SIMULASI PENGENDALI P. I. D. FUZZY PADA SISTEM PENGATURAN KECEPATAN MOTOR ARUS SEARAH

dokumen-dokumen yang mirip
SISTEM PENGATURAN MOTOR DC MENGGUNAKAN PROPOTIONAL IINTEGRAL DEREVATIVE (PID) KONTROLER

SISTEM KENDALI POSISI MOTOR DC Oleh: Ahmad Riyad Firdaus Politeknik Batam

SIMULASI PENGENDALI KECEPATAN MOTOR DC DENGAN PENYEARAH TERKENDALI SEMI KONVERTER BERBASIS MATLAB/SIMULINK

PENERAPAN FUZZY LOGIC CONTROLLER UNTUK MEMPERTAHANKAN KESETABILAN SISTEM AKIBAT PERUBAHAN DEADTIME PADA SISTEM KONTROL PROSES DENGAN DEADTIME

BAB III PERANCANGAN DAN PEMBUATAN SISTEM. Gambar 3. 1 Diagram Blok Sistem Kecepatan Motor DC

IMPLEMENTASI MICROKONTROLLER UNTUK SISTEM KENDALI KECEPATAN BRUSHLESS DC MOTOR MENGGUNAKAN ALGORITMA HYBRID PID FUZZY

PERENCANAAN KONTROL PID PADA MOTOR INDUKSI BERBASIS MATLAB SIMULINK

BAB I PENDAHULUAN. menggerakan belt conveyor, pengangkat beban, ataupun sebagai mesin

Politeknik Elektronika Negeri Surabaya ITS Kampus ITS Sukolilo,Surabaya

BAB III METODA PENELITIAN

ANALISA SISTEM KENDALI FUZZY PADA CONTINUOUSLY VARIABLE TRANSMISSION (CVT) DENGAN DUA PENGGERAK PUSH BELT UNTUK MENINGKATKAN KINERJA CVT

BAB III PERANCANGAN SISTEM

Hamzah Ahlul Fikri Jurusan Tehnik Elektro, FT, Unesa,

Rancang Bangun Pengatur Tegangan Otomatis pada Generator Ac 1 Fasa Menggunakan Kendali PID (Proportional Integral Derivative)

BAB I PENDAHULUAN Latar Belakang

BAB III PERANCANGAN DAN PEMBUATAN ALAT Flow Chart Perancangan dan Pembuatan Alat. Mulai. Tinjauan pustaka

DESAIN PENGATURAN PUTARAN MESIN DC MENGGUNAKAN PID (PROPORTIONAL INTEGRAL DERIVATIVE) DENGAN METODE ZIEGLER-NICHOLS

Perancangan Sistem Kontrol PID Untuk Pengendali Sumbu Azimuth Turret Pada Turret-gun Kaliber 20mm

FUZZY LOGIC UNTUK KONTROL MODUL PROSES KONTROL DAN TRANSDUSER TIPE DL2314 BERBASIS PLC

Analisa Pengendalian Kecepatan Motor DC Menggunakan Pengendali Hybrid SMC dan Pid dengan Metode Heuristik

PERANCANGAN PENGENDALI POSISI LINIER UNTUK MOTOR DC DENGAN MENGGUNAKAN PID

KONTROL PROPORSIONAL INTEGRAL DERIVATIF (PID) UNTUK MOTOR DC MENGGUNAKAN PERSONAL COMPUTER

DAFTAR ISI ABSTRAK... DAFTAR ISI...

Simulasi Control System Design dengan Scilab dan Scicos

Pengaturan Kecepatan pada Motor DC Shunt Menggunakan Successive Sliding Mode Control

Pengaturan Kecepatan Motor DC Menggunakan Kendali Hybrid PID-Fuzzy

Kontrol Kecepatan Motor Induksi Menggunakan Metode PID-Fuzzy

Analisis Penalaan Kontroller PID pada Simulasi Kendali Kecepatan Putaran Motor DC

BAB II DASAR TEORI. Gambar 2.1 Sensor Ultrasonik HCSR04. Gambar 2.2 Cara Kerja Sensor Ultrasonik.

DAFTAR ISI. HALAMAN JUDUL... i. LEMBAR PENGESAHAN PEMBIMBING... ii. LEMBAR PENGESAHAN DOSEN PENGUJI... iii. HALAMAN PERSEMBAHAN...

RESPON SISTEM DITINJAU DARI PARAMETER KONTROLER PID PADA KONTROL POSISI MOTOR DC

Oleh : Kikin Khoirur Roziqin Dosen Pembimbing : Prof. Dr. Ir. Mochammad Ashari, M.Eng. Ir. Sjamsjul Anam, M.T.

ANALISIS PENGATURAN KECEPATAN MOTOR INDUKSI 3 FASA 20 HP DENGAN PERBANDINGAN KONTROL PI DAN PID

PERANCANGAN TRAINER PID ANALOG UNTUK MENGATUR KECEPATAN PUTARAN MOTOR DC

Pengontrolan Sistem Eksiter Untuk Kestabilan Tegangan Di Sistem Single Machine Infinite Bus (SMIB) Menggunakan Metode PID

Perancangan dan Simulasi Autotuning PID Controller Menggunakan Metoda Relay Feedback pada PLC Modicon M340. Renzy Richie /

Optimasi Pengaturan Kecepatan Motor DC Menggunakan FLC (Fuzzy Logic Controller)

Bambang Siswanto Pasca Sarjana Teknik Pengaturan

PENGENDALI PID. Teori kendali PID. Nama Pengendali PID berasal dari tiga parameter yg secara matematis dinyatakan sebagai berikut : dengan

PENGENDALIAN KECEPATAN MOTOR DC MENGGUNAKAN SENSOR ENCODER DENGAN KENDALI PI

SIMULATOR RESPON SISTEM UNTUK MENENTUKAN KONSTANTA KONTROLER PID PADA MEKANISME PENGENDALIAN TEKANAN

BAB III PERANCANGAN SISTEM

Aplikasi Kendali Fuzzy Logic untuk Pengaturan Kecepatan Motor Universal

PENGATURAN KECEPATAN MOTOR DC DENGAN DC DRIVE SINAMICS DCM PADA SIZE PRESS

BAB 4 SIMULASI DAN ANALISA

e (t) = sinyal kesalahan

SIMULASI KONTROL PID UNTUK MENGATUR PUTARAN MOTOR AC

Kata kunci : Governor, load frequency control, fuzzy logic controller

ek SIPIL MESIN ARSITEKTUR ELEKTRO

PERANCANGAN SISTEM KENDALI PADA KENDALIAN YANG DISERTAI KETIDAK PASTIAN

BAB III 1 METODE PENELITIAN

PENGENDALIAN PROSES EVAPORASI PADA PABRIK UREA MENGGUNAKAN KENDALI JARINGAN SARAF TIRUAN

DESAIN KONTROL PID UNTUK MENGATUR KECEPATAN MOTOR DC PADA ELECTRICAL CONTINUOUSLY VARIABLE TRANSMISSION (ECVT)

PENERAPAN LOGIKA FUZZY PADA PENGENDALI PID UNTUK PERANCANGAN PENGATURAN KECEPATAN MOTOR INDUKSI SEBAGAI PENGGERAK CONVEYOR

PERANCANGAN MODEL PREDICTIVE TORQUE CONTROL (MPTC) UNTUK PENGATURAN KECEPATAN MOTOR INDUKSI 3 PHASA DENGAN ROBUST STATOR FLUX OBSERVER

Pemodelan Dinamik dan Simulasi dari Motor Induksi Tiga Fasa Berdaya Kecil

Pengaturan Kecepatan Motor Induksi Tiga Fasa dengan Metode PID Self Tuning Berdasarkan Fuzzy pada Rancangan Mobil Hybrid

ANALISIS PENERAPAN PID CONTROLLER PADA AVR (AUTOMATIC VOLTAGE REGULATOR)

RANCANG BANGUN WHIRLPOOL DENGAN MENGGUNAKAN MIKROKONTROLLER

peralatan-peralatan industri maupun rumah tangga seperti pada fan, blower, pumps,

Syahrir Abdussamad, Simulasi Kendalian Flow Control Unit G.U.N.T Tipe 020 dengan Pengendali PID

3.5.1 Komponen jaringan syaraf Adaptif Neuro Fuzzy Inference System (ANFIS) Simulink MATLAB Mikrokontroler...

Kontrol PID Pada Miniatur Plant Crane

SISTEM PENGATURAN KECEPATAN MOTOR INDUKSI TIGA FASA BERBASIS PID TERTALA NICHOLS ZIEGLER SKRIPSI

BAB 4 SIMULASI DAN ANALISA

Perancangan dan Analisa Kendali Sistem Eksitasi Generator Tipe Arus Searah dengan Pidtool Model Paralel

Sistem Pengendali Tegangan pada Generator Induksi 3 Phasa Menggunakan Kontrol PI

Adaptive Fuzzy Untuk Menala Parameter PID pada Sistem Pengaturan Berjaringan. Nastiti Puspitosari L/O/G/O NETWORKED CONTROL SYSTEM (NCS)

Kendali Perancangan Kontroler PID dengan Metode Root Locus Mencari PD Kontroler Mencari PI dan PID kontroler...

TUGAS AKHIR RESUME PID. Oleh: Nanda Perdana Putra MN / 2010 Teknik Elektro Industri Teknik Elektro. Fakultas Teknik. Universitas Negeri Padang

Perancangan Pengendali Proportional-Integral Anti-Windup (Pi-Aw) pada Simulator Mobil Listrik untuk Kendali Kecepatan dan Torsi

Tabel 1. Parameter yang digunakan pada proses Heat Exchanger [1]

Desain Kendali pada Sistem Steam Drum Boiler dengan Memperhitungkan Control Valve

IMPLEMENTASI LOGIKA FUZZY UNTUK MENGENDALIKAN PH DAN LEVEL AIR KOLAM RENANG

DESAIN SISTEM KENDALI TEMPERATUR UAP SUPERHEATER DENGAN METODE FUZZY SLIDING MODE CONTROL

ABSTRAK. Inverted Pendulum, Proporsional Integral Derivative, Simulink Matlab. Kata kunci:

PERBAIKAN KARAKTERISTIK KONTROLLER TEMPERATUR PADA MODEL BOILER

PEMODELAN SISTEM PENGENDALI PID DENGAN METODE CIANCONE BERBASIS MATLAB SIMULINK PADA SISTEM PRESSURE PROCESS RIG

KENDALI KECEPATAN MOTOR DC DENGAN 4 KUADRAN. Skema konverter dc-dc 4-kuadran untuk pengendalian motor dc

ANALISIS HARMONISA YANG DIHASILKAN CYCLOCONVERTER DENGAN BERBAGAI PARAMETER

BAB 2 LANDASAN TEORI

DESAIN DAN IMPLEMENTASI MAXIMUM POWER POINT TRACKER (MPPT) MIKROKONTROLLER AVR. Dosen Pembimbing

Materi Presentasi: Pendahuluan Tinjauan Pustaka Perancangan Hasil Simulasi Kesimpulan

IMPLEMENTASI PENGONTROL PID PADA MODEL FISIS ELEKTRONIK

PEMODELAN SISTEM KONTROLER LOGIKA FUZZY PADA PENGATURAN KECEPATAN MOTOR INDUKSI MENGGUNAKAN PERANGKAT LUNAK MATLAB / SIMULINK

Pengendalian Kecepatan Motor Arus Searah Dengan Logika Fuzi

UJI PERFORMANSI PADA SISTEM KONTROL LEVEL AIR DENGAN VARIASI BEBAN MENGGUNAKAN KONTROLER PID

BAB IV HASIL PENGUJIAN DAN ANALISA

Sedangkan untuk hasil perhitungan dengan parameter tuning PID diperoleh :

Kata kunci: PI-Fuzzy, PCI 1710, DTC

IMPLEMENTASI KONTROL PID PADA PENDULUM TERBALIK MENGGUNAKAN PENGONTROL MIKRO AVR ATMEGA 16 ABSTRAK

JURUSAN TEKNIK FISIKA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER

Perbaikan Faktor Daya Motor Induksi 3 fase menggunakan Mikrokontroler 68HC11

Jurnal MIPA 39 (1)(2016): Jurnal MIPA.

KONVERTER KY INVERSE BIDIRECTIONAL SEBAGAI PENCATU DAYA KENDARAAN LISTRIK

Rancang Bangun Modul Praktikum Teknik Kendali dengan Studi Kasus pada Indentifikasi Sistem Motor-DC berbasis Arduino-Simulink Matlab

BAB II MOTOR INDUKSI 3 Ø

BAB III PERANCANGAN DAN PEMBUATAN SISTEM

Implementasi Kendali Logika Fuzzy pada Pengendalian Kecepatan Motor DC Berbasis Programmable Logic Controller

BAB I PENDAHULUAN 1.1 Latar Belakang

Transkripsi:

SIMULASI PENGENDALI P. I. D. FUZZY PADA SISTEM PENGATURAN KECEPATAN MOTOR ARUS SEARAH Bambang Widodo ABSTRACT Controller in a control system is important, the controller has function to tune the system output as much as possible with the reference or input. There fore, the controllers should have a rapod response un orde to maintain the same output the input. In the speed of direct current motor, the controller work to maintain a fixed speed even through there is a changing of loads. Fuzzy Proportional Integral Derivative (PID) controller which is combination of digital PID controller and fuzzy logic system. PID controller have parameter can changed through fuzzy rules. The simulation of speed control of direct current motor with fuzzy PID controller are intehded to find out how quickly a response to changes motor load Key words : Proportional Integral Derivative (PID) Controller, Fuzzy PID controller ABSTRAK Pengendali dalam sistem pengaturan merupakan peralatan yang penting, pengendali itu berfungsi untuk membuat keluaran sistem sedapat mungkin sama dengan acuan atau masuka, sehingga pengendali harus mempunyai respons yang cepat untuk mempertahankan keluaran supaya sama dengan masukan. Dalam pengaturan kecepatan putaran motor arus searah, pengendali berfungsi untuk mempertahankan kecepatan yang tetap sesuai acuan walaupun beban berubah. Pengendali PID (Proposional Integral Derivatif) Fuzzy yang merupakan gabungan pengendali PID digital dan Fuzzy. Pengendali mempunyai prinsip PID yang dapat diseting parameternya dan menggunakan aturan fuzzy. Simulasi pengaturan kecepatan motor arus searah dengan pengendali PID Fuzzy dimaksudkan untuk mengetahui seberapa cepat respons pengendali terhadap perubahan beban motor. Kata kunci : Pengendali Proporsional Integral Derivatif (PID), pengendali PID, Fuzzy Department of Electrical Engineering, Faculty of Engineering, Universitas Kristen Indonesia, Jalan Mayjen Sutoyo, Jakarta 3630, INDONESIA, E-mail: bangwido@yahoo.com, Tel.: +62-2- 800990, Fax.: +62-2-8094074 Jurnal Sains dan Teknologi EMAS, Vol. 8, No. 3, Agustus 2008 75

. PENDAHULUAN Dalam banyak hal diperlukan kecepatan putaran motor listrik yang konstan atau tetap walaupun beban yang dipikul berubah-ubah. Untuk itu diperlukan pengendali atau controller yang mempunyai respons yang cepat untuk mempertahankan kecepatan akibat adanya perubahan beban. Memang sudah banyak jenis pengendali, seperti pengendali PID (Proportional Integral Derivative) baik analog maupun digital, pengendali Fuzzy dan masih banyak lagi. Dalam makalah ini akan dibahas pengendali PID Fuzzy yang merupakan gabungan pengendali PID digital dan Fuzzy. Pengendali mempunyai prinsip PID yang dapat diseting parameter pengendalinya dan mempunyai penalaan yang halus sesuai bobot derajat keanggotaan. Selain itu dalam pengendali juga dipergunakan aturan logika yang sederhana yaitu IF variabel masukan A operator variabel masukan B THEN variabel keluaran Pengendali diaplikasikan dalam pengaturan kecepatan putaran motor arus searah penguatan terpisah. Dipilih motor ini karena medan penguat dianggap konstan sehingga pengaturan hanya dilakukan dengan pengaturan tegangan pada rangkaian jangkar. Berdasarkan karakteristiknya motor ini mempunyai daerah pengaturan yang luas, yaitu mulai diam sampai dengan kecepatan nominal, asalkan arus dan tegangan tidak melebihi nominal. Adapun tegangan jangkar berasal dari konverter (rectifier), dimana tegangan keluaranya dapat diatur pada sudut penyalaan thyristor. Dalam makalah akan dimodelkan semua peralatan yang digunakan seperti pengendali, motor dan konverter. Dengan bantuan perangkat lunak Matlab akan dilakukan simulasi dan hasilnya dianalisa 2. PEMODELAN PENGENDALI Dalam suatu sistem kendali, pengendali merupakan komponen penting yang berfungsi untuk membandingkan sinyal keluaran dengan sinyal acuan (Aström & Hägglund, 988, dan Hartanto & Praseto, 2003). Secara blok diagram sistem kendali l dapat digambarkan seperti ditunjukkan pada Gambar. Sinyal keluaran [y(t)] dibandingkan dengan set point [r(t)] akan menghasilkan error [e(t)]. r (t) = Referensi (set point) y(t) = Keluaran (process variable) Gambar. Diagram blok sistem kendali 76 Jurnal Sains dan Teknologi EMAS, Vol. 8, No.3, Agustus 2008

Sinyal kesalahan e(t) selanjutnya diproses dalam pengendali, hasilnya adalah sinyal keluaran pengendali yaitu u(t), yang sering disebut sebagai Maniputed Variable (MV). 2.3. Pengendali Proporsional Integral Fuzzy Sinyal keluaran PI analog adalah: u(t) = [parameter pengendali].e(t) (2) 2.. Sistem Pengendali Fuzzy Pengendali PID Fuzzy dapat diturunkan berdasarkan PID analog, yaitu: Error E: Penjumlahan error SE: Perubahan error CE: 2.2. Pengendali Proporsional Fuzzy Berdasarkan pengendali proporsional analog sinyal keluarannya adalah (Gambar 2): maka untuk pengendali proporsional Fuzzy sinyal keluarannya adalah: di mana : K p = penguatan proporsional Sum Error (SE) Sinyal keluaran PI Fuzzy adalah: di mana: Kp = penguatan proporsional Ti = waktu integrasi Ki = konstanta integrasi Secara blok diagram dapat digambarkan sebagai berikut (Gambar 3): Gambar 3. Blok diagram kendali proporsional integral Fuzzy 2.4. Pengendali Proporsional Derivatif Fuzzy Sinyal keluaran PD analog: Secara blok diagram dapat digambarkan sebagai berikut (Gambar 2): Sinyal keluaran PD Fuzzy: Gambar 2. Blok diagram kendali proporsional Fuzzy di mana: Kp = penguatan proporsional Td = waktu derivatif Kd = konstanta derivatif Jurnal Sains dan Teknologi EMAS, Vol. 8, No. 3, Agustus 2008 77

Secara blok diagram dapat digambarkan sebagai berikut (Gambar 4): Pada jangkar motor timbul electrical magnetic force (emf) lawan sebesar Eb yang melawan tegangan sumber (Vt). Rangkaian ekivalen motor arus searah penguat terpisah diperlihatkan pada Gambar 6, berikut ini: Gambar 4. Blok diagram kendali proporsional derivatif Fuzzy 2.5. Pengendali PID Fuzzy Sinyal keluaran PID analog adalah: Ф di mana: Kp = penguatan proporsional Ki = konstanta integrasi Kd = konstanta derivatif Sinyal keluaran PID Fuzzy adalah: (4) Secara blok diagram dapat digambarkan sebagai berikut (Gambar 5): Gambar 5. Blok diagram kendali PID Fuzzy 3. PEMODELAN MOTOR ARUS SEARAH PENGUATAN TERPISAH Salah satu jenis motor arus searah adalah motor arus searah penguat terpisah. Motor ini memiliki 2 sumber tegangan yang terpisah (Widodo, 2000):. Tegangan sumber 2. Tegangan penguat 78 Jurnal Sains dan Teknologi EMAS, Vol. 8, No.3, Agustus 2008 τ, θ Gambar 6. Rangkaian ekivalen motor arus searah penguat terpisah Keterangan gambar: V f = sumber tegangan kumparan medan R f = tahanan kumparan medan L f = induktansi kumparan medan I f = arus penguatan medan V t = sumber tegangan jangkar R a = tahanan kumparan jangkar L a = induktansi kumparan jangkar E b = tegangan induksi jangkar (emf) I a = arus jangkar Φ = medan (fluksi) penguat τ = torsi fungsi waktu θ = kecepatan J = inersia B = viscous friction coefficient Fungsi Alih Motor Arus Searah Penguat Terpisah Berdasarkan rangkaian ekivalen dari motor arus searah penguat terpisah Gambar 6, maka motor tersebut dapat dimodelkan seperti yang ditunjukan pada Gambar 7.

Vt (s) + - Ra + S La Ia (s) K T T (s) [J S 2 + B S] (s) Eb(s) Km S Gambar 7. Blok diagram motor arus searah penguat terpisah 4. PEMODELAN KONVERTER TIGA FASA Konverter tiga fasa secara ekstensif digunakan pada banyak aplikasi industri hingga level daya 20 kw dengan daerah operasi 2 kuadran (Rashid, 2000). Gambar 8 memperlihatkan rangkaian konverter penuh dengan beban motor arus searah. Rangkaian ini dikenal sebagai jembatan tiga fasa. Gambar 9 memperlihatkan bentuk gelombang dari tegangan masukan, tegangan keluaran, arus masukan dan arus yang melalui thyristor untuk α = π/3. Untuk α > dari π/3, tegangan keluaran sesaat Vo akan memiliki bagian negatif. Karena arus yang melalui thyristor tidak dapat negatif, arus beban akan selalu positif. a Van Vcn c n Vbn ia ib b ic IT T6 T T6 T3 T6 T5 T6 Vo + M - Ia = Io Motor DC Gambar 9. Bentuk gelombang tegangan dan arus dari Konverter tiga fasa. Tegangan keluaran rata-rata diperoleh dari T6 T4 T6 T2 - IT4 Gambar 8. Rangkaian konverter tiga fasa dengan beban motor searah (6) Jurnal Sains dan Teknologi EMAS, Vol. 8, No. 3, Agustus 2008 79

Sumber Daya Tiga Beban (Torsi Beban) r(t) et) Pengendali u(t) Konverter Motor y(t) PID Fuzzy Tiga Fasa Arus Sensor Gambar 0. Blok diagram pengendali kecepatan motor arus searah di mana: V ab = tegangan antar fasa α = sudut penyalaan thyristor 5. PEMODELAN SISTEM Dalam pemodelan sistem dipilih parameter motor arus searah penguat terpisah yang digunakan adalah (Haselman, 997, dan Vas, 999): Daya output (P.out) = 5 HP Tegangan Jangkar (V t ) = 240 Volt Kecepatan (N) = 750 Rpm Tegangan Medan (Vf) = 50 Volt Tahanan Jangkar (Ra) =.2 Ω Induktansi Jangkar (La) = 0.25 H Tahanan Medan (Rf) = 28.3 Ω Induktansi Medan (Lf) = 56 H Total Inertia (J) = 0.0225 kg m 2 Viscous Friction Coefficient (Bm) = 0.002953 N m s Coulomb Friction Torque (Tf) = 0.56 Nm Pemodelan sistem pengaturan kecepatan motor DC penguat terpisah menggunakan logika fuzzy bertujuan untuk mendapatkan setting PID-fuzzy yang terbaik untuk kondisi kerja tertentu, dengan catatan bahwa motor tidak boleh berputar melebihi batas yang ada. Pengaturan dilakukan dengan mengatur besarnya tegangan sumber (Vt) dengan pengaturan sudut penyalaan ( konveter yang disimulasikan didalam MATLAB. Secara blok diagram, pengaturan kecepatan motor arus searah penguat terpisah dengan menggunakan Pengendali PID fuzzy dapat dilihat pada Gambar 0. Model sistem fuzzy menggunakan penalaran fuzzy metode SUGENO. Pada sistem ini, error proses [E(t)], penjumlahan error proses [SE(t)], dan perubahan error [CE(t)] digunakan sebagai input pada Fuzzy Controller, sedangkan aksi kontrol [U(t)] dijadikan sebagai output yang akan dicari (Gambar ). E SE CE Fuzzy Logic Controller Gambar. Input output pengendali fuzzy U 80 Jurnal Sains dan Teknologi EMAS, Vol. 8, No.3, Agustus 2008

E(t) = r(t) y (t) (3-) SE(t) = E(t) + E(t-) (3-2) CE(t) = E(t) E(t-) (3-3) dimana: r(t) : kondisi pada waktu (t) y(t) : output process pada waktu (t) E(t) : error process pada waktu (t) E(t-): error process pada waktu (t-) Dalam memdekomposisi variabel model menjadi himpunan fuzzy Berdasarkan perkiraan kasar, dapat kita gambarkan sistem akan bekerja dengan baik dengan (fine control): Error (E) pada interval [-000 000] Penjumlahan error (SE) pada interval [ - 800 800 ] Perubahan error (CE) pada interval [-600 600] Interval yang diperbolehkan untuk aksi kontrol (U) adalah [0 200] Himpunan fuzzy untuk ketiga variabel diatas adalah: Positive Big (PB) Positive Small (PS) Zero (ZE) Negative Small (NS) Negative Big (NB) Masing-masing variabel input Error (E), Sum Error (SE), dan Change Error (CE) mempunyai gambar fungsi keanggotaan yang sama tetapi dengan interval yang berbeda. Sedangkan untuk variabel output (U) dengan penalaran metode SUGENO, fungsi keanggotaannya berbentuk fungsi konstan. Fungsi keanggotaan untuk input variabel Error [E(t)], Sum Error [SE(t)] dan Change Error [CE(t)], berturut-turut dapat dilihat pada Gambar 2, Gambar 3 dan Gambar 4. µ (Derajat keanggotaan) NB NS ZE PS PB 0,5 0,5-000 -800-600 -400-200 0 200 400 600 800 000 Input Variable (E) Gambar 2. Himpunan fuzzy untuk input variabel E(t) Jurnal Sains dan Teknologi EMAS, Vol. 8, No. 3, Agustus 2008 8

µ (Derajat keanggotaan) NB NS ZE PS PB 0,5 0,5-800 -600-300 0 300 600 800 Input Variable (SE) Gambar 3. Himpunan fuzzy untuk variabel Sum Error [SE(t)] µ (Derajat keanggotaan) NB NS ZE PS PB 0,5 0,5-600 -500-250 0 250 500 600 Input Variable (CE) Gambar 4. Himpunan fuzzy untuk input variabel CE(t) Sedangkan fungsi keanggoataan variabel output U(t) penalaran fuzzy dengan metode SUGENO, digunakan output berbentuk fungsi konstan, yaitu : Fungsi keanggotaan NB = 0 Fungsi keanggotaan NS = 0 Fungsi keanggotaan ZE = 0 Fungsi keanggotaan PS = 00 Fungsi keanggotaan PB = 200 Aturan-aturan dari pemodelan sistem dengan menggunakan logika fuzzy: [R]: if Error is NB and SE is any and CE is any then U is NB [R2]: if Error is PB and SE is any and CE is any then U is PB [R3]: if Error is ZE and SE is ZE and CE is ZE then U is ZE [R4]: if Error is NS and SE is NS and CE is NS then U is NS 82 Jurnal Sains dan Teknologi EMAS, Vol. 8, No.3, Agustus 2008

[R5]: if Error is PS and SE is PS and CE is PS then U is PS [R6]: if Error is NS and SE is PB and CE is NB then U is PS [R7]: if Error is NS and SE is NB and CE is PB then U is NS [R8]: if Error is NS and SE is PS and CE is ZE then U is NS [R9]: if Error is NS and SE is NS and CE is PS then U is NS [R0]: if Error is ZE and SE is PB and CE is NS then U is PS [R]: if Error is ZE and SE is NB and CE is PS then U is NS [R2]: if Error is PS and SE is NS and CE is ZE then U is NS [R3]: if Error is PS and SE is ZE and CE is PS then U is PS [R4]: if Error is PS and SE is NS and CE is PS then U is ZE [R5]: if Error is PS and SE is NB and CE is PB then U is NS [R6]: if Error is PS and SE is PS and CE is NS then U is PS 6. PENGUJIAN SIMULASI DAN ANALISA 6.. Pengujian Sistem Simulasi pengaturan kecepatan motor arus searah penguat terpisah dengan logika fuzzy, memanfaatkan program SIMULINK didalam software MATLAB-7 yang digunakan sebagai bahasa komputasi. Sistem akan diuji dengan memberikan set point yang nilainya berlainan. Pada saat sistem telah mencapai set point, maka sistem akan diberikan gangguan dengan menaikkan load viscous friction coefficient (BL) pada motor. Disini akan dilihat bagaimana tanggapan sistem terhadap set point dan gangguan tadi. Urutan proses pengujian simulasi diperlihatkan pada Tabel. Tabel. Urutan proses pengujian simulasi Load Viscous Urutan Set Point Friction Coefficient Pengujian (rad/s) (N m s). 80 0 0.05 2. 60 0 0.03 3. 40 0 0.045 Gambar 5. Respon kecepatan dengan load viscous friction coefficient sebesar 0.05.N m s Jurnal Sains dan Teknologi EMAS, Vol. 8, No. 3, Agustus 2008 83

Gambar 6. Respon kecepatan dengan load viscous friction coefficient sebesar 0.03.N m s Gambar 7. Respon kecepatan dengan load viscous friction coefficient sebesar 0.045.N m s 6.2. Pengujian Pertama Pada pengujian pertama sistem diatur dengan ketentuan-ketentuan sebagai berikut:. Set point =80 rad/s 2. Load viscous friction coefficient = 0 3. Setelah motor mencapai set point, secara tiba-tiba load viscous friction coefficient) dinaikkan menjadi 0.05 N m s. Setelah sistem dijalankan, maka diperoleh hasil respon kecepatan seperti yang ditunjukkan pada Gambar 5. bahwa sistem memberikan tanggapan atas set point dan perubahan beban yang dilakukan. 84 Jurnal Sains dan Teknologi EMAS, Vol. 8, No.3, Agustus 2008

6.3. Pengujian Kedua Pada pengujian kedua, dengan cara yang sama seperti pengujian pertama diperoleh hasil respon kecepatan yang ditunjukkan pada Gambar 6. 6.4. Pengujian Ketiga Pada pengujian kedua, dengan cara yang sama seperti pengujian pertama diperoleh hasil respon kecepatan yang ditunjukkan pada Gambar 7. 6.5. Analisa Sistem Dari pengujian sistem diatas, bahwa gangguan yang berupa gesekan dapat mempengaruhi kecepatan yaitu dengan semakin kecil set-point maka pengaruh gesekan terhadap kecepatan semakin besar, namun demikian kecepatan akhirnya akan sama.dengan set-point atau acuan, hal ini berarti pengendali dapat berfungsi dengan baik, karena pada keadaan mantan tidak ada kesalahan. Tabel.2. Data-data hasil pengujian system Load Kec. Torsi Viscous No. Set Motor Beban Friction Point ω T Coefficient L (rad/s) (N.m) (BL). 80 0 80 0 0.05 80 2.7 2. 60 0 60 0 0.03 60 4.8 3. 40 0 40 0 0.045 40 6.3 Pengujian berikutnya adalah seperti pengujian tersebut dengan menambahkan beban dengan data-data seperti terlihat pada Tabel 2. 6.6. Analisa Pengujian Pertama Pada pengujian pertama diperoleh hasil seperti terlihat pada Gambar 8, Gambar 9 dan Gambar 20, kemudian analisanya adalah sebagai berikut: Pada saat sistem dijalankan, maka terjadi penguatan pada pengendali fuzzy yang menyebabkan motor berputar. Set point yang diinginkan untuk kecepatan motor adalah 80 rad/s. Sesaat motor DC memberikan respon berbentuk garis lurus keatas, dalam kondisi ini yang bekerja adalah pengendali proporsional fuzzy dan pengendali derivatif fuzzy. Hal ini menyebabkan motor berputar melebihi set point atau dengan kata lain process variable lebih besar daripada set point. Kemudian pengendali integral fuzzy yang bekerja menyebabkan berkurangnya error. Tetapi error dinaikkan lagi oleh pengendali derivatif fuzzy dan diintegralkan lagi sehingga penguatan dikurangi sampai tercapai set point sama dengan process variable Setelah motor berputar dan mencapai set point, secara tiba-tiba motor diberikan beban dengan cara menaikkan load viscous friction coefficient menjadi 0.05. dengan bertambahnya beban motor maka arus jangkar motor juga akan naik (Ia). Oleh karena arus jangkar naik, maka kecepatan motor akan berkurang, sehingga process variable lebih kecil dari set point, sehingga terjadi error, error ini akan diolah oleh pengendali sampai kecepatan (process variable) sama dengan set point. Dapat dilihat bahwa fuzzy controller mempertahankan kecepatan motor sesuai dengan set point walaupun beban motor bertambah. Waktu yang dibutuhkan fuzzy controller untuk mencapai set point setelah beban motor dinaikkan (t error) = 0.9s. Jurnal Sains dan Teknologi EMAS, Vol. 8, No. 3, Agustus 2008 85

6.7. Analisa Pengujian Kedua dan Ketiga Pada pengujian kedua dan ketiga sama dengan pengujian pertama yaitu untuk pengujian kedua diperoleh hasil seperti terlihat pada Gambar 2, Gambar 22 dan Gambar 23 dimana untuk mencapai keadaan process variable sama dengan set point setelah dibutuhkan waktu sebesar.03 detik sedangkan pengujian ketiga dengan hasil Gambar 24, Gambar 25, dan Gambar 26 untuk mencapai kestabilan membutuhkan waktu sebesar 0.7 detik. Maka dari ketiga pengujian dapat katakan bahwa jika dikehendaki set point semakin besar waktu untuk mencapai kestabil semakin besar walaupun gangguan semakin kecil. Gambar 8. Respon kecepatan motor dengan torsi beban 2,7 N-m Gambar 9. Torsi beban motor 2,7 N-m 86 Jurnal Sains dan Teknologi EMAS, Vol. 8, No.3, Agustus 2008

Gambar 20. Respon arus jangkar motor pada torsi beban 2,7 N-m Gambar 2. Respon kecepatan motor dengan torsi beban 4,8 N-m Gambar 22. Torsi beban motor beban 4,8 N-m Jurnal Sains dan Teknologi EMAS, Vol. 8, No. 3, Agustus 2008 87

Gambar 23. Respon arus jangkar motor pada torsi beban 2,7 N-m Gambar 24. Respon kecepatan motor pada torsi beban 6,3 N-m Gambar 25. Torsi beban motor beban 2,7 N-m 88 Jurnal Sains dan Teknologi EMAS, Vol. 8, No.3, Agustus 2008

Gambar 26. Respon arus jangkar motor pada pengujian ketiga 7. KESIMPULAN Dari hasil pengujian simulasi dan pemodelan pengaturan kecepatan motor arus searah penguat terpisah menggunakan logika fuzzy, serta analisanya, maka dapat ditarik kesimpulan sebagai berikut:. Pengendali PID Fuzzy mempunyai respon yang sangat baik karena keadaan mantap kecepatan motor sama dengan set point 2. Waktu yang dibutuhkan fuzzy controller untuk membuat kecepatan motor arus mencapai set point setelah beban motor dinaikkan adalah, pada pengujian dengan torsi beban 2,7 N-m membutuhkan waktu sebesar 0.9 detik, pada pengujian dengan torsi beban sebesar 4,9 N-m membutuhkan waktu sebesar,03 detik dan pada pengujian dengan torsi beban sebesar 6,3 N-m membutuhkan waktu sebesar 0,7 detik. DAFTAR PUSTAKA Aström, K.J. & Hägglund (988) Automatic Tuning of PID Controllers, Instrument Society of America Haselman, D.L. (997), The MathWorks, Inc Published by Prentice-Hall. Hartanto, T.W.D. & Praseto, Y.W.A. (2003), Analisis dan Desain Sistem Kontrol dengan MATLAB, Andi Yogyakarta. Rashid, M.H. (2000), Elektronika Daya, Jilid, PT Prenhallindo, Jakarta. Vas, P. (999), Artificial-Intelligence- Based Electrical Machines and Drives, Apllication of Fuzzy, Neural, Fuzzy-Neural and Genetic- Algorithm-Based Tecniques, Oxford University Press Widodo R.J. (2000), Dasar Sistem Kontrol, PT Prenhallindo, Jakarta. Jurnal Sains dan Teknologi EMAS, Vol. 8, No. 3, Agustus 2008 89

90 Jurnal Sains dan Teknologi EMAS, Vol. 8, No.3, Agustus 2008