Penerapan Metode Phase Congruency Image (PCI) dalam Pengenalan Citra Wajah secara Otomatis

dokumen-dokumen yang mirip
Pengenalan Wajah dengan Metode Subspace LDA (Linear Discriminant Analysis)

Pengembangan Perangkat Lunak untuk Pengenalan Wajah dengan Filter Gabor Menggunakan Algoritma Linear Discriminant Analysis (LDA)

TEKNIK PENGENALAN WAJAH DENGAN ALGORITMA PCA BERBASIS SELEKSI EIGENVECTOR

Principal Component Analysis

BAB 3 PERANCANGAN SISTEM

BAB 2 LANDASAN TEORI

BAB III PERANCANGAN DAN IMPLEMENTASI SISTEM

PENGENALAN WAJAH MENGGUNAKAN ALGORITMA EIGENFACE DAN EUCLIDEAN DISTANCE

BAB 2 LANDASAN TEORI

Pengenalan Wajah Dengan Algoritma Canonical Correlation Analysis (CCA)

BAB II LANDASAN TEORI

PERBANDINGAN METODE KDDA MENGGUNAKAN KERNEL RBF, KERNEL POLINOMIAL DAN METODE PCA UNTUK PENGENALAN WAJAH AKIBAT VARIASI PENCAHAYAAN ABSTRAK

PENGENALAN WAJAH MENGGUNAKAN METODE LINEAR DISCRIMINANT ANALYSIS DAN K NEAREST NEIGHBOR

UJI KINERJA FACE RECOGNITION MENGGUNAKAN EIGENFACES

PENGENALAN WAJAH MANUSIA DENGAN METODE PRINCIPLE COMPONENT ANALYSIS (PCA)

BAB 2 LANDASAN TEORI

BAB 3 PROSEDUR DAN METODOLOGI

BAB I PENDAHULUAN. 1.1 Latar Belakang

Teknik pengenalan wajah berbasis fitur local binary pattern (LBP)

Hasil Ekstraksi Algoritma Principal Component Analysis (PCA) untuk Pengenalan Wajah dengan Bahasa Pemograman Java Eclipse IDE

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. 4.1 Pengembangan Sistem Pengenalan Wajah 2D

TEKNIK PENGENALAN WAJAH BERBASIS FITUR LOCAL BINARY PATTERN (LBP)

Implementasi Pengenalan Wajah Menggunakan PCA (Principal Component Analysis)

Jurnal String Vol.1 No.2 Tahun 2016 ISSN : PRINCIPAL COMPONENT ANALYSIS UNTUK SISTEM PENGENALAN WAJAH DENGAN MENGGUNAKAN METODE EIGENFACE

Pengenalan Bentuk Wajah Manusia Pada Citra Menggunakan Metode Fisherface

Menurut Ming-Hsuan, Kriegman dan Ahuja (2002), faktor-faktor yang mempengaruhi sebuah sistem pengenalan wajah dapat digolongkan sebagai berikut:

PEMANFAATAAN BIOMETRIKA WAJAH PADA SISTEM PRESENSI MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK

Pengenalan Wajah Menggunakan Metode Linear Discriminant Analysis dan k Nearest Neighbor

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB II TINJAUAN PUSTAKA. menggunakan PCA, kemudian penelitian yang menggunakan algoritma Fuzzy C-

PENGENALAN SESEORANG MENGGUNAKAN CITRA GARIS TANGAN

Implementasi Pengenalan Wajah Berbasis Algoritma Nearest Feature Midpoint

BAB IV PENGUJIAN DAN ANALISIS

PEMANFAATAN GUI DALAM PENGEMBANGAN PERANGKAT LUNAK PENGENALAN CITRA WAJAH MANUSIA MENGGUNAKAN METODE EIGENFACES

UNJUK KERJA METODE KLASIFIKASI SUPPORT VECTOR MACHINE (SVM) DENGAN LEARNING VECTOR QUANTIZATION (LVQ) PADA APLIKASI PENGENALAN WAJAH

BAB IV IMPLEMENTASI DAN EVALUASI. implementasi dan evaluasi yang dilakukan terhadap perangkat keras dan

APLIKASI PENGENALAN WAJAH MENGGUNAKAN METODE EIGENFACE DENGAN BAHASA PEMROGRAMAN JAVA

IMPLEMENTASI ALGORITMA FRACTAL NEIGHBOUR DISTANCE UNTUK FACE RECOGNITION

SISTEM PENGENALAN WAJAH BERBASIS METODA FISHERFACE TUGAS AKHIR. Febrian Ardiyanto NIM :

PENGENALAN WAJAH DENGAN PENDEKATAN ROBUST REGRESSION YANG MENGGUNAKAN HISTOGRAM REMAPPING DENGAN DISTRIBUSI NON-UNIFORM

Perbandingan Unjuk Kerja Pengenalan Wajah Berbasis Fitur Local Binary Pattern dengan Algoritma PCA dan Chi Square

FACE RECOGNITION MENGGUNAKAN METODE TWO- DIMENSIONAL PRINCIPAL COMPONENTS ANALYSIS (2DPCA) ABSTRAK

BAB 3. ANALISIS dan RANCANGAN. eigenfaces dan deteksi muka dengan color thresholding akan mempunyai proses

Perbandingan Ukuran Jarak pada Proses Pengenalan Wajah Berbasis Principal Component Analysis (PCA)

Pengenalan Wajah Menggunakan Two Dimensional Linier Discriminant Analysis Berbasis Feature Fussion Strategy

PENGAMAN RUMAH DENGAN SISTEM FACE RECOGNITION SECARA REAL TIME MENGGUNAKAN METODE PRINCIPAL COMPONENT ANALYSIS

IMPLEMENTASI PENGENALAN WAJAH MENGGUNAKAN ALGORITMA PRINCIPAL COMPONENT ANALYSIS(PCA) DAN IMPROVED BACKPROPAGATION

BAB I PENDAHULUAN. telinga, wajah, infrared, gaya berjalan, geometri tangan, telapak tangan, retina,

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

Teknik Reduksi Dimensi Menggunakan Komponen Utama Data Partisi Pada Pengklasifikasian Data Berdimensi Tinggi dengan Ukuran Sampel Kecil

ANALISIS DAN SIMULASI SISTEM PENGENALAN WAJAH DENGAN METODE FISHERFACE BERBASIS OUTDOORVIDEO.

PENGEMBANGAN SISTEM ABSENSI BERBASIS FACE RECOGNITION DENGAN METODE LDA

Teknik Pengenalan Wajah Dengan Algoritma PCA Berbasis Seleksi Eigenvector

JURNAL TEODOLITA. VOL. 14 NO. 1, Juni 2013 ISSN DAFTAR ISI

KOMPRESI CITRA DIGITAL DENGAN MENGGUNAKAN HEBBIAN BASED PRINCIPAL COMPONENT ANALYSIS

Aplikasi Principle Component Analysis (PCA) Untuk Mempercepat Proses Pendeteksian Obyek Pada Sebuah Image

BAB 1 PENDAHULUAN 1-1

PERBAIKAN CITRA UNTUK PENGENALAN WAJAH PADA CITRA WAJAH DENGAN PENCAHAYAAN TIDAK MERATA

BAB 3 PERANCANGAN PERANGKAT LUNAK

BAB I PENDAHULUAN. 1.1 Latar Belakang

PENGARUH PROSES DOWNSAMPLE PADA KINERJA PENGENALAN WAJAH DENGAN PENDEKATAN ROBUST REGRESSION

BAB II LANDASAN TEORI. Kamera web (singkatan dari web dan camera) merupakan sebuah media

PROTOTYPE PENGENALAN WAJAH MELALUI WEBCAM DENGAN MENGGUNAKAN ALGORITMA PRICIPAL COMPONENT ALAYSIS (PCA) DAN LINIER DISCRIMINANT ANALYSIS (LDA)

SISTEM PINTU OTOMATIS BERDASARKAN PENGENALAN WAJAH MENGGUNAKAN METODE NEAREST FEATURE LINE

ANALISA PENGUKURAN SIMILARITAS BERDASARKAN JARAK MINIMUM PADA PENGENALAN WAJAH 2D MENGGUNAKAN DIAGONAL PRINCIPAL COMPONENT ANALYSIS

PERBANDINGAN METODE MINIMUM DISTANCE PATTERN CLASSIFIER DAN NEURAL NETWORK BACKPROPAGATION DALAM MENGENALI WAJAH MANUSIA DENGAN EKSPRESI YANG BERBEDA

PENGENALAN GENDER MEMANFAATKAN WAJAH MANUSIA DENGAN MENGGUNAKAN METODE KLASIFIKASI NEAREST NEIGHBOR

PERBANDINGAN KINERJA BEBERAPA METODE KLASIFIKASI HASIL REDUKSI DATA BERDIMENSI TINGGI

BAB 2 TINJAUAN PUSTAKA

ABSTRAK. Kata kunci: Citra wajah manusia, Principal Component Analysis (PCA), Eigenfaces, Euclidean Distance. ABSTRACT

PENGEMBANGAN SISTEM PENGENALAN EKSPRESI WAJAH MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION (STUDI KASUS PADA DATABASE MUG)

BAB III PERANCANGAN PERANGKAT LUNAK

SISTEM KONTROL AKSES BERBASIS REAL TIME FACE RECOGNITION DAN GENDER INFORMATION

ANALISIS KOMPONEN UTAMA MENGGUNAKAN METODE EIGENFACE TERHADAP PENGENALAN CITRA WAJAH

SISTEM PENGENALAN WAJAH MENGGUNAKAN METODE PRINCIPAL COMPONENT ANALYSIS (PCA) DENGAN ALGORITMA FUZZY C-MEANS (FCM)

Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember Surabaya

PENGENALAN POLA BENTUK BUNGA MENGGUNAKAN PRINCIPLE COMPONENT ANALYSIS DAN K-NN

BAB III PERANCANGAN SISTEM

BAB 2 LANDASAN TEORI

BAB 6 KESIMPULAN DAN SARAN

BAB 2 Landasan Teori

Identifikasi Tanda Tangan Menggunakan Transformasi Gabor Wavelet dan Jarak Minskowski

Pengenalan Pola/ Pattern Recognition

IMPLEMENTASI DEEP LEARNING BERBASIS TENSORFLOW UNTUK PENGENALAN SIDIK JARI

Kombinasi KPCA dan Euclidean Distance untuk Pengenalan Citra Wajah

BAB V KESIMPULAN. Wajah pada Subruang Orthogonal dengan Menggunakan Laplacianfaces

TE Teknik Numerik Sistem Linear

BAB I PENDAHULUAN. dengan memanfaatkan ciri wajah yang telah tersimpan pada database atau wajah

Klasifikasi Citra Menggunakan Metode Minor Component Analysis pada Sistem Temu Kembali Citra

PERANCANGAN DAN IMPLEMENTASI KEAMANAN PINTU BERBASIS PENGENALAN WAJAH DENGAN METODE EIGENFACE

BAB IV ANALISA DAN PERANCANGAN

SISTEM PENGENALAN PLAT NOMOR MOBIL UNTUK APLIKASI INFORMASI KARCIS PARKIR

ANALISIS CITRA WAJAH DENGAN HIMPUNAN FUZZY EIGEN TERBESAR

KLASIFIKASI BUNGA EUPHORBIA BERDASARKAN KELOPAK DENGAN METODE PRINCIPAL COMPONENT ANALYSIS (PCA)

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

TINJAUAN PUSTAKA Analisis Biplot Biasa


APLIKASI DETEKSI MIKROKALSIFIKASI DAN KLASIFIKASI CITRA MAMMOGRAM BERBASIS TEKSTUR SEBAGAI PENDUKUNG DIAGNOSIS KANKER PAYUDARA

Sistem Identifikasi Biometrik Finger Knuckle Print Menggunakan Histogram Equalization dan Principal Component Analysis (PCA)

BAB 2 PENGENALAN IRIS, PENENTUAN LOKASI IRIS, DAN PEMBUATAN VEKTOR MASUKAN

Transkripsi:

Penerapan Metode Phase Congruency Image (PCI) dalam Pengenalan Citra Wajah secara Otomatis Puspita Ayu Ningsih Putri. SY, Wirawan, Hendra Kusuma Jurusan Teknik Elektro FTI, Institut Teknologi Sepuluh Nopember Kampus ITS, Keputih-Sukolilo, Surabaya-60111 Abstrak Pengukuran dan analisis statistik data biologis (biometrik) berkembang dengan pesat. Hal ini dikarenakan sebuah ciri biologi dapat memberikan informasi yang unik berkaitan dengan identifikasi masing-masing individu yang biasanya dikenal dengan sistem pengenalan wajah. Salah satu faktor penting untuk keberhasilan sistem pengenalan wajah adalah adanya citra wajah yang efektif, dimana citra wajah ini sangat bergantung pada teknik ekstraksi yang tidak terpengaruh oleh perubahan variasi posisi wajah, iluminasi, maupun ekspresi. Pada tugas akhir ini dilakukan pengenalan citra wajah dengan menggunakan fitur Gabor phase congruency sebagai pengekstraksi citra wajah, dimana Gabor phase ini akan merepresentasikan citra wajah yang tidak terpengaruh iluminasi dan kontras karena tidak tergantung besar tanggapan filter (magnitude response). Ekstraksi fitur tersebut diproyeksi dengan algoritma Subspace Linear Discriminant Analysis (LDA) dan kemudian dibandingkan dengan menggunakan algoritma Principal Component Analysis (PCA) untuk mendapatkan tingkat akurasi pengenalannya. Hasil pengujian sistem menunjukkan bahwa penggunaan algoritma Subspace LDA memberikan tingkat akurasi sebesar 62,2%. Sedangkan dengan PCA dapat memberikan peningkatan akurasi pengenalan hingga 100%. Kata kunci: pengenalan wajah, principal component analysis, subspace LDA, gabor phase congruency, filter gabor. P I. PENDAHULUAN ENGENALAN citra wajah berhubungan dengan obyek yang tidak pernah sama, karena adanya bagian-bagian yang dapat berubah. Perubahan ini dapat disebabkan oleh ekspresi wajah, intensitas cahaya dan sudut pengambilan gambar, atau perubahan asesoris pada wajah. Dalam kaitan ini, pencahayaan merupakan salah satu yang paling berpengaruh terhadap pengenalan wajah. Perubahan-perubahan iluminasi yang disebabkan oleh sumber cahaya pada posisi-posisi tertentu maupun karena intensitas yang berbeda akan memberikan perbedaan yang cukup berarti, seperti pada Gambar 1. Algoritma pengenalan wajah dapat dibedakan menjadi 2 bagian yaitu berdasarkan pendekatan fitur (feature-based) dan pendekatan penampilan (appearance-based)[1]. Metodametoda reduksi fitur berusaha untuk mengurangi dimensidimensi fitur yang digunakan pada tahap klasifikasi. Gambar 1. Citra wajah yang sama dengan pencahayaan yang berbeda Pada tugas akhir ini digunakan pendekatan fitur berdasarkan gabor phase congruency yang membedakan skala dan memberikan orientasi yang bertindak sebagai skala pada masing-masing versi. Filter gabor dikenal sebagai detektor ciri yang sukses karena memiliki kemampuan menghilangkan variabilitas yang disebabkan oleh iluminasi kontras dan sedikit pergeseran serta deformasi citra, output filter Gabor pada skala spasial dan lokasi spasial telah digunakan dengan sukses untuk pengenalan wajah[2]. Ada dua metoda yang digunakan dalam tugas akhir ini untuk mereduksi dimensi fitur yaitu, Principal Component Analysis (PCA) dan Linear Discriminant Analysis (LDA). II. TEORI PENUNJANG A. Pemodelan Citra Wajah dengan Gabor Phase Gabor magnitude mempunyai tanggapan yang perlahan terhadap perubahan posisi spasial. Hal ini berbeda dengan Gabor phase yang akan mempunyai harga yang sangat berbeda meskipun berasal dari titik sampel yang berdekatan pada citra wajah. Ketidakstabilan dari Gabor phase ini akan membuat kesulitan dalam mengekstraksi fitur diskriminan yang stabil yang berasal dari Gabor phase sehingga beberapa metoda yang ada hanya mengandalkan fitur dari Gabor magnitude untuk membentuk vektor fitur Gabor. Model awal dari phase congruency bertujuan mencari titiktitik pada suatu citra dimana tanggapan filter log-gabor pada beberapa skala dan orientasi adalah maksimum dalam tanggapan fasanya[3]. Sehingga suatu titik pada citra adalah penting jika hanya phase response dari filter log-gabor pada jangkauan frekuensi menunjukkan suatu urutan. Pada model awal, phase response dari filter log-gabor pada jangkauan frekuensi menunjukkan suatu urutan. Pada model awal, phase congruency akan dihitung untuk setiap orientasi filter dan kemudian hasil-hasilnya dikombinasikan untuk membentuk Phase Congruency Image (PCI). Model PCI memang cocok untuk deteksi tepi dan sudut yang robust terhadap perubahan iluminasi dan kontras dari citra, namun tidak tepat digunakan sebagai fitur wajah. 1

Untuk memperbaiki model Gabor phase congruency dikembangkan Oriented Gabor Phase Congruency Pattern (OGPCP)[4], dimana OGPCP dihitung untuk setiap orientasi filter yang kemudian dijadikan vektor fitur Gabor phase congruency. Phase congruency dengan mempertimbangkan orientasi diperoleh dari persamaan (1) : OGPCP x, y = p 1 A u,v x, y Φ u,v (x, y) u =0 p 1 u =0 A u,v x, y + ε dimana v merupakan orientasi filter ke v dan ε merupakan konstanta berharga kecil untuk menghindari pembagian nol. Φ u,v x, y merupakan ukuran penyimpangan fasa yang dihitung oleh persamaan (2). u,v x, y = cos u,v x, y v x, y (2) sin ( u,v x, y v (x, y)) OGPCP akan mempresentasikan citra wajah yang tidak dipengaruhi iluminasi dan kontras karena tidak tergantung pada besar tanggapan filter (magnitude response). Properti ini membuat OGPCP menjadi sangat berguna untuk merepresentasikan citra wajah pada pengenalan wajah. Berikut ini adalah prosedur pembentukan vektor fitur OGPCP yang berasal dari suatu citra wajah[11]. a. Untuk suatu citra wajah, hitung OGPCP untuk semua orientasi r dan sejumlah pilihan skala filter p. b. Lakukan proses downsampling pada OGPCP dengan faktor ρ. c. Lakukan proses normalisasi OGPCP yang telah didownsampling. d. Bentuk vektor kolom untuk setiap OGPCP. e. Bentuk vektor fitur Gabor Phase Congruency, x dengan menyusun vektor-vektor kolom OGPCP yang sudah ternormalisasi. Vektor fitur Gabor Phase Congruency menjadi seperti persamaan (3). (1) x = D T 0, D T 1, D T T 2,, D T r 1 (3) dimana T menunjukkan operator transpose dan D v, untuk v = 0,1,...,r-1 merupakan vektor yang dihasilkan dari OGPCP pada orientasi ke v. B. Algoritma Principal Components Analysis (PCA) Principal Components Analysis (PCA) merupakan suatu algoritma yang digunakan untuk mencari pola dalam dimensi data yang tinggi pada bidang pengenalan wajah maupun dalam kompresi gambar dengan cara mengurangi jumlah dimensi tanpa kehilangan banyak informasi [6]. Sebuah image 2D dengan dimensi b baris dan k kolom dapat direpresentasikan ke dalam bentuk image 1D dengan dimensi n (n=b*k). Dengan ekspresi lain dapat dituliskan sebagai R n, adalah ruang image dengan dimensi n. Image training yang digunakan sebanyak K sampel dinyatakan dengan {x 1,x 2,...,x k } yang diambil sebanyak c obyek yang dinyatakan dengan {X 1,X 2,...,Xc}. Total matriks scatter S T (matriks kovarians) didefinisikan sebagai berikut: S T = K k=1 (x k μ) (x k μ) T (4) dimana µ adalah rata-rata sampel image yang diperoleh dengan merata-rata training image {x 1,x 2,...,x k }. Dengan dekomposisi eigen, matriks kovarians ini dapat didekomposisi menjadi: S T = ΦΛΦ T (5) dimana Φ adalah matriks eigenvektor, dan Λ adalah sebuah matriks diagonal dari nilai eigen. Kemudian dipilih sejumlah m kolom eigenvektor dari matriks Φ yang berasosiasi dengan sejumlah m nilai eigen terbesar. Pemilihan eigenvektor ini menghasilkan matriks transformasi atau matriks proyeksi Φ m, yang mana terdiri dari m kolom eigenvektor terpilih yang biasa disebut juga dengan eigenimage. Berikutnya, sebuah image x (berdimensi n) dapat diekstraksi ke dalam fitur baru y (berdimensi m < n) dengan memproyeksikan x searah dengan Φ m, sebagai berikut: y = Φ m x (6) Total matriks scatter S T pada persamaan (2.4) adalah jumlahan dari matriks scatter dalam kelas S W dan matriks scatter antar kelas S B yaitu: S T = S W + S B (7) Gambar 2. Contoh citra OGPCP, (a) untuk θ v = 0 o dan p=2, (b) untuk θ v = 0 o dan p=3, (c) untuk θ v = 0 o dan (d) p=4, untuk θ v = 0 o dan p=5 [5] Gambar 3. Contoh OGCPC untuk semua orientasi sebanyak 8 (r = 8) yang menjadi dasar pembentukan vektor fitur Gabor Phase Congruency[5] 2 C.Subpsace Linear Discriminant Analysis (LDA) Linear Discriminant Analysis (LDA) bekerja berdasarkan analisa matriks penyebaran (scatter matrix analysis) yang bertujuan menemukan suatu proyeksi optimal yang dapat memaksimumkan penyebaran dalam kelas data wajah. Algoritma LDA memiliki karakteristik perhitungan matriks yang hampir sama dengan PCA. Pada LDA, diusahakan adanya perbedaan yang minimum dari citra dalam kelas. Sedangkan Subspace LDA merupakan suatu metode yang menggabungkan PCA dengan LDA. Metode ini terdiri dari 2 tahap, yaitu citra wajah diproyeksikan ke ruang eigenface yang telah dibentuk oleh PCA dan kemudian vektor-vektor

yang telah terproyeksi diproyeksikan kembali menuju ruang klasifikasi LDA untuk membentuk suatu classifier linear. Perbedaan antar kelas direpresentasikan oleh matriks S B (scatter between class) dan perbedaan dalam kelas direpresentasikan oleh matriks S w (scatter within class). Matriks kovarians didapatkan dari kedua matriks tersebut. Untuk memaksimalkan jarak antar kelas dan meminimumkan jarak dalam kelas digunakan suatu discriminant power. c S B = P(C i ) μ i μ o μ i μ T o i=1 dimana Pr(C i ) adalah prior class probability yaitu: P C i = 1 c (13) (14) J W = WT. S B. W W T. S w. W Menghitung Scatter Within Class (Sw) S w disebut matriks scatter within class atau penyebaran data dalam satu kelas yang sama. Untuk c individu yang memiliki citra training sebanyak q i pada database maka within class scatter matrix dihitung dengan persamaan (9). c S W = P(C i ) i=1 (8) i (9) dimana mewakili average scatter Σi dari proyeksi Ω pada ruang eigenface dari Ci individu yang berbeda dengan mean μ i. Ukuran dari Sw tergantung pada ukuran ruang eigenface, yaitu jika digunakan M eigenface maka ukuran dari Sw adalah (M x M ). Mean dari kelas pada ruang eigenspace (Eigenface Class Mean) yang merupakan rata-rata dari eigenvektor citra training yang terproyeksi pada ruang eigenspace didefinisikan dengan persamaan (10). μ i = 1 q i q i k=1 Ω i (10) dimana i = 1, 2, 3,..., c dan ukuran dari Eigenface Class Mean adalah (M x 1). Sedangkan mean face dihitung dari rata-rata aritmatika dari semua vektor-vektor citra training yang terproyeksi. μ o = 1 P P k=1 Ω k (11) Rata-rata penyebaran (average scatter) dihitung sebagai berikut: i = E Ω μ i. (Ω μ i ) T (12) Menghitung Scatter Between Class (S B ) S B disebut matriks scatter between class atau penyebaran data antar kelas yang berbeda. Bila pada PCA dicari rata-rata seluruh citra saja, maka pada LDA harus dicari lebih dulu ratarata citra yang terdapat dalam suatu kelas. Misalnya ada citra dari c kelas dan setiap kelas masing-masing memiliki q i citra, maka dapat dihitung scatter between class dengan persamaan (13). Dengan asumsi bahwa setiap kelas mempunyai prior probability yang sama. Mencari Matriks Kovarians LDA Tujuan dari metode subspace LDA adalah memaksimumkan J W, yaitu menentukan proyeksi optimal W opt yang akan memaksimumkan between class scatter dan meminimumkan within class scatter. W opt = arg max W J W (15) W kemudian dapat diperoleh dengan menyelesaikan permasalahan umum eigenvalue. S B W = S w Wλ w (16) Langkah berikutnya adalah memproyeksikan vektor-vektor citra training yang sudah terproyeksi pada eigenface ke ruang klasifikasi dengan cara melakukan dot product antara proyeksi optimal W dan vektor bobot. G Ω i = W t. Ω i (17) Citra training terproyeksi pada eigenface ke ruang klasifikasi yang berukuran ((c-1) x 1) dimana i = 1, 2,., Mt. Pada saat ini tahap training telah berakhir. III. PERANCANGAN SISTEM Percobaan ini menggunakan database wajah Yale-B sebanyak 10 citra wajah dengan kondisi pencahayaan sebanyak 12 tiap citra wajah yang berbeda. Citra dibagi menjadi 5 subset, tiap subset mengandung citra wajah. Gambar 4 menunjukkan perbandingan pengenalan wajah menggunakan metode Phase Congruency Image (PCI) yang diproyeksikan dengan algoritma Subspace LDA dan algorima PCA. Gambar 4. Kesepuluh citra wajah yang digunakan dalam percobaan 3

Citra training Citra tes Preprocessing (cropping + resize) Ekstraksi fitur (Filter Gabor Phase) Vektor fitur Algoritma Subcpace LDA Algoritma PCA vektor kolom untuk setiap OGPCP dan vektor fitur Gabor Phase Congruency dengan cara menyusun vektor-vektor kolom OGPCP yang telah ternormalisasi. Kemudian citra hasil OGPCP tersebut dihitung OGPCP nya untuk semua orientasi r dan sejumlah pilihan skala filter p. Pada percobaan ini digunakan 6 orientasi dan skala 2. Selanjutnya, dilakukan proses downsampling dengan faktor ρ dan OGPCP tersebut dinormalisasi. Bentuk vektor kolom untuk setiap OGPCP dan vektor fitur Gabor Phase Congruency dengan cara menyusun vektor-vektor kolom OGPCP yang telah ternormalisasi. Gambar 5. Blok diagram sistem keseluruhan pengenalan wajah menggunakan metoda Gabor Phase Congruency Pada tugas akhir ini pengujian sistem dibuat menjadi tiga metode pengenalan wajah seperti ditunjukkan Gambar 5. Pada metode pertama ini, sistem dimulai dari preprocesssing yaitu cropping dan (resize) menyamakan ukuran citra training dan test yang akan digunakan, lalu citra dikonvolusi dengan filter Gabor phase sehingga didapatkan fitur hasil ekstraksi. Dan kemudian fitur tersebut direduksi dengan algoritma subspace Linear Discriminant Analysis (LDA) dan algoritma Principal Component Analysis (PCA). Pada Gambar 5 merupakan blok diagram sistem secara keseluruhan. Ekstraksi fitur merupakan suatu proses untuk mendapatkan ciri-ciri pembeda yang membedakan suatu citra wajah dari citra wajah yang lain. Proses ekstraksi dilakukan dengan mengkonvolusi suatu citra wajah dengan filter Gabor phase congruency agar diperoleh fitur dari citra tersebut. Citra yang telah diresize menjadi 128 x 128 dikonvolusi dengan Gabor phase congruency dan orientasi θ v yang digunakan sebanyak 6 pada skala 2, seperti pada Gambar 7. Gambar 7. Citra hasil OGPCP dengan tingkat iluminasi yang berbeda menggunakan skala 2 dan 6 orientasi Proyeksi PCA Memproyeksikan citra ke dalam ruang eigen-nya dengan cara mencari matriks eigenvector dan matriks eigenvalue yang dimiliki setiap citra dan memproyeksikan kedalam ruang eigen. Besarnya dimensi ruang eigen tergantung dari jumlah citra yang ada dalam database training. Gambar 6. Flowchart mencari vektor fitur OGPCP Untuk mendapatkan vektor fitur citra hasil OGPCP tersebut, dihitung OGPCP nya untuk semua orientasi r dan sejumlah pilihan skala filter p. Pada percobaan ini digunakan 6 orientasi dan skala 2. Selanjutnya, dilakukan proses downsampling dengan faktor ρ dan OGPCP tersebut dinormalisasi. Bentuk 4 Gambar 8. Flowchart training PCA

Kemudian mencari rata-rata mean dari citra-citra training. Dan didapatkan matriks rata-rata total PCA dengan dimensi (Nx1). 1 T (18) T i i 1 Setelah mendapatkan mean dari setiap citra training, kemudian mencari zero mean yang merupakan pengurangan citra training dan mean. Vektor zero mean ini memiliki matriks berukuran (N x P) piksel. Setelah mendapat vektor zero mean, tiap vektor yang diperoleh dimasukkan ke dalam suatu matriks A, dimana matriks A ini pada tiap kolomnya berisi semua vektor citra training yang sudah dikurangi dengan mean. Matriks A ini disebut dengan Difference Matrix. A = Φ 1,1 Φ 1,2 Φ 1,75 Φ 2,1 Φ 2,2 Φ 2,75 Φ 10240,1 Φ 10240,2 Φ 10240,75 (19) Matriks kovarians merupakan perkalian matriks A dengan transposenya sehingga akan dihasilkan matriks dengan ukuran (PxP). C = 1 i=1 Φ i Φ i T (20) Selanjutnya dilakukan dekomposisi eigen sehingga maka diperoleh matriks eigenvalue λ dan eigenvector V yang masing-masing berdimensi (PxP) dimana P merupakan jumlah dari citra training. Gambar 9. Flowchart training Subspace LDA Mencari Matriks Kovarians Matriks kovarians LDA didapatkan dari operasi antara S W dan S B. S B W = S w Wλ w (21) C = S B S w 1 (22) Dari proses tersebut menghasilkan fitur LDA atau biasa disebut dengan fisherface. Pada pemrosesan untuk mendapatkan hasil yang maksimal dilakukan pengurangan jumlah fisherface sebanyak c 1 dimana c merupakan jumlah kelas. Setelah mendapatkan fisherface selanjutnya mengurutkan fisherface dari nilai yang terbesar, seperti pada eigenface. IV. PENGUJIAN DAN ANALISA Proyeksi Subspace LDA Perhitungan Sw Matriks scatter dalam kelas Sw, dihitung sesuai persamaan (9), dimana mewakili average scatter Σi dari proyeksi Ω pada ruang eigenface dari C i individu yang berbeda dengan mean μ i. Ukuran dari Sw tergantung pada ukuran ruang eigenface, yaitu jika digunakan M eigenface maka ukuran dari Sw adalah (M x M ). Perhitungan S B Matriks scatter antar kelas S B dihitung sesuai persamaan (13), dengan 2 informasi matriks scatter ini maka dihitung matriks kovarians kemudian dicari eigenvalue dan eigenvector dari matriks C tersebut. Selanjutnya eigenvector ini digunakan untuk transformasi fitur PCA ke dalam bentuk fitur LDA. 5 Normalisasi intensitas piksel merupakan bagian yang menentukan keseragaman nilai piksel serta membuat dimensi piksel citra menjadi lebih kecil. Pada tugas akhir ini proses cropping dilakukan terpisah dengan program, hal ini dilakukan agar hasil cropping sesuai dengan yang diinginkan. Normalisasi ukuran citra yaitu 168 x 192. Hasil yang diperoleh dari normalisasi ukuran citra adalah seluruh citra yang digunakan sebagai citra training maupun citra tes dapat dinormalisasi dengan baik. Kemudian saat dilakukan pengujian citra yang berikutnya, citra wajah dengan ukuran 168 x 192 tersebut di resize menjadi 128 x 128 dan hasil yang diperoleh adalah semua citra dapat diresize dengan baik. Kemudian dilakukan training terhadap semua citra wajah tersebut. Pengujian pertama, dilakukan dengan cara mereduksi fitur vektor Gabor dengan algoritma PCA. Citra tes yang diuji berjumlah 10 orang dan masing-masing memiliki 12 foto dengan tingkat pencahayaan yang berbeda-beda. Subset 1 dijadikan sebagai citra training dan untuk citra tes nya adalah

citra yang terdapat pada subset 2, subset 3, subset 4 dan subset 5. Pengujian dilakukan dengan mengambil nilai eigenface 50%, 60%, 70% dan 80% dengan tujuan untuk mengetahui tingkat perbedaan pengenalan. Pengujian kedua, fitur vektor Gabor Phase diuji dengan subspace LDA, dimana jumlah citra wajah yang digunakan sebagai training terdiri dari 10 orang dan masing-masing memiliki 12 foto dengan tingkat pencahayaan yang berbedabeda. Pengujian dilakukan dengan mengambil nilai eigenface 50%, 60%, 70% dan 80% dengan tujuan untuk mengetahui tingkat perbedaan pengenalan. Tingkat Pengenalan (%) 100 90 80 70 60 50 40 30 20 10 0 100 99,7 100 99,75 62,2 Gambar 10. Hasil pengujian citra wajah fitur Gabor phase congruency dengan algoritma PCA dan algoritma Subspace LDA V. PENUTUP 59,4 58,6 52,8 Eigen 50% Eigen 60% Eigen 70% Eigen 80% PCA Persentase eigenface yang digunakan Subspace LDA (subset gabungan) A. Kesimpulan Berdasarkan hasil pengujian yang dilakukan pada Tugas Akhir penerapan metode Phase Congruency Image (PCI) dalam pengenalan citra wajah secara otomatis, dapat disimpulkan bahwa: 1. Dari hasil pengujian terhadap perbedaan eigenvektor menunjukkan eigenvektor yang menunjukkan hasil pengenalan terbaik pada eigenvektor 50%. 2. Waktu komputasi yang dibutuhkan untuk melakukan pengujian citra wajah dari eigenvektor 50% sampai 80% selama 23 menit. 3. Semakin banyak jumlah eigenvektor yang digunakan, maka semakin lama waktu komputasi yang dibutuhkan untuk melakukan pengujian citra wajah. 4. Peningkatan yang signifikan hingga 100% terjadi pada pengenalan dengan algoritma PCA, hal ini menunjukkan bahwa ekstraksi fitur gabor phase congruency lebih tahan terhadap perbedaan pencahayaan saat direduksi dengan algoritma PCA, bila dibandingkan dengan algoritma Subspace LDA sebesar 62,2%. B. Saran Beberapa saran yang berguna untuk pengembangan Tugas Akhir ini adalah : 1. Untuk penelitian selanjutnya, ekstraksi ciri bisa menggunakan gabungan antara Gabor phase dan Gabor magnitude. 2. Pengujian bisa menggunakan database yang lain misalnya database FERET, AT&T atau CMU. DAFTAR PUSTAKA [1] Struc,V., Vesnicer, B., & Pavesic, N., The Phase-based Gabor Fisher Classifier and its Application to Face Recognition under Varying Illumination Conditions, Proceedings of the 2nd International Conference on Signal Processing and Communication Systems, pp. 1-6, 978-1-4244-4242-3, Gold Coast, Australia, IEEE, NJ, 2008. [2] Liu,C.J & Wechsler.H., Gabor Feature Based Classification Using the Enhached Fisher Linear Discriminant Model for Face Recognition, IEEE Transactionson Image Processing, Vol. 11, pp.467-476. 2002. [3] Kovesi, P., Image Features from Phase Congruency, Videre: Journal of Computer Vision Research, Vol.1, No.3, pp. 1-26. 1999. [4] M.Turk anda.pentland, Eigenfaces for Recognition, J. Of Cognitive Neuroscience, Vol.3, no.1, pp. 71-86. 1991. [5] Struc,V.,Vesnicer, B., & Pavesic, N,. The Complete Gabor Fisher Classifier for Robust Face Recognition, EURASIP Journal on Advances in signal Processing, Hindawi Publising Corporation Vol. 2010, article ID 847680. 2010. [6] Lindsay I Smith, A tutorial on Principal Components Analysis, 2002. RIWAYAT PENULIS Puspita Ayu Ningsih Putri. SY dilahirkan di Gunung Sitoli, 15 Juli 1987. Merupakan putri kedua dari pasangan Sukino BP dan Yusniar Ndruru. Lulus dari SDN 010083 Kisaran, tahun 1999 dan melanjutkan ke SLTPN 2 Kisaran. Kemudian melanjutkan jenjang pendidikan ke SMAN 2 Kisaran pada tahun 2002 dan lulus pada tahun 2005. Setelah menamatkan SMA, pada tahun yang sama penulis melanjutkan pendidikan D3 ke Politeknik Negeri Padang Jurusan Teknik Elektro, program studi Telekomunikasi Multimedia. Lulus pada tahun 2008 dengan gelar Am.d, dan langsung melanjutkan pendidikan S-1 Lintas Jalur jurusan Elektro, program studi Telekomunikasi Multimedia di Institut Teknologi Sepuluh Nopember Surabaya. 6