BAB 3 PERANCANGAN SISTEM

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 3 PERANCANGAN SISTEM"

Transkripsi

1 BAB 3 PERANCANGAN SISTEM 3.1 Rancangan Perangkat Keras Diagram Blok Sistem Rancangan perangkat keras dari aplikasi pengenalan wajah ini dapat dilihat pada diagram blok Gambar 3.1 sebagai berikut Webcam Computer Microcontroler and Relay Processor Memory Storage Display -Face Recognition Application -Face Database Gambar 3.1 Diagram Blok Rancangan Perangkat Keras 23

2 Modul-modul Sistem dan Cara Kerja Modul-modul Sistem Modul sistem perangkat keras dalam aplikasi ini adalah 1. Modul Penyimpanan Data pada sistem perangkat keras aplikasi ini adalah Storage. Dalam Storage data yang digunakan dalam proses pengenalan wajah disimpan. 2. Modul Sensor sistem pada aplikasi ini adalah Webcam. Dimana Webcam berfungsi untuk menangkap data wajah dari pengguna untuk diproses lebih lanjut. 3. Modul Keputusan perangkat keras pada aplikasi ini adalah Mikrokontroler. Mikrokontroler memutuskan apakah pengguna yang diuji yang memiliki kepentingan atau tidak. Jika pengguna yang diuji sah maka relay akan hidup. Pada aplikasi ini penggunaan relay diganti dengan lampu. 4. Modul Tampilan perangkat keras pada aplikasi ini adalah Display. Display akan menampilkan user interface dari aplikasi. 5. Modul Proses pada aplikasi ini dijalankan oleh Processor dan Memory. Processor dan Memory berfungsi untuk menjalankan aplikasi pengenalan wajah Cara Kerja Adapun cara kerja sistem perangkat keras diatas adalah sebagai berikut

3 25 1. Webcam digunakan untuk menyimpan wajah pengguna. Data wajah yang sudah diambil kemudian disimpan kedalam Storage sebagai database. 2. Ketika aplikasi Face Recognition didalam Storage dijalankan, Memory akan menampung data dan instruksi dari perintah (aplikasi) tersebut. Kemudian Processor akan memproses data dan instruksi yang terdapat pada Memory. Setelah data dan instruksi diproses, Processor akan menghasilkan keluaran yang berupa signal ke perangkat keras yang dibutuhkan untuk menjalankan aplikasi. 3. Setelah aplikasi dijalankan, Display akan menampilkan user interface dari aplikasi. 4. Webcam sebagai modul sensor, akan menangkap wajah pengguna yang berada didepan kamera webcam untuk dibandingkan dengan data wajah yang terdapat pada face database. 5. Jika wajah yang di depan kamera dan data wajah yang terdapat pada database sama, maka pintu akan terbuka. Hal tersebut menandakan bahawa Mikrokontroler dan Relay telah memberikan keputusan bahwa pengguna memiliki kewenangan.

4 Rancangan Piranti Lunak Diagram Alir Program Utama Diagram alir rancangan piranti lunak aplikasi pengenalan wajah adalah sebagai berikut: Face Database Training Set Testing Set Projection of Test Image LDA (Feature Extraction) Feature Vector Feature Vector Classifier (Euclidean Distance) Decision Making Gambar 3.2 Diagram Alir Rancangan Piranti Lunak

5 27 1. Face Database Face database adalah kumpulan dari citra wajah yang digunakan dalam sebuah sistem face recognition. Citra-citra wajah yang terdapat dalam face database dapat digunakan sebagai set pelatihan (training set) ataupun set pengujian (testing set). Pada aplikasi ini citra wajah yang terdapat dalam face database memakai format JPEG bewarna abu-abu dengan dimensi gambar 250 pixel untuk dimensi tinggi dan 250 pixel untuk dimensi lebar. Pada aplikasi ini setiap orang diambil 5 citra wajah, yang akan diambil secara otomatis ketika pengguna memberikan perintah kepada aplikasi. Citra wajah yang diambil dari setiap orang digunakan sebagai masukkan dalam tahap pelatihan. 2. Training Set Set pelatihan (training set) adalah satu set data yang digunakan untuk menemukan hubungan yang berpotensi prediktif. Face database harus memiliki citra wajah setiap orang atau subjek dalam set pelatihan. Citra wajah dalam set pelatihan ini harus mewakili pandangan frontal dari orang atau subjek dengan sedikit perbedaan pada sudut pandang. Set pelatihan juga harus mencakup ekspresi wajah yang berbeda, pencahayaan yang berbeda, kondisi latar belakang, dan juga penggunaan atribut pada wajah. Pelatihan ini di set dengan asumsi bahwa semua gambar telah dinormalisasi untuk array m X n dan bahwa citra wajah pada set pelatihan hanya daerah

6 28 wajah dan tidak memiliki banyak citra anggota tubuh lain (Etamad & Chellappa, 1997:3). Pada aplikasi ini set pelatihan didapat setelah pengguna menyimpan citra wajah. Aplikasi akan memulai proses pelatihan setelah pengguna memberikan instruksi kepada aplikasi. Data yang dilatih oleh aplikasi ialah 5 citra wajah pengguna yang baru saja ditangkap dan disimpan ke-face database oleh aplikasi. 3. Testing Set Input/Video Face Detection Face Location Face Tracking Gambar 3.3 Proses pada saat Testing Set Set pengujian (testing set) adalah satu set data yang digunakan untuk menilai kekuatan dan utilitas dari hubungan prediktif. Set pengujian didapat dengan dua pendekatan, pertama menggunakan citra wajah yang terdapat pada face database. Kedua menggunakan citra wajah yang didapat secara real time atau menggunakan video. Pada aplikasi ini set pengujian didapat dengan menggunakan video atau secara realtime pada operasional. Penangkapan citra wajah atau face detection akan dilakukan oleh

7 29 webcam yang akan mendeteksi wajah pengguna. Setelah wajah pengguna dideteksi, maka selanjutnya citra wajah pengguna tersebut akan ditentukan lokasinya (face locating). Kemudian aplikasi akan melacak wajah dari pengguna (face tracking). Sistem yang digunakan untuk face trakcking adalah Two Dimensional System, dimana sistem ini melacak wajah dan keluaran ruang gambar dimana wajah subjek berada. Pada aplikasi ini digunakan Haarcascade Classifier untuk mendeteksi wajah manusia atau subjek. Dasar utama untuk haarascade Classifier adalah Haar-like feature. Feature ini menggunakan perubahan nilai kontras antara persegi panjang yang berdekatan, dibandingkan nilai intensitas pixel (Wilson & Fernandez, 2006:2). Citra wajah yang telah dideteksi dan dilacak oleh aplikasi (webcam) diubah dari berwarna menjadi abu-abu atau grayscale. Dari citra wajah grayscale tersebut kemudian citra wajah diubah kedalam bentuk matriks. Matriks inilah yang kemudian akan diproses dalam feature extraction (LDA). 4. Feature Extraction Feature Extraction adalah komponen paling penting dalam sistem face recognition. Feature extraction penting karena digunakan untuk menemukan representasi gambar yang paling tepat agar dapat diidentifikasi. Tugas utama dari featrue extraction ialah kecerdasan

8 30 dan kemampuan untuk mengindrakan kesamaan antara set pengujian dan set pelatihan. Tugas utama ini mengharuskan feature extraction untuk menemukan ukuran jarak yang relevan dalam feature space yang dipilih. Sehingga dapat memanfaatkan informasi yang tertanam untuk mengidentifikasi subjek.metode feature extraction yang dipakai dalam penelitianini adalah Fisherfaces atau Linear Discriminant Analysis (LDA). Fisherfaces atau LDA adalah feature extraction berbasis wajah manusia yang memiliki bukti keputusan integrasi untuk banyak analisa sumber data. LDA digunakan untuk menemukan kombinasi linear dari features sambil menjaga keterpisahan kelas. LDA memodelkan perbedaan antar kelas. Inilah yang menjadi perbedaan dasar antara metode LDA dengan PCA (Principal Component Analysis). Dimana pada metode PCA perbedaan antar kelas tidak dibedakan, sehingga jarak feature antara kelas yang satu dengan yang lainnya berdekatan. Untuk menghitung metode fisherfaces atau LDA adalah sebagai berikut Dimisalkan matriks dari sebuah gambar set pelatihan adalah sebagai berikut :

9 31 Matriks dan adalah bagian dari kelas ke 1, sedangkan dan adalah bagian dari kelas ke 2. Kemudian matriks-matriks tersebut di representasikan kedalam sebuah vektor. Hasil representasi adalah sebagai berikut : Dari vektor yang didapat kemudian dicari mean dari setiap kelas dan mean dari seluruh kelas. Mean dari setiap kelas dan mean seluruh kelas adalah sebagai berikut : Setelah nilai mean setiap kelas dan mean seluruh kelas diketahui Scatter Matrix Within Class dan ScatterMatrix Between Class. Untuk menghitung Scatter Matrix Within Class, dimisalkan.

10 32 Dari dibentuklah matriks A, dimana menyusun kolom dari matriks A. SW didapat dari *A.

11 Dengan menggunakan rumus untuk mencari SB dan dengan ketentuan seperti pada SW, maka didapat SB sebagai berikut. 33 Dari hasil perhitungan diatas diketahui bahwa SW berupa matriks singular, sehingga tidak dapat dihitung, karena hasil determinan matriks SW = 0. Untuk mengatasi masalah SW yang singular, digunakan scatter matriks metode PCA (Principal Component Analysis). Untuk menghitung scatter matriks PCA, pertama tentukan mean dari seluruh set pelatihan (hasil mean sudah dihitung pada perhitungan mean seluruh kelas diatas). Setelah itu dihitung kovarian matriks dengan menggunakan mean yang didapat. Untuk menghitung kovarian matriks, dimisalkan, sehingga didapat: Kemudian setiap yang didapat digunakan untuk menyusun kolom matriks A. Sehingga matriks A adalah sebagai berikut:

12 34 Setelah itu kovarian matriks dihitung dengan *A. Sehingga kovarian matriks didapat sebagai berikut: Langkah berikutnya ialah memproyeksikan SW dan SB kedalam subspace yang dihasilkan dengan perhitungan PCA. Memproyeksikannya ialah dengan menghitung untuk memproyeksikan SB dan untuk memproyeksikan SW. Dimana hasil yang didapat adalah sebagai berikut:

13 Dari hasil diatas, diketahui bahwa SW tidak singular lagi, sehingga 35 dapat dihitung. Untuk menghitung, pertama inverse matriks SW. Kemudian dihitung : Setelah matriks diketahui, langkah berikutnya ialah menentukan eigenvalue dan eigenvector dengan menggunakan persamaan Generalized Eigenvalue Problem. Nilai eigenvalue adalah sebagai berikut: Sedangkan eigenvector adalah sebagai berikut :

14 36 Untuk mencari transformasi matriks LDA, digunakan perhitungan. Dimana adalah Sehingga transformasi matriks LDA adalah Untuk memproyeksikan citra kedalam subspace digunakan persamaan. Sebagai contoh untuk memproyeksikan citra wajah kedalam subspace, maka vektor dari didalam subspace adalah:

15 37 5. Projection of Test Image Wajah yang telah dideteksi dan dilacak, citra wajah yang dideteksi tersebut kemudian diproyeksikan kedalam sebuah subspace. Untuk memproyeksi citra wajah kedalam subspace digunakan persamaan. Dimana adalah matrix transformasi LDA yang didapat dari perhitungan, sedangkan x adalah vektor dari citra wajah yang dideteksi dan ditangkap oleh aplikasi (webcam). Dari proses tersebut dihasilkan vektor feature (feature vector) dari set pengujian. 6. Feature Vector

16 38 Feature vector adalah sebuah vektor gambar. Dimana di dalam vektor tersebut memiliki variabel acak dengan kemungkinan sebuah wajah atau bukan. 7. Classifier Setelah feature diekstrak dan dipilih langkah berikutnya ialah pengklasifikasian gambar. Menurut Jain, Duin dan Mao (2000:4-37) ada beberapa pendekatan dalam pengklasifikasian gambar, yaitu similarity, probability, dan decision boundaries. Pada penelitian ini, pendekatan yang digunakan dalam pengklasifikasian gambar adalah decision boundaries. Pendekatan decision boundaries ini tergantung pada pemilihan metric (satuan pengukuran untuk perangkat lunak). Tujuan utama dari decision boundaries adalah untuk meminimalkan kesalahan antara pola pelatihan dan pola pengujian. Classiffier pada aplikasi ini menggunakan Euclidean Distance. Dimana Euclidean Distance digunakan untuk mengklasifikasi data (feature vector) berdasarkan pendekatan decision boundaries. 8. Decision Making Setelah diketahui jarak Euclidean terkecil dan sudah diklasifikasikan vektor test sebagai milik kelas subjek tertentu, maka dilakukan pembuatan keputusan. Jika vektor test telah diklasifikasikan sebagai milik kelas subjek tertentu, keputusan yang dibuat adalah subjek

17 dalam set pengujian sama dengan subjek dalam set kelas pelatihan tertentu (Balakhrisnama & Ganapathiraju, 1998:6) Rancang Bangun Gambar 3.4 Rancangan Aplikasi User interface pada sisi pengguna akan menampilkan gambar yang ditangkap oleh lensa webcam. Tampilan kotak yang berwarna hijau berfungsi sebagai penanda bahwa wajah pengguna telah dideteksi dan dilacak oleh aplikasi. Jika wajah tidak terdeteksi atau wajah yang terdeteksi terlalu kecil, maka kotak hijau tidak akan tampil. Tulisan Prediction: menunjukan prediksi aplikasi terhadap wajah yang dideteksi. Command prompt berfungsi untuk memasukkan perintah agar aplikasi melakukan fungsi atau tugas tertentu. Fungsi-fungsi tersebut ialah fungsi untuk manambah pengguna baru, menangkap dan menyimpan citra wajah pengguna, serta melatih citra wajah pengguna. Window yang berada dibawah command prompt berfungsi untuk menghubungkan aplikasi dengan mikrokontroler. Selain itu Window juga berfungsi untuk mengirimkan data kepada mikrokontroler.

18 40

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Definisi Citra, Pengolahan Citra, dan Pengenalan Pola Citra dapat dijelaskan sebagai dua dimensi dari fungsi f(x,y) dimana x dan y tersebut adalah sebuah koordinat pada bidang

Lebih terperinci

PENGEMBANGAN SISTEM ABSENSI BERBASIS FACE RECOGNITION DENGAN METODE LDA

PENGEMBANGAN SISTEM ABSENSI BERBASIS FACE RECOGNITION DENGAN METODE LDA PENGEMBANGAN SISTEM ABSENSI BERBASIS FACE RECOGNITION DENGAN METODE LDA Felix Hantoro Tan, Leonardus Indra Laksmana, Marcos H, Widodo Budiharto Universitas Bina Nusantara Jl. K H. Syahdan No. 9, Kelurahan

Lebih terperinci

BAB 4 IMPLEMENTASI DAN EVALUASI

BAB 4 IMPLEMENTASI DAN EVALUASI BAB 4 IMPLEMENTASI DAN EVALUASI 4.1 Spesifikasi Sistem Sistem-sistem pendukung yang digunakan oleh penulis dalam menjalankan aplikasi yang telah dirancang ini dibedakan menjadi 2 yaitu kelompok hardware

Lebih terperinci

Pengenalan Wajah dengan Metode Subspace LDA (Linear Discriminant Analysis)

Pengenalan Wajah dengan Metode Subspace LDA (Linear Discriminant Analysis) Pengenalan Wajah dengan Metode Subspace LDA (Linear Discriminant Analysis) Ratna Nur Azizah Jurusan Teknik Elektro FTI, Institut Teknologi Sepuluh Nopember Kampus ITS, Keputih-Sukolilo, Surabaya-60111

Lebih terperinci

BAB IV IMPLEMENTASI DAN EVALUASI. implementasi dan evaluasi yang dilakukan terhadap perangkat keras dan

BAB IV IMPLEMENTASI DAN EVALUASI. implementasi dan evaluasi yang dilakukan terhadap perangkat keras dan BAB IV IMPLEMENTASI DAN EVALUASI Implementasi dan Evaluasi yang dilakukan penulis merupakan implementasi dan evaluasi yang dilakukan terhadap perangkat keras dan perangkat lunak dari sistem secara keseluruhan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Home security saat ini sudah menjadi kebutuhan setiap pemilik rumah yang menginginkan tingkat keamanan yang baik. Salah satu sistem keamanan konvensional yang masih

Lebih terperinci

BAB 4 HASIL DAN PEMBAHASAN

BAB 4 HASIL DAN PEMBAHASAN BAB 4 HASIL DAN PEMBAHASAN 4.1 Implementasi 4.1.1 Spesifikasi Sistem Spesifikasi yang digunakan dalam menjalankan sistem kontrol akses berbasis real time face recognition dan gender information ditunjukkan

Lebih terperinci

Pengembangan Perangkat Lunak untuk Pengenalan Wajah dengan Filter Gabor Menggunakan Algoritma Linear Discriminant Analysis (LDA)

Pengembangan Perangkat Lunak untuk Pengenalan Wajah dengan Filter Gabor Menggunakan Algoritma Linear Discriminant Analysis (LDA) Pengembangan Perangkat Lunak untuk Pengenalan Wajah dengan Filter Gabor Menggunakan Algoritma Linear Discriminant Analysis (LDA) Erma Rachmawati Jurusan Teknik Elektro- FTI, Institut Teknologi Sepuluh

Lebih terperinci

PROTOTYPE PENGENALAN WAJAH MELALUI WEBCAM DENGAN MENGGUNAKAN ALGORITMA PRICIPAL COMPONENT ALAYSIS (PCA) DAN LINIER DISCRIMINANT ANALYSIS (LDA)

PROTOTYPE PENGENALAN WAJAH MELALUI WEBCAM DENGAN MENGGUNAKAN ALGORITMA PRICIPAL COMPONENT ALAYSIS (PCA) DAN LINIER DISCRIMINANT ANALYSIS (LDA) PROTOTYPE PENGENALAN WAJAH MELALUI WEBCAM DENGAN MENGGUNAKAN ALGORITMA PRICIPAL COMPONENT ALAYSIS (PCA) DAN LINIER DISCRIMINANT ANALYSIS (LDA) Jemmy E.Purwanto [email protected] Pembimbing I :

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dibahas teori yang berkaitan dengan pemrosesan data untuk sistem pengenalan gender pada skripsi ini, meliputi cropping dan resizing ukuran citra, konversi citra

Lebih terperinci

BAB II LANDASAN TEORI. Kamera web (singkatan dari web dan camera) merupakan sebuah media

BAB II LANDASAN TEORI. Kamera web (singkatan dari web dan camera) merupakan sebuah media BAB II LANDASAN TEORI 2.1 Webcam Kamera web (singkatan dari web dan camera) merupakan sebuah media yang berorientasi pada image dan video dengan resolusi tertentu. Umumnya webcam adalah sebuah perngkat

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. 4.1 Pengembangan Sistem Pengenalan Wajah 2D

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. 4.1 Pengembangan Sistem Pengenalan Wajah 2D 30 BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1 Pengembangan Sistem Pengenalan Wajah 2D Penelitian ini mengembangkan model sistem pengenalan wajah dua dimensi pada citra wajah yang telah disiapkan dalam

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Citra Berikut adalah beberapa definisi dari citra, antara lain: rupa; gambar; gambaran (Kamus Besar Bahasa Indonesia). Sebuah fungsi dua dimensi, f(x, y), di mana x dan y adalah

Lebih terperinci

BAB III PERANCANGAN DAN IMPLEMENTASI SISTEM

BAB III PERANCANGAN DAN IMPLEMENTASI SISTEM BAB III PERANCANGAN DAN IMPLEMENTASI SISTEM Pada bab ini akan dijelaskan mengenai tahapan dan algoritma yang akan digunakan pada sistem pengenalan wajah. Bagian yang menjadi titik berat dari tugas akhir

Lebih terperinci

Jurnal String Vol.1 No.2 Tahun 2016 ISSN : PRINCIPAL COMPONENT ANALYSIS UNTUK SISTEM PENGENALAN WAJAH DENGAN MENGGUNAKAN METODE EIGENFACE

Jurnal String Vol.1 No.2 Tahun 2016 ISSN : PRINCIPAL COMPONENT ANALYSIS UNTUK SISTEM PENGENALAN WAJAH DENGAN MENGGUNAKAN METODE EIGENFACE PRINCIPAL COMPONENT ANALYSIS UNTUK SISTEM PENGENALAN WAJAH DENGAN MENGGUNAKAN METODE EIGENFACE Nunu Kustian Program Studi Teknik Informatika, Universitas Indraprasta PGRI Email: [email protected] Abstrak

Lebih terperinci

FACE RECOGNITION MENGGUNAKAN METODE TWO- DIMENSIONAL PRINCIPAL COMPONENTS ANALYSIS (2DPCA) ABSTRAK

FACE RECOGNITION MENGGUNAKAN METODE TWO- DIMENSIONAL PRINCIPAL COMPONENTS ANALYSIS (2DPCA) ABSTRAK FACE RECOGNITION MENGGUNAKAN METODE TWO- DIMENSIONAL PRINCIPAL COMPONENTS ANALYSIS (2DPCA) Kurnia Novita Mutu (0722029) Jurusan Teknik Elektro email: [email protected] ABSTRAK Perkembangan biometrik pada

Lebih terperinci

BAB 2 Landasan Teori

BAB 2 Landasan Teori BAB 2 Landasan Teori Pengenalan manusia secara otomatis menggunakan mesin merupakan masalah yang menantang dan telah menjadi banyak perhatian selama beberapa tahun terakhir. (Jawad, Syed, dan Farrukh,

Lebih terperinci

SISTEM PINTU OTOMATIS BERDASARKAN PENGENALAN WAJAH MENGGUNAKAN METODE NEAREST FEATURE LINE

SISTEM PINTU OTOMATIS BERDASARKAN PENGENALAN WAJAH MENGGUNAKAN METODE NEAREST FEATURE LINE SISTEM PINTU OTOMATIS BERDASARKAN PENGENALAN WAJAH MENGGUNAKAN METODE NEAREST FEATURE LINE Agus Budi Dharmawan 1), Lina 2) 1), 2) Teknik Informatika FTI - UNTARJakarta Jl S. Parman No.1, Jakarta 11440

Lebih terperinci

BAB III METODE PENELITIAN. melacak badan manusia. Dimana hasil dari deteksi atau melacak manusia itu akan

BAB III METODE PENELITIAN. melacak badan manusia. Dimana hasil dari deteksi atau melacak manusia itu akan BAB III METODE PENELITIAN 3.1. Model Pengembangan Tujuan dari tugas akhir ini adalah untuk membuat sebuah aplikasi untuk mengatur kontras pada gambar secara otomatis. Dan dapat meningkatkan kualitas citra

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN SISTEM. secara otomatis. Sistem ini dibuat untuk mempermudah user dalam memilih locker

BAB III ANALISIS DAN PERANCANGAN SISTEM. secara otomatis. Sistem ini dibuat untuk mempermudah user dalam memilih locker BAB III ANALISIS DAN PERANCANGAN SISTEM 3.1 Metode Penelitian Pada perancangan tugas akhir ini menggunakan metode pemilihan locker secara otomatis. Sistem ini dibuat untuk mempermudah user dalam memilih

Lebih terperinci

BAB 3. ANALISIS dan RANCANGAN. eigenfaces dan deteksi muka dengan color thresholding akan mempunyai proses

BAB 3. ANALISIS dan RANCANGAN. eigenfaces dan deteksi muka dengan color thresholding akan mempunyai proses BAB 3 ANALISIS dan RANCANGAN 3.1 Analisa metode Secara garis besar, tahap pada pengenalan wajah dengan metode eigenfaces dan deteksi muka dengan color thresholding akan mempunyai proses yang dilakukan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. menggunakan PCA, kemudian penelitian yang menggunakan algoritma Fuzzy C-

BAB II TINJAUAN PUSTAKA. menggunakan PCA, kemudian penelitian yang menggunakan algoritma Fuzzy C- 8 BAB II TINJAUAN PUSTAKA 2.1 Studi Pendahuluan Sebelumnya telah ada penelitian tentang sistem pengenalan wajah 2D menggunakan PCA, kemudian penelitian yang menggunakan algoritma Fuzzy C- Means dan jaringan

Lebih terperinci

PENGENALAN WAJAH MENGGUNAKAN ALGORITMA EIGENFACE DAN EUCLIDEAN DISTANCE

PENGENALAN WAJAH MENGGUNAKAN ALGORITMA EIGENFACE DAN EUCLIDEAN DISTANCE PENGENALAN WAJAH MENGGUNAKAN ALGORITMA EIGENFACE DAN EUCLIDEAN DISTANCE Widodo Muda Saputra, Helmie Arif Wibawa, S.Si, M.Cs, dan Nurdin Bahtiar, S.Si, M.T Fakultas Sains dan Matematika, Jurusan Ilmu Komputer

Lebih terperinci

SISTEM PENGENALAN WAJAH MENGGUNAKAN WEBCAM UNTUK ABSENSI DENGAN METODE TEMPLATE MATCHING

SISTEM PENGENALAN WAJAH MENGGUNAKAN WEBCAM UNTUK ABSENSI DENGAN METODE TEMPLATE MATCHING SISTEM PENGENALAN WAJAH MENGGUNAKAN WEBCAM UNTUK ABSENSI DENGAN METODE TEMPLATE MATCHING Mohamad Aditya Rahman, Ir. Sigit Wasista, M.Kom Jurusan Teknik Elektronika, Politeknik Elektronika Negeri Surabaya

Lebih terperinci

BAB 4 HASIL DAN PEMBAHASAN

BAB 4 HASIL DAN PEMBAHASAN 68 BAB 4 HASIL DAN PEMBAHASAN 4.1. Uji Algoritma Pengujian dilakukan untuk mendapatkan algoritma yang paling optimal dari segi kecepatan dan tingkat akurasi yang dapat berjalan secara real time pada smartphone

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang

BAB 1 PENDAHULUAN 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Seiring dengan perkembangan teknologi informasi, kemajuan di bidang pengembangan aplikasi sedang mendapatkan perhatian penting bagi perkembangan teknologi informasi.

Lebih terperinci

BAB I PENDAHULUAN. telinga, wajah, infrared, gaya berjalan, geometri tangan, telapak tangan, retina,

BAB I PENDAHULUAN. telinga, wajah, infrared, gaya berjalan, geometri tangan, telapak tangan, retina, BAB I PENDAHULUAN 1.1 Latar Belakang Sistem biometrika merupakan teknologi pengenalan diri dengan menggunakan bagian tubuh atau perilaku manusia. Sidik jari, tanda tangan, DNA, telinga, wajah, infrared,

Lebih terperinci

PENGENALAN WAJAH MENGGUNAKAN METODE LINEAR DISCRIMINANT ANALYSIS DAN K NEAREST NEIGHBOR

PENGENALAN WAJAH MENGGUNAKAN METODE LINEAR DISCRIMINANT ANALYSIS DAN K NEAREST NEIGHBOR PENGENALAN WAJAH MENGGUNAKAN METODE LINEAR DISCRIMINANT ANALYSIS DAN K NEAREST NEIGHBOR 1 Fandiansyah, 2 Jayanti Yusmah Sari, 3 Ika Purwanti Ningrum Jurusan Teknik Informatika, Fakultas Teknik Universitas

Lebih terperinci

BAB 3 PROSEDUR DAN METODOLOGI

BAB 3 PROSEDUR DAN METODOLOGI BAB 3 PROSEDUR DAN METODOLOGI 3.1 Analisa Masalah Kemajuan teknologi di bidang multimedia, menuntut kemampuan sistem yang lebih baik dan lebih maju dari sebelumnya, sesuai dengan perkembangan teknologi.

Lebih terperinci

PEMANFAATAAN BIOMETRIKA WAJAH PADA SISTEM PRESENSI MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK

PEMANFAATAAN BIOMETRIKA WAJAH PADA SISTEM PRESENSI MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK PEMANFAATAAN BIOMETRIKA WAJAH PADA SISTEM PRESENSI MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK Program Studi Matematika FMIPA Universitas Negeri Semarang Abstrak. Saat ini, banyak sekali alternatif dalam

Lebih terperinci

BAB III PERANCANGAN PERANGKAT LUNAK

BAB III PERANCANGAN PERANGKAT LUNAK BAB III PERANCANGAN PERANGKAT LUNAK 3.1. Sistem Pengenalan Gender Sistem pengenalan gender dalam skripsi ini dibuat dengan membandingkan 3 buah metode, yaitu 1 metode tanpa ekstraksi fitur yaitu subtraction

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Desain penelitian ini mengacu pada tahapan proses yang ada pada sistem

BAB III METODOLOGI PENELITIAN. Desain penelitian ini mengacu pada tahapan proses yang ada pada sistem 21 BAB III METODOLOGI PENELITIAN 3.1 Desain Penelitian Desain penelitian ini mengacu pada tahapan proses yang ada pada sistem pengenalan wajah ini yaitu input, proses dan output. Dengan input bahan penelitian

Lebih terperinci

Penerapan Metode Phase Congruency Image (PCI) dalam Pengenalan Citra Wajah secara Otomatis

Penerapan Metode Phase Congruency Image (PCI) dalam Pengenalan Citra Wajah secara Otomatis Penerapan Metode Phase Congruency Image (PCI) dalam Pengenalan Citra Wajah secara Otomatis Puspita Ayu Ningsih Putri. SY, Wirawan, Hendra Kusuma Jurusan Teknik Elektro FTI, Institut Teknologi Sepuluh Nopember

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi komputer sekarang sangat pesat, ini ditandai dengan hampir semua pengolahan data dan informasi telah dilakukan dengan komputer. Hal ini diakibatkan

Lebih terperinci

Principal Component Analysis

Principal Component Analysis Perbandingan Ukuran Jarak pada Proses Pengenalan Wajah Berbasis Principal Component Analysis (PCA) Pembimbing: Dr.Ir.Wirawan, DEA (Ir. Hendra Kusuma, M.Eng) Nimas Setya Yaniar 2208.100.616 POSE (posisi

Lebih terperinci

BAB 3 PEMBAHASAN. 3.1 Sistem Absensi Berbasis Webcam

BAB 3 PEMBAHASAN. 3.1 Sistem Absensi Berbasis Webcam BAB PEMBAHASAN.1 Sistem Absensi Berbasis Webcam Sistem absensi berbasis webcam adalah sistem yang melakukan absensi karyawan berdasarkan input citra hasil capture webcam. Sistem akan melakukan posting

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM 3.1 Definisi Masalah Dalam beberapa tahun terakhir perkembangan Computer Vision terutama dalam bidang pengenalan wajah berkembang pesat, hal ini tidak terlepas dari pesatnya

Lebih terperinci

BAB 1 PENDAHULUAN 1-1

BAB 1 PENDAHULUAN 1-1 BAB 1 PENDAHULUAN Bab ini menjelaskan mengenai Latar Belakang, Identifikasi Masalah, Tujuan Tugas Akhir, Lingkup Tugas Akhir, Metodologi Tugas Akhir dan Sistematika Penulisan Tugas Akhir. 1.1 Latar Belakang

Lebih terperinci

APLIKASI PENGENALAN WAJAH MENGGUNAKAN METODE EIGENFACE DENGAN BAHASA PEMROGRAMAN JAVA

APLIKASI PENGENALAN WAJAH MENGGUNAKAN METODE EIGENFACE DENGAN BAHASA PEMROGRAMAN JAVA APLIKASI PENGENALAN WAJAH MENGGUNAKAN METODE EIGENFACE DENGAN BAHASA PEMROGRAMAN JAVA Anita T. Kurniawati dan Afrilyan Ruli Dwi Rama Teknik Informatika-ITATS, Jl. Arief Rahman Hakim 100 Surabaya Email:

Lebih terperinci

PERBANDINGAN METODE KDDA MENGGUNAKAN KERNEL RBF, KERNEL POLINOMIAL DAN METODE PCA UNTUK PENGENALAN WAJAH AKIBAT VARIASI PENCAHAYAAN ABSTRAK

PERBANDINGAN METODE KDDA MENGGUNAKAN KERNEL RBF, KERNEL POLINOMIAL DAN METODE PCA UNTUK PENGENALAN WAJAH AKIBAT VARIASI PENCAHAYAAN ABSTRAK PERBANDINGAN METODE KDDA MENGGUNAKAN KERNEL RBF, KERNEL POLINOMIAL DAN METODE PCA UNTUK PENGENALAN WAJAH AKIBAT VARIASI PENCAHAYAAN Jurusan Teknik Elektro, Fakultas Teknik Jl. Prof. Drg. Suria Sumantri

Lebih terperinci

Sistem Pengenal Wajah Manusia untuk Personalisasi Perintah pada Robot

Sistem Pengenal Wajah Manusia untuk Personalisasi Perintah pada Robot Sistem Pengenal Wajah Manusia untuk Personalisasi Perintah pada Robot Mara Nugraha Teknik Informatika Universitas Gunadarma Jl. Margonda Raya 100, Depok [email protected] Abstrak Pengenalan

Lebih terperinci

ANALISIS DAN PERANCANGAN SISTEM

ANALISIS DAN PERANCANGAN SISTEM ANALISIS DAN PERANCANGAN SISTEM 3.1 Analisis Masalah Dalam mengetahui suatu bahan jenis kulit cukup sulit karena bahan jenis kulit memeliki banyak jenis. Setiap permukaan atau tekstur dari setiap jenisnya

Lebih terperinci

TEKNIK PENGENALAN WAJAH DENGAN ALGORITMA PCA BERBASIS SELEKSI EIGENVECTOR

TEKNIK PENGENALAN WAJAH DENGAN ALGORITMA PCA BERBASIS SELEKSI EIGENVECTOR TEKNIK PENGENALAN WAJAH DENGAN ALGORITMA PCA BERBASIS SELEKSI EIGENVECTOR DWI ACHTI NOVIATUR R. 2208100656 Dosen Pembimbing : Dr. Ir. Wirawan, DEA (Ir. Hendra Kusuma, M.Eng) PIE Problem Representasi Citra

Lebih terperinci

Pengenalan Bahasa Isyarat Tangan Menggunakan Metode PCA dan Haar-Like Feature

Pengenalan Bahasa Isyarat Tangan Menggunakan Metode PCA dan Haar-Like Feature Pengenalan Bahasa Isyarat Tangan Menggunakan Metode PCA dan Haar-Like Feature Dosen Pembimbing : 1) Prof.Dr.Ir. Mauridhi Hery Purnomo M.Eng. 2) Dr. I Ketut Eddy Purnama ST., MT. Oleh : ATIK MARDIYANI (2207100529)

Lebih terperinci

BAB I PENDAHULUAN. dengan memanfaatkan ciri wajah yang telah tersimpan pada database atau wajah

BAB I PENDAHULUAN. dengan memanfaatkan ciri wajah yang telah tersimpan pada database atau wajah BAB I 1. asd PENDAHULUAN 1.1. Latar Belakang Masalah Dewasa ini perkembangan teknologi di bidang informasi khususnya dengan menggunakan komputer telah berkembang, hal ini menyebabkan banyak aplikasi baru

Lebih terperinci

BAB III ANALISA DAN PERANCANGAN

BAB III ANALISA DAN PERANCANGAN BAB III ANALISA DAN PERANCANGAN 3.1 Analisa Sistem Tahapan analisa merupakan tahapan awal dalam perekayasaan perangkat lunak. Pada tahapan ini menjelaskan apa yang dilakukan sistem, siapa yang menggunakannya

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Setiap manusia diciptakan dengan bentuk fisik dan rupa yang berbeda sehingga manusia tersebut dapat dibedakan satu dengan yang lainnya. Pada teknologi informasi

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Sistem pengenalan wajah adalah aplikasi dari pengolahan citra yang dapat mengidentifikasi seseorang melalui citra digital atau frame video. Sistem pengenalan wajah

Lebih terperinci

SISTEM KONTROL AKSES BERBASIS REAL TIME FACE RECOGNITION DAN GENDER INFORMATION

SISTEM KONTROL AKSES BERBASIS REAL TIME FACE RECOGNITION DAN GENDER INFORMATION SISTEM KONTROL AKSES BERBASIS REAL TIME FACE RECOGNITION DAN GENDER INFORMATION Putri Nurmala 1 ; Wikaria Gazali 2 ; Widodo Budiharto 3 1, 2 Mathematics and Statistics Department, School of Computer Science,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Folder Sebuah directory (folder) adalah seperti ruangan-ruangan (kamar-kamar) pada sebuah komputer yang berfungsi sebagai tempat penyimpanan dari berkas-berkas (file). Sedangkan

Lebih terperinci

Korelasi Jarak Wajah Terhadap Nilai Akurasi Pada Sistem Pengenalan Wajah Menggunakan Stereo Vision Camera

Korelasi Jarak Wajah Terhadap Nilai Akurasi Pada Sistem Pengenalan Wajah Menggunakan Stereo Vision Camera Seminar Nasional Teknologi Informasi dan Komunikasi Terapan (SEMANTIK) 2015 7 Korelasi Jarak Wajah Terhadap Nilai Akurasi Pada Sistem Pengenalan Wajah Menggunakan Stereo Vision Camera Edy Winarno *), Wiwien

Lebih terperinci

BAB 3 ANALISIS DAN PERANCANGAN

BAB 3 ANALISIS DAN PERANCANGAN BAB 3 ANALISIS DAN PERANCANGAN 3.1 Analisis Permasalahan Aplikasi ini tergolong sebagai sistem kecerdasan buatan karena akan menggantikan peran seseorang yang mampu mengenali ekspresi wajah. Tiga ekspresi

Lebih terperinci

Implementasi Pengenalan Wajah Menggunakan PCA (Principal Component Analysis)

Implementasi Pengenalan Wajah Menggunakan PCA (Principal Component Analysis) IJEIS, Vol.3, No.2, October 2013, pp. 175~184 ISSN: 2088-3714 175 Implementasi Pengenalan Wajah Menggunakan PCA (Principal Component Analysis) Dian Esti Pratiwi* 1, Agus Harjoko 2 1 Program Studi Elektronika

Lebih terperinci

APLIKASI PENGENALAN WAJAH UNTUK VALIDASI PESERTA UJIAN ONLINE MENGGUNAKAN METODE HAAR CASCADE DAN EIGEN FACE VECTOR

APLIKASI PENGENALAN WAJAH UNTUK VALIDASI PESERTA UJIAN ONLINE MENGGUNAKAN METODE HAAR CASCADE DAN EIGEN FACE VECTOR APLIKASI PENGENALAN WAJAH UNTUK VALIDASI PESERTA UJIAN ONLINE MENGGUNAKAN METODE HAAR CASCADE DAN EIGEN FACE VECTOR Mika Tandililing Program Studi Teknik Komputer, STMIK Profesional [email protected]

Lebih terperinci

Pengenalan Wajah Menggunakan Two Dimensional Linier Discriminant Analysis Berbasis Feature Fussion Strategy

Pengenalan Wajah Menggunakan Two Dimensional Linier Discriminant Analysis Berbasis Feature Fussion Strategy Pengenalan Wajah Menggunakan Two Dimensional Linier Discriminant Analysis Berbasis Feature Fussion Strategy Benny Afandi Institut Teknologi Sepuluh Nopember Surabaya [email protected] Sahmanbanta Sinulingga

Lebih terperinci

UJI KINERJA FACE RECOGNITION MENGGUNAKAN EIGENFACES

UJI KINERJA FACE RECOGNITION MENGGUNAKAN EIGENFACES 1 Uji Kinerja Face Recognition Menggunakan Eigenfaces UJI KINERJA FACE RECOGNITION MENGGUNAKAN EIGENFACES ABDUL AZIS ABDILLAH 1 1STKIP Surya, Tangerang, Banten, [email protected] Abstrak. Pada paper

Lebih terperinci

SIMULASI PENGENALAN WAJAH MANUSIA MENGGUNAKAN METODE ANALISIS DISKRIMINAN LINEAR DUA DIMENSI (2D-LDA) DENGAN JARAK MANHATTAN, CANBERRA DAN EUCLIDEAN

SIMULASI PENGENALAN WAJAH MANUSIA MENGGUNAKAN METODE ANALISIS DISKRIMINAN LINEAR DUA DIMENSI (2D-LDA) DENGAN JARAK MANHATTAN, CANBERRA DAN EUCLIDEAN SIMULASI PENGENALAN WAJAH MANUSIA MENGGUNAKAN METODE ANALISIS DISKRIMINAN LINEAR DUA DIMENSI (2D-LDA) DENGAN JARAK MANHATTAN, CANBERRA DAN EUCLIDEAN Rivaldi MHS *), Ajub Ajulian Zahra, Imam Santoso, and

Lebih terperinci

REALISASI SISTEM PENJEJAKAN WAJAH DENGAN ALGORITMA FISHERFACE BERBASIS RASPBERRY PI ABSTRAK

REALISASI SISTEM PENJEJAKAN WAJAH DENGAN ALGORITMA FISHERFACE BERBASIS RASPBERRY PI ABSTRAK REALISASI SISTEM PENJEJAKAN WAJAH DENGAN ALGORITMA FISHERFACE BERBASIS RASPBERRY PI Disusun oleh : Natalio Andor Pangihutan Sihite (1022052) Jurusan Teknik Elektro, Fakultas Teknik, Universitas Kristen

Lebih terperinci

PENGAMAN RUMAH DENGAN SISTEM FACE RECOGNITION SECARA REAL TIME MENGGUNAKAN METODE PRINCIPAL COMPONENT ANALYSIS

PENGAMAN RUMAH DENGAN SISTEM FACE RECOGNITION SECARA REAL TIME MENGGUNAKAN METODE PRINCIPAL COMPONENT ANALYSIS PENGAMAN RUMAH DENGAN SISTEM FACE RECOGNITION SECARA REAL TIME MENGGUNAKAN METODE PRINCIPAL COMPONENT ANALYSIS Sinar Monika 1, Abdul Rakhman 1, Lindawati 1 1 Program Studi Teknik Telekomunikasi, Jurusan

Lebih terperinci

Hasil Ekstraksi Algoritma Principal Component Analysis (PCA) untuk Pengenalan Wajah dengan Bahasa Pemograman Java Eclipse IDE

Hasil Ekstraksi Algoritma Principal Component Analysis (PCA) untuk Pengenalan Wajah dengan Bahasa Pemograman Java Eclipse IDE Hasil Ekstraksi Algoritma Principal Component Analysis (PCA) untuk Pengenalan dengan Bahasa Pemograman Java Eclipse IDE Fiqih Ismawan Dosen Program Studi Teknik Informatika, FMIPA Universitas Indraprasta

Lebih terperinci

BAB 3 PERANCANGAN SISTEM. Perancangan sistem dimulai dari penempatan posisi kamera dengan posisi yang

BAB 3 PERANCANGAN SISTEM. Perancangan sistem dimulai dari penempatan posisi kamera dengan posisi yang 23 BAB 3 PERANCANGAN SISTEM 3.1 Deskripsi Sistem Perancangan sistem dimulai dari penempatan posisi kamera dengan posisi yang sesuai kemudian dihubungkan dengan komputer yang akan mengolah gambar seperti

Lebih terperinci

BAB I PERSYARATAN PRODUK

BAB I PERSYARATAN PRODUK BAB I PERSYARATAN PRODUK Berkembangnya teknologi informasi pasti menimbulkan masalah dalam pengamanan informasi. Salah satu cara untuk mengamankan informasi dapat dilakukan dengan autentikasi terhadap

Lebih terperinci

APLIKASI IDENTIFIKASI ISYARAT TANGAN SEBAGAI PENGOPERASIAN E-KIOSK

APLIKASI IDENTIFIKASI ISYARAT TANGAN SEBAGAI PENGOPERASIAN E-KIOSK APLIKASI IDENTIFIKASI ISYARAT TANGAN SEBAGAI PENGOPERASIAN E-KIOSK Wiratmoko Yuwono Jurusan Teknologi Informasi Politeknik Elektronika Negeri Surabaya-ITS Jl. Raya ITS, Kampus ITS, Sukolilo Surabaya 60111

Lebih terperinci

PERBANDINGAN METODE MINIMUM DISTANCE PATTERN CLASSIFIER DAN NEURAL NETWORK BACKPROPAGATION DALAM MENGENALI WAJAH MANUSIA DENGAN EKSPRESI YANG BERBEDA

PERBANDINGAN METODE MINIMUM DISTANCE PATTERN CLASSIFIER DAN NEURAL NETWORK BACKPROPAGATION DALAM MENGENALI WAJAH MANUSIA DENGAN EKSPRESI YANG BERBEDA PERBANDINGAN METODE MINIMUM DISTANCE PATTERN CLASSIFIER DAN NEURAL NETWORK BACKPROPAGATION DALAM MENGENALI WAJAH MANUSIA DENGAN EKSPRESI YANG BERBEDA Bharasaka Krisnandhika 51412445 Dr. Dewi Agushinta

Lebih terperinci

PERANCANGAN PERGERAKAN WEBCAM BERDASARKAN PERUBAHAN POSISI WAJAH MENGGUNAKAN METODE EIGENFACE BERBASIS RASPBERRY PI

PERANCANGAN PERGERAKAN WEBCAM BERDASARKAN PERUBAHAN POSISI WAJAH MENGGUNAKAN METODE EIGENFACE BERBASIS RASPBERRY PI PERANCANGAN PERGERAKAN WEBCAM BERDASARKAN PERUBAHAN POSISI WAJAH MENGGUNAKAN METODE EIGENFACE BERBASIS RASPBERRY PI Disusun oleh : Regina Vania Cahyadi (1122003) Jurusan Teknik Elektro, Fakultas Teknik,

Lebih terperinci

... BAB 2 LANDASAN TEORI. 2.1 Citra

... BAB 2 LANDASAN TEORI. 2.1 Citra 6 BAB 2 LANDASAN TEORI 2.1 Citra Citra atau image adalah suatu matriks dimana indeks baris dan kolomnya menyatakan suatu titik pada citra tersebut dan elemen matriksnya (yang disebut sebagai elemen gambar

Lebih terperinci

Pengenalan Wajah Menggunakan Metode Linear Discriminant Analysis dan k Nearest Neighbor

Pengenalan Wajah Menggunakan Metode Linear Discriminant Analysis dan k Nearest Neighbor Pengenalan Wajah Menggunakan Metode Linear Discriminant Analysis dan k Nearest Neighbor Fandiansyah 1, Jayanti Yusmah Sari 2, Ika Purwanti Ningrum 3, Jurusan Teknik Informatika, Fakultas Teknik, Universitas

Lebih terperinci

RANCANG BANGUN SISTEM PENGENALAN WAJAH DENGAN METODE PRINCIPAL COMPONENT ANALYSIS

RANCANG BANGUN SISTEM PENGENALAN WAJAH DENGAN METODE PRINCIPAL COMPONENT ANALYSIS RANCANG BANGUN SISTEM PENGENALAN WAJAH DENGAN METODE PRINCIPAL COMPONENT ANALYSIS Salamun 1, Firman Wazir 2 Program Studi Teknik Informatika, Fakultas Teknik, Univbersitas Abdurrab Pekanbaru Jl. Riau Ujung

Lebih terperinci

PENGENALAN WAJAH MANUSIA DENGAN METODE PRINCIPLE COMPONENT ANALYSIS (PCA)

PENGENALAN WAJAH MANUSIA DENGAN METODE PRINCIPLE COMPONENT ANALYSIS (PCA) ISSN: 1693-6930 177 PENGENALAN WAJAH MANUSIA DENGAN MEODE PRINCIPLE COMPONEN ANALYSIS (PCA) Murinto Program Studi eknik Informatika Universitas Ahmad Dahlan Yogyakarta Kampus III UAD Jl Prof Dr. Supomo,

Lebih terperinci

Teknik pengenalan wajah berbasis fitur local binary pattern (LBP)

Teknik pengenalan wajah berbasis fitur local binary pattern (LBP) Teknik pengenalan wajah berbasis fitur local binary pattern (LBP) Oleh: Eko Wahyudi NRP. 2208 100 629 Dosen Pembimbing: Dr. Ir. Wirawan, DEA Ir. Hendra Kusuma, M.Eng Latar Belakang ( Permasalahan Sistem

Lebih terperinci

Klasifikasi dan Pengenalan Pola

Klasifikasi dan Pengenalan Pola Klasifikasi dan Pengenalan Pola 1 Features Vector Separability Measures Pada pertemuan yang lalu, kekuatan ciri untuk membedakan kelas diukur secara individual, yaitu menggunakan FDR. Kekuatan kombinasi

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Definisi Citra, Pengolahan Citra, dan Pengenalan Pola

BAB 2 LANDASAN TEORI. 2.1 Definisi Citra, Pengolahan Citra, dan Pengenalan Pola BAB 2 LANDASAN TEORI 2.1 Definisi Citra, Pengolahan Citra, dan Pengenalan Pola Citra dapat didefinisikan sebagai fungsi dua dimensi dari f(x,y) di mana x dan y adalah koordinat bidang dan amplitudo dari

Lebih terperinci

Menurut Ming-Hsuan, Kriegman dan Ahuja (2002), faktor-faktor yang mempengaruhi sebuah sistem pengenalan wajah dapat digolongkan sebagai berikut:

Menurut Ming-Hsuan, Kriegman dan Ahuja (2002), faktor-faktor yang mempengaruhi sebuah sistem pengenalan wajah dapat digolongkan sebagai berikut: BAB 2 LANDASAN TEORI Bab ini akan menjelaskan berbagai landasan teori yang digunakan oleh penulis dalam penelitian ini dan menguraikan hasil studi literatur yang telah dilakukan penulis. Bab ini terbagi

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM 18 BAB III PERANCANGAN SISTEM 3.1 PERANCANGAN ALAT Pada tugas akhir yang mengambil judul Implementasi Face Recognition Sebagai Pengaman Rumah Yang Terkonfirmasi Melalui Android, sistem utama yang di bahas

Lebih terperinci

BAB 3 ANALISIS DAN PERANCANGAN. Tahap & Hasil Langkah Penelitian Literatur & Referensi. Memahami konsep deteksi wajah

BAB 3 ANALISIS DAN PERANCANGAN. Tahap & Hasil Langkah Penelitian Literatur & Referensi. Memahami konsep deteksi wajah BAB 3 ANALISIS DAN PERANCANGAN Pada bab ini berisi tentang analisis dan perancangan terhadap permasalahan yang sedang diteliti seperti analisis kebutuhan data dan informasi serta teknik dan peralatan yang

Lebih terperinci

BAB 1 PENDAHULUAN. Perkembangan ilmu pengetahuan di segala bidang dalam era globalisasi saat ini begitu

BAB 1 PENDAHULUAN. Perkembangan ilmu pengetahuan di segala bidang dalam era globalisasi saat ini begitu BAB 1 PENDAHULUAN 1.1 Latar Belakang Perkembangan ilmu pengetahuan di segala bidang dalam era globalisasi saat ini begitu pesat.terutama dalam bidang IT yang semakin maju seiring dengan kebutuhan pemakai

Lebih terperinci

LAPORAN PENELITIAN DOSEN MUDA. Sistem Identifikasi Teroris Dengan Pelacakan Dan Pengenalan Wajah

LAPORAN PENELITIAN DOSEN MUDA. Sistem Identifikasi Teroris Dengan Pelacakan Dan Pengenalan Wajah LAPORAN PENELITIAN DOSEN MUDA Sistem Identifikasi Teroris Dengan Pelacakan Dan Pengenalan Wajah Oleh : Endah Sudarmilah, S.T, M.Eng Umi Fadlillah, S.T Dibiayai oleh Koordinasi Perguruan Tinggi Swasta Wilayah

Lebih terperinci

ANALISIS DAN SIMULASI SISTEM PENGENALAN WAJAH DENGAN METODE FISHERFACE BERBASIS OUTDOORVIDEO.

ANALISIS DAN SIMULASI SISTEM PENGENALAN WAJAH DENGAN METODE FISHERFACE BERBASIS OUTDOORVIDEO. ANALISIS DAN SIMULASI SISTEM PENGENALAN WAJAH DENGAN METODE FISHERFACE BERBASIS OUTDOORVIDEO Nurani Fitriyah 1),Dr. Ir. BambangHidayat 2),SuciAulia, ST,MT 3) 1 FakultasTeknikElektro, Telkom University

Lebih terperinci

DIDIK SETIYADI. Dosen Tetap STMIK Eresha RIYADI JIMMY ISKANDAR

DIDIK SETIYADI. Dosen Tetap STMIK Eresha   RIYADI JIMMY ISKANDAR PENERAPAN ALGORITMA LINEAR DISCRIMINANT ANALYSIS (LDA) UNTUK PENGENALAN WAJAH SEBAGAI PEMANTAU KEHADIRAN KARYAWAN (STUDI KASUS : PERGURUAN TINGGI WIDYA DHARMA PONTIANAK) DIDIK SETIYADI Dosen Tetap STMIK

Lebih terperinci

Pengenalan Wajah Dengan Algoritma Canonical Correlation Analysis (CCA)

Pengenalan Wajah Dengan Algoritma Canonical Correlation Analysis (CCA) JURNAL EKNIK IS ol 1, (Sept, 212) ISSN: 231-9271 A-439 Pengenalan Wajah Dengan Algoritma Canonical Correlation Analysis (CCA) Ratna Dwi Kartika Rini, Wirawan dan Hendra Kusuma Jurusan eknik Elektro-FI,

Lebih terperinci

Implementasi Principal Component Analysis (PCA) Untuk Pengenalan Wajah Manusia

Implementasi Principal Component Analysis (PCA) Untuk Pengenalan Wajah Manusia Nusantara of Engineering/Vol. 2/ No. 1/ISSN: 2355-6684 65 Implementasi Principal Component Analysis (PCA) Untuk Pengenalan Wajah Manusia Rina Firliana, Resty Wulanningrum, Wisnu Sasongko Jurusan Teknik

Lebih terperinci

Pengembangan Program Simulator Frame Kacamata Secara Real-Time 3D Face Tracking dengan Menggunakan Augmented Reality

Pengembangan Program Simulator Frame Kacamata Secara Real-Time 3D Face Tracking dengan Menggunakan Augmented Reality Pengembangan Program Simulator Frame Kacamata Secara Real-Time 3D Face Tracking dengan Menggunakan Augmented Reality Endang Setyati Information Technology Department Sekolah Tinggi Teknik Surabaya [email protected],

Lebih terperinci

Rancang Bangun Prototipe Aplikasi Pengenalan Wajah untuk Sistem Absensi Alternatif dengan Metode Haar Like Feature dan Eigenface

Rancang Bangun Prototipe Aplikasi Pengenalan Wajah untuk Sistem Absensi Alternatif dengan Metode Haar Like Feature dan Eigenface Rancang Bangun Prototipe Aplikasi Pengenalan Wajah untuk Sistem Absensi Alternatif dengan Metode Haar Like Feature dan Eigenface Wahyu Sulistiyo, Budi Suyanto, Idhawati Hestiningsih, Mardiyono, Sukamto

Lebih terperinci

Program Aplikasi Komputer Pengenalan Angka Dengan Pose Jari Tangan Sebagai Media Pembelajaran Interaktif Anak Usia Dini

Program Aplikasi Komputer Pengenalan Angka Dengan Pose Jari Tangan Sebagai Media Pembelajaran Interaktif Anak Usia Dini Program Aplikasi Komputer Pengenalan Angka Dengan Pose Jari Tangan Sebagai Media Pembelajaran Interaktif Anak Usia Dini Wawan Kurniawan Jurusan PMIPA, FKIP Universitas Jambi [email protected] Abstrak

Lebih terperinci

BAB IV ANALISA DAN PERANCANGAN

BAB IV ANALISA DAN PERANCANGAN BAB IV ANALISA DAN PERANCANGAN 4.1 Analisa Analisa merupakan tahapan yang sangat penting dalam melakukan penelitian. Tahap analisa yaitu proses pembahasan persoalan atau permasalahan yang dilakukan sebelum

Lebih terperinci

PENGENALAN WAJAH MENGGUNAKAN METODE DIAGONAL PRINCIPAL COMPONENT ANALYSIS. Skripsi

PENGENALAN WAJAH MENGGUNAKAN METODE DIAGONAL PRINCIPAL COMPONENT ANALYSIS. Skripsi PENGENALAN WAJAH MENGGUNAKAN METODE DIAGONAL PRINCIPAL COMPONENT ANALYSIS Skripsi Di susun oleh : M. RIDHO MAJIDI (0934010056) PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI UNIVESITAS PEMBANGUNAN

Lebih terperinci

BAB III METODE PENELITIAN. dan bahan, agar mendapatkan hasil yang baik dan terstruktur. Processor Intel Core i3-350m.

BAB III METODE PENELITIAN. dan bahan, agar mendapatkan hasil yang baik dan terstruktur. Processor Intel Core i3-350m. BAB III METODE PENELITIAN 3.1 Alat dan Bahan Untuk menunjang penelitian yang akan dilakukan, maka diperlukan alat dan bahan, agar mendapatkan hasil yang baik dan terstruktur. 3.1.1 Alat Penelitian Adapun

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISIS

BAB IV PENGUJIAN DAN ANALISIS BAB IV PENGUJIAN DAN ANALISIS Bab ini akan membahas tentang pengujian dan analisis sistem. Pada pengujian akan dijelaskan tentang kriteria pengujian serta analisis dari pengujian 4.1. Kriteria Pengujian

Lebih terperinci

BAB 3 METODOLOGI. seseorang. Hal inilah yang mendorong adanya perkembangan teknologi

BAB 3 METODOLOGI. seseorang. Hal inilah yang mendorong adanya perkembangan teknologi BAB 3 METODOLOGI 3.1. Kerangka Berpikir Pengenalan ekspresi wajah adalah salah satu bentuk representasi kecerdasan manusia yang dapat digunakan untuk mendeteksi kondisi emosi seseorang. Hal inilah yang

Lebih terperinci

Kombinasi KPCA dan Euclidean Distance untuk Pengenalan Citra Wajah

Kombinasi KPCA dan Euclidean Distance untuk Pengenalan Citra Wajah Kombinasi KPCA dan Euclidean Distance untuk Pengenalan Citra Wajah Rima Tri Wahyuningrum 1,2 Prodi Teknik Informatika, Fakultas Teknik, Universitas Trunojoyo Jl. Raya Telang, PO BOX 2 Kamal, Bangkalan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Landasan Teori 2.1.1 Artificial Intelligence Artificial intelligence merupakan salah satu bagian ilmu komputer yang membuat agar mesin (komputer) dapat melakukan pekerjaan seperti

Lebih terperinci

PERANCANGAN DAN IMPLEMENTASI KEAMANAN PINTU BERBASIS PENGENALAN WAJAH DENGAN METODE EIGENFACE

PERANCANGAN DAN IMPLEMENTASI KEAMANAN PINTU BERBASIS PENGENALAN WAJAH DENGAN METODE EIGENFACE 110 PERANCANGAN DAN IMPLEMENTASI KEAMANAN PINTU BERBASIS PENGENALAN WAJAH DENGAN METODE EIGENFACE Derian Indra Bramantio 1, Erwin Susanto 2, Ramdhan Nugraha 3 1, 2, 3 Fakultas Teknik Elektro, Universitas

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN SISTEM. keberadaan wajah secara langsung dari sebuah kamera. Dengan demikian

BAB III ANALISIS DAN PERANCANGAN SISTEM. keberadaan wajah secara langsung dari sebuah kamera. Dengan demikian BAB III ANALISIS DAN PERANCANGAN SISTEM 3.1. Metode Penelitian Penelitian ini menggunakan metode untuk mendeteksi posisi dan keberadaan wajah secara langsung dari sebuah kamera. Dengan demikian penelitian

Lebih terperinci

BAB 1 PENDAHULUAN. keakuratan dari penglihatan mesin membuka bagian baru dari aplikasi komputer.

BAB 1 PENDAHULUAN. keakuratan dari penglihatan mesin membuka bagian baru dari aplikasi komputer. 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Melihat perkembangan teknologi sekarang ini, penggunaan komputer sudah hampir menjadi sebuah bagian dari kehidupan harian kita. Semakin banyak muncul peralatan-peralatan

Lebih terperinci

BAB 3 ANALISIS DAN PERANCANGAN SISTEM

BAB 3 ANALISIS DAN PERANCANGAN SISTEM BAB 3 ANALISIS DAN PERANCANGAN SISTEM 3.1 Analisis Permasalahan Tahapan analisis terhadap suatu sistem dilakukan sebelum masuk ke tahapan perancangan. Tujuan dilakukannya analisis terhadap suatu sistem

Lebih terperinci

Pengenalan Pola/ Pattern Recognition

Pengenalan Pola/ Pattern Recognition Pengenalan Pola/ Pattern Recognition Linear Discriminant Analysis Imam Cholissodin S.Si., M.Kom. Pokok Pembahasan 1. Linear Discriminant Analysis (LDA) Pengertian Klasifikasi LDA Rumus Umum LDA 2. Case

Lebih terperinci