BAB 3 PROSEDUR DAN METODOLOGI
|
|
|
- Irwan Yuwono
- 8 tahun lalu
- Tontonan:
Transkripsi
1 BAB 3 PROSEDUR DAN METODOLOGI 3.1 Analisa Masalah Kemajuan teknologi di bidang multimedia, menuntut kemampuan sistem yang lebih baik dan lebih maju dari sebelumnya, sesuai dengan perkembangan teknologi. Dalam sistem pengenalan wajah, kendalanya yaitu keakuratan dan besarnya memori yang dibutuhkan. Kesalahan dalam pengenalan wajah dapat disebabkan oleh perbedaan ekspresi wajah, aksesoris pada wajah (kacamata, kumis, janggut, dan lain-lain). Pada suatu kasus misalnya, database hanya memiliki citra seseorang dengan ekspresi wajah yang biasa, tetapi ketika diinput dengan wajah yang sama namun dengan ekspresi tersenyum, sistem belum tentu bisa mengenali wajah yang diinput. Citra yang disimpan di dalam basis data tentu tidak hanya satu gambar. Citra tersebut nantinya akan disimpan dalam bentuk matriks. Besarnya matriks bergantung pada jumlah dan resolusi gambar. Semakin banyak gambar, semakin besar resolusi, semakin besar memori yang dibutuhkan. Metode pengenalan wajah yang banyak digunakan saat ini adalah pengenalan wajah dengan menggunakan Principal Component Analysis (PCA). PCA banyak digunakan karena tingkat keakuratan yang cukup tinggi. Ukuran matriks atau memori yang dibutuhkan PCA bergantung pada resolusi citra dan jumlah citra yang diretriv, semakin besar resolusi, dan semakin banyak citra, semakin besar pula ukuran matriks. Hal ini akan membuat waktu proses menjadi lama dan karena ukuran matriks yang besar, memori yang dibutuhkan juga sangatlah besar, sedangkan memori internal yang 35
2 36 disediakan oleh suatu aplikasi pemrograman seperti C/C/Matlab sangat kecil, sehingga tidak banyak citra yang dapat ditampung dalam basis data. 3. Alternatif Penyelesaian Masalah Penggunaan teknik DT-CWT ditujukan untuk mereduksi citra sehingga berdampak pada ukuran matriks dengan mengekstrak citra dan mengambil unsur terbaiknya. Matriks tersebut kemudian digunakan dalam PCA. DTCWT mereduksi ukuran matriks dari suatu citra. Hasilnya citra dibagi menjadi berbagai rentang frekuensi yang terdiri dari citra yang diskalakan, dimana citra mengalami reduksi, dan rentang informasi yang berisi detil dari citra asli. Pereduksian menghasilkan matriks citra yang lebih kecil, tanpa mengurang informasi detil didalamnya, sehingga tidak mengurangi kualitas gambar maupun hasil pengenalan wajah. 3.3 Metodologi Masalah-masalah diatas kemudian diselesaikan dengan membagi menjadi beberapa tahap. Teknik yang digunakan untuk menyelesaikan masalah tersebut berupa prosedur-prosedur atau algoritma-algoritma. Face Image Gray Scale Cropped Acquisition Preprocessing DTCWT PCA Face Database EigenFaces Calculate Show Gambar 3.1 Diagram Kerja Sistem
3 37 a. Acquisition : Merupakan blok input dari proses pengenalan wajah, sumbernya berasal dari file citra. Dalam sistem ini digunakan hanya file citra wajah. b. Pre-processing Module : Merupakan proses penyesuaian citra input yang meliputi grayscale. Ukuran citra input sudah sama sebelumnya, sehingga tidak diperlukan proses normalisasi ukuran citra. c. DTCWT Module : Merupakan proses mereduksi ukuran matriks dari suatu citra. Proses ini dilakukan untuk menghasilkan matriks yang lebih kecil lagi. d. PCA Module : Module ini digunakan untuk mengutip bagian terpenting sebagai suatu vektor yang merepresentasikan wajah dan bersifat unik atau biasa disebut dengan feature etraction. e. Calculate : Pada modul ini dilakukan perhitungan terhadap eigenface query input dan juga eigenface dari citra-citra yang ada di database, sehingga menghasilkan nilai eigen. Pada modul ini juga terjadi pengurutan nilai-nilai eigen yang ada. f. Face Database : Berisi kumpulan citra wajah yang telah dimasukkan ke dalam database. g. Eigenfaces : Berisi matriks-matriks dari semua citra wajah yang ada di dalam database. Matriks-matriks ini akan disimpan di dalam file berekstensi.mat. h. Show Images : Akan menampilkan 10 citra yang memiliki nilai eigen yang paling dekat dengan nilai eigen dari citra input.
4 Proses DTCWT Gambar 3. Citra input, sebelum DT-CWT Gambar 3.3 Citra output dari DT-CWT Seluruh citra yang akan digunakan dalam aplikasi ini, baik yang akan digunakan sebagai input, maupun citra yang akan digunakan sebagai basis data akan melalui proses DTCWT sebanyak dua kali. Semua citra asli berukuran piel. Pada proses DTCWT pertama citra menghasilkan citra output (sementara) berukuran piel. Proses DTCWT kedua mengolah citra output (sementara) dari proses sebelumnya sehingga menghasilkan citra output yang akan disimpan dengan resolusi beukuran 4 3 piel.
5 Proses PCA Algoritma Start Query Input Ea = Eigenface Citra database En = Eigenface n=1; n n>500? Ei = Ea En Sort Ei Show Images Gambar 3.4 Alur Program
6 40 1. Start.. Ambil citra X (*.jpg) sebagai query. 3. Tentukan nilai mean berikut eigenvalue dari citra input. 4. Ambil sebuah citra (*.jpg) dari database yang akan dicocokan dengan citra input. 5. Tentukan nilai mean dan eigenvaluenya. 6. Ulangi lagi langkah no 4 jika semua citra yang ada di dalam database belum diambil semua nilai eigennya. 7. Kurangi nilai eigen citra query dengan nilai eigen citra database. 8. Lakukan pengurutan terhadap nilai-nilai eigen yang diperoleh dari langkah 7 secara ascending. 9. Tampilkan 10 citra dengan hasil nilai eigen yang terdekat Eigenface Langkah-langkah transformasi : 1. Jika terdapat himpunan P buah citra pelatihan yang dapat direpresentasikan ke dalam X = [X1, X,.., Xp] dengan dimensi tiap citra adalah p q (baris kolom), maka dapat dibentuk matriks data pelatihan Y dengan orientasi vektor kolom. Y = 11 1 p 1 1 p 1 q pq q
7 41. Matriks Y kemudian di normalisasi menjadi 11 1 p p1 1 q q pq 11 p 1 1 q pq 1 q pq 3. Selanjutnya cari rata- rata vektor citra sehingga dapat dibentuk sebuah matrik rata- rata µ = [µ 1, µ,, µ q ] μ j = i p 1 p = 1 Z j 4. Kemudian hitung selisih vektor citra dengan rata- rata vektor citra A=Z- μ 5. Dari matriks A diatas dapat dihitung matriks total scatter berupa matriks kovarian (real, simetrik) S= ATA (berordo qq). 6. Cari eigen vektor V dan nilai eigen D dari matriks S dan urutkan eigen vektor berdasarkan nilai eigen terbesar. 7. Tentukan dimensi ruang ciri m n = min q q i = 1 p i = 1 D D i i 8. Reduksi vektor eigen menjadi vektor eigen V (eigenfaces) sesuai dengan nilai m
8 4 9. Transformasi vektor citra menjadi vektor ciri AVT Gambar 3.5 Citra Pelatihan
BAB IV HASIL PENELITIAN DAN PEMBAHASAN. 4.1 Pengembangan Sistem Pengenalan Wajah 2D
30 BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1 Pengembangan Sistem Pengenalan Wajah 2D Penelitian ini mengembangkan model sistem pengenalan wajah dua dimensi pada citra wajah yang telah disiapkan dalam
PENGENALAN WAJAH MENGGUNAKAN ALGORITMA EIGENFACE DAN EUCLIDEAN DISTANCE
PENGENALAN WAJAH MENGGUNAKAN ALGORITMA EIGENFACE DAN EUCLIDEAN DISTANCE Widodo Muda Saputra, Helmie Arif Wibawa, S.Si, M.Cs, dan Nurdin Bahtiar, S.Si, M.T Fakultas Sains dan Matematika, Jurusan Ilmu Komputer
BAB II TINJAUAN PUSTAKA. menggunakan PCA, kemudian penelitian yang menggunakan algoritma Fuzzy C-
8 BAB II TINJAUAN PUSTAKA 2.1 Studi Pendahuluan Sebelumnya telah ada penelitian tentang sistem pengenalan wajah 2D menggunakan PCA, kemudian penelitian yang menggunakan algoritma Fuzzy C- Means dan jaringan
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Bab ini menjelaskan landasan teori dari metode yang digunakan dalam proses pengenalan wajah, yaitu terdiri atas: metode Eigenface, dan metode Jarak Euclidean. Metode Eigenface digunakan
BAB III PERANCANGAN DAN IMPLEMENTASI SISTEM
BAB III PERANCANGAN DAN IMPLEMENTASI SISTEM Pada bab ini akan dijelaskan mengenai tahapan dan algoritma yang akan digunakan pada sistem pengenalan wajah. Bagian yang menjadi titik berat dari tugas akhir
BAB III METODOLOGI PENELITIAN. Desain penelitian ini mengacu pada tahapan proses yang ada pada sistem
21 BAB III METODOLOGI PENELITIAN 3.1 Desain Penelitian Desain penelitian ini mengacu pada tahapan proses yang ada pada sistem pengenalan wajah ini yaitu input, proses dan output. Dengan input bahan penelitian
BAB 1 PENDAHULUAN. Sistem Pakar (Expert System), Jaringan Saraf Tiruan (Artificial Neural Network), Visi
BAB 1 PENDAHULUAN 1.1 Latar Belakang Di era yang semakin maju ini, teknologi telah memegang peranan penting dalam kehidupan manusia sehari-hari, sehingga kemajuannya sangat dinantikan dan dinikmati para
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi komputer sekarang sangat pesat, ini ditandai dengan hampir semua pengolahan data dan informasi telah dilakukan dengan komputer. Hal ini diakibatkan
PENGAMAN RUMAH DENGAN SISTEM FACE RECOGNITION SECARA REAL TIME MENGGUNAKAN METODE PRINCIPAL COMPONENT ANALYSIS
PENGAMAN RUMAH DENGAN SISTEM FACE RECOGNITION SECARA REAL TIME MENGGUNAKAN METODE PRINCIPAL COMPONENT ANALYSIS Sinar Monika 1, Abdul Rakhman 1, Lindawati 1 1 Program Studi Teknik Telekomunikasi, Jurusan
TEKNIK PENGENALAN WAJAH DENGAN ALGORITMA PCA BERBASIS SELEKSI EIGENVECTOR
TEKNIK PENGENALAN WAJAH DENGAN ALGORITMA PCA BERBASIS SELEKSI EIGENVECTOR DWI ACHTI NOVIATUR R. 2208100656 Dosen Pembimbing : Dr. Ir. Wirawan, DEA (Ir. Hendra Kusuma, M.Eng) PIE Problem Representasi Citra
APLIKASI PENGENALAN WAJAH MENGGUNAKAN METODE EIGENFACE DENGAN BAHASA PEMROGRAMAN JAVA
APLIKASI PENGENALAN WAJAH MENGGUNAKAN METODE EIGENFACE DENGAN BAHASA PEMROGRAMAN JAVA Anita T. Kurniawati dan Afrilyan Ruli Dwi Rama Teknik Informatika-ITATS, Jl. Arief Rahman Hakim 100 Surabaya Email:
PENGENALAN WAJAH MANUSIA DENGAN METODE PRINCIPLE COMPONENT ANALYSIS (PCA)
ISSN: 1693-6930 177 PENGENALAN WAJAH MANUSIA DENGAN MEODE PRINCIPLE COMPONEN ANALYSIS (PCA) Murinto Program Studi eknik Informatika Universitas Ahmad Dahlan Yogyakarta Kampus III UAD Jl Prof Dr. Supomo,
Pengenalan wajah dengan algorithma Eigen Face Oleh: Hanif Al Fatta
Pengenalan wajah dengan algorithma Eigen Face Oleh: Hanif Al Fatta Abstraksi Pengenalan wajah (face recognition) yang merupakan salah satu penerapan image processing, kini telah dipakai untuk banyak aplikasi.
Implementasi Pengenalan Wajah Berbasis Algoritma Nearest Feature Midpoint
Implementasi Pengenalan Wajah Berbasis Algoritma Nearest Feature Midpoint Diana Purwitasari, Rully Soelaiman, Mediana Aryuni dan Hanif Rahma Hakim Fakultas Teknologi Informasi, Institut Teknologi Sepuluh
BAB 3 PERANCANGAN SISTEM
BAB 3 PERANCANGAN SISTEM 3.1 Rancangan Perangkat Keras 3.1.1 Diagram Blok Sistem Rancangan perangkat keras dari aplikasi pengenalan wajah ini dapat dilihat pada diagram blok Gambar 3.1 sebagai berikut
BAB I PENDAHULUAN. satu bagian sistem biometrika adalah face recognition (pengenalan wajah). Sistem
1 BAB I PENDAHULUAN 1.1. Latar Belakang Sistem biometrika merupakan teknologi pengenalan diri dengan menggunakan bagian tubuh atau perilaku manusia yang memiliki keunikan. Salah satu bagian sistem biometrika
Menurut Ming-Hsuan, Kriegman dan Ahuja (2002), faktor-faktor yang mempengaruhi sebuah sistem pengenalan wajah dapat digolongkan sebagai berikut:
BAB 2 LANDASAN TEORI Bab ini akan menjelaskan berbagai landasan teori yang digunakan oleh penulis dalam penelitian ini dan menguraikan hasil studi literatur yang telah dilakukan penulis. Bab ini terbagi
Hasil Ekstraksi Algoritma Principal Component Analysis (PCA) untuk Pengenalan Wajah dengan Bahasa Pemograman Java Eclipse IDE
Hasil Ekstraksi Algoritma Principal Component Analysis (PCA) untuk Pengenalan dengan Bahasa Pemograman Java Eclipse IDE Fiqih Ismawan Dosen Program Studi Teknik Informatika, FMIPA Universitas Indraprasta
Pengenalan Bahasa Isyarat Tangan Menggunakan Metode PCA dan Haar-Like Feature
Pengenalan Bahasa Isyarat Tangan Menggunakan Metode PCA dan Haar-Like Feature Dosen Pembimbing : 1) Prof.Dr.Ir. Mauridhi Hery Purnomo M.Eng. 2) Dr. I Ketut Eddy Purnama ST., MT. Oleh : ATIK MARDIYANI (2207100529)
UJI KINERJA FACE RECOGNITION MENGGUNAKAN EIGENFACES
1 Uji Kinerja Face Recognition Menggunakan Eigenfaces UJI KINERJA FACE RECOGNITION MENGGUNAKAN EIGENFACES ABDUL AZIS ABDILLAH 1 1STKIP Surya, Tangerang, Banten, [email protected] Abstrak. Pada paper
BAB 3 PEMBAHASAN. 3.1 Sistem Absensi Berbasis Webcam
BAB PEMBAHASAN.1 Sistem Absensi Berbasis Webcam Sistem absensi berbasis webcam adalah sistem yang melakukan absensi karyawan berdasarkan input citra hasil capture webcam. Sistem akan melakukan posting
Pengenalan Wajah dengan Metode Subspace LDA (Linear Discriminant Analysis)
Pengenalan Wajah dengan Metode Subspace LDA (Linear Discriminant Analysis) Ratna Nur Azizah Jurusan Teknik Elektro FTI, Institut Teknologi Sepuluh Nopember Kampus ITS, Keputih-Sukolilo, Surabaya-60111
BAB III ANALISIS SISTEM. Sistem absensi berbasis webcam adalah sistem yang melakukan absensi anggota
BAB III ANALISIS SISTEM 3.1. Sistem Absensi Berbasis Webcam Sistem absensi berbasis webcam adalah sistem yang melakukan absensi anggota berdasarkan input citra hasil capture webcam. Sistem akan melakukan
BAB IV IMPLEMENTASI DAN EVALUASI. implementasi dan evaluasi yang dilakukan terhadap perangkat keras dan
BAB IV IMPLEMENTASI DAN EVALUASI Implementasi dan Evaluasi yang dilakukan penulis merupakan implementasi dan evaluasi yang dilakukan terhadap perangkat keras dan perangkat lunak dari sistem secara keseluruhan
BAB III METODOLOGI PENELITIAN
BAB III METODOLOGI PENELITIAN 3.1 Tahapan Penelitian Pada penelitian tugas akhir ini ada beberapa tahapan penelitian yang akan dilakukan seperti yang terlihat pada gambar 3.1 : Mulai Pengumpulan Data Analisa
BAB III METODE PENELITIAN. Tujuan tugas akhir ini akan membangun suatu model sistem yang
BAB III METODE PENELITIAN 3.1 Model Pengembangan Tujuan tugas akhir ini akan membangun suatu model sistem yang melakukan proses data mulai dari pengolahan citra otak hingga menghasilkan output analisa
PENGENALAN WAJAH MENGGUNAKAN METODE LINEAR DISCRIMINANT ANALYSIS DAN K NEAREST NEIGHBOR
PENGENALAN WAJAH MENGGUNAKAN METODE LINEAR DISCRIMINANT ANALYSIS DAN K NEAREST NEIGHBOR 1 Fandiansyah, 2 Jayanti Yusmah Sari, 3 Ika Purwanti Ningrum Jurusan Teknik Informatika, Fakultas Teknik Universitas
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Citra Berikut adalah beberapa definisi dari citra, antara lain: rupa; gambar; gambaran (Kamus Besar Bahasa Indonesia). Sebuah fungsi dua dimensi, f(x, y), di mana x dan y adalah
ABSTRAK. Kata kunci: Citra wajah manusia, Principal Component Analysis (PCA), Eigenfaces, Euclidean Distance. ABSTRACT
16 Dielektrika, ISSN 2086-9487 Vol. 1, No. 1 : 16-23 Pebruai, 2014 EKSTRAKSI CIRI WAJAH MANUSIA MENGGUNAKAN ALGORITMA PRINCIPAL COMPONENT ANALYSIS (PCA) UNTUK SISTEM PENGENALAN WAJAH [Feature Extraction
Principal Component Analysis
Perbandingan Ukuran Jarak pada Proses Pengenalan Wajah Berbasis Principal Component Analysis (PCA) Pembimbing: Dr.Ir.Wirawan, DEA (Ir. Hendra Kusuma, M.Eng) Nimas Setya Yaniar 2208.100.616 POSE (posisi
Implementasi Pengenalan Citra Wajah dengan Algoritma Eigenface pada Metode Principal Component Analysis (PCA)
46 Implementasi Pengenalan Citra Wajah dengan Algoritma Eigenface pada Metode Principal Component Analysis (PCA) Iwan Setiawan [email protected], Welly Iskand [email protected], Fauzi Nur Iman
Aplikasi Pengenalan Ekspresi Wajah dengan Teknik Principal. Component Analysis Berbasis Dual-Tree Complex Wavelet Transform
Aplikasi Pengenalan Ekspresi Wajah dengan Teknik Principal Component Analysis Berbasis Dual-Tree Complex Wavelet Transform SKRIPSI diajukan sebagai salah satu syarat untuk gelar kesarjanaan pada Jurusan
BAB II LANDASAN TEORI. Kamera web (singkatan dari web dan camera) merupakan sebuah media
BAB II LANDASAN TEORI 2.1 Webcam Kamera web (singkatan dari web dan camera) merupakan sebuah media yang berorientasi pada image dan video dengan resolusi tertentu. Umumnya webcam adalah sebuah perngkat
Penerapan Metode Phase Congruency Image (PCI) dalam Pengenalan Citra Wajah secara Otomatis
Penerapan Metode Phase Congruency Image (PCI) dalam Pengenalan Citra Wajah secara Otomatis Puspita Ayu Ningsih Putri. SY, Wirawan, Hendra Kusuma Jurusan Teknik Elektro FTI, Institut Teknologi Sepuluh Nopember
Jurnal String Vol.1 No.2 Tahun 2016 ISSN : PRINCIPAL COMPONENT ANALYSIS UNTUK SISTEM PENGENALAN WAJAH DENGAN MENGGUNAKAN METODE EIGENFACE
PRINCIPAL COMPONENT ANALYSIS UNTUK SISTEM PENGENALAN WAJAH DENGAN MENGGUNAKAN METODE EIGENFACE Nunu Kustian Program Studi Teknik Informatika, Universitas Indraprasta PGRI Email: [email protected] Abstrak
PEMANFAATAN GUI DALAM PENGEMBANGAN PERANGKAT LUNAK PENGENALAN CITRA WAJAH MANUSIA MENGGUNAKAN METODE EIGENFACES
PEMANFAATAN GUI DALAM PENGEMBANGAN PERANGKAT LUNAK PENGENALAN CITRA WAJAH MANUSIA MENGGUNAKAN METODE EIGENFACES Ni Wayan Marti Jurusan Manajemen Informatika, Fakultas Teknik dan Kejuruan,Universitas Pendidikan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Pada bab ini akan dibahas teori yang berkaitan dengan pemrosesan data untuk sistem pengenalan gender pada skripsi ini, meliputi cropping dan resizing ukuran citra, konversi citra
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Definisi Citra, Pengolahan Citra, dan Pengenalan Pola Citra dapat dijelaskan sebagai dua dimensi dari fungsi f(x,y) dimana x dan y tersebut adalah sebuah koordinat pada bidang
BAB I PENDAHULUAN. telinga, wajah, infrared, gaya berjalan, geometri tangan, telapak tangan, retina,
BAB I PENDAHULUAN 1.1 Latar Belakang Sistem biometrika merupakan teknologi pengenalan diri dengan menggunakan bagian tubuh atau perilaku manusia. Sidik jari, tanda tangan, DNA, telinga, wajah, infrared,
JURNAL TEODOLITA. VOL. 14 NO. 1, Juni 2013 ISSN DAFTAR ISI
JURNAL TEODOLITA VOL. 14 NO. 1, Juni 2013 ISSN 1411-1586 DAFTAR ISI Perpaduan Arsitektur Jawa dan Sunda Pada Permukiman Bonokeling Di Banyumas, Jawa Tengah...1-15 Wita Widyandini, Atik Suprapti, R. Siti
BAB I PENDAHULUAN. Sistem biometrik merupakan penerapan teknologi yang mempelajari
1 BAB I PENDAHULUAN 1.1 Latar Belakang Sistem biometrik merupakan penerapan teknologi yang mempelajari karakteristik biologi yang menjadi keunikan tersendiri pada manusia. Salah satu bagian sistem biometrik
IMPLEMENTASI PENGENALAN WAJAH MENGGUNAKAN ALGORITMA PRINCIPAL COMPONENT ANALYSIS(PCA) DAN IMPROVED BACKPROPAGATION
J~ICON, Vol. 3 No. 2, Oktober 2015, pp. 89 ~ 95 89 IMPLEMENTASI PENGENALAN WAJAH MENGGUNAKAN ALGORITMA PRINCIPAL COMPONENT ANALYSIS(PCA) DAN IMPROVED BACKPROPAGATION Rini Miyanti Maubara 1, Adriana Fanggidae
PEMANFAATAAN BIOMETRIKA WAJAH PADA SISTEM PRESENSI MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK
PEMANFAATAAN BIOMETRIKA WAJAH PADA SISTEM PRESENSI MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK Program Studi Matematika FMIPA Universitas Negeri Semarang Abstrak. Saat ini, banyak sekali alternatif dalam
BAB III PERANCANGAN SISTEM
BAB III PERANCANGAN SISTEM 3.1 Definisi Masalah Dalam beberapa tahun terakhir perkembangan Computer Vision terutama dalam bidang pengenalan wajah berkembang pesat, hal ini tidak terlepas dari pesatnya
Pengembangan Perangkat Lunak untuk Pengenalan Wajah dengan Filter Gabor Menggunakan Algoritma Linear Discriminant Analysis (LDA)
Pengembangan Perangkat Lunak untuk Pengenalan Wajah dengan Filter Gabor Menggunakan Algoritma Linear Discriminant Analysis (LDA) Erma Rachmawati Jurusan Teknik Elektro- FTI, Institut Teknologi Sepuluh
BAB 3. ANALISIS dan RANCANGAN. eigenfaces dan deteksi muka dengan color thresholding akan mempunyai proses
BAB 3 ANALISIS dan RANCANGAN 3.1 Analisa metode Secara garis besar, tahap pada pengenalan wajah dengan metode eigenfaces dan deteksi muka dengan color thresholding akan mempunyai proses yang dilakukan
PENGENALAN POLA BENTUK BUNGA MENGGUNAKAN PRINCIPLE COMPONENT ANALYSIS DAN K-NN
PENGENALAN POLA BENTUK BUNGA MENGGUNAKAN PRINCIPLE COMPONENT ANALYSIS DAN K-NN Herfina 1) 1) Program Studi Ilmu Komputer, FMIPA Universitas Pakuan Jl. Pakuan PO BOX 452, Ciheuleut Bogora email : [email protected]
BAB IV ANALISA DAN PERANCANGAN
BAB IV ANALISA DAN PERANCANGAN 4.1 Analisa Analisa merupakan tahapan yang sangat penting dalam melakukan penelitian. Tahap analisa yaitu proses pembahasan persoalan atau permasalahan yang dilakukan sebelum
BAB I PENDAHULUAN. 1.1 Latar Belakang
1 BAB I PENDAHULUAN 1.1 Latar Belakang Home security saat ini sudah menjadi kebutuhan setiap pemilik rumah yang menginginkan tingkat keamanan yang baik. Salah satu sistem keamanan konvensional yang masih
KOMPRESI CITRA DIGITAL DENGAN MENGGUNAKAN HEBBIAN BASED PRINCIPAL COMPONENT ANALYSIS
KOMPRESI CITRA DIGITAL DENGAN MENGGUNAKAN HEBBIAN BASED PRINCIPAL COMPONENT ANALYSIS 1 Sofyan Azhar Ramba 2 Adiwijaya 3 Andrian Rahmatsyah 12 Departemen Teknik Informatika Sekolah Tinggi Teknologi Telkom
Pendahuluan. Praktikum Pengantar Pengolahan Citra Digital Departemen Ilmu Komputer Copyright 2008 All Rights Reserved
1 Pengenalan Matlab Pendahuluan Matlab adalah perangkat lunak yang dapat digunakan untuk analisis dan visualisasi data. Matlab didesain untuk mengolah data dengan menggunakan operasi matriks. Matlab juga
PROTOTYPE PENGENALAN WAJAH MELALUI WEBCAM DENGAN MENGGUNAKAN ALGORITMA PRICIPAL COMPONENT ALAYSIS (PCA) DAN LINIER DISCRIMINANT ANALYSIS (LDA)
PROTOTYPE PENGENALAN WAJAH MELALUI WEBCAM DENGAN MENGGUNAKAN ALGORITMA PRICIPAL COMPONENT ALAYSIS (PCA) DAN LINIER DISCRIMINANT ANALYSIS (LDA) Jemmy E.Purwanto [email protected] Pembimbing I :
PENGENALAN SESEORANG MENGGUNAKAN CITRA GARIS TANGAN
PENGENALAN SESEORANG MENGGUNAKAN CITRA GARIS TANGAN Bagus Fadzerie Robby 1), Resty Wulanningrum 2) 1), 2) Universitas Nusantara PGRI Kediri 1), 2) Jl. KH. Achmad Dahlan 76, Kediri, Jawa Timur 64112 Email
Human Face Detection by using eigenface method for various pose of human face
Human Face Detection by using eigenface method for various pose of human face Esty Vidyaningrum, Prihandoko Undergraduate program, Faculty of Industrial Technology, 2009 Gunadarma University http://www.gunadarma.ac.id
SISTEM PENGAMANAN HANDPHONE MENGGUNAKAN FACE RECOGNITION BERBASIS ANDROID
Jurnal... Vol. XX, No. X, Bulan 20XX, XX-XX 1 SISTEM PENGAMANAN HANDPHONE MENGGUNAKAN FACE RECOGNITION BERBASIS ANDROID Mirna Astria 1, Juni Nurma Sari 2, Mardhiah Fadhli 3 Program Studi Teknik Informatika
BAB IV PENGUJIAN DAN ANALISIS
BAB IV PENGUJIAN DAN ANALISIS Bab ini akan membahas tentang pengujian dan analisis sistem. Pada pengujian akan dijelaskan tentang kriteria pengujian serta analisis dari pengujian 4.1. Kriteria Pengujian
PENGENALAN WAJAH PELANGGAN TOKO
PENGENALAN WAJAH PELANGGAN TOKO Semuil Tjiharjadi Jurusan Sistem Komputer, Universitas Kristen Maranatha Jl. Suria Sumantri 65, Bandung 40164 E-mail: [email protected] 1 ABSTRAK Pada era persaingan yang
SISTEM PENGENALAN WAJAH DENGAN METODE EIGENFACE DAN JARINGAN SYARAF TIRUAN (JST)
Berkala Fisika ISSN : 1410-9662 Vol. 15, No. 1, Januari 2012, hal 15-20 SISTEM PENGENALAN WAJAH DENGAN METODE EIGENFACE DAN JARINGAN SYARAF TIRUAN (JST) Tri Mulyono, Kusworo Adi dan Rahmat Gernowo Jurusan
ANALISIS DAN PERANCANGAN SISTEM
ANALISIS DAN PERANCANGAN SISTEM 3.1 Analisis Masalah Dalam mengetahui suatu bahan jenis kulit cukup sulit karena bahan jenis kulit memeliki banyak jenis. Setiap permukaan atau tekstur dari setiap jenisnya
g(x, y) = F 1 { f (u, v) F (u, v) k} dimana F 1 (F (u, v)) diselesaikan dengan: f (x, y) = 1 MN M + vy )} M 1 N 1
Fast Fourier Transform (FFT) Dalam rangka meningkatkan blok yang lebih spesifik menggunakan frekuensi dominan, akan dikalikan FFT dari blok jarak, dimana jarak asal adalah: FFT = abs (F (u, v)) = F (u,
RANCANG BANGUN SISTEM PENGENALAN WAJAH DENGAN METODE PRINCIPAL COMPONENT ANALYSIS
RANCANG BANGUN SISTEM PENGENALAN WAJAH DENGAN METODE PRINCIPAL COMPONENT ANALYSIS Salamun 1, Firman Wazir 2 Program Studi Teknik Informatika, Fakultas Teknik, Univbersitas Abdurrab Pekanbaru Jl. Riau Ujung
SISTEM VERIFIKASI ONLINE MENGGUNAKAN BIOMETRIKA WAJAH
SISTEM VERIFIKASI ONLINE MENGGUNAKAN BIOMETRIKA WAJAH I Nyoman Piarsa, Riza Hisamuddin Staff Pengajar Teknik Elektro, Fakultas Teknik, Universitas Udayana Kampus Bukit Jimbaran, Bali, 80361 Email: [email protected]
Program Aplikasi Komputer Pengenalan Angka Dengan Pose Jari Tangan Sebagai Media Pembelajaran Interaktif Anak Usia Dini
Program Aplikasi Komputer Pengenalan Angka Dengan Pose Jari Tangan Sebagai Media Pembelajaran Interaktif Anak Usia Dini Wawan Kurniawan Jurusan PMIPA, FKIP Universitas Jambi [email protected] Abstrak
BAB 2 DENGAN MENGGUNAKAN INTERPOLASI INTERPOLASI SPLINE LINIER DAN INTERPOLASI SPLINE
8 BAB 2 PENENTUAN SUDUT PANDANG BAB 2 WAJAH TIGA DIMENSI PENENTUAN DENGAN MENGGUNAKAN SUDUT PANDANG INTERPOLASI WAJAH TIGA LINIER DIMENSI DAN DENGAN MENGGUNAKAN INTERPOLASI INTERPOLASI SPLINE LINIER DAN
BAB 4 HASIL DAN PEMBAHASAN
68 BAB 4 HASIL DAN PEMBAHASAN 4.1. Uji Algoritma Pengujian dilakukan untuk mendapatkan algoritma yang paling optimal dari segi kecepatan dan tingkat akurasi yang dapat berjalan secara real time pada smartphone
PENGENALAN POLA TANDA TANGAN DENGAN MENGGUNAKAN METODE PRINCIPAL COMPONENT ANALYSIS (PCA)
PENGENALAN POLA TANDA TANGAN DENGAN MENGGUNAKAN METODE PRINCIPAL COMPONENT ANALYSIS (PCA) Riza Firdaus Ardiansyah NIM : A11.2009.05106 Program Studi Teknik Informatika Fakultas Ilmu Komputer Universitas
BAB I PERSYARATAN PRODUK
BAB I PERSYARATAN PRODUK Berkembangnya teknologi informasi pasti menimbulkan masalah dalam pengamanan informasi. Salah satu cara untuk mengamankan informasi dapat dilakukan dengan autentikasi terhadap
PENGENALAN WAJAH MENGGUNAKAN METODE DIAGONAL PRINCIPAL COMPONENT ANALYSIS. Skripsi
PENGENALAN WAJAH MENGGUNAKAN METODE DIAGONAL PRINCIPAL COMPONENT ANALYSIS Skripsi Di susun oleh : M. RIDHO MAJIDI (0934010056) PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI UNIVESITAS PEMBANGUNAN
SISTEM PINTU OTOMATIS BERDASARKAN PENGENALAN WAJAH MENGGUNAKAN METODE NEAREST FEATURE LINE
SISTEM PINTU OTOMATIS BERDASARKAN PENGENALAN WAJAH MENGGUNAKAN METODE NEAREST FEATURE LINE Agus Budi Dharmawan 1), Lina 2) 1), 2) Teknik Informatika FTI - UNTARJakarta Jl S. Parman No.1, Jakarta 11440
BAB III METODE PENELITIAN. ada beberapa cara yang telah dilakukan, antara lain : akan digunakan untuk melakukan pengolahan citra.
BAB III METODE PENELITIAN Untuk pengumpulan data yang diperlukan dalam melaksanakan tugas akhir, ada beberapa cara yang telah dilakukan, antara lain : 1. Studi Kepustakaan Studi kepustakaan berupa pencarian
SISTEM PENGENALAN WAJAH MENGGUNAKAN METODE PRINCIPAL COMPONENT ANALYSIS (PCA) DENGAN ALGORITMA FUZZY C-MEANS (FCM)
SISTEM PENGENALAN WAJAH MENGGUNAKAN METODE PRINCIPAL COMPONENT ANALYSIS (PCA) DENGAN ALGORITMA FUZZY C-MEANS (FCM) Andri Suryadi Abstrak Berkembangnya ilmu pengetahuan dan teknologi dalam computer vision
SISTEM PENGENALAN WARGA PADA KAWASAN PERUMAHAN BERBASIS FACE RECOGNITION MENGGUNAKAN EIGENFACE DAN EUCLIDEAN DISTANCE ABSTRAK
SISTEM PENGENALAN WARGA PADA KAWASAN PERUMAHAN BERBASIS FACE RECOGNITION MENGGUNAKAN EIGENFACE DAN EUCLIDEAN DISTANCE Didik Sunarko Magister Teknologi Informasi Sekolah Tinggi Teknik Surabaya [email protected]
BAB 1 PENDAHULUAN Latar Belakang
BAB 1 PENDAHULUAN 1. 1 Latar Belakang Jaringan saraf buatan merupakan kumpulan dari elemen-elemen pemrosesan buatan yang disebut neuron. Sebuah neuron akan mempunyai banyak nilai masukan yang berasal dari
FACE RECOGNITION MENGGUNAKAN METODE TWO- DIMENSIONAL PRINCIPAL COMPONENTS ANALYSIS (2DPCA) ABSTRAK
FACE RECOGNITION MENGGUNAKAN METODE TWO- DIMENSIONAL PRINCIPAL COMPONENTS ANALYSIS (2DPCA) Kurnia Novita Mutu (0722029) Jurusan Teknik Elektro email: [email protected] ABSTRAK Perkembangan biometrik pada
BAB I PENDAHULUAN. Perkembangan teknologi image processing sekarang ini menyediakan
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Perkembangan teknologi image processing sekarang ini menyediakan kemungkinan manusia untuk membuat suatu sistem yang dapat mengenali suatu citra digital. Setiap
PENGENALAN WAJAH DENGAN METODE TEMPLATE MATCHING SEBAGAI SISTEM STARTER SEPEDA MOTOR BERBASIS MIKROKONTROLER ATMEGA 16 Oleh : Margito Hermawan
PENGENALAN WAJAH DENGAN METODE TEMPLATE MATCHING SEBAGAI SISTEM STARTER SEPEDA MOTOR BERBASIS MIKROKONTROLER ATMEGA 16 Oleh : Margito Hermawan 6907040024 Fajar Indra 6907040026 ABSTRACT Face recognition
IMPLEMENTASI PENGENALAN WAJAH DENGAN METODE EIGENFACE PADA SISTEM ABSENSI
IMPLEMENTASI PENGENALAN WAJAH DENGAN METODE EIGENFACE PADA SISTEM ABSENSI [1] Muhammad Rizki Muliawan, [2] Beni Irawan, [3] Yulrio Brianorman [1] [2] [3] Jurusan Sistem Komputer, Fakultas MIPA Universitas
KLASIFIKASI BUNGA EUPHORBIA BERDASARKAN KELOPAK DENGAN METODE PRINCIPAL COMPONENT ANALYSIS (PCA)
KLASIFIKASI BUNGA EUPHORBIA BERDASARKAN KELOPAK DENGAN METODE PRINCIPAL COMPONENT ANALYSIS (PCA) SKRIPSI Diajukan Untuk Memenuhi Sebagai Syarat Guna Memperoleh Gelar Sarjana Komputer (S.Kom.) Pada Program
PEMBUATAN PERANGKAT LUNAK PENGENALAN WAJAH MENGGUNAKAN PRINCIPAL COMPONENTS ANALYSIS
PEMBUATAN PERANGKAT LUNAK PENGENALAN WAJAH MENGGUNAKAN PRINCIPAL COMPONENTS ANALYSIS Kartika Gunadi Fakultas Teknologi Industri, Jurusan Teknik Informatika Universitas Kristen Petra e-mail: [email protected],
DAFTAR ISI ABSTRAK... KATA PENGANTAR... DAFTAR ISI... DAFTAR GAMBAR... DAFTAR TABEL... DAFTAR LAMPIRAN Latar Belakang... 1
ABSTRAK Saat ini komputer dan piranti pendukungnya telah masuk dalam setiap aspek kehidupan dan pekerjaan. Komputer yang ada sekarang memiliki kemampuan yang lebih dari sekedar perhitungan matematik biasa.
LAPORAN TUGAS AKHIR EKSTRAKSI FITUR UNTUK PENGENALAN WAJAH PADA RAS MONGOLOID MENGGUNAKAN PRINCIPAL COMPONENT ANALYSIS (PCA)
LAPORAN TUGAS AKHIR EKSTRAKSI FITUR UNTUK PENGENALAN WAJAH PADA RAS MONGOLOID MENGGUNAKAN PRINCIPAL COMPONENT ANALYSIS (PCA) Laporan ini disusun guna memenuhi salah satu syarat untuk menyelesaikan Program
Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember Surabaya
Pengenalan Wajah Menggunakan Metode Adjacent Pixel Intensity Difference Quantization Histogram Generation Oleh : ANDIK MABRUR 1206 100 716 Dosen Pembimbing : Drs. Soetrisno, MI.Komp. Jurusan Matematika
IDENTIFIKASI WAJAH PADA SISTEM KEAMANAN BRANKAS MENGGUNAKAN PRINCIPAL COMPONENT ANALYSIS
IDENTIFIKASI WAJAH PADA SISTEM KEAMANAN BRANKAS MENGGUNAKAN PRINCIPAL COMPONENT ANALYSIS Dadang Ardiansyah #1, Edi Satriyanto, S.Si, M.Si, #2, Eru Puspita, ST, M.Kom, #3, Budi Nur Iman, S.Si, M.Kom #4
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Folder Sebuah directory (folder) adalah seperti ruangan-ruangan (kamar-kamar) pada sebuah komputer yang berfungsi sebagai tempat penyimpanan dari berkas-berkas (file). Sedangkan
PERANCANGAN DAN IMPLEMENTASI KEAMANAN PINTU BERBASIS PENGENALAN WAJAH DENGAN METODE EIGENFACE
110 PERANCANGAN DAN IMPLEMENTASI KEAMANAN PINTU BERBASIS PENGENALAN WAJAH DENGAN METODE EIGENFACE Derian Indra Bramantio 1, Erwin Susanto 2, Ramdhan Nugraha 3 1, 2, 3 Fakultas Teknik Elektro, Universitas
BAB III ANALISIS DAN PERANCANGAN SISTEM
BAB III ANALISIS DAN PERANCANGAN SISTEM Bab ini menjelaskan mengenai tahapan analisis dan perancangan sistem yang akan dikembangkan, yaitu Sistem Identifikasi Buron. Bab ini terbagi atas 5 bagian yang
Implementasi Principal Component Analysis (PCA) Untuk Pengenalan Wajah Manusia
Nusantara of Engineering/Vol. 2/ No. 1/ISSN: 2355-6684 65 Implementasi Principal Component Analysis (PCA) Untuk Pengenalan Wajah Manusia Rina Firliana, Resty Wulanningrum, Wisnu Sasongko Jurusan Teknik
PENGEMBANGAN SISTEM PENCATAT PEMAKAIAN KOMPUTER LAB DENGAN BIOMETRIKA PENGENAL WAJAH EIGENFACE. Oleh
PENGEMBANGAN SISTEM PENCATAT PEMAKAIAN KOMPUTER LAB DENGAN BIOMETRIKA PENGENAL WAJAH EIGENFACE Oleh Kadek Ananta Satriadi 1, Made Windu Antara Kesiman,S.T.,M.Sc., I Gede Mahendra Darmawiguna,S.Kom.,M.Sc.
Rancang Bangun Prototipe Aplikasi Pengenalan Wajah untuk Sistem Absensi Alternatif dengan Metode Haar Like Feature dan Eigenface
Rancang Bangun Prototipe Aplikasi Pengenalan Wajah untuk Sistem Absensi Alternatif dengan Metode Haar Like Feature dan Eigenface Wahyu Sulistiyo, Budi Suyanto, Idhawati Hestiningsih, Mardiyono, Sukamto
BAB 2 Landasan Teori
BAB 2 Landasan Teori Pengenalan manusia secara otomatis menggunakan mesin merupakan masalah yang menantang dan telah menjadi banyak perhatian selama beberapa tahun terakhir. (Jawad, Syed, dan Farrukh,
BAB 1 PENDAHULUAN 1-1
BAB 1 PENDAHULUAN Bab ini menjelaskan mengenai Latar Belakang, Identifikasi Masalah, Tujuan Tugas Akhir, Lingkup Tugas Akhir, Metodologi Tugas Akhir dan Sistematika Penulisan Tugas Akhir. 1.1 Latar Belakang
Pamampatan dan Rekonstruksi Citra Menggunakan Analisis Komponen Utama.
PEMAMPATAN DAN REKONSTRUKSI CITRA MENGGUNAKAN ANBALISIS KOMPONEN UTAMA (PRINCIPAL COMPONENTS ANALYSIS) Praditya *, Budi Setiono **, Rizal Isnanto ** Abstrak - Saat ini sudah banyak aplikasi berbasis citra
Pengenalan Image Wajah Dengan Menggunakan Metode Template Matching. Abstraksi
Pengenalan Image Wajah Dengan Menggunakan Metode Template Matching Moh. Khayat Subkhan 1, Yuliana Melita Pranoto 2 1 Mahasiswa Magister Teknologi Informasi, Sekolah Tinggi Teknik Surabaya 2 Dosen Magister
BAB IV IMPLEMENTASI DAN UJI COBA. Pengenalan Pola dengan Algoritma Eigen Image, dibutuhkan spesifikasi
BAB IV IMPLEMENTASI DAN UJI COBA 4.1 Kebutuhan Sistem Sebelum melakukan implementasi dan menjalankan aplikasi Model Pengenalan Pola dengan Algoritma Eigen Image, dibutuhkan spesifikasi perangkat lunak
IMPLEMENTASI PENGENALAN WAJAH DENGAN METODE EIGENFACE PADA SISTEM ABSENSI
Volume 3, No. 1 (215). Hal 41-5 ISSN : 2338-493X IMPLEMENTASI PENGENALAN WAJAH DENGAN METODE EIGENFACE PADA SISTEM ABSENSI [1] Muhammad Rizki Muliawan, [2] Beni Irawan, [3] Yulrio Brianorman [1] [2] [3]
1. Pendahuluan. 1.1 Latar belakang
1. Pendahuluan 1.1 Latar belakang Keamanan data pribadi merupakan salah satu hal terpenting bagi setiap orang yang hidup di era dimana Teknologi Informasi (TI) berkembang dengan sangat pesat. Setiap orang
BAB III PERANCANGAN SISTEM
BAB III PERANCANGAN SISTEM Perancangan perangkat lunak dari sistem biometrik sidik jari dibuat dibagi menjadi 2 module utama yakni : module enhencement sidik jari berikut aplikasi penyimpanan kedalam database
