pada Sistem Pemanas Air

Transkripsi:

SISTEM PENGONTROLAN TEKANAN UDARA PADA RUANG TERTUTUP Ayuta Anindyaningrum #, Sumardi,ST,MT #, Budi Setiyono,ST,MT #3 # Jurusan Teknik Elektro, Fakultas Teknik Universitas Diponegoro jl. Prof Sudharto, Tembalang, Semarang, Indonesia # @abdi.mslm@gmail.com # setiaone.iwan@gmail.com #3 Budisty@gmail.com Abstrak Perkembangan teknologi dan industry telah mendorong berdirinya perusahaan dalam skala besar, seperti perusahaan tambang, kimia, dan otomotif. Salah satu faktor penting yang ada pada industry yaitu pengendalian tekanan yang berada di dalam sebuah ruang tertutup yang dipanaskan. Pengukuran tekanan ini dapat bermanfaat untuk mengetahui ketinggian level fluida, refrensi untuk mengatur suhu ruangan pemanas, maupun untuk mengatur pasokan fluida sebagai proses pencampuran kimia. Pengendalian tekanan ini sangat perlu diperhatikan dengan baik karena proses yang terjadi didalamnya sangat rawan terjadinya ledakan sehingga perlu keamanan lebih. Terlebih lagi apabila terjadi pasokan bahan bakar yang berlebihan sehingga terjadi pemanasan hingga menghasilkan tekanan udara yang berlebihan. Pada tugas akhir ini, dibuat suatu system pengontrolan untuk mengatur besar tekanan yang nilainya agar sesuai dengan yang diinginkan, untuk mendapatkan pengontrolan yang akurat maka digunakan metode Proporsional. Perancangan alat ini didapatkan nilai perameter Kp=40. Saat pengujian set point naik diperlukan waktu 33 detik untuk mencapi kestabilan setelah perubahan set point dari 0 kpa ke 5 kpa dan saat pengujian set point turun diperlukan waktu 389 untuk mencapai kestabilan setelah perubahan set point dari 8 kpa ke 4 kpa. Perancangan alat ini menggunakan mikroprosesor ATmega8535, sensor tekanan MPX5050GP dan motor servo untuk mengendalikan buka tutupnya valve pembuang tekanan. Kata kunci system control tekanan, sensor tekanan MPX5050GP, ATmega8535, metode Proporsional, valve pembuang tekanan. I. PENDAHULUAN Pada jaman sekarang ini perkembangan teknologi telah berkembang sedemkian pesatnya keberbagai bidang. Terutama dalam bidang industri yang menuntut adanya ketelitian, keamanan, dan keefektifan dalam proses produksi. Untuk mendukung itu semua, maka diperlukan adanya otomatisasi yang dapat mengurangi tingkat kesalahan yang disebabkan oleh kesalahan manusia. Pengukuran tekanan udara memegang peranan yang sangat penting dalam bidang industri. Pada saat ini banyak industri yang memanfaatkan konsep tekanan dalam proses industri. Oleh karena itu, pengukuran diperlukan dalam pemantauan dan pengendalian suatu proses. Salah satu contoh pengaplikasian pengontrolan tekanan udara dalam bidang industri diterapkan pada boiler. Boiler merupakan tempat dimana sebuah bejana tertutup yang digunakan untuk menghasilkan steam (uap) dalam berbagai keperluan. Air adalah media yang berguna dan murah untuk mengalirkan panas ke suatu proses. Jika air dididihkan sampai menjadi steam, volumnya akan meningkat sekitar.600 kali, menghasilkan tenaga yang menyerupai bubuk mesiu yang mudah meledak, sehingga boiler merupakan peralatan yang harus dikelola dan dijaga dengan sangat baik. Pengendalian tekanan dalam ruang tertutup sangat berhubungan langsung dengan safety. Maka dari itu sistem pengontrolan tekanan dibuat selain dapat mendukung proses produksi juga untuk keamanan apabila terjadi error kelebihan suplay bahan bakar yang mengakibatkan pemanasan yang berlebihan sehingga diperlukan pembuangan tekanan melalui katup valve. Untuk mendapatkan hasil yang memuaskan dalam sistem pengontrolan tersebut diperlukan adanya metode pengontrolan. Pada tugas akhir ini metode kontrol yang digunakan yaitu Proporsional (P). Untuk pengolahan data masukan dari sensor dan proses perhitungan dengan metode kontrol Proporsional maka diperlukan mikrokontroler Atmega8535, sebagai tampilannya dengan menggunakan LCD, dan sebagai aktuatornya menggunakan motor servo untuk mengatur bukaan valve. II. DASAR TEORI A. Pengenalan Ketel Uap Ketel uap atau boiler merupakan suatu peralatan yang digunakan untuk menghasilkan steam (uap) dalam berbagai keperluan. Air di dalam boiler dipanaskan oleh panas dari hasil pembakaran bahan bakar (sumber panas lainnya) sehingga terjadi perpindahan panas dari sumber panas tersebut ke air yang mengakibatkan air tersebut menjadi panas atau berubah wujud menjadi uap. Air yang lebih panas memiliki berat jenis yang lebih rendah dibanding dengan air yang lebih dingin, sehingga terjadi perubahan berat jenis air di dalam boiler. Air yang memiliki berat jenis yang lebih kecil akan naik, dan sebaliknya air yang memiliki berat jenis yang lebih tinggi akan turun ke dasar []. Uap panas atau steam pada tekanan tertentu kemudian digunakan untuk mengalirkan panas ke suatu proses. Jika air dididihkan sampai menjadi steam, volumenya akan meningkat [3].

Gambar 3 Respon Tangga percobaan BumpTest untuk model FOPDT Gambar. Boiler untuk penyulingan B. Model Kendali Proses Tekanan Udara pada Prototip Boiler Dalam mendapatkan model kendali dari suatu proses dapat dilakukan dengan menerapkan hukum kesetimbangan energi yaitu: Laju akumulasi energi di dalam tangki = Laju energi yang masuk - Laju energi yang keluar [6]. dp( t) C wq ( t) vq( t) dt () Dimana: C : kapasitansi tangki dp : perubahan pressure steam (kg/m ) dt : perubahan waktu (detik) q : flow air masuk (m 3 / q : flow uap air keluar (m 3 / w : masa jenis air (kg/m 3 ) v : masa jenis uap air (kg/m 3 ) Persamaan model matematis untuk pressure sebagai berikut: w K P P( Q ( Cs kq Cs kq Q ( () C. Model self regulating process Pada dasarnya dapat didekati oleh sebuah model matematis FOPDT (First Order Plus Ded Time) yang hanya dicirikan oleh tiga buah parameter yaitu Process transport delay L, Process time constant T, Process static gain- K Ketiga parameter yang menggambarkan dinamika proses, secara praktis dapat diperoleh atau diidentifikasi melalui eksperimen sederhana BumpTest atau sinyal tangga secara open loop pada mode kontrol manual (lihat Gambar ). Gambar Percobaan BumpTest pada kontrol manual Gambar 3 diatas merupakan grafik respon tangga percobaan BumpTest yang mana parameter-parameter proses FOPDT (First Order Plus Ded Time) dapat dicari sebagai berikut: a. Keterlambatan transportasi proses (L) = waktu yang terjadi pada proses yang dihitung sejak terjadi perubahan tangga pada CO sampai variabel proses (PV) yang dikontrol mulai menanggapi perubahan input CO. b. Konstanta waktu (T) = Waktu yang di perlukan sehingga nilai PV mencapai kurang lebih 63 % dari keadaan steady akhir setelah waktu tunda. c. Gain Statis Proses (K) = Perbandingan perubahan PV terhadap perubahan CO dalam keadaan steadynya. Gain statis bisa bernilai positif maupun negatif tergantung jenis kontrol valve yang di gunakan. PV PV PV0 K (3) CO CO CO 0 D. Kontrol Proporsional, Integral, dan Derivatif (PID) Kontrol PID merupakan gabungan dari tiga macam metode kontroler, yaitu pengontrol proporsional (Proportional Controller), pengontrol integral (Integral Controller), dan pengontrol turunan (Derivative Controller). SP - e PV Kp Ti.S Td.S Gambar 4. Struktur kontrol PID ideal bentuk dependent. Gambar 4 menunjukkan struktur kontrol PID ideal. Struktur kontrol PID ideal merupakan struktur kontrol PID yang umum dijumpai.. Persamaan (5) memperlihatkan bentuk umum dari kontrol PID ideal tersebut dalam bentuk kontinyu. CO t p Ti t 0 K et et. det dt Td. dt Secara praktis, struktur kontrol PID pada persamaan (4) dikenal juga dengan istilah PID ideal bentuk dependent. Istilah tersebut mengacu pada dependensi (ketergantungan) setiap suku persamaan terhadap nilai gain proporsional (K p ) Dalam kawasan Laplace, persamaan (4) tersebut dapat ditulis: co (4)

CO p d (5) Ti s s K T s e( Dari persamaan (6) tersebut dapat diperoleh fungsi alih kontroler PID (dalam domain sebagai berikut: Gc s K p Td s (6) Ti s Aksi kontrol PID ideal bentuk dependent dalam kawasan sistem diskret dapat dituliskan pada bentuk persamaan (4) sebagai berikut: CO k ek ek k K p. e k K i. Tc. e i K d i 0 Tc (7) Realisasi kontrol PID digital akan ditemukan dalam sistem berbasis mikroprosesor. Sistem kontrol PID digital bekerja dalam basis-basis waktu diskret, sehingga persamaan matematis diskret diperlukan untuk aplikasi kontrol PID ke dalam sistem mikroprosesor. E. Sensor tekanan MPX5050GP Sensor tekanan tipe MPX5050GP ini mampu mendeteksi tekanan sebesar 0 sampai dengan 50 kpa. MPX5050GP hanya membutuhkan supply tegangan 5 Volt. Seperti sensor takanan pada umumnya, sensor akan mengubah tekanan menjadi tegangan. Semakin besar tekanan yang diberikan, semakin besar pula tegangan yang dihasilkan. Sensor ini dilengkapi chip signal conditioned seperti dijelaskan diatas, maka keluaran dari sensor ini tidak perlu dikuatkan lagi. G. Motor Servo Motor servo adalah sebuah motor dengan system closed feedback di mana posisi dari motor akan diinformasikan kembali ke rangkaian kontrol yang ada di dalam motor servo. Motor ini terdiri dari sebuah motor, serangkaian gear, potensiometer dan rangkaian kontrol. Potensiometer berfungsi untuk menentukan batas sudut dari putaran servo. Gambar 7. standard motor servo [5]. III. PERANCANGAN Perancangan alat pada tugas akhir ini meliputi perancangan perangkat keras dan perancangan perangkat lunak. A. Perancangan Perangkat Keras Perancangan perangkat keras sistem pengontrolan tekanan udara ini terdiri dari mikrokontroler AVR ATmega8535, sensor tekanan MPX5050GP, sensor suhu LM35, rangkaian relay sebagai pengaman plant, motor servo sebagai aktuator, Keypad sebagai unit masukan dan LCD sebagai penampil menu, parameter, dan nilai tekanan udara. Secara umum perancangan perangkat keras sistem ditunjukan pada Gambar 8. Gambar 5. Sensor tekanan MPX5050GP F. Sensor LM 35 Sensor suhu LM35 digunakan untuk mengetahui besarnya suhu. IC ini akan mengubah nilai suhu menjadi besaran tegangan dengan range suhu yang mampu dirasakan oleh LM35 adalah dari 0 o C sampai dengan 50 o C. Tegangan keluaran sensor ini akan mengalami perubahan 0 mv untuk setiap perubahan suhu C atau memenuhi Persamaan (8). V = 0mV x T (8) dengan T adalah suhu yang dideteksi dalam derajat celcius. Gambar 8. Rancangan hardware plant pengontrolan tekanan udara. B. Perancangan Perangkat Lunak Perancangan sistem pengontrolan tekanan udara ini menggunakan metode kontrol Proporsional. Blok diagram aplikasi pengontrolan secara umum dapat dilihat pada Gambar 9. Set Point Error Kontroler P Mikrokontroler ATMega 8535 Co Motor Servo Valve Tekanan Vcc GND Vout Gambar 6. Sensor suhu LM35. Sensor Tekanan (MPX5050GP) Gambar 9. Diagram blok sistem pengendalian tekanan udara. 3

Masukan dari kontrol Proporsional adalah error tekanan udara. Error akan diolah oleh algoritma kontrol Proporsional sehingga menghasilkan sinyal kontrol yang diumpankan ke valve melalui motor servo. Flowchart program utama diperlihatkan pada Gambar 0. 8 4.44.43.44.437 9 6.6.6.6.6 0 8.78.79.78.783 0.98.98.97.977 Output (V).5.5 0.5 0 Rata-rata Tegangan Terukur (Volt) 0 4 6 8 0 4 6 8 0 Tekanan Gambar. Grafik perbandingan pembacaan sensor MPX5050GP dengan tegangan keluaran secara terukur. Tekanan >0 kpa atau suhu >35oC? Keypad D Ditekan? Keypad C Ditekan? Keypad * Ditekan? Heater mati Selesai Gambar 0. Flowcart program pengendalian tekanan udara. IV. PENGUJIAN DAN ANALISA A. Pengujian Sensor MPX5050GP Pengujian terhadap sensor MPX5050GP dilakukan dengan mengukur tegangan keluaran sensor tekanan. Pembacaan sensor tersebut kemudian dibandingkan dengan grafik pengujian pada datasheet. Data hasil pengukuran yang dilakukan dapat dilihat pada Tabel 4.. Tabel. Hasil keluaran tegangan pembacaan sensor MPX5050GP. No Tekanan Tegangan Terukur (Volt) 0 0. 0. 0. Rata-rata Tegangan Terukur (Volt) 0. Gambar. Grafik perbandingan pembacaan sensor MPX5050GP dengan B. Pengujian Sistem tegangan keluaran pada datasheet. ) Pengujian Kalang Terbuka (Bumptest) Karakteristik plant sistem pengendalian tekanan udara dapat diketahui dengan melakukan pengujian kalang terbuka. Hubungan antara CO (sinyal kontrol) dan PV (deviasi output prose pada hasil eksperimen bump test pengujian kalang terbuka ditunjukkan pada Gambar 3. 0.38 0.38 0.38 0.38 3 4 0.56 0.55 0.56 4 6 0.73 0.74 0.73 0.557 0.73 5 8 0.90 0.9 0.9 0.907 6 0.08.07.08 7.6.5.6.077.57 4

Gambar 3. Pengujian Bump Test bertekanan dengan tekanan awal 0 kpa dan ΔCO = 8%. Nilai keterlambatan transportasi (L) respon sistem tersebut sangatlah kecil maka dapat diabaikan dan Gain statis proses (K) yang dimiliki model FOPDT didapatkan dari perhitungan berikut: PV PV PV 0 K CO CO CO 0 (9) 0. 0 K.35( kpa %) 8 0 Sedangkan nilai T ditentukan dari 63% ΔPV yang didapatkan dari perhitungan berikut: 63% ΔPV = 0. (63% (0 0.)) = 0. 6.44 = 6.3444 kpa Sehingga pada saat 63% ΔPV, nilai T = 5 detik Berdasarkan pengujian dapat diketahui bahwa proses pada sistem adalah reverse. Sehingga dapat diperoleh persamaan matematis fungsi alih sistem. pv( K sl H( e co( Ts (0).35 H ( 5s ) Pengujian dengan Referensi tetap Pengujian ini dilakukan dengan memberikan setpoint tetap dengan suhu awal air sebesar 00 C. Berikut ini adalah hasil pengujiannya. Gambar 5. Respon sistem kontrol Proporsional pada setting point 0 kpa. Gambar 6. Respon sistem kontrol Proporsional pada setting point 5 kpa. Tabel. Karakteristik respon sistem pengendalian tekanan udara pada setting point tetap. Suhu Awal Tekanan Awal Setting Point T r (detik) T s (detik) 00 0 5 73 85 00 0 0 60 85 00 0 5 30 357 Pada Tabel ditunjukkan bahwa respon sistem dengan setting point semakin besar akan mengakibatkan waktu naiknya (T r ) semakin besar. Gambar 4, Gambar 5, dan Gambar 6. menunjukkan respon sistem relatif stabil untuk mencapai variasi nilai setting point 5, 0 dan 5 kpa tanpa adanya overshoot dan osilasi. 3) Pengujian Kontrol Proporsional pada Setting Point Naik Pengujian dengan setting point naik ini bertujuan untuk mengetahui kecepatan respon kendali sistem terhadap perubahan kenaikan setting point. Pengujian ini dilakukan dengan menggunakan nilai parameter Kp = 40. Berikut adalah gambar grafik untuk pengujian set point naik. Gambar 4. Respon sistem kontrol Proporsoinal pada setting point 5 kpa. 5

Gambar 7. Respon Sistem pada perubahan setting point naik. Gambar 7 menunjukkan pengujian respon sistem pengendalian tekanan udara pada perubahan setting point naik atau semakin besar dengan lama pengujian 380 detik. Pada awalnya sistem diberi setting point tinggi sebesar 0 kpa dengan tekanan awal 0 kpa. Waktu naik (T r ) yang diperlukan untuk mencapai setting point tersebut adalah 59 detik. Sistem telah mencapai keadaan steady dengan waktu penetapan (T s ) 65 detik. Ketika sistem melakukan perubahan setting point dari 0 kpa menjadi 5 kpa waktu naik (T r ) yang diperlukan adalah 3 detik dan waktu penetapan (T s ) 33 detik, tanpa overshoot. Waktu yang diperlukan untuk mencapai setting point baru ketika setting point naik relatif lebih cepat karena terbentuknya steam dipengaruhi juga oleh suhu air. Semakin tinggi suhu air maka kecepatan kecepatan untuk menghasilkan steam akan makin cepat pula. 4) Pengujian Kontrol Proporsional pada Setting Point Turun Pengujian dengan setting point turun ini bertujuan untuk mengetahui kecepatan respon kendali sistem terhadap perubahan penurunan setting point. untuk mencapai setting point tersebut adalah 7 detik dan waktu penetapan (T s ) 86 detik. Ketika sistem melakukan perubahan setting point dari 8 kpa menjadi 4 kpa waktu naik (T r ) yang diperlukan untuk mencapai setting point baru adalah 37 detik dan waktu penetapan (T s ) 389 detik dengan overshoot. 5) Pengujian Kontrol Proporsional terhadap Gangguan Daya tahan sistem terhadap gangguan dan kecepatan respon sistem untuk kembali ke referensi setelah gangguan, dapat diketahui dengan melakukan pengujian dengan memberikan gangguan berupa pembukaan valve pada sistem yang telah mencapai kestabilan pada suatu nilai referensi. Pemberian gangguan sesaat dilakukan selama 0 detik dengan membuka katup valve setelah itu valve dinormalkan kembali. Gambar 9. Respon sistem kontrol Proporsional terhadap gangguan. Pada Gambar 9. menunjukkan respon sistem terhadap gangguan sesaat berupa bukaan valve selama 0 detik pada setting point 3 kpa. Pada gangguan sesaat, terjadi penurunana tekanan sebesar 3,5 kpa dari keadaan steady-nya, untuk meningkatkan tekanan yang ada di dalam tabung akan memberikan respon dengan menutup valve. Gambar 8. Respon Sistem pada perubahan setting point turun. Gambar 8 menunjukkan pengujian respon sistem pengendalian tekanan udara pada perubahan setting point turun atau semakin kecil dengan lama pengujian 448 detik. Pada awalnya sistem diberi setting point tekanan sebesar 8 kpa dari tekanan awal 0 kpa. Waktu naik (T r ) yang diperlukan V. PENUTUP A. Kesimpulan Berdasarkan hasil pengujian dan analisis yang dilakukan didapatkan hal-hal penting sebagai berikut:. Hasil pengujian kalang terbuka dengan eksperimen bumptest untuk ΔCO = 8% dari CO awal 0%, plant sistem pengendalian tekanan udara termasuk model FOPDT dengan nilai L = 0 detik, T = 5 detik, dan K =,35 kpa/ %.. Pengujian untuk setting point tetap dengan tekanan awal sama yaitu 0 kpa, sistem mampu menghasilkan respon yang relative stabil untuk semua setting point tanpa adanya overshoot. Pada setting point 5 kpa T r = 73 detik, setting point 0 kpa T r = 60 detik, dan pada setting point 5 kpa T r = 30 detik. 3. Salah satu pengujian untuk mengetahui kestabilan system yaitu dengan pengujian setting point naik, respon sistem mampu mengikuti kenaikan setting point dengan rise time 6

relatif cepat karena terbentuknya steam dipengaruhi juga oleh suhu air. Semakin tinggi suhu air maka kecepatan untuk menghasilkan steam akan makin cepat pula. Saat mencapai setting point pertama 0 kpa dari tekanan awal 0 kpa, T r sebesar 59 detik dan T s sebesar 65 detik. Ketika sistem melakukan perubahan setting point menjadi 5 kpa, T r dan T s yang diperlukan adalah 3 detik dan 33 detik tanpa overshoot. 4. Pada setting point turun respon sistem mampu mengikuti penurunan setting point dengan rise time relatif cepat. Saat mencapai setting point yang pertama 8 kpa dari tekanan awal 0 kpa, memiliki T r sebesar 7 detik dan T s sebesar 86 detik. Ketika sistem melakukan perubahan setting point menjadi 4 kpa, T r dan T s yang diperlukan adalah 37 detik dan 389 detik dengan overshoot. 5. Pengujian respon sistem terhadap gangguan sesaat pada setting point 5 kpa selama 0 detik, sistem mampu merespon dengan waktu pemulihan relatif cepat dan berupaya untuk menyesuaikan respon pada keadaan steadynya walaupun terjadi osilasi di bawah setting point nya sebesar 3,5 kpa. B. Saran Ada beberapa hal yang dapat dilakukan dalam pengembangan sistem pengontrolan tekanan ini, antara lain yaitu : Menggunakan tabung yang lebih kuat sehingga dapat memaksimalkan tekanan pada sensor. Harus memperhatikan peristiwa fisika sehingga dapat meminimalkan terjadinya kerusakan alat. Menggunakan sensor dengan kapasitas tekanan maksimal yang lebih besar dan tahan oleh suhu tinggi. Menambah system contohnya pengontrolan tekanan untuk mengatur level cairan, sebagai alat ukur besaran tekanan, dan lain-lain. Mengunakan metode pengontrolan lain seperti fuzzy, fuzzy sebagai tuning PID, Jaringan Syaraf Tiruan, Algoritma Genetik. Mikrokontroller Di Workshop Instrumentasi. Surabaya: ITS. [7] Seiko Instrument Inc. Liquid Crystal Display Module M63 : User Manual. Japan. 987. [8] Setiawan,Iwan.008.Kontrol PID untuk Proses Industri. Jakarta: Elex Media Komputindo. [9] Smith, A. Carlos. 997. Principles and Practice of Automatic Process Control. John Wiley Son.Inc. [0] Welander, Peter. Understanding Derivative in PID Control. Control Engineering,, 4-7-0. [] ----------, ATmega8535 Data Sheet, [] http://www.atmel.com [3] http://www.datasheetdir.com/mpx5050gp [4] http://www.energyefficiencyasia.org [5] http://www.ilmukomputer.com [6] http://www.national.com/ds/lm/lm35.pdf [7] http://www.servodatabase.com BIODATA MAHASISWA Ayuta Anindyaningrum (LF 607 0) Saat ini sedang melanjutkan studi pendidikan strata I di Jurusan Teknik Elektro, Fakultas Teknik Universitas Diponegoro Konsentrasi Kontrol. Mengetahui dan mengesahkan, Dosen Pembimbing I Dosen Pembimbing II Sumardi,ST,MT NIP.96899400 Tanggal: Budi Setiyono, ST, MT NIP.9700500000 Tanggal: DAFTAR PUSTAKA [] Barmawi, M. 996. Prinsip-prinsip Elektronika. Jakarta : Erlangga. [] Djokosetyardjo,M.J.990.Ketel Uap.Jakarta: Pradnya Paramita. [3] Mu amar, Awal. 007. Perancangan Sistem Control Level Dan Pressure Pada Boiler Di Workshop Intrumentasi Berbasis Dcs Centum Cs3000 Yokogawa. Surabaya: ITS. [4] Ogata, Katsuhiko.994. Teknik Kontrol Automatik Jilid, terj. Edi Leksono. Jakarta: Erlangga [5] Ogata, Katsuhiko. 994. Teknik Kontrol Automatik Jilid, terj. Edi Leksono, Jakarta: Erlangga. [6] Rachmawati, Ika Nurina. 00. Perancangan Sistem Pengaman Pada Tangki Kerosin Bertekanan Dengan Menggunakan Pengendalian On/Off Berbasis 7