MENGHITUNG BILANGAN DOMINASI

dokumen-dokumen yang mirip
Pengembangan Pewarnaan Titik pada Operasi Graf Khusus

Bilangan Kromatik Dominasi pada Graf-Graf Hasil Operasi Korona

BILANGAN DOMINASI EKSENTRIK TERHUBUNG pada GRAF

BILANGAN DOMINASI DAN BILANGAN KEBEBASAN GRAF BIPARTIT KUBIK. Jl. Prof. H. Soedarto, S. H, Tembalang, Semarang

Himpunan Dominasi Ganda pada Graf Korona dan Graf Produk Leksikografi Dua Buah Graf

BILANGAN DOMINASI LOKASI METRIK DARI GRAF HASIL OPERASI KORONA. Hazrul Iswadi

Graf-Graf Khusus dan Bilangan Dominasinya

Abstract

BATAS ATAS BILANGAN DOMINASI LOKASI METRIK DARI GRAF HASIL OPERASI KORONA

Penggunaan Algoritma Kruskal yang Diperluas untuk Mencari Semua Minimum Spanning Tree Tanpa Konstren dari Suatu Graf

BILANGAN DOMINASI PERSEKITARAN PADA GRAF LENGKAP DAN GRAF BIPARTIT LENGKAP. Jl. Prof. H. Soedarto, S.H. Tembalang Semarang

PEMBERIAN NOMOR VERTEX

SPECTRUM PADA GRAF STAR ( ) DAN GRAF BIPARTISI KOMPLIT ( ) DENGAN

PENERAPAN ALGORITMA EXACT UNTUK PENCARIAN POHON RENTANG DENGAN DAUN TERBANYAK (MAXIMUM LEAF SPANNING TREE)

BILANGAN KROMATIK LOKASI UNTUK GRAF K n K m

PENENTUAN RAINBOW CONNECTION NUMBER PADA HASIL OPERASI CARTESIAN PRODUCT TERHADAP GRAF LINGKARAN DAN GRAF BIPARTIT LENGKAP DENGAN GRAF LINTASAN

BILANGAN KROMATIK LOKASI UNTUK GRAF POHON n-ary LENGKAP

Pelabelan Product Cordial Graf Gabungan pada Beberapa Graf Sikel dan Shadow Graph Sikel

Kajian Himpunan Dominasi pada Graf Khusus dan Operasinya

DIMENSI METRIK DARI (K n P m ) K 1

PENENTUAN BILANGAN DOMINASI SISI PADA GRAF HASIL OPERASI PRODUK TENSOR

NILAI EKSAK BILANGAN DOMINASI COMPLEMENTARY TREE TERHUBUNG-3 PADA GRAF CYCLE, GRAF LENGKAP DAN GRAF WHEEL. Jl.Prof. H.Soedarto,SH, Tembalang, Semarang

Penerapan Teorema Bondy pada Penentuan Bilangan Ramsey Graf Bintang Terhadap Graf Roda

POWER DOMINATION NUMBER PADA GRAF LINTASAN COMB SISI GRAF BUKU SEGITIGA DIKAITKAN DENGAN KETERAMPILAN BERPIKIR TINGKAT TINGGI

BILANGAN RADIO PADA GRAF GEAR. Ambar Puspasari 1, Bambang Irawanto 2. Jl. Prof. H. Soedarto, S. H, Tembalang, Semarang Jurusan Matematika FMIPA UNDIP

BILANGAN KROMATIK LOKASI DARI GRAF ULAT

DIMENSI METRIK PADA BEBERAPA KELAS GRAF

BILANGAN DOMINASI LOKASI PERSEKITARAN TERBUKA PADA GRAF TREE

PELABELAN GRACEFUL SISI BERARAH PADA GRAF GABUNGAN GRAF SIKEL DAN GRAF STAR. Putri Octafiani 1, R. Heri Soelistyo U 2

DIMENSI METRIK PENGEMBANGAN GRAF KINCIR POLA K 1 + mk 3

On r-dynamic Coloring of Operation Product of Cycle and Path Graphs

DIMENSI METRIK PADA HASIL OPERASI KORONA DUA BUAH GRAF

BILANGAN DOMINASI DARI GRAF-GRAF KHUSUS

DIMENSI METRIK PADA GRAF LINTASAN, GRAF KOMPLIT, GRAF SIKEL, GRAF BINTANG DAN GRAF BIPARTIT KOMPLIT

PELABELAN E-CORDIAL PADA BEBERAPA GRAF CERMIN

PELABELAN SUPER GRACEFUL PADA GRAPH. Griselda Afrian Y, Purwanto, dan Lucky Tri Oktoviana Universitas Negeri Malang

Misalkan dipunyai graf G, H, dan K berikut.

PELABELAN AKAR RATA-RATA KUADRAT PADA GRAF LADDER DAN GRAF CORONA. Universitas Diponegoro Semarang Jl.Prof. H.Soedarto,SH, Tembalang, Semarang

BILANGAN KROMATIK LOKASI UNTUK GRAF C n K m, DENGAN n 3 DAN m 1

BILANGAN KROMATIK LOKASI UNTUK JOIN DARI DUA GRAF

PELABELAN TOTAL TITIK AJAIB PADA COMPLETE GRAPH K DENGAN N GENAP

MATHunesa Jurnal Ilmiah Matematika Volume 6 No.2 Tahun 2018 ISSN

PENYELESAIAN MASALAH ALIRAN MAKSIMUM MENGGUNAKAN EDMONS KARP ALGORITHM

BATAS ATAS RAINBOW CONNECTION NUMBER PADA GRAF DENGAN KONEKTIVITAS 3

Analisa Himpunan Dominasi pada Graf-Graf Khusus

BILANGAN RAINBOW CONNECTION DARI HASIL OPERASI PENJUMLAHAN DAN PERKALIAN KARTESIUS DUA GRAF

BILANGAN TERHUBUNG TITIK PELANGI UNTUK GRAF THE RAINBOW VERTEX CONNECTION NUMBER OF STAR

Gambar 6. Graf lengkap K n

KARAKTERISASI GRAF POHON DENGAN BILANGAN KROMATIK LOKASI 3

DIMENSI PARTISI PADA GRAPH HASIL KORONA C m K n. Oleh : Yogi Sindy Prakoso ( ) JURUSAN MATEMATIKA. Company

(x)+ (fx; yg)+ (y) =k; untuk suatu konstanta tetap k. Selanjutnya konstanta tetap k disebut angka ajaib (konstanta ajaib) untuk graf G. Suatu graf G d

PEMBERIAN NOMOR VERTEX PADA TOPOLOGI JARINGAN GRAF WHEEL, GRAF HELM DAN GRAF LOLLIPOP

PEWARNAAN TOTAL R-DINAMIS DENGAN TEKNIK FUNGSI PEWARNAAN BERPOLA PADA HASIL OPERASI COMB

RAINBOW CONNECTION PADA GRAF k-connected UNTUK k = 1 ATAU 2

GRAF RAMSEY (K 1,2, C 4 )-MINIMAL DENGAN DIAMETER 2

Pelabelan Total (a, d)-simpul Antimagic pada Digraf Matahari

BILANGAN KROMATIK LOKASI UNTUK GRAF K n K m

PELABELAN TOTAL TRINGULAR PADA BEBERAPA KELAS GRAF POHON

AUTOMORFISME GRAF BINTANG DAN GRAF LINTASAN

Yurnalis 1. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.

GRAF AMALGAMASI POHON BERBILANGAN KROMATIK LOKASI EMPAT

PELABELAN PRODUCT CORDIAL PADA TENSOR PRODUCT PATH DAN SIKEL

PENENTUAN ANGGOTA KELAS RAMSEY MINIMAL UNTUK PASANGAN (2K 2, C 4 )

ORDER UNSUR DARI GRUP S 4

GRUP AUTOMORFISME GRAF HELM, GRAF HELM TERTUTUP, DAN GRAF BUKU

Bilangan Kromatik Graf Hasil Amalgamasi Dua Buah Graf

BILANGAN DOMINASI JARAK DUA PADA GRAF- GRAF HASIL OPERASI KORONA DAN COMB

BILANGAN TERHUBUNG PELANGI GRAF BERLIAN. M.A. Shulhany, A.N.M. Salman

SYARAT PERLU UNTUK GRAF RAMSEY (2K 2, C n )-MINIMAL

BILANGAN KROMATIK LOKASI DARI GRAF HUTAN LINIER H t

OPERASI PADA GRAF FUZZY

Spektrum Graf Konjugasi dan Komplemen Graf Konjugasi dari Grup Dihedral

Kajian Mengenai Syarat Cukup Polynomial Kromatik Graf Terhubung Memiliki Akar-Akar Kompleks

DIMENSI PARTISI PADA GRAF ANTIPRISMA, GRAF MONGOLIAN TENT, DAN GRAF STACKED BOOK

. Nilai total ketakteraturan titik graf. Graf Hasil Kali Comb Dan C 5 Dengan Bilangan Ganjil

IMPLEMENTASI MASALAH PEWARNAAN GRAPH DENGAN ALGORITMA TABU SEARCH PADA PENJADWALAN KULIAH

ALTERNATIF PEMBUKTIAN DAN PENERAPAN TEOREMA BONDY. Hasmawati Jurusan Matematika, Fakultas Mipa Universitas Hasanuddin

BAB III ALGORITMA BRANCH AND BOUND. Algoritma Branch and Bound merupakan metode pencarian di dalam ruang

BILANGAN RAMSEY UNTUK GRAF BINTANG S n DAN GRAF RODA W m

Bilangan Ramsey untuk Graf Bintang Genap Terhadap Roda Genap

BILANGAN KROMATIK LOKASI DARI GRAF P m P n, K m P n, DAN K m K n

DIMENSI METRIK GRAF KIPAS Suhartina 1*), Nurdin 2), Amir Kamal Amir 3) Perintis Kemerdekaan, Makassar, Indonesia, Kode Pos 90245

PELABELAN GRACEFUL SISI-GANJIL PADA GRAF WEB W(2,n) Jl. Prof. H. Soedarto, S.H. Semarang 50275

TEKNIK MENENTUKAN BILANGAN RAMSEY R(M, N) DENGAN M DAN N ADALAH 1, 2, DAN 3 SKRIPSI OLEH AGUS FAJARMAN ZALUKHU BP

PELABELAN TOTAL TITIK AJAIB PADA GRAF LENGKAP DENGAN METODE MODIFIKASI MATRIK BUJURSANGKAR AJAIB DENGAN n GANJIL, n 3

Matematika Diskrit. Rudi Susanto

Jln. Perintis Kemerdekaan, Makassar, Indonesia, Kode Pos THE TOTAL EDGE IRREGULARITY STRENGTH OF WEB GRAPH

BILANGAN KROMATIK LOKASI UNTUK GRAF AMALGAMASI BINTANG

PELABELAN L(2,1) PADA OPERASI BEBERAPA KELAS GRAF

HUBUNGAN BILANGAN SEMPURNA DAN BILANGAN PRIMA FIBONACCI ABSTRACT

PELABELAN HARMONIS GANJIL PADA GRAF KINCIR ANGIN DOUBLE QUADRILATERAL

THE TOTAL EDGE IRREGULARITY STRENGTH OF DOUBLE HEADED CIRCULAR FAN GRAPH

Perbandingan Bilangan Dominasi Jarak Satu dan Dua pada Graf Hasil Operasi Comb

Unnes Journal of Mathematics

Grup Permutasi dan Grup Siklis. Winita Sulandari

DIMENSI METRIK GRAPH LOBSTER L n (q; r)

ISSN: Vol. 2 No. 2 Mei 2013

Penerapan Algoritma Steiner Tree dalam Konstruksi Jaringan Pipa Gas

Pelabelan Super Sisi Ajaib pada Subkelas Pohon

EKSENTRIK DIGRAF DARI GRAF-GRAF KHUSUS

Transkripsi:

MENGHITUNG BILANGAN DOMINASI PADA GRAPH GRID n n, n 7 Mucharomatut Toyyibah 1) Purwanto 2) FMIPA Universitas Negeri Malang mucharomatut09@gmail.com Abstrak: Himpunan pendominasi ialah suatu himpunan bagian V dari himpunan titik V(G) dimana titik-titik yang tidak berada pada V terhubung langsung dengan minimal satu titik pada V. Ukuran dari himpunan pendominasi terkecil disebut bilangan dominasi. Bilangan dominasi pada graph G dinotasikan dengan γ(g) dan bilangan dominasi pada graph grid G n n dinotasikan dengan γ n,n. Graph grid adalah graph yang merupakan hasil kali cartesius dari graph lintasan P m P n atau jika dituliskan dalam notasi pembentuk himpunan maka V P m P n = {(v i, w j ) v i P m, w j P n }. Graph grid dengan m n titik dinotasikan dengan G m,n. Pada tulisan ini dibahas pencarian himpunan pendominasi minimum dan bilangan dominasi menggunakan algoritma BFS (breadth-first search) dengan ciri khas algoritma pemrograman dinamis kemudian diperiksa hasil yang diperoleh dengan penelitian sebelumnya. Kata Kunci: graph grid, himpunan pendominasi, bilangan dominasi, algoritma BFS (breadth-first search), algoritma pemrograman dinamis. Suatu permasalahan akan semakin mudah dipelajari, dipahami dan diselesaikan jika dibawa ke model matematika. Setelah model matematikanya diketahui, maka masalah tersebut akan dipilah-pilah ke dalam cabang-cabang ilmu matematika. Salah satu cabang ilmu matematika yang bermanfaat dalam menyelesaikan suatu permasalahan tersebut adalah teori graph. Salah satu topik yang dibahas dalam teori graph ialah himpunan pendominasi (dominating set). Himpunan pendominasi ialah suatu himpunan bagian V dari himpunan titik V(G) dimana titik-titik yang tidak berada pada V terhubung langsung dengan minimal satu titik pada V. Ukuran terkecil dari himpunan pendominasi disebut bilangan dominasi (domination number) dilambangkan dengan γ(g). (Alanko dkk, 2011). Banyak manfaat bilangan dominasi dan himpunan pendominasi dalam kehidupan sehari-hari. Seperti disebutkan dalam Haynes, Hedetniemi, dan Slater (1998:21) diantaranya dalam rute bus sekolah. Sebagian besar rute bus sekolah beroperasi berdasarkan aturan tertentu. Biasanya aturan tersebut berupaya agar setiap anak berjalan tidak jauh ke tempat pemberhentian bus. Dalam kasus ini permasalahanya di titik-titik mana saja pemberhentian bus ditentukan agar setiap anak berjalan tidak jauh ke pemberhentian tersebut. Dari Beineke dan Wilson (2004:) hasil kali cartesius (Cartesian product) G H atau G H memiliki himpunan titik V(G) V(H) atau jika ditulis dalam notasi pembentuk himpunan diperoleh V G H = {(v i, w j ) v i G, w j H} dan (v i, w j ) terhubung langsung ke (v h, w k ) jika salah satu dari berikut ini terpenuhi a) v i terhubung langsung ke v h pada G dan w j = w k, atau b) v i = v h dan w j terhubung langsung ke w k pada H 1) Mucharomatut T. adalah mahasiswa Jurursan Matematika FMIPA Universitas Negeri Malang 2) Purwanto adalah dosen Jurursan Matematika FMIPA Universitas Negeri Malang 1

Dalam bentuk yang kurang formal, G H dapat diperoleh dengan mengambil n salinan dari H dan menghubungkan titik-titik yang berkorespondensi pada salinan berbeda jika ada suatu sisi di G. Menurut Weisstein, graph grid adalah graph yang merupakan hasil kali cartesius dari graph lintasan P m P n atau jika dituliskan dalam notasi pembentuk himpunan maka V P m P n = {(v i, w j ) v i P m, w j P n }. Graph grid dengan m n titik dinotasikan dengan G m,n. Didefinisikan beberapa notasi yang sering digunakan baik pada teorema maupun algoritma pencarian himpunan pendominasi dan bilangan dominasi. Seperti pada Alanko, dkk (2011) untuk suatu titik v V, himpunan titik-titik yang didominasi oleh v dinotasikan dengan D(v). Untuk suatu himpunan V V, himpunan titik-titik yang didominasi oleh (titik-titik pada) V dinotasikan dengan D(V ). Untuk suatu himpunan S V, titik dengan urutan leksikografis terkecil pada V\S dinotasikan dengan s(s). Urutan leksikografis artinya v i,j lebih kecil dari v k,l jika i < k atau jika i = k dan j < l. Beberapa penelitian telah dilakukan dalam menentukan bilangan dominasi pada graph grid seperti disebutkan dalam Chang, Clark, dan Hare (199). Hasil dari penelitian tersebut digunakan untuk mengecek hasil pencarian dengan algoritma apakah sudah sesuai dengan perhitungan rumus umum, diantaranya sebagai berikut : a) γ 1,n = n+2 b) γ 2,n = n+2 2 c) γ,n = n+4 4 d) γ 4,n = e) γ,n = f) γ 6,n = n + 1, n = 1,2,,,6,9 n, n lainya 6n+6 6n+8 g) γ 7,n = n+ 10n+10 7 10n+12 7 h) γ 8,n = 1n+14 8 i) γ 9,n = 2n+20 11 j) γ 10,n = 0n+7 1 0n+24 1, n = 2,,7, n lainya, n 6 dan n 1 (mod 7), n lainya jika n 4, n 0 atau (mod 1) dan n 1,16, n lainya untuk 10 n 12 2

HASIL DAN PEMBAHASAN Berikut ini dijelaskan beberapa teorema yang diambil dari Alanko, dkk (2011) yang akan digunakan untuk membentuk algoritma dalam mencari himpunan pemdominasi minimum pada graph grid G n n = (V, E). Teorema 1 Perhatikan suatu graph grid G n n = V, E, dan misalkan V 1 V dan V 2 V sedemikian sehingga V 1 = V 2 dan D(V 1 ) D(V 2 ). Untuk mencari himpunan pendominasi minimum dari G, boleh mengabaikan V 1 dan hanya memperhatikan himpunan pendominasi yang dibuat dari V 2. Untuk sebarang V V maka V 1 V merupakan suatu himpunan pendominasi dari G. Karena D(V 1 ) D(V 2 ) maka V 2 V juga merupakan himpunan pendominasi dari G. Karena V 2 V merupakan himpunan pendominasi dari G maka saat V 1 = V 2, untuk mencari himpunan pendominasi minimum dari G cukup dengan memperhatikan himpunan pendominasi yang diperoleh dari V 2 dan mengabaikan himpunan pendominasi yang diperoleh dari V 1. Teorema 2 Perhatikan suatu graph grid G n n = (V, E), dan misalkan S V. Ketika memperhatikan titik-titik untuk mendominasi v i,j = s(s), kandidatkandidat v i 1,j dan v i,j 1 dapat diabaikan (setiap kali titik-titik tersebut ada, yaitu, i 2 dan j 2, secara berurutan). Menurut definisi dari s S, titik yang belum terdominasi yang dapat didominasi oleh v i 1,j hanyalah titik v i,j. Sama halnya,titik-titikyang belum terdominasi yang dapat didominasi olehv i,j 1 (dengan asumsi j 2) hanyalah titik v i,j dan titik v i+1,j 1 (jika i m 1). Tetapi, jikai m 1, v i+1,j mendominasi titik yang sama, dan jikai = m, v i+1,j (atau v i,j, jika j = n) mendominasi titik yang sama tersebut. Sehingga dari Teorema 1 diperoleh bahwa kandidat-kandidat v i 1,j dan v i,j 1 dapat diabaikan (setiap kali titik-titik tersebut ada, yaitu, i 2 dan j 2, secara berurutan). Teorema Perhatikan suatu graph grid G = V, E n n dan misalkan S V. Ketika memperhatikan titik-titik untuk mendominasi v i,j = s S jika v i,j +1 S, j n 1, kandidat v i,j dapat diabaikan. Jikav i,j +1, v i,j +2 S, titik-titik yang belum terdominasi yang dapat didominasi oleh v i,j hanyalah titik v i,j dan jika i m 1, v i+1,j +1. Tetapi, untuk i m 1, v i+1,j mendominasi kedua titik-titik tersebut. Sehingga dari Teorema 1 diperoleh bahwa untuk mendominasi v i,j = s S jika v i,j +1 S, j n 1, kandidat v i,j dapat diabaikan

Teorema 4 Perhatikan suatu graph grid G = (V, E)n n, dan misalkan S V. Saat memperhatikan titik-titik untuk mendominasi v i,j = s(s) jika v i,j +1, v i,j +2 S, i n 1, j n 2, maka kandidat v i,j +1 dapat diabaikan. Jika v i,j +1, v i,j +2 S, titik-titik yang belum terdominasi yang dapat didominasi oleh v i,j +1 hanyalah titik v i,j dan jika i m 1, v i+1,j +1. Tetapi, untuk i m 1, v i+1,j mendominasi kedua titik-titik tersebut. Sehingga dari Teorema 1 diperoleh bahwa untuk mendominasi v i,j = s(s) jika v i,j +1, v i,j +2 S, i n 1, j n 2, maka kandidat v i,j +1 dapat diabaikan Algoritma Pencarian Himpunan Pendominasi Minimum Untuk mencari himpunan pendominasi minimum digunakan Algoritma Breadth-First Search (BFS) dengan ciri khas dari Algoritma Pemrograman Dinamis. Selama pencarian kita memperhatikan himpunan-himpunan titik-titik yang terdominasi (daripada titik-titik yang mendominasi). Berikut langkah-langkah Algoritma Breadth-First Search (BFS) dengan ciri khas dari Algoritma Pemrograman Dinamis sebagai berikut : 1. Tentukan himpunan S yang merupakan himpunan titik-titik yang terdominasi, dengan S 0 = 2. Tentukan s S p = v i,j. Tentukan kandidat-kandidat pendominasi s(s p ) 4. Lakukan pengurangan-pengurangan kandidat dengan kriteria sebagai berikut : a) Jika i 2 maka kandidat v i 1,j diabaikan b) Jika j 2 maka kandidat v i,j 1 diabaikan c) Jika j n 1, v i,j +1 S p maka kandidat v i,j diabaikan d) Jika i m 1, j n 2, v i,j +1 S p dan v i,j +2 S p maka kandidat v i,j +1 diabaikan.. Pilih satu titik v k,l dari kandidat yang tersisa sebagai titik pendominasi. Jika terdapat dua atau lebih kandidat tersisa maka perhatikan hal-hal berikut : a) Untuk n 1 dan p = 0 maka pilih selain v 1,1 b) Pilih kandidat yang lebih banyak mendominasi titik baru atau jika D(V 1 ) D(V 2 ) maka pilih himpunan pendominasi V 2 6. Tentukan D(v k,l ) 7. Diperoleh S p = S p 1 D(v kl ) Lakukan pencarian sampai semua titik telah terdominasi PENUTUP Kesimpulan Untuk menentukan himpunan pendominasi dari graph jika terdapat dua himpunan bagian dari himpunan titik yang merupakan himpunan pendominasi yang memiliki banyak anggota sama maka dipilih himpunan yang mendominasi 4

titik lebih banyak (Teorema 1). Jika dalam pencarian terdapat titik yang belum terdominasi s S = v i,j diperoleh aturan sebagai berikut : Jika i 2 maka kandidat v i 1,j diabaikan Jika j 2 maka kandidat v i,j 1 diabaikan (Teorema 2) Jika j n 1, v i,j +1 S p maka kandidat v i,j diabaikan (Teorema ) Jika i m 1, j n 2, v i,j +1 S p dan v i,j +2 S p maka kandidat v i,j +1 diabaikan. (Teorema 4) Menentukan himpunan pendominasi minimum dan bilangan dominasi menggunakan algoritma BFS (breadth-first search) dengan ciri khas algoritma pemrograman dinamis diperoleh bahwa γ 1,1 = 1; γ 2,2 = 2; γ, = ; γ 4,4 = 4; γ, = 7; γ 6,6 = 10; γ 7,7 = 12; dengan salah satu contoh himpunan pendominasi minimum untuk masing-masing ukuran. Menentukan bilangan dominasi dengan menggunakan rumus dari Chang, Clark, dan Hare (199) dan dengan menggunakan algoritma BFS (breadth-first search) dengan ciri khas algoritma pemrograman dinamis diperoleh hasil yang sama. Saran Dalam tulisan ini masih disajikan graph grid persegi n n dengan ukuran yang terbatas yaitu sampai dengan n 7, diharapkan pembaca dapat mengembangkan untuk graph grid yang lebih umum. Masih banyak masalah penentuan bilangan dominasi untuk graph grid yang belum ditemukan yang dapat dijadikan sebagai bahan penelitian antara lain bilangan dominasi pada graph grid n n untuk n > 7, bilangan dominasi pada graph grid m n untuk sebarang m dan masih banyak lagi permasalahan penentuan bilangan dominasi yang lain. Masih banyak pula bentuk-bentuk lain graph yang dapat dicari bilangan dominasinya. DAFTAR PUSTAKA Alanko, S., Crevals, S., Isopoussu, A., Östegård, P., & Pettersson, V. 2011. Computing the Domination Number of Grid Graphs, 18 (141). Dari The Electronic Journal of Combinatorics (Online) (http://www.combinatorics.org) diakses 11 Maret 2012 Beineke, L.W, dan Wilson, R.J. 2004. Topics in Algebraic Graph Theory. Cambridge : Cambridge University Press. Dari BookFinder (Online) (http://www.en.bookfi.org ) diakses 18 Januari 201 Chang, T. Y, Clark, W.E, dan Hare, E.O. 199. Domination Number of Complete Grid Graphs. I.. 8 (97). Dari The Electronic Journal of Combinatorics (Online) (http://www.combinatorics.org) diakses 21 Desember 2012 Haynes, T.W, Hedetniemi, S.T, dan Slater, P.J. 1998. Fundamentals of Domination in Graphs. New York: Marcel Dekker, Inc. Dari BookFinder (Online) (http://www.en.bookfi.org ) diakses 11 April 2012 Weisstein, Eric W. Grid Graph. From MathWorld-A Wolfram Web Resource. (http://mathworld.wolfram.com/gridgraph.html) diakses tanggal 11 April 2012